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Exploring self-consistency of the equations of axion electrodynamics in Weyl semimetals
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Recent works have provided evidence that an axial anomaly can arise in Weyl semimetals. If this is the
case, then the electromagnetic response of Weyl semimetals should be governed by the equations of axion
electrodynamics. These equations capture both the chiral magnetic and anomalous Hall effects in the limit of
linear response, while at higher orders their solutions can provide detectable electromagnetic signatures of the
anomaly. In this work, we consider three versions of axion electrodynamics that have been proposed in the Weyl
semimetal literature. These versions differ in the form of the chiral magnetic term and in whether or not the
axion is treated as a dynamical field. In each case, we look for solutions to these equations for simple sample
geometries subject to applied external fields. We find that in the case of a linear chiral magnetic term generated
by a nondynamical axion, self-consistent solutions can generally be obtained. In this case, the magnetic field
inside of the Weyl semimetal can be magnified significantly, providing a testable signature for experiments.
Self-consistent solutions can also be obtained for dynamical axions, but only in cases where the chiral magnetic
term vanishes identically. Finally, for a nonlinear form of the chiral magnetic term frequently considered in the
literature, we find that there are no self-consistent solutions aside from a few special cases.
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I. INTRODUCTION

Weyl semimetals (WSMs) have garnered substantial in-
terest in recent years due to their topological properties and
unusual transport phenomena [1–3]. While they were first
theorized long ago [4,5], only in recent years have explicit
candidate materials been put forward and confirmed [6–9].
They were first predicted theoretically to arise in pyrochlore
iridates [10,11], and their existence was later confirmed ex-
perimentally in compounds such as TaAs and NbAs [12–17].
More recently, additional WSMs have been discovered in fer-
romagnetic materials [18–20]. The low-energy quasiparticle
excitations in WSMs are Weyl fermions, which leads to the
possibility of observing interesting phenomena such as the
chiral magnetic effect [21]. These Weyl fermion quasiparticles
exist near band-touching points (Weyl nodes), which carry
chiral topological charges. The linearly dispersing bands in
the vicinity of Weyl nodes, as well as the Fermi arc states
connecting node projections on the WSM surface [10,22,23],
have been observed experimentally through angle-resolved
photoemission spectroscopy (ARPES) [11–17]. When the
Weyl nodes are close to the Fermi energy, it has been reported
that electrons can achieve ultrahigh mobility [24]. Other ef-
fects such as the Goos-Hänchen (GH) and Imbert-Fedorov
(IF) shifts can also be produced in WSMs [25]. While the
GH shift is valley independent, the IF shift is valley depen-
dent in WSMs due to the opposite chiral charge of the Weyl
nodes in momentum space. This provides an alternative way
to detect Weyl node properties. Another prediction of WSMs
that has drawn much attention is the axial anomaly, which
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can be understood to arise from the pairing of opposite chiral
charges [26–32]. Effects of axial anomalies have previously
been seen in high-energy physics [33,34] and in superfluids
[35].

In WSMs, the axial anomaly produces two topological
effects related to the Berry curvature of the Weyl nodes: the
chiral magnetic effect (CME) and the anomalous Hall effect
(AHE) [21,27–32,36]. In the CME, an external magnetic field
produces a current in the same direction as the field. This
effect is expected to occur in WSMs because the left and right
chiral Weyl fermions become separated in energy in the pres-
ence of the external field, inducing a current referred to as the
chiral magnetic current. To observe the CME experimentally,
transport signatures such as a negative longitudinal mag-
netoresistance have been proposed and measured [37–39].
However other effects, including giant magnetoresistance and
large-angle scattering, can also lead to negative longitudinal
magnetoresistance [39–45], making it difficult to confirm the
CME in such experiments. In the AHE, an antisymmetric
off-diagonal resistivity is produced from a magnetization in
the sample rather than an external magnetic field [46,47]. An
applied electric field then generates current in a transverse
direction. In general, the AHE can be rooted in the material
itself (intrinsic) or arise from impurity scattering (extrinsic).
In WSMs, the separation of Weyl node pairs in momentum
space, combined with an axial anomaly, would cause a purely
intrinsic AHE [36]. Like with negative longitudinal magne-
toresistance, transport measurements showing an AHE also
do not provide a unique indicator of the axial anomaly, as this
effect can occur in any material that has a nonzero integral of
Berry curvature [46]. Thus, other experimental signatures be-
yond transport measurements would be helpful in confirming
the CME and the axial anomaly in WSMs.
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Axion electrodynamics provides an alternative route for
verifying the existence of the axial anomaly. If one integrates
out the low-energy Weyl fermions and is left with only the
electric and magnetic fields, one arrives at an effective de-
scription known as axion electrodynamics. In the literature,
several approaches have been taken to derive the equations of
axion electrodynamics for WSMs. In the first, one starts with
a microscopic model of a WSM [22] and integrates out the
electrons. This approach yields a nondynamical axion field
and produces a linear chiral magnetic term in Ampère’s law
[27,28,31]. Here, we use the term “nondynamical” to refer to
fields that have a fixed form, while we use “dynamical” to
refer to fields whose form is determined by solving the equa-
tions of axion electrodynamics. It was subsequently found
that the CME can occur in this case if time-dependent fields
are applied to the WSM [27,29]. In a second approach, one
incorporates axial anomaly effects in a semiclassical Boltz-
mann equation [32]. This leads to CME and AHE currents
that can then be included in Maxwell’s equations to produce
a different form of axion electrodynamics. Here, the CME
term is nonlinear in the fields and proportional to the inner
product of the electric and magnetic fields ( �E · �B) [21,39].
In this case, a chiral current can be generated by applying
time-independent external fields. Experimental observations
of negative longitudinal magnetoresistance have been ex-
plained using this version of the CME term [37,38]. In the
case of parallel electric and magnetic fields, similar behavior
can also arise from a one-dimensional axial anomaly that
generically emerges in three-dimensional metals (not neces-
sarily WSMs) if the magnetic field is sufficiently strong [42].
Finally, a third approach considers chiral symmetry breaking
via the formation of charge density waves in WSMs. The
resulting axion insulator phase is characterized by an order
parameter whose phase is a dynamical axion field [48]. This
axion couples to the electric and magnetic fields through a
topological θ term in the Maxwell action. This action yields
axion electrodynamics equations that are similar to those of
the first approach described above, except that now the axion
is an independent dynamical field with its own equation of
motion. In both the first and third approaches, the new term
in the Maxwell action can also be obtained by performing a
chiral transformation on the path-integral measure, following
the standard anomaly derivation first introduced by Fujikawa
[28,31,49].

