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Second-harmonic generation of blue series excitons and magnetoexcitons in Cu2O
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Nonlinear optical studies of the yellow and green exciton series in Cu2O have been reported for more than 40
years. Because of the band structure (the two highest even-parity valence and lowest conduction bands), the S
excitons of the two lowest exciton series are dipole-forbidden for one-photon absorption and thus dipole-allowed
for two-photon absorption. There is an odd-parity higher conduction band that leads with the two even-parity
valence bands to the blue and violet exciton series. We report on second-harmonic generation (SHG) of the blue
exciton series. The odd-parity S-exciton SHG is due to a dipole-quadrupole excitation and a dipole emission
process. Because of their high oscillator strength density, polariton effects have to be taken into account, since
resonances might be shifted to higher energies by up to 10 meV compared to the transverse exciton energies.
The polariton dispersion for the blue excitons up to n = 4 is calculated and compared to the experimental results.
In magnetic fields up to 10 T applied in a Voigt configuration (B ⊥ k), SHG of S excitons by a dipole-dipole
excitation is observed, which is due to the admixture of dipole-dipole excited P excitons by the effective electric
field from the magneto-Stark effect (MSE). From the analysis of the diamagnetic shift and the MSE interaction of
the three-level system of 1S, 2S, and 2P excitons, we derive experimental results for the ratio 〈r2

n,l〉/μX between
the average of radius squared for the three states and the reduced exciton mass. For higher principal quantum
number states, we observe magnetoexcitons up to n = 8. We analyze their magnetic field dependence and derive
the electron effective-mass values for the crystalline orientations [111], [11̄0], and [001].

DOI: 10.1103/PhysRevB.104.075203

I. INTRODUCTION

Cuprous oxide (Cu2O) is the material in which excitons
were discovered almost 70 years ago [1], and it has remained
a testbed for exciton spectroscopy, providing prominent ex-
citon features with four exciton series of different symmetries
recently studied by photoluminescence [2]. An unprecedented
crystal quality allows the observation of Rydberg exciton
states with a principal quantum number of up to n = 30 [3].

A schematic of the band structure with two valence and
two conduction bands leading to the four known exciton series
is shown in Fig. 1. The lowest exciton series (yellow series
with a band gap of Eg ≈ 2.172 eV) has recently gained a lot
of interest [4,5]. The next higher exciton series (green series,
Eg ≈ 2.30 eV) arises from the next lower valence band (�+

8
symmetry), split off by spin-orbit coupling from the highest
valence band (�+

7 symmetry) of the yellow series. Because
of the even-parity lowest conduction band (�+

6 symmetry),
dipole transitions to S excitons are forbidden. Detailed sym-
metry considerations were first discussed in Ref. [6]. The
lowest exciton (1S exciton) can only be excited by an electric
quadrupole transition [7]. Higher excitons from n = 2 (P ex-
citons), however, can be excited by electric dipole transitions,
but are expected to be much weaker than electric dipole S
exciton transitions between bands of different parity [8]. In
Ref. [1], a higher conduction band of �−

3 symmetry (�−
8 sym-

metry including spin) is reported, which was later confirmed
by band structure calculations [9–11]; for recent work, see
Ref. [12]. Excitons involving this �−

8 conduction band and

the two uppermost valence bands (�+
7 and �+

8 symmetry) are
commonly called the blue (Eg ≈ 2.62 eV) and violet series
(Eg ≈ 2.75 eV) [13].

It turned out that the electric dipole allowed transitions
to the blue exciton series were too strong to be measured
in transmission on single crystals. The first measurements
were done in reflection [14], yielding rather broad structures.
Measurements in transmission require a sample thickness in
the order of 0.1 μm [13]. Layers of Cu2O were grown by
oxidizing copper on quartz substrates, which are probably
polycrystalline and strained [15,16]. There were no structures
observable in absorption, which can be linked to series of
blue excitons. In luminescence experiments with an excita-
tion above the band edge in chemically etched bulk samples,
two lines were observed that were assigned to the 1S and
2S excitons of the blue series [2]. The oscillator strength
density of the blue electric dipole allowed exciton transitions
(β = 2.93 × 10−3, Ref. [13]) is larger by a factor of 107 as
compared to the yellow exciton transitions (β = 3.1 × 10−10,
Ref. [17]). Their polariton character has to be taken into ac-
count leading to the well-known polariton dispersion relations
E (K) with resonance energies differing from the transverse
(undisturbed by light field) exciton energies [18]. This was
shown for the blue series in Ref. [19], where double res-
onant sum-frequency generation to the 1S exciton-polariton
of the blue series was investigated. In these high-resolution
experiments, the 1S exciton of the yellow series was res-
onantly excited by a quadrupole transition with use of a
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single-frequency dye laser. With a tunable single-frequency
infrared laser, an electric dipole transition from the 1S yellow
exciton to the 1S blue polariton resonance was induced, which
was detected by its emission of blue light.

Optical harmonics generation is a powerful tool to study
electronic states in solids [20–22]. For this technique, com-
monly two-photon excitation is used, while it can be three or
more photons as well, and one photon with double photon
energy is detected. Second-harmonic generation (SHG) is a
coherent process and differs strongly in this respect from
the photoluminescence under two-photon excitation. For the
SHG, the involved electronic state should have a finite matrix
element for the two-photon excitation and single-photon emis-
sion, which make the process very sensitive to the symmetry
of the electronic state and its modification under strain, and
electric and magnetic fields. The SHG is also very informa-
tive for the exciton spectroscopy, as the nonlinear signals,
which are typically weak, are resonantly enhanced at the
exciton and exciton-polariton resonances [23]. Exciton states
have been studied by SHG in various semiconductors such
as GaAs, CdTe, (Cd,Mn)Te, EuTe, and ZnO, and model ap-
proaches for the symmetry analyses have been developed (see,
e.g., Refs. [24,25]). An important role of exciton-polariton
dispersion has been identified experimentally for second-,
third-, and fourth-harmonic generation in ZnSe, GaAs, and
CdTe [26,27]. We developed a technique for the SHG mea-
surements using spectrally broad femtosecond laser pulses
and a high-resolution spectrometer for the signal detection,
which is extremely efficient and convenient for the exciton
spectroscopy [28]. Being combined with the two-dimensional
experimental approach for measuring the polarization depen-
dence, SHG spectroscopy has been successfully applied for
the detailed study of the yellow exciton series in Cu2O [29],
and it also allows us to identify the excited states of dark
excitons [30,31]. Also the two-photon excitation of photolu-
minescence has been used to study excitons in Cu2O [32–38].
The efficiency and polarization anisotropy of third-harmonic
generation has been investigated in Ref. [39].

In this paper, we study in detail the exciton-polariton
structure up to n = 4 of the blue series by means of op-
tical second-harmonic generation. Only for excitation in
low-symmetry directions (e.g., light wave vector k ‖ [111]
and [112]) is the SHG signal observed, which can be as-
signed to the 1S polariton resonance. For these low-symmetry
directions, we expect SHG of S excitons to be allowed
by electric-quadrupole–electric-dipole two-photon excitation.
Therefore, the polarization selection dependencies correspond
to those of P-excitons of the yellow series, as it was shown in
Ref. [29]. We observed a clear SHG resonance of the 1S blue
exciton, and a dip in the region of an expected 2S polariton.
There are no SHG structures detected at higher n.

In a magnetic field in Voigt configuration (magnetic field
B ⊥ k), we observed clear resonances of the 1S, 2S, and
2P excitons and even detect weak SHG signals of magne-
toexcitons up to n = 6. We explain these resonances by the
magneto-Stark effect (MSE), which couples nS and nP exci-
tons, and by the Zeeman effect (ZE), which couples states of
the same parity [29].

For k ‖ [11̄0] and [001], the SHG by electric-quadrupole–
electric-dipole excitation to the 1S blue exciton is forbidden

[29], which is confirmed by our experiments. In a magnetic
field in Voigt configuration, SHG from S and P excitons is
enabled by the MSE, �−

4 ZE (coupling of �−
4 states), and

�+
5 ZE (coupling of �+

5 states), which can be separated by
a choice of the polarization configuration. The relevant po-
larization dependencies are derived in detail in Ref. [29]. For
these orientations, we get blue exciton resonances up to n = 8.

The magnetic field dependence of the 1S, 2S, and 2P
resonances is analyzed by a three-level model, where the dia-
magnetic shift of the resonances and the magneto-Stark (MS)
coupling between the odd-parity 1S, 2S and the even-parity
2P exciton by the effective electric field is taken into account.
From the analysis, we derive values for the ratio of the average
exciton radius squared 〈r2

1,0〉, the effective exciton mass μX ,
and the exciton Bohr radius aX , which are discussed with
the results from the polariton and magnetoexciton analysis.
In strong magnetic fields of up to 10 T, excited exciton states
with weaker binding energy convert their diamagnetic shifts
with a quadratic dependence on the magnetic field to an al-
most linear dependence of magnetoexcitons [40–42]. From
the almost linear magnetic shift of the magnetoexcitons in
high magnetic fields, we derive K-dependent effective elec-
tron mass values, with K being the combined electron-hole
wave vector. From the electron masses for the different K
directions, an effective exciton reduced mass is derived, which
is compared to the results of band-structure calculations [11].