Regardless of which approach one takes to derive axion
electrodynamics, one has a modified form of Maxwell’s equa-
tions that govern the behavior of electric and magnetic fields
in the presence of an axial anomaly. Their self-consistent
solutions in the presence of applied external fields can be
used to guide experiments that look for signatures of the
axial anomaly. This constitutes an alternative strategy that is
complementary to transport-based experiments. A first pass
at this approach was taken by a subset of the authors in
Ref. [50]. However, this earlier work neglected the AHE term
altogether and did not consider dynamical axions. A full anal-
ysis of the self-consistency of the different versions of axion
electrodynamics that have been put forward in the context
of WSMs has yet to be carried out. It is not yet clear how
the different versions relate to one another or which provides
the most accurate description of a given experimental setup.

These questions could also be addressed through experimental
observation, provided the solutions to these equations are well
understood.

In this work, we address these open questions by at-
tempting to solve all three versions of axion electrodynamics
self-consistently for simple sample geometries and various
external field configurations. In the case of version 1 (nondy-
namical axion, linear CME term), we solve the equations for
a semi-infinite WSM slab in the presence of time-dependent,
external electric and magnetic fields. We find that self-
consistent solutions can generally be obtained, and that the
magnetic field inside the slab can be substantially enhanced
depending on the Weyl node separation and on the frequency
of the applied fields. This provides a potential experimental
diagnostic of the axial anomaly. For version 2 (nondynamical
axion, nonlinear CME term), we find that for a semi-infinite
slab immersed in time-independent fields, self-consistent so-
lutions generically do not exist, aside from a few special
cases. We also find that while self-consistent solutions can be
obtained in the case of an infinite WSM wire, the solutions
always exhibit unphysical divergences along the axis of the
wire. Finally, in the case of version 3 (dynamical axions, linear
CME term), we show that self-consistent solutions can be
obtained, but only when the CME term vanishes identically.
Otherwise, the solutions violate energy conservation.

The paper is organized as follows. In Sec. II, we solve
the axion electrodynamics equations for nondynamical axions
in a semi-infinite slab subject to time-dependent fields. In
Sec. III, we consider nondynamical axions in a semi-infinite
slab, an infinite slab, and an infinite cylinder, all subject to
time-independent fields. In Sec. IV, we generalize to the case
of dynamical axions in a semi-infinite slab. We conclude in
Sec. V. Several appendices contain details of the calculations
summarized in Secs. II–IV.

Before moving on to our explicit solutions, we first note
that throughout this work, we neglect the role of Fermi arc sur-
face states in our analysis. One reason for this is because most
of the sample geometries we focus on, namely, semi-infinite
slabs with the inter-Weyl node axis oriented perpendicular to
the surface and cylindrically symmetric infinite wires, do not
exhibit Fermi arcs. However, even in cases where Fermi arcs
could arise, such as in the case of semi-infinite slabs with
nonorthogonal inter-Weyl node axes, we do not expect them
to significantly impact our results because their effect should
be restricted to a small region close to the surface. We also
note that, to our knowledge, axion electrodynamics equations
that incorporate Fermi arc effects have not yet been derived.

II. NONDYNAMICAL AXIONS AND LINEAR CHIRAL
MAGNETIC TERM

The axial anomaly was first proposed theoretically in the
context of high-energy physics [33,34]. Its presence leads to
an additional term Lθ1 in the Lagrangian density:

L0 = − 1

4μ0
FαβFαβ − AαJα, (1)

Lθ1 = −κ

4
θFαβ

1

2
εαβγλFγ λ = κ

c
θ �E · �B, (2)
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where L0 is the Lagrangian density for the original elec-
tromagnetic fields, and Lθ1 is the term that describes the
axion-electromagnetic interaction. Aα is the vector potential,
while Jα is the source current. The signature of the metric ημν

is (1,−1,−1,−1), the field strength is Fαβ = ∂αAβ − ∂βAα ,
μ0 is the vacuum permeability, c is the speed of light, and
κ is the coupling constant between the axion field θ and the
electromagnetic field. We set κ = e2c

2π2 h̄2 following Ref. [28].
The corresponding Euler-Lagrange equations yield the first
version of axion electrodynamics we consider in this work
[51,52]:

�∇ · �E = ρ

ε0
− μ0cκ �∇θ · �B, (3)

�∇ × �E = −∂ �B
∂t

, (4)

�∇ · �B = 0, (5)