The paper is organized as follows: In Sec. II, we briefly
describe the experiments. Section III is devoted to the polari-
ton effect of blue exciton states in Cu2O. In Sec. IV, several
SHG mechanisms are introduced, and their spectral features
are described. In Sec. IV A, we present the analysis of the
experimental result of a three-level model for the magnetic
field dependence of the 1S, 2S, and 2P resonances for k ‖
[11̄0]. In Sec. IV B, we present the magnetoexciton analysis
for k ‖ [001], [11̄0], and [111] and we discuss the parameters
derived with both methods. In Sec. V, we present conclusions
and give an outlook on further experiments.

II. EXPERIMENT

The experimental setup for SHG measurements in mag-
netic fields is shown in Fig. 2. A detailed description of the
setup is given in Refs. [28–30]. As compared to the setup
described in Ref. [30], we use only the 0.5 m Acton spectrom-
eter (80 μeV resolution) as a detection system. The pulses of
a pump laser (200 fs, 30 kHz) are converted to 3.3 ps pulses
via a second-harmonic bandwidth compressor and are tuned
in wavelength by an optical parametric amplifier. The laser
beam has a diameter of 3 mm and is focused by a 30 cm focal
length lens onto the sample leading to a focus diameter of
120 μm calculated by Gaussian optics [43]. An average laser
power of 100 mW corresponds in this case to a peak irradiance
of about 10 GW cm−2 and an energy per pulse of 3 μj. The
SHG light is collimated with a 25 cm focal length lens, and
the parallel SHG beam is determined to be about the same
diameter as the laser beam. The excitation laser has a spectral
width of about 0.7 meV and generates a SHG spectrum in
the sample with a spectral width of about 1.1 meV. Since the
spectral width of the blue exciton resonances is on the order
of 5–10 meV, we measure the SHG spectral dependences by
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FIG. 1. Schematic band structure [5] of Cu2O at the � point
with conduction bands (CBs) and valence bands (VBs) and their
symmetries leading to the yellow, green, blue, and violet exciton
series.

tuning the laser from 1.265 to 1.34 eV (half of the exciton
energy) and synchronously tuning the spectrometer by a LAB-
VIEW program, so that the peak of the laser spectrum is always
falling on the same pixel of the CCD detector. The output
of this pixel is then taken as the SHG signal. An exemplary
SHG spectrum for an excitation energy of 1.295 eV and a
spectrometer set to 2.59 eV is shown as the gray area in
Fig. 3(a). Depending on the mechanism involved, the SHG
intensity of excitons exhibits a characteristic dependence on

FIG. 2. Schematics of the experimental setup: The second har-
monic is generated with 3.3 ps pulses at a repetition rate of 30 kHz.
In a cryostat, the sample is cooled down to T = 1.4 K and exposed to
a magnetic field up to 10 T applied in a Voigt configuration. A 0.5 m
spectrometer with a CCD camera provides a spectral resolution of
80 μeV. The linear polarization angles of excitation laser light (ψ)
and detected SHG light (ϕ) are set by Glan-Thompson polarizers
and a λ/2 plate. The coordinate system in the bottom left corner
shows the crystal orientation. The level diagram in the top right
corner depicts the two-photon resonant excitation scheme of SHG
illustrating the energies of the laser and SHG beam.

FIG. 3. (a) Scanned SHG spectrum of blue exciton-polariton
states in Cu2O measured for k ‖ [111]. The SHG spectrum for an
excitation energy of 1.295 eV and a spectrometer setting of 2.590 eV,
that is detected with the CCD camera, is shown as the gray area.
The dip at 2.624 eV appears due to an interference of the 1S and 2S
resonance. The inset shows the experimental SHG intensity (filled
circles) depending on the average excitation power and a fit (red line)
to the expected quadratic dependence. Experiment (b) and simulation
(d) of the SHG intensity of the 1S exciton-polariton measured at
2.595 eV [dashed line in (a)] depending on the linear polarization
angles of incoming (ψ) and outgoing (ϕ) light. Blue, light blue,
green, yellow, and red indicate 0 %, 25 %, 50 %, 75 %, and 100 % of
maximal SHG intensity, respectively. The polar plots (c) and (e) show
the SHG intensity for parallel (black) and crossed (red) polarization
configurations, as marked by the black and red tuning lines in the 2D
plots.

the linear polarization angles of the incoming (ψ) and outgo-
ing light (ϕ). A combination of a Glan-Thompson prism and
a half-wave plate in the ingoing laser beam and the outgoing
SHG beam allows us to rotate the linear polarization angles
and measure full two-dimensional (2D) polarization diagrams,
as was introduced in Ref. [29].
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The samples are cut off from the same high-quality natural
Cu2O crystal from the Tsumeb mine in Namibia, and they
have been used in previous studies of the yellow exciton series
[5,7,17,27–31,40,44,45]. The samples are mounted strain-free
[45] and have been immersed into superfluid helium with
T = 1.4 K to provide optimal cooling. We study samples
with different orientations to realize various experimental ge-
ometries for the incoming k-vectors of the laser beam and
the magnetic field: k ‖ [111] and B ‖ [112̄], k ‖ [11̄0] and
B ‖ [110], k ‖ [001] and B ‖ [110]. The sample orientation is
checked by x-ray diffraction measurements. All experiments
are done in a Voigt configuration (magnetic field B ⊥ k),
which leads to the magneto-Stark effect (MSE) in addition to
the Zeeman effect (ZE), as is discussed in detail in Ref. [29].
The experimental geometries chosen allow us to separate crys-
tallographic SHG and magnetic-field-induced SHG, as well
as MSE- and ZE-induced SHG by making use of the 2D
polarization dependence diagrams given in Appendix C of
Ref. [29].

In Fig. 3(a) we show the SHG spectrum of the blue ex-
citons measured for k ‖ [111] and B = 0 T. The gray area
shows the SHG signal at a fixed laser energy of 1.295 eV
indicating the spectral shape of the picosecond laser. The
spectrum is measured by scanning the laser excitation in
steps of 0.55 me V SHG energy across the spectral region of
2.53–2.68 eV. For each laser energy, the maximal intensity
of the SHG signal is plotted. The synchronous tuning of the
laser and the spectrometer setting is achieved by a LABVIEW

program.
The SHG spectrum of the blue 1S exciton has a maximum

at 2.595 eV. As can be seen in Fig. 3(a), there is a shoulder at
2.585 eV in the SHG spectrum in case of the crystallographic
SHG at B = 0 T. Since its peak agrees roughly with that of the
transverse exciton, it may originate from the direct emission
of the blue exciton. While inside the crystal the excitation of
these states is forbidden by wave-vector conservation [8], in
the surface layer some disorder may occur due to the treatment
in preparation. This suspends strict k conservation and leads
to direct excitation of transverse excitons. Since its relative
intensity to the 1S signal depends on sample position, it is not
considered further.

We assign the structure at 2.624 eV to a resonance effect
between the 1S state and the 2S state, as will be discussed in
Sec. III.

In Figs. 3(b) and 3(c), the polarization dependence of the
crystallographic SHG intensity is shown. The experimental re-
sults are measured at the energy of the 1S exciton-polariton, as
marked by the dashed line in Fig. 3(a), in steps of ψ, ϕ = 10◦.
The 2D diagram shows the SHG polarization dependence of
all possible ψ/ϕ configurations with an applied interpolation
to the measured data points. Blue indicates zero and red indi-
cates maximum SHG intensity. The SHG intensity along the
black tuning line corresponds to parallel linear polarizations
of incoming laser and outgoing SHG light, which are rotated
simultaneously from 0◦ to 360◦ (parallel configuration). It is
plotted as a function of ψ in the polar diagram below and
shows a sixfold symmetry with a maximum at 0◦. The config-
uration of orthogonal linear polarizations of an incoming laser
and outgoing SHG light (crossed configuration) is represented
by the red tuning line in the 2D diagram. Its SHG intensity

FIG. 4. Schemes of crystallographic SHG mechanisms of blue S
(a) and P excitons (b) at zero magnetic field involving electric dipole
(ED) and electric quadrupole (EQ) transitions. See Ref. [29] for more
details.

is plotted as a function of ψ in the polar diagram below
and shows a sixfold symmetry with a maximum at 90◦. The
simulation of crystallographic SHG is calculated according to
Eq. (14) from Ref. [29] for the quadrupole-dipole SHG and
visualized by the 2D and polar diagram in Figs. 3(d) and 3(e).
The simulation is in good agreement with the experimental
results.

The crystallographic SHG mechanism for blue S and P
excitons is sketched in Fig. 4 in energy-level diagrams. An
analogy can be drawn between the blue and yellow exci-
tons. For the yellow excitons, the mechanisms were already
discussed in great detail in Ref. [29]. The blue S excitons
can be treated as the yellow P excitons, as their main op-
tically active components have the same �−

4 symmetry. The
same is valid for the blue P and yellow S excitons with �+

5
symmetry.

The two up-arrows represent the two-photon excitation
process. They start from the initial state of an unexcited crystal
and point to the exciton state [SB or PY with �−

4 symmetry
in Fig. 4(a) and PB or SY with �+

5 symmetry in Fig. 4(b)].
The down-arrow represents the one-photon emission process.
The arrows are labeled by the type of light-matter interaction
[electric dipole (ED) and electric quadrupole (EQ)], its sym-
metry (�−

4 , �+
5 ), and the linear polarization angles (ψ , ϕ) of

the photons involved.
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III. POLARITON EFFECT OF BLUE EXCITONS

In the following, we will derive expressions for the oscil-
lator strength density, the radiative lifetime, and the polariton
dispersion of the blue excitons up to n = 4. Because of their
large oscillator strength density, blue and violet excitons have
to be considered as polaritons, which is important for under-
standing their key properties.

As the S states of different quantum numbers n are lying
very close together (exciton Rydberg energy 57.1 me V; see
Appendix A), one has to take into account their total contri-
bution to the dielectric function. The next higher state (the
violet excitons) with large oscillator strength density is quite
far away (energy distance of 130 meV), so its contribution can
be taken into account in the background dielectric function εb.

Starting from the classical exciton-polariton theory [18],
we have

c2
0K2

ω2
= ε(K, ω) = εb +

N∑
n=1

4πβnE2
Xn(K)

E2
Xn(K) − (h̄ω)2 − ih̄ω�n

.

(1)

The energy dispersion of the excitons is given by

EXn(K) = E0,n + h̄2

2Mn
K2, (2)

where E0,n is the exciton energy at K = 0, Mn is the total
exciton mass, c0 is the vacuum speed of light, h̄ is the reduced
Planck constant, K is the polariton wave vector, ω is the
frequency, and �n is a homogeneous broadening. The number
N of exciton states, over which the summation is carried out,
is in principle infinite. Here we only take into account the
n = 1, 2, 3, 4 blue S excitons. The parameters βn characterize
the strength of the exciton-photon interaction and are related
to the oscillator strength density fn/V (the volume is conven-
tionally set to the volume of the elementary cell V = a3

l with
the lattice constant al ) by

βn = h̄2e2

4πε0m0E2
Xn

fn

V
. (3)

ε0 is the vacuum permittivity, and e and m0 refer to the elec-
tron charge and mass, respectively.

Due to the proportionality of oscillator strength density to
the absolute square of the exciton wave function at electron-
hole distance = 0 [18], only S states are dipole-allowed for the
blue and violet excitons. The splitting between longitudinal
and transverse excitons (LT splitting) is directly related to the
oscillator strength density and is given by


ELT,n = h̄2e2

2ε0εbm0EXn

fn

V
, (4)

with the background dielectric constant εb. For the calculation
of the polariton dispersion relations as solutions of Eq. (1),
we have to know the βn parameters, the energies of the states,
their damping, and the background dielectric constant.

The exciton energies at K = 0 (transverse energies) for
the blue 1S and 2S states and for the violet 1S state were
obtained recently from photoluminescence measurements [2]
as E0,1S,B = 2.5829 eV, E0,2S,B = 2.6209 eV, and E0,1S,V =
2.7191 eV, the indices B (V ) denoting blue (violet) states.

Due to the high accuracy of our experiments and our polariton
calculations, we could determine the values for the 1S and 2S
blue states to 2.579 26 and 2.619 21 eV, respectively, as listed
in Table IV.

The oscillator strength per unit cell for the blue n = 1
state was given in Ref. [13] as 13.7 × 10−3 at T = 4.3 K,
from which follows β1SB = 2.93 × 10−3. A detailed investi-
gation of the complex dielectric constant by ellipsometry [46]
gave β1SB = 4.93 × 10−3, however at room temperature. To
achieve quantitative agreement with our experiments, we have
to take as values of the oscillator strength per unit cell for
the blue 1S exciton fosc,B/a3

l = 0.017 638, corresponding to
β1SB = 3.77 × 10−3, which is close to the averages of the
literature data. In the hydrogen model, the dependence on
quantum number is given by

βn,S = β1S/n3. (5)

From this we obtain for the LT splitting

ELT,B(n) = 3.83 meV/n3 for the blue exciton.

The damping of the states, which is relevant to polariton
damping [18], can be obtained simply from the linewidth of
the SHG process [47,48]. We obtain �1SB = 13.3 meV and
�2SB = 7.6 meV from a fit of two Lorentzians to the �+

5 ZE
spectrum (red line) shown later in Sec. IV in Fig. 8(c). We
will use the following empirical law, which reproduces the
experimentally found linewidths for the 1S and 2S polaritons
and allows us to extrapolate the damping for higher n:

�(n) = 13.9

n
(meV). (6)

Obviously, the ratio for the different quantum states does not
follow the law for the lifetime h̄/�(n) derived in Ref. [49]
indicating that the dominant scattering process is different
from the case for the yellow P states. The origin of this effect
is at present unclear and would require further investigations,
which are outside the scope of this paper.

To obtain a consistent set of transverse exciton energies,
we use a simplified model that allows us to take the cen-
tral cell corrections due to the frequency dependence of the
dielectric function in the range of the exciton binding ener-
gies into account (for details, see Appendix A). This allows
us to determine the Rydberg energy of the blue excitons as
ERyd = 57.1 meV. One can simplify the dispersion relation (1)
by applying the rotating wave approximation, i.e., assuming
h̄ω ≈ EX . Then we can write

E2
X − (h̄ω)2 = 2EX (EX − h̄ω) (7)

and get the dispersion relation

ε(K, ω) = εb +
N∑

n=1

2πβnEXn(K)

EXn(K) − h̄ω − i �n
2

. (8)

For the problem of the background dielectric constant due
to the large oscillator strength densities of blue and vio-
let excitons, we follow the thorough analysis of different
contributions in Ref. [46]. From this we can estimate the
background dielectric constant. The dominant contribution is
from the exciton states at the X and M point of the Brillouin
zone at E1X = 3.45 eV and E1M = 4.25 eV. Furthermore, the
contribution of the transitions into the blue continuum and
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violet exciton and continuum states is important. To facilitate
the implementation in the program for the calculation of the
polariton states, we fitted a Sellmeier equation to the back-
ground dielectric constant (for details, see Appendix B). This
is given by

εb(E ) = 4.202 + 2.564

1 − (E [eV]
3.166

)2 . (9)

For the calculation of the polariton dispersions, we used
the method of Cho [50]. Here we have to distinguish between
two cases [51]: (i) The quasiparticle case, where polaritons
with a well-defined wave vector are created, and (ii) the forced
harmonic case, where polaritons are created by an external
harmonic driving source, e.g., a laser wave. The latter is ap-
propriate for transmission experiments, while the first applies,
e.g., to two-photon absorption. The existence of polaritons in
the quasiparticle situation is governed by the condition that
the Rabi energy [40]

h̄�R =
√


ELTEX (0)

2
(10)

is larger than the damping � (temporal coherence). In the
forced harmonic situation, polaritons exist (in the sense that
one can observe an anticrossing of the dispersion relations) if
the following condition is fulfilled (spatial coherence) [18]:

� <

√
8
ELTεb

MX c2
E2

X (0). (11)

Inserting the quantities for the blue and violet excitons, the
condition for the forced harmonic situation is not fulfilled,
so that the polariton model is not necessary to describe one-
photon transmission experiments.

In contrast, the condition for the quasiparticle situation
is satisfied (Rabi energy of 70 meV compared to 13 meV
damping) so that a polariton description is necessary in multi-
photon experiments. In the SHG considered here, two infrared
photons with energy half of that of the excitons and with well-
defined wave vectors are combined by a χ (2) susceptibility to a
quasiparticle excitation also with a well-defined wave vector.
One has to solve Eq. (1) not for a fixed photon energy E , rather
one has to look for solutions with a fixed wave number K .
The quasiparticle solutions obtained in this way are shown
in Fig. 5. The parameters for the calculation are listed in
Table I. Despite the large damping in time, we clearly see
the dispersion of polaritons [Fig. 5(b)].

The laser tuning line E (K), which describes the dispersion
of two infrared photons, is determined by the refractive index
nb(E/2) = √

εb at the laser energy E/2. The wave number K
of the polaritons is thus given by K (E ) = 2nb(E/2)/h̄c · E/2,
and for the E (k) tuning line we obtain

E (k) = c

nb( E
2 )

h̄k, (12)

which is plotted as the gray line in Fig. 5(a).
We see a drastic shift of these resonances from both the

transverse exciton energy and also from the longitudinal exci-
tons, which coincide with the transverse polaritons at K = 0.
This shift is especially interesting for the 2S resonance, as it
coincides with the second upper polariton branch. Therefore,

FIG. 5. Quasiparticle solutions for the 1S to 4S blue exciton
polaritons: Orange lines show the lower- and the black lines the
upper-polariton branch of the 1S resonance. The green, red, and
violet lines represent the 2S, 3S, and 4S exciton-polaritons, respec-
tively. (a) Real part of the polariton self-energy as a function of wave
number, which is zoomed in panel (b). The gray line refers to the
laser tuning line E (k) as given by Eq. (12), and the blue dashed line
refers to the 2P dispersion. Due to its zero oscillator strength density,
the 2P exciton is not affected by the polariton effect, so that its
energy is given by the resonance energy itself. Filled circles mark the
zero-field resonances as measured in SHG (1S, 2S, and 2P in Fig. 9).
(c) Radiative polariton damping (temporal decay) as a function of
wave number obtained from polariton theory [Eq. (1)]. The black
line refers to the first upper polariton branch with a transition from
the high damping of the 1S exciton state at K = 0 to that of the 2S
exciton at large K . The dots represent the polaritons excited by the
SHG process, indicating the almost complete exciton character of the
polariton here.