�∇ × �B = 1

c2

∂ �E
∂t

+ μ0 �j + μ0κ

c
(∂tθ �B + �∇θ × �E ), (6)

where c2 = 1
μ0ε0

. In WSMs, effective axions form due to linear
band crossings, creating Weyl fermions with definite chirali-
ties. Reference [28] obtained the following expression for the
axion field θ for WSMs using Fujikawa’s method [49]:

θ (�r, t ) = � �p · �r − �εt, (7)

where � �p and �ε are the momentum and energy separation
of a pair of Weyl nodes, respectively. Here, we have defined
the coordinates (�r, t ) = (x, y, z, t ). Although the axion field
θ (�r, t ) itself depends on the choice of coordinate origin, this
choice does not affect the solutions of the axion electrodynam-
ics equations since only derivatives of θ (�r, t ) enter into these
equations. As shown in Ref. [53], the AHE term � �p · �r can
lead to interesting electromagnetic responses such as Kerr and
Faraday rotations. For simplicity, here we focus on materials
with a single pair of Weyl nodes separated in both momentum
and energy, as can occur in WSMs with broken time-reversal
symmetry [18–20]. Multiple Weyl node pairs near the Fermi
surface would lead to a linear superposition of θ -dependent
terms (one term for each node pair) in Eqs. (3) and (6),
which would effectively modify the coefficients multiplying
the electromagnetic fields in these terms but otherwise leave
the axion equations intact. In order for the CME term, the term
proportional to ∂tθ in Eq. (6), to be present in these equations,
the electric and magnetic fields have to be time dependent
[27,29]. Using the same coordinates defined above, we set
�E (�r, t ) = eiωt �E (�r), �B(�r, t ) = eiωt �B(�r). Hence, the system is
driven by a single frequency, and the spatial part can be sep-
arated from the time-dependent part for the electromagnetic
fields. For the current �j, we implement Ohm’s law

�j = σ0 �E . (8)

In principle, the conductivity σ is frequency and temperature
dependent (calculated by Ref. [54]):

σ (ω) = 1

iω + 1
τ

v2
F e2g

3π2(h̄vF )3

∫ ∞

0
dε ε2

(
−∂ f 0(ε, T )

∂ε

)
. (9)

Here e, vF , g, and τ are the electron charge, Fermi veloc-
ity, light-matter coupling, and scattering time, respectively.

f 0(ε, T ) is the Fermi-Dirac distribution. The integral above
leads to a constant decided by the temperature. Considering
the limit ω → 0 and T → 0, denoting σ0 = σ (0), we have
(see Appendix A)

σ0 = e2gτk2
F vF

3π2h̄3 , (10)

whereas the carrier density is n = gk3
F /6π . Thus, we have the

relation σ0 ∝ n
2
3 . In WSMs, n is typically very low since kF

is small around Weyl nodes. When this happens, the Ohmic
conductivity can be ignored, and we can set �j = 0 in the axion
equations. If n is increased sufficiently (e.g., through doping),
at some point the conductivity can no longer be ignored, and
the current cannot be set to zero. Below, we consider each
of these two cases separately. In both cases, we consider a
semi-infinite slab where the WSM fills the half-space z � 0.
By symmetry, the fields can only depend on the z coordinate.
Furthermore, the relaxation time τ in Eq. (10) is related to the
Weyl separations [39] since the scattering happens between
the Weyl nodes. However, this does not affect the fact that σ0

is a constant spatially.

A. Zero current case:�j = 0

We first consider the case where the electron density is very
low, so that σ0 is small, and we can set �j = 0. We show in
Appendix B 1 that Eqs. (3)–(6) reduce to the following set of
equations governing the fields inside the WSM:

∂2
z Ey + ω2

c2
Ey − μ0κ

c
�ε∂zEx − iω

μ0κ

c
�pzEx

− μ2
0κ

2�px(�pxEy − �pyEx )

= 0, (11)

∂2
z Ex + ω2

c2
Ex + μ0κ

c
�ε∂zEy + iω

μ0κ

c
�pzEy

+ μ2
0κ

2�py(�pxEy − �pyEx )

= 0, (12)

Ez = μ0κc
i

ω
(�pxEy − �pyEx ), (13)

Bz = 0, By = i

ω
∂zEx, Bx = − i

ω
∂zEy. (14)

The general solutions to Eqs. (11) and (12) have the form

Ey =
4∑

i=1

aie
diz, Ex =

4∑
i=1

bie
diz, (15)

where the parameters di depend on the frequency ω of the
applied fields and on the energy and momentum separations
of the Weyl nodes �ε and � �p. The di are the roots of a
characteristic equation whose explicit form is given in Ap-
pendix B 1. The remaining eight coefficients, ai and bi, are
determined by Eqs. (11) and (12) and by the boundary con-
ditions. We show in the Appendix that the fields are always
continuous at the surface of the WSM. In general, we find
self-consistent solutions for any choice of the applied external
fields.
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FIG. 1. (a) Electric field components and (b) magnetic field components as a function of distance z inside a semi-infinite slab for t = 0. Here
we set �ε = 6 meV, �pzc = 9.873 × 104 meV, ω = 3.0 GHz. The boundary conditions are Ex (0) = Ey(0) = E out, ∂zEx (0) = ∂zEy(0) = 0,
and Bout = Eout

c . The parameters in Eq. (15) are d1 = −4831.62 − 70.95i, d2 = −4761.73i, d3 = 4903.63i, and d4 = 4831.62 − 70.95i in
units of m−1. Here d4 is the only root with a positive real value, and this gives rise to the exponential growth of the fields with z in this example.

As an explicit example, consider the case where the Weyl
node momentum separation is in the z direction, i.e., �px =
�py = 0 and �pz �= 0. In this case, the characteristic equa-
tion is (see Appendix B 1)

d4 +
(

2
ω2

c2
+ �ε2 μ2

0κ
2

c2

)
d2 + 2iω�ε

μ2
0κ

2

c2
�pzd

+ ω4

c4
− μ2

0κ
2ω2

c2
�p2

z

= 0. (16)

The energy and momentum separations of Weyl nodes are
typically on the order of �ε ∼ 1 meV to 20 meV [16] and
�k ∼ 0.05 Å−1 [8,16,55], respectively. Note that the energy
separation can arise as a consequence of breaking both inver-
sion and time-reversal symmetry, as discussed theoretically
in Refs. [22,56,57]. This can occur, for example, in non-
centrosymmetric and ferromagnetic WSMs, as predicted by
first-principles studies [58]. Alternatively, one can start with
a noncentrosymmetric compound and apply a static magnetic
field to break time-reversal symmetry [59]. Based on these
possibilities, we make the following parameter choices: �ε =
6 meV, �pzc = h̄�kzc = 9.873 × 104 meV, and we set the
frequency to ω = 3.0 GHz. We take the fields outside the
WSM (z < 0) to be

Ex = Ey = Eout cos
ω

c
z, (17)

Bx = −By = i

c
Eout sin

ω

c
z. (18)

This choice then implies the following boundary condi-
tions for the fields inside the slab: Ex(0) = Ey(0) = Eout and
∂zEx(0) = ∂zEy(0) = 0. The resulting electric and magnetic
fields inside the WSM for these parameters at t = 0 are shown
in Fig. 1. We see that both fields increase quickly with depth z
into the slab, providing a detectable signature of the anomaly.
The fields also oscillate, but the oscillation period is very
long, approximately 89 mm for the parameters chosen in this
example. This value is determined by the di, the precise values
of which are quoted in the figure caption. It is also evident

in Fig. 1(b) that the magnetic field grows particularly fast
with increasing z, reaching an amplitude that is approximately
1.5 × 104 larger than the magnetic field outside the WSM at a
depth of z = 1 mm. This rapid growth must ultimately saturate
at a maximal value in a real sample, perhaps due to impurity
scattering or other effects not accounted for here.

The magnification of the magnetic field inside the slab
is due to the fact that the momentum separation between
the Weyl nodes is much larger than their energy separation.
If we reduce the momentum separation by a factor of 103

(�pzc = 98.73 meV), which is still significantly larger than
the energy separation (keeping other parameters fixed), we
obtain the results in Fig. 2 at t = 0. Here we see that the
amplitude of the magnetic field still increases with z, but now
only reaches about 2.5 times the applied field at z = 1 mm.
Note that the momentum separation between Weyl nodes is in
principle adjustable using an applied magnetic field [59,60],
making it possible to probe this transition in behavior. We gen-
erally find exponentially growing solutions like those shown
in Figs. 1 and 2 when the frequency ω is higher than 105 Hz.
However, when �pzc is on the order of the energy separation,
for example �pzc = 9.873 meV, the field amplitudes inside
can be three or more orders of magnitude smaller than those
of the applied fields (E ∼ 1.5Eout and B ∼ 0.0004Bout) and
the solutions become purely oscillatory with strictly imagi-
nary di rather than exponentially growing. In this regime, the
oscillation period is in the range 10–200 mm. In addition to
decreasing the Weyl node momentum separation, one can also
lower the frequency of the applied fields to get oscillatory so-
lutions. When ω � 105 Hz, all the di become purely imaginary
even if �pz remains large (e.g., �pzc = 9.873 × 104 meV), in
which case the fields inside are purely oscillatory. In this case,
the maximal amplitudes of the fields inside are comparable
to those outside the WSM (E ∼ 1.5Eout and B ∼ 4Bout). The
oscillation period remains in the range of 10–200 mm in this
case.

One might worry about whether energy is conserved in
our solutions in light of the substantial magnification of the
magnetic field inside the slab that occurs for ω � 105 Hz. On
each side of the boundary, the energy and momentum are
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FIG. 2. (a) Electric field components and (b) magnetic field components as a function of distance z inside a semi-infinite slab for t = 0.
Here we set �ε = 6 meV, �pzc = 98.73 meV, ω = 3.0 GHz. The boundary conditions are Ex (0) = Ey(0) = E out, ∂zEx (0) = ∂zEy(0) = 0, and
Bout = Eout

c . The parameters in Eq. (15) are d1 = −134.966 − 70.95i, d2 = −97.8207i, d3 = 239.721i, and d4 = 134.966 − 70.95i in units of
m−1. Here, d4 is the only root with a positive real value, and this causes the slow growth of the fields with increasing z.

conserved if the energy-momentum tensor obeys the equa-
tions ∂μT μν = 0. This is automatically satisfied if T μν is
derived from the Lagrangian and if we assume the energy den-
sity is continuous across the boundary. We show the explicit
form of the energy-momentum tensor in Sec. IV, where we
find that the energy density is continuous across the boundary
provided we choose the right boundary conditions for the
axion field. With this consideration in mind, we conclude
that this version of axion electrodynamics (with a fixed back-
ground axion field and a linear chiral magnetic term) generally
has self-consistent solutions.