the dip in the SHG intensity at 2.624 eV in Fig. 3(a) cannot
be explained as a simple reabsorption of the light produced
by SHG of the 1S exciton-polariton, but as a resonance of the
1S and 2S exciton-polaritons that have here the same wave
vector so that interference, which then obviously must be
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TABLE I. Parameters used for quasiparticle solutions according
to Eq. (1) as shown in Fig. 5. The dielectric constants are calcu-
lated according to Eq. (A2). The exciton binding energies EBn are
calculated according to Eq. (A1) with a band gap of Eg = 2.6326 eV
and a reduced exciton mass of μX = 0.228m0. The exciton damping
parameters �n are calculated according to Eq. (6). The exciton-
photon interaction parameters βn are calculated according to Eq. (5),
while the longitudinal-transverse splitting is calculated according to
Eq. (4).

n ε̃(EBn) EBn (meV) �n (meV) βn 
ELT,n (meV)

1 7.63 53.30 13.9 3.768 × 10−3 3.93
2 7.62 13.35 7.64 4.582 × 10−4 0.491
3 7.41 6.29 4.16 1.351 × 10−4 0.146
4 7.38 3.56 2.70 5.689 × 10−5 0.061

destructive, is possible. This interpretation is substantiated by
the observation that the minimum is not at the exact position
of the 2S resonance (2.6214 eV as shown in Fig. 9) but shifted
to higher energies by almost 3 meV.

IV. BLUE EXCITONS IN A MAGNETIC FIELD

We now turn to the magnetic-field-induced SHG of blue
series excitons. External fields lower the symmetry of the
system and can therefore induce an additional contribution to
the SHG signal. The magnetic field B of �+

4 symmetry couples
states of the same parity, e.g., P excitons of �+

5 symmetry
or S excitons of �−

4 symmetry, which we refer to as the �+
5

and �−
4 Zeeman effect, respectively. Due to the motion of the

excitons perpendicular to the magnetic field, the Lorentz force
acts on the electron and hole in opposite directions and causes
a separation of the charge distributions, which leads to the
effective electric field EMSE ∼ k × B of the magneto-Stark
effect. Due to its �−

4 symmetry, the effective electric field
couples states of opposite parity. These three mechanisms (�−

4
ZE, �+

5 ZE, and MSE) are sketched in Fig. 6 in energy level
diagrams equivalent to the crystallographic mechanisms, as
shown in Fig. 4. Horizontal arrows represent the coupling
between the states by the external field.

To study the mechanisms of magnetic-field-induced SHG
without the interference with crystallographic SHG, we
present two options to suppress the latter: (i) In a low-
symmetry crystal axis, e.g., [111] or [112̄], a certain choice of
a polarization configuration can suppress the crystallographic
and allow magnetic-field-induced SHG signals, and (ii) choice
of k along a crystal axis, in which crystallographic SHG is
forbidden for any polarization configuration due to high sym-
metry, e.g., [001] and [11̄0]. In the experimental geometry,
k ‖ [111] and B ‖ [112̄], option (i) applies. In this orientation,
crystallographic SHG is present, e.g., at 0◦/0◦ as shown in
Fig. 3(a), but it can be suppressed at, e.g., 90◦/90◦. The
magnetic-field-induced SHG mechanisms cannot be separated
from each other by a choice of the polarization configuration,
and they are all interfering with their maximum contribution
at, e.g., 90◦/90◦. The simulations of 2D polarization diagrams
of each SHG mechanism are shown in Fig. 13 in Appendix C.

Figure 7(a) shows the series of magnetic-field-induced
SHG spectra for magnetic fields varied from 0 up to 10 T

FIG. 6. Schemes of SHG mechanisms of blue excitons in a mag-
netic field: Magnetic-field-induced SHG by ZE of �−

4 (a) and �+
5

(b) states and by MSE (c). See Ref. [29] for more details.

in steps of 1 T. In the B = 0 spectrum, no resonances are
expected. The reason for the weak 1S signal might be a
small misalignment of the sample or the polarizers. In finite
magnetic fields, the 2P exciton shows a stronger SHG signal
as compared to the 1S exciton, as the 2S-2P MS-coupling
is stronger than the 1S-2P MS-coupling due to the smaller
energy difference between the corresponding exciton states.
The magnetic field dependence of the induced 1S and 2P
exciton SHG [see Fig. 7(a)] and of the 2S exciton dip [see
Fig. 3(a)] is analyzed in Sec. IV A. On the high-energy side
of the 2S exciton-polariton, several oscillations are emerging
with increasing magnetic field. Based on the situation in the
[11̄0] direction, in which only ZE-induced magnetoexciton
signals are seen, we assign these resonances to S-type mag-
netoexcitons. Their magnetic field dependence is analyzed in
Sec. IV B.

For a measurement of the polarization dependence of the
magnetic-field-induced contribution without an interference
with the crystallographic SHG, one has to set the two-photon
excitation energy to the 1S − 2S interference dip at 2.624 eV,
as seen in Fig. 3(a) and marked by the dashed line in Fig. 7(a),
because it is the only energy at which the crystallographic
SHG is suppressed for all polarization configurations. The
polarization dependence at B = 10 T of the SHG intensity
of the 2P-2S mixed exciton resonance is shown in Figs. 7(c)
and 7(d). The simulation in Figs. 7(e) and 7(f) takes an
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FIG. 7. SHG spectra of blue excitons in magnetic fields up to
10 T for the experimental geometry: k ‖ [111] and B ‖ [112̄]. (a) Ex-
citon and magnetoexciton resonances. The inset shows the quadratic
dependence of 2P (dotted line at 2.621 eV) SHG intensity on mag-
netic field. (b) Zoomed spectra of magnetoexcitons for n = 4, 5, 6
at B = 10 T. Experiment (c) and simulation (e) of 2D plots of SHG
polarization dependence of 2S shoulder [dashed line in panel (a) at
2.624 eV] at B = 10 T. The polar plots (d) and (f) show the SHG
intensity for parallel (black) and crossed (red) polarization configu-
rations, as marked by the black and red tuning lines in the 2D plots.

interference of the normalized contribution of the MSE and
ZE,

ISHG,[111]
interf. (ψ, ϕ) =

∣∣∣∣∣α1
OZE(ψ, ϕ)∣∣ÔZE

∣∣ + β1
OMSE(ψ, ϕ)∣∣ÔMSE

∣∣
∣∣∣∣∣
2

, (13)

at a ratio of α1/β1 = 4/3 into account and is in good agree-
ment with the experiment. For the simulation one has to
add up the amplitudes of the two possible SHG mechanisms

before taking the absolute value squared. Oi are the operators,
which describe the corresponding SHG mechanism, and Ôi

are their amplitudes. The coefficients α1 and β1 represent their
relative contribution. For this interference simulation, the �−

4
ZE and �+

5 ZE are not treated separately, as their polarization
dependence is identical in this crystal orientation, as can be
seen in Figs. 13(c) and 13(d) of Appendix C.

We now turn to the experimental configuration k ‖ [11̄0]
and B ‖ [110], for which option (ii) applies. A characteristic
of this geometry is that specific polarization configurations
allow a complete separation of the three magnetic field SHG
mechanisms as shown in Figs. 14(c), 14(d), and 14(e). Fig-
ure 8 shows the spectral features of the SHG induced by these
three mechanisms.

For this experimental geometry, the crystallographic SHG
is absent for all polarization configurations, as confirmed by
the black line in Fig. 8(a) measured at zero magnetic field.
At a magnetic field of 10 T and ψ/ϕ = 90◦/90◦, a strong
SHG signal (blue line) appears, which is induced by the �−

4
ZE mechanism sketched in Fig. 6(a). The peak at 2.621 eV
is assigned to the 2S/2P mixed exciton-polariton with a full
width at half-maximum (FWHM) of 10.5 me V acquired by a
fit of two Lorentzians to the SHG spectrum. The less intense
peak at 2.592 eV is assigned to the 1S exciton-polariton.
Compared to the spectrum shown in Fig. 3(a), the low-energy
shoulder, which was assigned to the luminescence from the
transverse exciton, is absent. Energetically above the 2S/2P
peak, several resonances up to n = 8 appear, which we assign
to magnetoexcitons in the high-field regime [see the zoom in
Fig. 8(b)]. The magnetic field dependence of these magne-
toexcitons is shown in Fig. 10 and analyzed in Sec. IV B.

Figure 8(c) shows SHG spectra induced purely by the
weaker �+

5 ZE (red line) and MSE (green line) as sketched
in Figs. 6(b) and 6(c), respectively. The 2S exciton-polariton
SHG signal of the �+

5 ZE (polarization configuration of
0◦/90◦) is 17 times weaker than that of the �−

4 ZE shown in
Fig. 8(a), and the 1S resonance is twice as intense as the 2S
resonance. The line (FWHM of 7.6 me V) of the 2S exciton-
polariton is narrower in comparison to the dominant �−

4 ZE.
This is due to the lack of a 2P exciton contribution to the SHG
signal in this polarization configuration. The magnetoexcitons
are not as clearly visible here, mostly due to lower signal
intensity.