B. Nonzero current case:�j �= 0

Next, we consider the case where the electron density is
sufficiently large that the Ohmic current cannot be neglected.
Adapting the same form for the electromagnetic fields as
before, �E (�r, t ) = eiωt �E (�r) and �B(�r, t ) = eiωt �B(�r), and using
Ohm’s law �j = σ0 �E , we can write the current in a separated
form as well: �j(�r, t ) = eiωt �j(�r). When the conductivity is
nonzero, the charge density ρ must also be nonzero unless
�px = �px = 0, as we show in Appendix B 2.

For simplicity, we consider the solutions under the assump-
tion �px = �py = 0, as in the previous subsection. In this
case we have Ez = 0 (see Appendix B 2). We also show in
Appendix B 2 that Eqs. (3)–(6) reduce to the following set of
equations governing the fields inside the WSM:

∂2
z Ey + ω2

c2
Ey − iμ0σ0ωEy

− μ0κ

c
�ε∂zEx − iω

μ0κ

c
�pzEx

= 0, (19)

∂2
z Ex + ω2

c2
Ex − iμ0σ0ωEx

+ μ0κ

c
�ε∂zEy + iω

μ0κ

c
�pzEy

= 0. (20)

Similarly to before, the operator equation becomes

d4 +
[

2

(
ω2

c2
− iμ0σ0ω

)
+ �ε2 μ2

0κ
2

c2

]
d2

+ 2iω�ε
μ2

0κ
2

c2
�pzd

+
(

ω2

c2
− iμ0σ0ω

)2

− μ2
0κ

2ω2

c2
�p2

z

= 0. (21)

Here we make the same parameter choices as in the pre-
vious subsection: �ε = 6 meV, �pzc = h̄�kzc = 9.873 ×
104 meV, and we set the frequency to ω = 3.0 GHz. We take
the fields outside the WSM (z < 0) to be

Ex = Ey = Eout cos
ω

c
z, (22)

Bx = −By = i

c
Eout sin

ω

c
z. (23)

This choice then implies the following boundary condi-
tions for the fields inside the slab: Ex(0) = Ey(0) = Eout and
∂zEx(0) = ∂zEy(0) = 0. The typical conductivity of a WSM is
smaller than that of a metal. For concreteness, we set σ0 = 105

S/m, corresponding to the bulk conductivity of the WSM
NbAs [61]. We also consider a conductivity that is two orders
of magnitude smaller, 103 S/m, to better understand how
the conductivity impacts the behavior of the electromagnetic
fields. The resulting electric and magnetic fields inside the
WSM for these parameters at t = 0 are shown in Figs. 3 and 4
with σ0 = 105 and 103 S/m, respectively. In both figures, we
choose the same parameters as in the �j = 0 case considered
in the previous subsection, and we keep the outside fields the
same as well.

In Fig. 3, the electric and magnetic fields are both enhanced
much more than in the case without the Ohmic current. We
find that there are two solutions to Eq. (21) that have a posi-
tive real part: d3 = 7124.17 + 7121.41i and d4 = 26 516.2 +
26 519.6i in units of m−1. The real part of d4 is much larger
than before (see the caption of Fig. 1), and it dominates the
growth of the fields. This means that in a real WSM system
with a large enough Ohmic conductivity, the magnification
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FIG. 3. (a) Electric field components and (b) magnetic field components as a function of distance z inside a semi-infinite slab for t =
0. Here we set �ε = 6 meV, �pzc = 9.873 × 104 meV, ω = 3.0 GHz, and σ0 = 105 S/m. The boundary conditions are Ex (0) = Ey(0) =
E out, ∂zEx (0) = ∂zEy(0) = 0, and Bout = Eout

c . The parameters in Eq. (15) are d1 = −26 521.3 − 26 519.6i, d2 = −7119.09 − 7121.41i, d3 =
7124.17 + 7121.41i, and d4 = 26 516.2 + 26 519.6i in units of m−1. Here d3 and d4 are both roots with a positive real value, and this gives rise
to the exponential growth of the fields with z in this example. We see that the field magnification is strongly enhanced for high conductivity
(compare to Fig. 1).

of the electromagnetic fields should be more easily detected.
Again, we expect that this effect will be weakened in a real
sample due to scattering or other effects not accounted for
here.

In Fig. 4, the electric and magnetic fields are of a similar
magnitude compared to the case of Fig. 1. This means that for
low conductivity, the main contribution to the magnification
of the fields comes from the non-Ohmic terms. As one can
see from the solutions in Fig. 4, although d3 = 785.543 +
4874.93i and d4 = 4797.94 + 711.514i (in units of m−1) both
have positive real parts, the main contribution is from d4,
which is of similar magnitude as in Fig. 1. Therefore, it is
legitimate to neglect the Ohmic term and set �j = 0.

Before concluding this section, we comment on possi-
ble methods to experimentally detect the field magnification
effect. To this end, it may be advisable to reach beyond mag-
netotransport and quantum transport measurements. Instead,
it may be more suitable to consider measurements of the mag-
netic permeability and electrical permittivity for verification

of the effects described above. The magnetic permeability
quantifies the magnetic field inside the material upon appli-
cation of an external magnetic field, and experiments can
be performed in various sample sizes and applied field con-
figurations. Similarly, the electrical permittivity quantifies
the electric field inside the material upon application of an
external electric field, and measurements can likewise be
performed for various configurations and sample sizes. The
effect of an applied external magnetic field on the electric
field inside the material, known as the magnetodielectric
effect, and the electric field-induced magnetic permeability
are both studied in magnetoelectric materials, and should
be considered. Given the importance of boundary conditions
and sample geometry, the measured permeability, permittiv-
ity, magnetodielectric coefficient, and electric field-induced
magnetic permeability have to be considered as tensors. Fur-
ther, the frequency dependence of the tensors can be studied
following approaches similar to dielectric spectroscopy. The
frequency dependence should include detection of higher