The 2P exciton SHG signal of the MSE in Fig. 8(c) (po-
larization configuration of 45◦/0◦) is 10 times weaker than
that of the �−

4 ZE [blue line in Fig. 8(a)], and the ratio of 1S
and 2S SHG signals is comparable to that of the dominant �−

4
ZE. The line (FWHM of 9.7 me V) of the n = 2 resonance
of the MSE (green line) is also narrower than that of the �−

4
ZE (blue line) and about 2 meV lower in energy compared
to the 2S exciton of the �+

5 ZE (red line). It is therefore
assigned to the 2P exciton, because it is not affected by the
polariton effect and is therefore energetically lower than the
2S exciton polariton [Fig. 5(b)]. The splitting is explained
by the repulsion of the 2S and 2P states, caused by the MS
coupling. A signal of the magnetoexcitons is absent in the
MSE spectrum (green line).

Figures 8(d), 8(e), and 8(f) show the SHG spectra of the 1S,
2P, and 2S resonances induced at magnetic fields of 2–10 T by
the �−

4 ZE, �+
5 ZE, and MSE, respectively. The SHG signals
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FIG. 8. (a) SHG spectrum at zero magnetic field (black line) shows no signal for the experimental geometry: k ‖ [11̄0] and B ‖ [110]. At
B = 10 T, SHG (blue line) is induced by the �−

4 ZE at a polarization configuration of 90◦/90◦, showing a 2S/2P mixed exciton resonance, a
1S exciton-polariton signal, and magnetoexcitons up to n = 8, which are zoomed in panel (b). Panel (c) shows the SHG spectra of the �+

5 ZE
(0◦/90◦) and the MSE (45◦/0◦), which are at 2.621 eV smaller by a factor of 17 and 10 compared to the dominant �−

4 ZE signals shown in panel
(a). Magnetoexcitons are absent in the MSE spectrum. Panels (d), (e), and (f) show the SHG spectra of 1S, 2P, and 2S resonances for magnetic
fields of 2–10 T. Panels (g) and (h) show the 2D plots of experimental and simulated SHG polarization dependence of the 2S/2P resonance
at 2.621 eV and B = 10 T. The polar plots in panels (i) and (j) show the SHG intensity for parallel (black) and crossed (red) polarization
configurations, as marked by the black and red tuning lines in the 2D plots.

get weaker for decreasing magnetic fields. The magnetic field
shift of the resonance energies is analyzed in Sec. IV A and
shown in Fig. 9.

The polarization dependence at B = 10 T of the SHG
intensity of the 2S-2P mixed exciton resonance at 2.621 eV
[dashed line in Fig. 8(a)] is shown in Fig. 8(g). As can be seen
in Figs. 8(a) and 8(c), all three mechanisms induce SHG at
this energy and are therefore interfering. The simulations of
2D polarization diagrams of each individual SHG mechanism
are shown in Figs. 14(c), 14(d), and 14(e) of Appendix C.
The experimental 2D diagram in Fig. 8(g) shows the greatest
similarity with the simulation of the �−

4 ZE in Fig. 14(c) with
slight distortions, which can be explained by smaller contri-
butions of the �+

5 ZE and MSE. Therefore, the simulation of
the polarization-dependent SHG intensity

ISHG,[11̄0]
interf. (ψ, ϕ)

=
∣∣∣∣∣α2

O�−
4 ZE(ψ, ϕ)

|Ô�−
4 ZE| + β2

OMSE(ψ, ϕ)

|ÔMSE| + γ2

O�+
5 ZE(ψ, ϕ)

|Ô�+
5 ZE|

∣∣∣∣∣
2

(14)

takes into account an interference of the normalized contri-
butions of the �−

4 ZE, MSE, and �+
5 ZE. Figure 8(h) shows

the simulated polarization diagram with the ratios α2/β2 =
3.5 and α2/γ2 = 4, which are in good agreement with the
experimental intensity ratios of ISHG

�−
4 ZE

/ISHG
MSE = 10 ≈ 3.52 and

ISHG
�−

4 ZE
/ISHG

�+
5 ZE

= 17 ≈ 42, respectively, as shown in Figs. 8(a)

and 8(c).
The polar diagrams in Figs. 8(i) and 8(j) show the par-

allel and crossed polarization configurations as marked by
the black and red tuning lines in the 2D plots, respectively.
The polar plots show a high contrast in the SHG intensity,
as for certain polarization angles the signal vanishes almost
completely, which is an indication of the high quality of the
samples.

A. Three-level model of n = 1, 2 states in a magnetic field

The magnetic field dependence of the three lowest exciton
levels (1S, 2S, and 2P) can be analyzed by a three-level
model. 2P excitons are excited by a dipole/dipole two-photon
process. In a magnetic field in Voigt configuration, these
even-parity excitons are coupled by the magneto-Stark effect
to the odd-parity 1S and 2S excitons, and they can—due to
this admixture—exhibit SHG by dipole emission. From the
detailed SHG polarization dependences for MSE processes
of the yellow and green series [29], one gets the SHG po-
larization dependences for the blue excitons. In Ref. [29],
two-photon excited even-parity S excitons of the yellow series
are coupled by the MSE to odd-parity P excitons, which lead
to SHG by a dipole emission. Therefore, one expects the same
SHG polarization dependences, since in both cases the SHG
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FIG. 9. Magnetic field dependence of exciton energies for an
experimental geometry of k ‖ [11̄0] and B ‖ [110]: Filled circles
represent experimentally obtained energies by Gaussian fits to the
second derivatives of the 1S, 2P, and 2S SHG spectra shown in
Figs. 8(d), 8(e), and 8(f), respectively. The error bars take the spectral
resolution and the Gaussian fit errors into account. The lines are fits
according to the theory [Eq. (15)].

is due to a dipole/dipole excitation and a dipole emission
process.

For an analysis of the magnetic field shift of this three-
level system, one has to take into account two contributions:
The diamagnetic shift (∝ B2) and the repulsion between the
states of opposite parity due to the MS-coupling (∝ B). The
Hamiltonian for the 3-level system is given by the following
3 × 3 matrix:

M3-level(B)

=
⎛⎝E1S + d1,0B2 M1S2PB 0

M1S2PB E2P + d2,1B2 M2S2PB
0 M2S2PB E2S + d2,0B2

⎞⎠.

(15)

The matrix contains as diagonal entries the zero-field reso-
nance energies E1S , E2P, and E2S and the diamagnetic shift
terms d1,0, d2,1, and d2,0, which are given by [8]

Hdia(B) = e2

8μX
(x2 + y2)B2

= e2

8μX

2

3

〈
r2

n,l

〉
B2

= dn,l B
2. (16)

Here only the shift coefficients for 1S (n = 1, l = 0), 2S (n =
2, l = 0), and 2P excitons (n = 2, l = 1) are relevant. The
off-diagonal elements are given by the magneto-Stark inter-
action terms between the 1S and 2P and the 2S and 2P, which
depend linearly on the magnetic field B and are given by M1S2P

and M2S2P [29]. For (x2 + y2) we introduce the average of the
squared exciton radius 〈r2

n,l〉 = 3
2 (x2 + y2), which depends on

the main quantum number n and the orbital quantum number

TABLE II. Crossover magnetic field Bc,n for S magnetoexcitons
as a function of the principal quantum number n [Eq. (23)].

n 1 2 3 4 5 6 7 8

Bc,n (T) 92 17 6.0 2.7 1.4 0.8 0.5 0.4

l [52]: 〈
r2

n,l

〉 = a2
0

2
n2[5n2 + 1 − 3l (l + 1)]. (17)

For the dn,l parameters in Eq. (15), we get

dn,l =
〈
r2

n,l

〉
μX

× 1.465 68 × 10−2 [μeV T−2]. (18)

With use of Eq. (17), we rewrite the dn,l parameters in
terms of 〈r2

1,0〉 of the 1S exciton and get d2,0 = 14d1,0 and
d2,1 = 10d1,0, which are inserted in Eq. (15). Our experi-
mental results for the resonance energies are obtained by
Gaussian fits to the second derivatives of the SHG spec-
tra [Figs. 8(d), 8(e), and 8(f)] and are shown in Fig. 9 as
filled circles. The fit according to the eigenvalues of Eq. (15)
is shown as lines. From the fit we derive the zero-field
energies of 1S and 2S exciton-polaritons and 2P exciton:
E1S = 2.5920 ± 0.0002 eV, E2S = 2.6214 ± 0.0002 eV, and
E2P = 2.6196 ± 0.0002 eV. As compared to the resonances
measured by photoluminescence in Ref. [2], the 1S (2S)
SHG resonance is shifted by 9.1 meV (0.5 meV) to higher
energies, due to the polariton effect. We extract d1,0 =
0.62 ± 0.05 μeV T−2, M1S2P = 0.106 ± 0.004 μeV T−1, and
M2S2P = 0.43 ± 0.02 μeV T−1. Note that in contrast to the 2P
state, the resonance energy of the 1S and 2S states is strongly
influenced by the dipole-allowed exciton-photon interaction
and shifted to the values on the upper polariton branches [see
Fig. 5(b)].

It is expected that the coupling coefficients due to the MSE
[Eq. (15)] are not influenced by the polariton effect, as the
exciton content of the polariton states is not changed very
much. The exciton content of the polariton states is almost
100%, as can be seen by the large damping [see Fig. 5(c)].

For the derivation of the reduced exciton mass from the
data, we use the relation of reduced mass and exciton Bohr
radius aX from the simple hydrogen model

aX = ε(E1S )aH/μX , (19)

where aH is the hydrogen Bohr radius and ε(E1S ) = 7.63
is the dielectric constant at the energy of the 1S exciton
from Eq. (A2). From Eqs. (17) and (18), the fit value for
d1,0 = 0.62(5) μeV T−2, and Eq. (19), we derive the reduced
exciton mass μX = 0.226(6)m0, which agrees well with the
value obtained in the polariton calculation of μX = 0.228m0,
and the exciton Bohr radius aX = 1.79(5) μeV T−2. In com-
parison, the yellow exciton has a reduced exciton mass of
μX,Y = 0.363m0 [53], and the Bohr radius of the yellow 1S
exciton is aX,Y = 0.7 nm [54].

B. Magnetoexcitons in the high-field regime

In this section, we discuss experimental data on the energy
shift of magnetoexciton states in high magnetic fields up to
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FIG. 10. Experimental results and fit of magnetic field dependence of magnetoexciton SHG spectra for different crystalline orientations:
(a) K ‖ [111] and B ‖ [112̄], (b) K ‖ [11̄0] and B ‖ [110], (c) K ‖ [001] and B ‖ [110]; the rather broad resonances (see Fig. 7) are plotted
as second derivatives. Circles mark the energies of the magnetoexcitons and lines show linear fits. By taking the second derivative of a SHG
spectrum, a resonance peak with a negative curvature transforms into a minimum, which is represented by the black color. The sides of a
resonance peak with positive curvature transform into maxima represented by the white color, as shown by the color scale.

10 T, the SHG spectra of which are shown in Fig. 7(a). The
analysis of the shifts in the high-field regime allows us to
evaluate the electron effective mass m8c

K of the �−
8 conduction

band for different crystal directions and the reduced exciton
mass μX .

It is well established that in external magnetic fields, the
optical spectra of semiconductors in the vicinity of the band
gap are strongly contributed by diamagnetic excitons; for a
review, see Refs. [55] and [56]. In the low-field regime, the
exciton energies exhibit a B2 dependence as given by the
diamagnetic shift in Eq. (16). With increasing magnetic field
the B2 diamagnetic shift of exciton states is converted to a
B-linear shift of magnetoexcitons in the high-field regime. In
this regime, the cyclotron energies of electron and hole exceed
their Coulomb interaction, and the energy shift 
E of the
magnetoexcitons is described similar to Landau levels by


En(B) = (
n − 1

2

)
h̄(ωc,e + ωc,h)

= (
n − 1

2

) h̄e

μeh
K

B, (20)

with the cyclotron frequencies ωc,e = eB/m8c
K of the electron

and ωc,h = eB/m7v
K of the hole, the electron mass m8c

K (�−
8

conduction band), the hole mass m7v
K (�+

7 valence band), and
the reduced electron-hole mass are defined by

1

μeh
K

= 1

m8c
K

+ 1

m7v
(21)

along the crystal direction K.
The low-field regime is converted to the high-field one at a

crossover field Bc,n, at which the mean exciton radius

〈rn,l〉 = a0

2
[3n2 − l (l + 1)] (22)

and the magnetic length ln =
√

2h̄
eBc,n

(n − 1
2 ) are equal to each

other [44]. For S excitons, it is given by

Bc,n = 8h̄

9ea2
0

(
n − 1

2

)
n4

, (23)

with the exciton Bohr radius aX = ε
μX

aH , the hydrogen Bohr
radius aH , and the dielectric constant ε according to Eq. (A2).

The values for Bc,n calculated with the reduced mass μX =
0.226m0 obtained in Sec. IV A and the dielectric constants
ε(EXi ) given in Table I are listed in Table II. One can see
that with the maximal magnetic field of 10 T used in our
experiments, the high-field regime is valid for the exciton
states with n � 3.

For a better visibility of the energy position of the mag-
netoexciton states, we plot the second derivatives of the SHG
spectra versus magnetic field. These data are shown in Fig. 10
for a magnetic field range from 4 to 10 T in the energy region
of the n = 3 to 8 blue exciton states. The results are shown for
three different crystal orientations of K ‖ [111], K ‖ [11̄0],
and K ‖ [001] in order to investigate the anisotropy effects.
The energies of the magnetoexcitons are acquired by Gaussian
fits to the second derivatives of the SHG spectra, and they are

FIG. 11. Fit parameter μK,n as derived from slopes sK,n

[Eq. (24)] as seen in Fig. 10. The error bars take the fit error of the
slopes sK,n into account. The exponential fit of μK,n leads according
Eq. (25) to reduced mass values μeh

K , as listed in Table III in the
second column. The fit parameters are a[001] = 2.609, a[11̄0] = 2.595,
and a[111] = 9.411 in units of m0 and b[001] = 0.617, b[11̄0] = 0.620,
and b[111] = 0.987. The inset shows a semilogarithmic plot of μK,n −
μeh

K vs n for a better visualization of the exponential trend [59].
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TABLE III. Experimentally derived values for the electron-hole
reduced mass μeh

K,exp and the effective electron mass m8c
K,exp compared

to the calculated values m8c
K,theo,i (i = 1 heavy and i = 2 light elec-

tron) of the split �−
8 conduction band from Ref. [11] for the three

crystal directions K ‖ [111], [11̄0], and [001].

K ‖ μeh
K (m0) m8c

K,exp(m0) m8c
K,theo,1(m0) m8c

K,theo,2(m0)

[111] 0.199(17) 0.304 0.261 0.241
[11̄0] 0.220(9) 0.356 0.332 0.201
[001] 0.253(14) 0.452 0.488 0.169

plotted as orange points. Their magnetic-field shift is fitted
according to Eq. (20) and is shown by orange lines. From the
slope

sK,n = h̄e
(
n − 1

2

)
μK,n

(24)

of each magnetoexciton state we derive the fit parameter μK,n.
The μK,n are shown in Fig. 11 as open symbols and converge
for increasing n to μeh

K (dashed lines in Fig. 11).
The extrapolation can be done with a fit according to the

empirical function

μK,n = μeh
K + aK exp (−bKn), (25)

as shown by the solid lines in Fig. 11. In a semilogarithmic
plot (inset) of μK,n − μeh

K versus n, one can see that the
exponential function is a reasonable fit to the experimental
data. The reduced masses obtained in that way are given in
the second column in Table III. One can see that they show a
considerable anisotropy changing from 0.199m0 for the [111]
direction up to 0.253m0 for the [001] direction. From them
we evaluate the conduction-band masses given in the third
column using Eq. (21) and the value m7v = 0.575(50)m0 from
Ref. [53], which also show remarkable anisotropy in the range
from 0.304m0 up to 0.452m0.

TABLE IV. Our experimental results for parameters of blue
excitons in Cu2O compared to those of the experimental photolumi-
nescence (PL) results of Ref. [2] and the theory results of Ref. [11].
μX,1 is the reduced exciton mass obtained from the diamagnetic shift
parameter in Sec. IV A, and μX,2 is obtained from the magnetic shifts
of the magnetoexcitons and the A parameters in Sec. IV B.

Parameter This paper [2] (PL) [11] (theory)

E1S 2.5920 eV
E2S 2.6214 eV
E2P 2.6196 eV
E1ST 2.57926 eV 2.5829 eV
E2ST 2.61921 eV 2.6209 eV
Eg 2.6326 eV 2.6336 eV
ERyd 57.1 meV 50.7 meV
�1S 13.9 meV 23.9 meV
�2S 7.64 meV 20.1 meV
aX 1.79 nm
μX,1 0.226 m0

m8c
[111] 0.304 m0 0.261 m0

m8c
[11̄0] 0.356 m0 0.332 m0

m8c
[001] 0.452 m0 0.488 m0

μX,2 0.195 m0

TABLE V. Parameters to calculate the background dielectric
function from Ref. [46] at T = 300 K.

Parameter Value Parameter Value

Eg,B 2.64 eV �B 0.05 eV
Eg,V 2.76 eV �V 0.05 eV
E1X 3.45 eV �1X 0.36 eV
E1M 4.25 eV �1M 0.36 eV
E2 5.7 eV �2 0.32 eV
AB 0.31 eV2 B1X 2.40 eV
AV 0.516 eV2 B1M 1.75 eV
ERyd,B 0.05 eV ε1∞ 2.41
ERyd,V 0.05 eV C2 1.3
β1SV 4.62 ×10−3

It is instructive to compare our results with band-structure
calculations by spin density functional theory from Ref. [11].
As shown in Fig. 1, the �−

8 conduction band is divided
into two subbands with different spatial dispersions, from
which we obtain two sets of effective masses m8c

K,theo,1 for the
heavy and m8c

K,theo,2 for the light electron. These masses are
anisotropic and are listed for the different crystalline direc-
tions [111], [11̄0], and [001] in the fourth and fifth column
in Table III. The experimental values for the conduction-band
mass m8c

K,exp are in good agreement with the theoretical results
m8c

K,theo,1 from Ref. [11] given in the fourth column of Table III.
Therefore, the excited electrons occupy the states in the �−

8
subband with the larger effective mass.