FIG. 4. (a) Electric field components and (b) magnetic field components as a function of distance z inside a semi-infinite slab for t =
0. Here we set �ε = 6 meV, �pzc = 9.873 × 104 meV, ω = 3.0 GHz, and σ0 = 103 S/m. The boundary conditions are Ex (0) = Ey(0) =
E out, ∂zEx (0) = ∂zEy(0) = 0, and Bout = Eout

c . The parameters in Eq. (15) are d1 = −4797.92 − 859.31i, d2 = −785.564 − 4727.14i, d3 =
785.543 + 4874.93i, and d4 = 4797.94 + 711.514i in units of m−1. Here d3 and d4 are both roots with a positive real value, and this gives rise
to the exponential growth of the fields with z in this example. The magnification of the fields is comparable to that evident in Fig. 1, indicating
that for this lower value of the conductivity, the Ohmic term does not contribute significantly to the magnification effect.
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harmonics to ascertain the possible existence of nonlinear
behavior.

III. NONDYNAMICAL AXIONS AND NONLINEAR
CHIRAL MAGNETIC TERM

In this section we keep the axion nondynamical, but we
consider a different, nonlinear form of the chiral magnetic
term. This form was derived from kinetic theory in Ref. [32].
In this approach, one starts from a Boltzmann equation that
includes contributions due to a nonzero Berry curvature.
These contributions give rise to a chiral magnetic term and
an anomalous Hall term. This is the case even for a finite but
small chemical potential, such that the system is in a Weyl
metal rather than semimetal phase. In this approach, the chiral
chemical potential is now proportional to the inner product of
the electric and magnetic fields, �E · �B, while the anomalous
Hall term is the same as in Eq. (6). As we discussed in the
previous section, the Ohmic term can be ignored in the limit
of low conductivity. Here, we assume this is the case and
set �j = 0 throughout this section. We consider the case of a
nonzero source current in Appendix C. The conclusions of
this section are largely unaffected by the Ohmic term. The
modified Maxwell’s equations are then

�∇ · �E = −μ0cκ� �p · �B, (24)

�∇ × �E = 0, (25)

�∇ · �B = 0, (26)

�∇ × �B = μ0σa( �E · �B) �B + μ0κ

c
� �p × �E , (27)

where σa is a constant, and we have again set the source
charges and currents to zero: ρ = 0 = �j. We see that now
the chiral magnetic term in Eq. (27) is nonlinear in �E and
�B. Unlike the linear chiral magnetic term in Eq. (6), a chi-
ral magnetic current is expected to arise even for stationary
electric and magnetic fields in this case. In Eqs. (24)–(27),
we have already assumed that the fields are time independent
since this is the case we focus on here. Here, we again assume
a single Weyl node pair, although a similar analysis applies for
multiple pairs, in which case the anomaly-induced terms in
Eqs. (24) and (27) receive contributions from each pair. These
contributions add linearly [32], and so effectively this amounts
to a simple modification of the coefficients multiplying the
electromagnetic fields in these equations. We examine three
different geometries: a semi-infinite slab as in the previous
section, a case in which the WSM occupies all of space, and
a case in which the WSM is an infinite cylindrical wire. In
each case, we find that self-consistent solutions do not exist
for arbitrary choices of the applied external fields, although
solutions can be found in special cases.

A. Semi-infinite slab

We first consider a semi-infinite slab of WSM occupying
z � 0 and where z < 0 is vacuum. If we consider the case in
which the fields outside the slab (z < 0) are in the xy plane,
�E = Eout

x x̂ + Eout
y ŷ and �B = Bout

x x̂ + Bout
y ŷ, where Eout

x and
Eout

y are constants, then we immediately run into a problem.

From Eq. (27) we see that the number of equations is greater
than the number of variables, which leads to a constraint on
the fields outside the WSM (see Appendix C 1 for details):

�pxEout
y =�pyEout

x . (28)

This imposes a strong constraint on the angle between the
electric field outside the WSM and the orientation of the WSM
crystal lattice since the latter determines the orientation of
the momentum separation � �p between Weyl nodes. Once we
choose the directions of the outside fields, Eq. (28) either
forces � �p to point in a particular direction in the xy plane, or
the electric field in the xy plane is forced to be zero. There thus
appears to be a fundamental inconsistency in this version of
axion electrodynamics, at least as it applies to the semi-infinite
slab geometry.

Let us leave this inconsistency aside for the moment and
assume that �px = �py = 0, in which case the issue is
avoided. We then obtain the following equations for the fields
inside the WSM:

Ex = const = Eout
x , Ey = const = Eout

y , (29)

Bz = 0, ∂zEz = 0, (30)

∂zBy = −μ0σa
(
Eout

x Bx + Eout
y By

)
Bx + μ0κ

c
�pzE

out
y , (31)

∂zBx = μ0σa
(
Eout

x Bx + Eout
y By

)
By + μ0κ

c
�pzE

out
x . (32)

Here, we have used that the fields are continuous across the
surface, which is shown in Appendix C 1. Since we are assum-
ing there is no Ez component outside of the sample, we have
Ez = Eout

z = 0. Suppose that we also have Eout
y = 0 = Bout

y ,
i.e., the applied electric and magnetic fields are parallel and
lie in the x direction, transverse to the surface. The last two
equations above then become

∂zBy = −μ0σaEout
x B2

x , (33)