With our results of the m8c
K , one can calculate the reduced

exciton mass using the relations to the A parameters from
Ref. [57], which are given by

m8c
[100] = 1/(A8 + A′

8), (26)

m8c
[111] = 1/(A8 − A′′

8 ), (27)

m8c
[11̄0] = 1/

(
A8 − 1

2

√
A′2

8 + 3A′′2
8

)
. (28)

FIG. 12. Background dielectric function εb from Ref. [46] cal-
culated according to Eq. (B4) (black dots) and the Sellmeier
approximation Eq. (9) (red line) for a temperature of 300 K.
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FIG. 13. 2D SHG polarization dependence for the relevant mech-
anisms as shown in Figs. 4 and 6 for the experimental configuration:
k ‖ [111] and B ‖ [112̄].

Solving this system of linear equations leads to A8 =
3.39(61)/m0, A′

8 = −1.17(75)/m0, and A′′
8 = 0.11(84)/m0,

which agree quite well with those obtained from fitting the
band structure [57]. The reduced exciton mass is then obtained
from 1/μX = 1/m7v + A8 as μX = 0.195(24)m0.

The value of the reduced exciton mass from this analysis is
in reasonable agreement with those derived from the polariton
dispersion in Sec. III and the diamagnetic shift in Sec. IV A.
The difference might reflect the effects of the nonparabolicity
of the valence bands [58], which have not been included in the
analysis.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have presented nonlinear optical investi-
gations of the blue exciton resonances in Cu2O. The evaluated
exciton parameters are listed in Table IV and compared

FIG. 14. 2D SHG polarization dependence for the relevant mech-
anisms as shown in Figs. 4 and 6 for the experimental configuration:
k ‖ [11̄0] and B ‖ [110].

to those of other publications. As compared to one-photon
absorption experiments, which require evaporated layers of
Cu2O about 50 nm on, e.g., quartz substrates, which leads
to strain effects [13], our SHG experiments allow measure-
ments on oriented, strain-free mounted samples. The high
quality of our samples is confirmed by a detailed polariza-
tion analysis. As shown in Sec. IV B, we are able to derive
from magnetoexciton spectroscopy data on effective masses,
which are compared to band-structure calculations. Because
of their high oscillator strength density, the resonances have
to be analyzed taking into account the polariton dispersion.
As discussed in detail in Sec. III, the observed resonances fit
the calculated polariton dispersion very well. Contrary to one-
photon experiments, we are dealing with sharp momentum
excitation (kSHG = 2klaser) and thus quasiparticle resonances
in the two-photon SHG experiments. From the information of
the analysis of the diamagnetic shift in the three-level model
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of 1S, 2S, and 2P resonances (see Sec. IV A), we derive
information on the ratio of the mean exciton radius squared
to the reduced mass of the exciton, which was derived from
the magnetoexciton analysis in Sec. IV B. From the analysis
of our results from Secs. III and IV, we get a consistent set
of parameters for the blue exciton resonances. The theoretical
analysis of the magnetoexcitons can certainly be improved by
a rigorous theoretical treatment, as was done for the yellow
[60] and green series [61], where for the blue excitons the
polariton dispersion would have to be taken into account.

As an outlook, we propose third-harmonic generation
(THG) experiments to the odd parity blue and violet polariton
resonances, since they are dipole-allowed, contrary to SHG,
which are only quadrupole/dipole-allowed.
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APPENDIX A: DETERMINATION OF THE
EXCITON ENERGIES

The hydrogen model of excitons has to be corrected due
to two effects: (i) nonparabolicity of the bands, and (ii) a
frequency and wave-vector dependence of the dielectric func-
tion. A simple way to include the latter is to solve the implicit
equation

EBn = 1

n2

μX

ε̃(EBn)2
RH , (A1)

where ε̃(E ) is the energy-dependent dielectric function, μX

is the reduced exciton mass, and RH = 13.605 693 eV is the
Rydberg constant.

The dielectric function in the region between 0 and
100 meV is determined by LO phonons and given as [49]

ε̃(E )

ε̃b
=

∏
i

(
h̄2ω2

L,i − E2
)(

h̄2ω2
T,i − E2

) , (A2)

where ε̃b = 6.53 is the dielectric constant above the in-
frared region, and h̄ωL,i and h̄ωT,i (i = 1, 2) are the LO and
TO phonon energies: ETO1 = 18.8 meV, ELO1 = 19.1 meV,
ETO2 = 78.5 meV, and ELO2 = 82.1 meV. To obtain agree-
ment with the measured 1S (2.5920 eV) and 2S (2.6214 eV)
energies for the blue excitons, we have to use μX = 0.228m0.
This results in a binding energy of 53.30 me V for the 1S exci-
ton [ε̃(1S) = 7.63] and 13.35 me V for the 2S state [ε̃(2S) =
7.62] as given in the main text. Note that the exciton Rydberg
energy, which is defined as the limiting value of Eq. (A1) for
n → ∞, is ERyd = 57.1 meV (dielectric constant of 7.37).

APPENDIX B: BACKGROUND DIELECTRIC CONSTANT

Due to the large oscillator strength density of the violet
exciton transitions and dominant contributions from exciton
states at the X and M point (Sec. III of Ref. [46]) above the

blue exciton states, the background dielectric constant εb is
varying across the spectral range of the blue exciton states.
In Ref. [46], a thorough analysis of the dielectric function
in Cu2O at room temperature is presented. We neglect the
temperature dependence of the dielectric function, as our
experiments are performed at T = 1.4 K. This allows us to
derive the correct expression for the dielectric function.

We take the following transitions (the parameters are given
in Table V) into account:

(i) Blue and violet transitions with gap energies Eg,B and
Eg,V at which the transition into the corresponding continuum
starts. The contribution of the continuum to the dielectric
constant is given by [46]

εBV (E )

=
∑

α=B,V

AαE0α

4ERyd,0α (E + i�α )
ln

E2
0α

E2
0α − (E + i�α )2

, (B1)

with the exciton ground-state energies E0,B = Eg,B − ERyd,B

and E0,V = Eg,V − ERyd,V , the exciton Rydberg energies
ERyd,α , the oscillator strength density related parameters Aα ,
and damping constants �α . The transitions into the blue
exciton states themselves have to be omitted, as these are
contained in the polaritons. The contribution of the 1S violet
state is similar to Eq. (8).

(ii) The transitions at the X and M points can be described
as two-dimensional excitons, where only the ground states
are taken into account. Their contribution to the dielectric
constant can be written as

εXM (E ) = −
∑

α=X,M

B1α

E1α − E − i�1α

. (B2)

(iii) The last transition to be considered is of E2 type and
of the form

εE2 (E ) = C2E2
2

(E2 − E )2 − i�2E2E
. (B3)

(iv) All other higher-lying transitions can be approximated
by a constant contribution ε1∞ to the dielectric function.

The background dielectric function is then given by

εb(E ) = εB,V (E ) + εXM (E ) + εE2 (E ) + ε1∞. (B4)

Due to the forbidden character of the yellow and green
excitons [14], the absorption is quite small below the blue
exciton states, and we neglect the imaginary part of the di-
electric function. The values for all parameters are given in
Table V. Figure 12 shows the background dielectric function
calculated from the above expressions (red line) and the Sell-
meier approximation Eq. (9) (black dots).

APPENDIX C: 2D POLARIZATION DIAGRAMS
OF SHG MECHANISMS

For two experimental configurations k ‖ [111], B ‖ [112̄]
and k ‖ [11̄0], B ‖ [110], which are discussed in Sec. IV, the
2D SHG polarization diagrams are shown in Figs. 13 and 14
for each mechanism addressed in Figs. 4 and 6.

075203-14



SECOND-HARMONIC GENERATION OF BLUE SERIES … PHYSICAL REVIEW B 104, 075203 (2021)

[1] E. F. Gross, Excitons and their motion in crystal lattices, Sov.
Phys. Usp. 5, 2 (1962).

[2] M. Takahata and N. Naka, Photoluminescence properties of
the entire excitonic series in Cu2O, Phys. Rev. B 98, 195205
(2018).

[3] M. A. M. Versteegh, St. Steinhauer, J. Bajo, T. Lettner,
A. Soro, A. Romanova, S. Gyger, L. Schweickert, A.
Mysyrowicz, and V. Zwiller, Giant Rydberg excitons in
Cu2O probed by photoluminescence excitation spectroscopy,
arXiv:2105.07942.

[4] M. Aßmann and M. Bayer, Semiconductor Rydberg physics,
Adv. Quantum Technol. 3, 1900134 (2020).

[5] T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, and M.
Bayer, Giant Rydberg excitons in the copper oxide Cu2O,
Nature (London) 514, 343 (2014).

[6] R. J. Elliott, Symmetry of excitons in Cu2O, Phys. Rev. 124,
340 (1961).

[7] J. Brandt, D. Fröhlich, Ch. Sandfort, M. Bayer, H. Stolz, and N.
Naka, Ultranarrow Optical Absorption and Two-Phonon Exci-
tation Spectroscopy of Cu2O Paraexcitons in a High Magnetic
Field, Phys. Rev. Lett. 99, 217403 (2007).