∂zBx = μ0σaEout
x BxBy + μ0κ

c
�pzE

out
x . (34)

We can render these equations dimensionless by dividing
both sides by Bout

x and then defining k1 = μ0σaBout
x Eout

x and

k2 = μ0κ�pzEout
x

cBout
x

. Because the fields must be continuous at the

boundary, we impose Bx(0) = Bout
x and By(0) = 0. We show

the solution of these equations in Fig. 5. As one can see, al-
though we have set By(0) = 0 at the surface, the equations still
yield a nonzero By inside the WSM. In addition, the magnetic
field component in the x direction decreases with increasing
depth into the slab. In the limit of very large z, Bx becomes
arbitrarily close to zero. These solutions reveal that the electric
and magnetic fields are trying to become perpendicular at
large z. Thus, the fields inside the slab arrange themselves in
such a way that the CME is suppressed. Similar results were
found in Ref. [50] in the absence of the AHE term.

Let us now consider the case where the outside fields are
in the z direction, i.e., �E = Eout

z ẑ and �B = Bout
z ẑ. We again

assume �px = �py = 0. As shown in Appendix C 1, so-
lutions only exist if Bz = Bout

z = 0. This is a contradiction
since we assumed Bout

z �= 0 at the outset, and we should be
free to choose the applied fields any way we like. This again
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FIG. 5. (a) x and (b) y components of the magnetic field
as a function of depth z inside a semi-infinite slab. Here k1 =
μ0σaBout

x E out
x , k2 = μ0κ�pzEout

x
cBout

x
= 0.1 mm−1, where E out

x and Bout
x are

the nonzero components of the applied fields outside the slab.

suggests that there may be an intrinsic inconsistency with
Eqs. (24)–(27). Next, we examine whether similar issues arise
for other geometries.

B. Whole space case

Now we consider the case where the whole space is a
WSM. In this case, all the fields must be constant due to
symmetry. Equations (24)–(27) reduce to

�∇ · �E = −μ0cκ� �p · �B = 0, (35)

�∇ × �B = μ0σa( �E · �B) �B + μ0κ

c
� �p × �E = 0. (36)

If we pick the direction of the Weyl node momentum sepa-
ration to be ẑ, � �p = �pzẑ, we have �B = (Bx, By, 0) from the
first equation. After some steps shown in Appendix C 2, we
obtain

Ex = Ey = 0, Ez = const. (37)

Thus, the conclusion for this case is that the electric field must
be parallel to � �p, and the magnetic field is perpendicular to
it. Therefore, the CME disappears automatically in this case.

C. Infinite cylindrical wire

Next, we study an infinite cylindrical wire with radius R.
We use cylindrical coordinates, taking the axis of the wire
to lie in the z direction and defining r to be the radial co-
ordinate. The wire is a WSM, and outside is vacuum. For
simplicity, we choose the Weyl node separation in momen-
tum space to be in the z direction: �px = �py = 0 and
�pz �= 0. With these assumptions and switching to cylindrical
coordinates, Eqs. (24)–(27) become (see Appendix C 3 for

details)

Ez = Eout
z , Eφ = 0, Br = 0, (38)

1

r

∂

∂r
(rEr ) + μ0cκ�pzBz = 0, (39)

∂Bz

∂r
+ μ0σaEout

z BzBφ + μ0κ

c
�pzEr = 0, (40)

−1

r

∂

∂r
(rBφ ) + μ0σaEout

z B2
z = 0. (41)

A similar set of equations was solved in Ref. [50], although
there the AHE term was neglected. We first revisit this case
before solving the full equations with the AHE term present,
as we will find that both cases exhibit common pathologies.
The solution that was obtained in Ref. [50] has a diverging
electric field along the axis of the wire, Er → ∞ as r → 0, as
we now show. Inside the WSM, Bz was found to be

Bz = 2B0�k

r2 + k2
, (42)

where � = (μ0σaE0B0)−1 and k = � + √
�2 − R2, with ap-

plied fields �Eout = E0ẑ, �Bout = B0ẑ outside the wire. Plugging
this result for Bz into Eq. (39), one obtains

∂

∂r
(rEr ) = −2μ0cκ�pzB0�kr

r2 + k2
(43)

⇒ Er = −2μ0cκ�pzB0�k

r

∫
r dr

r2 + k2

= −μ0cκ�pzB0�k

r
[ln(r2 + k2) + C1], (44)

which is singular at r = 0.
The singular behavior of the solution above persists for

arbitrary choices of the outside fields. Define k1 = μ0σaE0B0

and k3 = μ0cκ�pzB0

E0
, Eqs. (39)–(41) become

1

r

∂

∂r

(
r

Er

E0

)
+ k3

Bz

B0
= 0, (45)

∂

∂r

Bz

B0
+ k1

Bz

B0

Bφ

B0
= 0, (46)

−1

r

∂

∂r

(
r

Bφ

B0

)
+ k1

B2
z

B2
0

= 0. (47)

Here, E0 and B0 parametrize the fields outside the wire. We
should be able to choose the outside fields as desired. In
Appendix C 3, we show that the fields must be continuous
at the surface of the wire, meaning that we should be free to
choose the boundary conditions of the fields at r = R; these
boundary values then determine the fields inside the WSM.
As a concrete example, we set R = 5 mm and choose Er (R) =
0.5E0, Bz(R) = B0, and Bφ (R) = 0, which correspond to a
radial electric field and an axial magnetic field outside. The
solution is shown in Fig. 6. In these solutions, we do not
restrict ourselves to finite values for Bφ at r = 0 as in Ref. [50]
since the singularity at r = 0 arises regardless of how Bφ

behaves along the cylinder axis. We can identify two possible
explanations for these unavoidable divergences at r = 0: (i)
The axion equations may be intrinsically problematic; (ii) in
this cylindrical WSM, the axial anomaly creates an effective
line charge and current at r = 0. We do not currently see
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FIG. 6. Three different electric and magnetic field components
as a function of the radius r inside an infinite cylindrical WSM
wire without the anomalous Hall term [Eqs. (45)–(47)]. Here
E in