[8] R. S. Knox, Introduction to Exciton Physics (Academic, New
York, 1963).

[9] J. P. Dahl and A. C. Switendick, Energy bands in cuprous oxide,
J. Phys. Chem. Solids 27, 931 (1965).

[10] J. Robertson, Electronic structure and x-ray near-edge core
spectra of Cu2O, Phys. Rev. B 28, 3378 (1983).

[11] M. French, R. Schwarz, H. Stolz, and R. Redmer, Electronic
band structure of Cu2O by spin density functional theory, J.
Phys.: Condens. Matter 21, 015502 (2009).

[12] L. Y. Isseroff and E. A. Carter, Importance of reference Hamil-
tonians containing exact exchange for accurate one-shot GW
calculations of Cu2O, Phys. Rev. B 85, 235142 (2012).

[13] A. Daunois, J. L. Deiss, and B. Meyer, Étude spectropho-
tométrique de l’absorption bleue et violette de Cu2O, J. Phys.
France 27, 142 (1966). Note that in the paper both blue and
violet excitons are split by strain into a doublet. Therefore, one
has to add the oscillator strength of both components to get the
values given.

[14] I. Pastrnyak, Absorption, reflection, and nature of the electron
optical transitions in Cu2O crystals, Sov. Phys. Solid State 3,
633 (1961).

[15] Y. Sun, K. Rivkin, J. Chen, J. B. Ketterson, P. Markworth
and R. P. Chang, Strain splitting of 1s yellow orthoexciton of
epitaxial orthorhombic Cu2O films on MgO [110], Phys. Rev.
B 66, 245315 (2002).

[16] B. Borie, C. J. Sparks, and J. V. Cathcart, Epitaxially induced
strains in Cu2O films on copper single crystals - I X-ray diffrac-
tion effects, Acta Metall. 10, 691 (1962).

[17] D. Fröhlich, J. Brandt, C. Sandfort, M. Bayer, and H. Stolz,
High resolution spectroscopy of excitons in Cu2O, Phys. Status
Solidi B 243, 2367 (2006).

[18] L. C. Andreani, in Confined Electrons and Photons: New
Physics and Applications, edited by C. Weisbuch and E.
Burstein (Plenum, New York, 1995), p. 57.

[19] J. Schmutzler, D. Fröhlich, and M. Bayer, Signatures of coher-
ent propagation of blue polaritons in Cu2O, Phys. Rev. B 87,
245202 (2013).

[20] M. Y. Shen, The Principles of Nonlinear Optics (Wiley, New
York, 2003).

[21] R. W. Boyd, Nonlinear Optics (Academic/Elsevier, Burlington,
2008).

[22] E. Hanamura, Y. Kawabe, and A. Yamanaka, Quantum Nonlin-
ear Optics (Springer, Berlin, 2007).

[23] D. R. Yakovlev, V. V. Pavlov, A. V. Rodina, R. V. Pisarev, J.
Mund, W. Warkentin, and M. Bayer, Exciton spectroscopy of
semiconductors by the method of optical harmonics generation
(Review), Phys. Solid State 60, 1471 (2018).

[24] I. Sänger, D. R. Yakovlev, B. Kaminski, R. V. Pisarev, V. V.
Pavlov, and M. Bayer, Orbital quantization of electronic states
in a magnetic field as the origin of second-harmonic genera-
tion in diamagnetic semiconductors, Phys. Rev. B 74, 165208
(2006).

[25] M. Lafrentz, D. Brunne, A. V. Rodina, V. V. Pavlov, R. V.
Pisarev, D. R. Yakovlev, A. Bakin, and M. Bayer, Second har-
monic generation spectroscopy of excitons in ZnO, Phys. Rev.
B 88, 235207 (2013).

[26] W. Warkentin, J. Mund, D. R. Yakovlev, V. V. Pavlov, R. V.
Pisarev, A. V. Rodina, M. A. Semina, M. M. Glazov, E. L.
Ivchenko, and M. Bayer, Third harmonic generation on exciton-
polaritons in bulk semiconductors subject to a magnetic field,
Phys. Rev. B 98, 075204 (2018).

[27] J. Mund, D. R. Yakovlev, M. A. Semina, and M. Bayer, Optical
harmonic generation on the exciton-polariton in ZnSe, Phys.
Rev. B 102, 045203 (2020).

[28] J. Mund, D. Fröhlich, D. R. Yakovlev, and M. Bayer,
High-resolution second harmonic generation spectroscopy with
femtosecond laser pulses on excitons in Cu2O, Phys. Rev. B 98,
085203 (2018).

[29] A. Farenbruch, J. Mund, D. Fröhlich, D. R. Yakovlev, M. Bayer,
M. A. Semina, and M. M. Glazov, Magneto-Stark and Zeeman
effect as origin of second harmonic generation of excitons in
Cu2O, Phys. Rev. B 101, 115201 (2020).

[30] A. Farenbruch, D. Fröhlich, D. R. Yakovlev, and M. Bayer,
Two-photon absorption and second harmonic generation of 1S
para- and orthoexcitons in Cu2O coupled by a magnetic field,
Phys. Rev. B 102, 115203 (2020).

[31] A. Farenbruch, D. Fröhlich, D. R. Yakovlev, and M. Bayer,
Rydberg Series of Dark Exciton in Cu2O, Phys. Rev. Lett. 125,
207402 (2020).

[32] N. Naka and N. Nagasawa, High precision two-photon spec-
troscopy on emission of 1s ortho-excitons in Cu2O, Solid State
Commun. 110, 153 (1999).

[33] N. Naka and N. Nagasawa, Experimental study on two-photon
oscillator strength of hydrogenic yellow excitons in Cu2O, Solid
State Commun. 116, 417 (2000).

[34] S. Kono, N. Naka, M. Hasuo, S. Saito, T. Suemoto, and N.
Nagasawa, Coherent optical processes of 1s ortho-excitons in
Cu2O by two-photon excitations, Solid State Commun. 97, 455
(1996).

[35] D. Fröhlich, K. Reimann, and R. Wille, Time-resolved
two-photon emission in Cu2O, Europhys. Lett. 3, 853
(1987).

[36] T. Goto, M. Y. Shen, S. Koyama, and T. Yokouchi, Bose-
Einstein statistics of orthoexcitons generated by two-photon
resonant absorption in cuprous oxide, Phys. Rev. B 56, 4284(E)
(1997).

[37] Y. Liu and D. Snoke, Resonant two-photon excitation of 1s
paraexcitons in cuprous oxide, Solid State Commun. 134, 159
(2005).

075203-15

https://doi.org/10.1070/PU1962v005n02ABEH003407
https://doi.org/10.1103/PhysRevB.98.195205
http://arxiv.org/abs/arXiv:2105.07942
https://doi.org/10.1002/qute.201900134
https://doi.org/10.1038/nature13832
https://doi.org/10.1103/PhysRev.124.340
https://doi.org/10.1103/PhysRevLett.99.217403
https://doi.org/10.1016/0022-3697(66)90064-3
https://doi.org/10.1103/PhysRevB.28.3378
https://doi.org/10.1088/0953-8984/21/1/015502
https://doi.org/10.1103/PhysRevB.85.235142
https://doi.org/10.1051/jphys:01966002703-4014200
https://doi.org/10.1103/PhysRevB.66.245315
https://doi.org/10.1016/0001-6160(62)90038-X
https://doi.org/10.1002/pssb.200668060
https://doi.org/10.1103/PhysRevB.87.245202
https://doi.org/10.1134/S1063783418080231
https://doi.org/10.1103/PhysRevB.74.165208
https://doi.org/10.1103/PhysRevB.88.235207
https://doi.org/10.1103/PhysRevB.98.075204
https://doi.org/10.1103/PhysRevB.102.045203
https://doi.org/10.1103/PhysRevB.98.085203
https://doi.org/10.1103/PhysRevB.101.115201
https://doi.org/10.1103/PhysRevB.102.115203
https://doi.org/10.1103/PhysRevLett.125.207402
https://doi.org/10.1016/S0038-1098(98)00618-8
https://doi.org/10.1016/S0038-1098(00)00363-X
https://doi.org/10.1016/0038-1098(95)00703-2
https://doi.org/10.1209/0295-5075/3/7/013
https://doi.org/10.1103/PhysRevB.56.4284.2
https://doi.org/10.1016/j.ssc.2005.01.027


A. FARENBRUCH et al. PHYSICAL REVIEW B 104, 075203 (2021)

[38] D. Fröhlich, Two- and three-photon spectroscopy of solids, in
Nonlinear Spectroscopy of Solids: Advances and Applications,
edited by B. Di Bartolo and B. Bowlby (Plenum, New York,
1994), p. 289.

[39] L. Frazer, R. D. Schaller, K. B. Chang, J. B. Ketterson, and
K. R. Poeppelmeier, Third-harmonic generation in cuprous ox-
ide: efficiency determination, Opt. Lett. 39, 618 (2014).

[40] J. Heckötter, J. Thewes, D. Fröhlich, M. Aßmann, and M.
Bayer, Landau-level quantization of the yellow excitons in
cuprous oxide, Phys. Solid State 60, 1625 (2018).

[41] D. Ziemkiewicz, G. Czajkowski, K. Karpiński, and S.
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