φ = E out
φ = 0, E in

z = E out
z = E0, Bin

r = Bout
r = 0, k1 = μ0σaE0B0,

and k3 = μ0cκ�pzB0
E0

= 107 mm−1. At the boundary R = 5 mm, we set
Er (R) = 0.5E0, Bz(R) = B0, and Bφ (R) = 0. These solutions show
that the electric and magnetic fields become perpendicular to each
other at the center of the wire.

a way to establish which interpretation is correct. Interest-
ingly, notice that since Ez is constant inside the wire, and
Bz decreases while the magnitude of Bφ increases as r → 0,
we again find that the electric and magnetic fields become
perpendicular as we go further into the WSM, just as we saw
for the semi-infinite slab above.

Now we return to the full axion electrodynamics equations
with the anomalous Hall term restored. If we define k1 =
μ0σaE0B0, k3 = μ0cκ�pzB0

E0
, and k2 = μ0κ�pzE0

cB0
, Eqs. (39)–(41)

become

1

r

∂

∂r

(
r

Er

E0

)
+ k3

Bz

B0
= 0, (48)

∂

∂r

Bz

B0
+ k1

Bz

B0

Bφ

B0
+ k2

Er

E0
= 0, (49)

−1

r

∂

∂r

(
r

Bφ

B0

)
+ k1

B2
z

B2
0

= 0. (50)

FIG. 7. Three different electric and magnetic field components
as a function of the radius r inside an infinite cylindrical WSM
wire with the anomalous Hall term restored [Eqs. (48)–(50)]. Here
E in

φ = E out
φ = 0, E in

z = E out
z = E0, Bin

r = Bout
r = 0, k1 = μ0σaE0B0,

k3 = μ0cκ�pzB0
E0

= 107 mm−1, and k2 = μ0κ�pzE0
cB0

= 0.1 mm−1. At
the boundary R = 5 mm, we set Er (R) = 0.5E0, Bz(R) = B0, and
Bφ (R) = 0. In this case, the electric and magnetic fields do not
become perpendicular at the center of the wire. Instead, Bz tends to a
constant at r = 0 that depends on the parameters ki.

All the solutions of these equations face the same problem
as before, namely, they exhibit singularities at r = 0. We
show one example in Fig. 7. Here we choose R = 5 mm,
Er (R) = 0.5E0, Bz(R) = B0, and Bφ (R) = 0, corresponding to
radial electric and magnetic fields outside the wire. We also
find that even when turning off Er outside, this component
still increases inside the wire and diverges as r → 0. Thus,
singularities in the fields along the cylinder axis again appear
to be unavoidable. However, unlike the case above where we
neglected the AHE term, now the electric and magnetic fields
are no longer becoming perpendicular to each other as r → 0
in these solutions. Instead, Bz(0) is a nonzero constant that
depends on the parameters ki.

In summary, we find that in the cylindrical wire case, we
can always find solutions for the electric and magnetic fields
inside the wire. This is in contrast to the semi-infinite slab,
where we saw that when the chiral magnetic term is nonlinear,
self-consistent solutions are not available. However, the fields
inside the wire necessarily exhibit singularities along the wire
axis.
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IV. DYNAMICAL AXIONS

In the previous sections, we considered two different
versions of axion electrodynamics. Both are based on a non-
dynamical axion, i.e., the axion arises as a background field
that interacts with the electric and magnetic fields. However,
axions in topological materials can have their own dynamics
[48,62]. Reference [48] showed that dynamical axions can
arise in WSMs, for example, as fluctuations in the phase of an
order parameter associated with a charge density wave. In this
section, we consider a third version of axion electrodynamics
in which the axion is an independent, dynamical field.

Allowing the axion to be dynamical introduces an addi-
tional, fifth equation: the equation of motion for the axion.
This equation can be derived from a Lagrangian density as in
Eqs. (1) and (2), except that now we introduce an additional
kinetic term for the pseudoscalar axion field θ :

Lθ2 = 1
2κ0∂αθ∂αθ = 1

2κ0∂αθ∂βθηαβ, (51)

where κ0 is a constant. Combining this with Eqs. (1) and (2),
our total Lagrangian density is

L = L0 + Lθ1 + Lθ2 . (52)

In addition to Eqs. (3)–(6), the Euler-Lagrange equations now
also give the equation of motion for the axion:

∂ν∂
νθ = κ

κ0c
�E · �B. (53)

For simplicity, we set the source terms to zero in this section:
�j = 0, ρ = 0. Restricting attention to stationary �E and �B
fields, we have the following version of axion electrodynam-
ics:

�∇ · �E = −μ0cκ �∇θ · �B, (54)

�∇ × �E = 0, (55)

�∇ · �B = 0, (56)

�∇ × �B = μ0κ

c
(∂tθ �B + �∇θ × �E ), (57)

1

c2
∂2

t θ − �∇2θ = κ

κ0c
�E · �B. (58)

Here, as in the previous sections, we assume a single Weyl
node pair. Multiple pairs would introduce additional axion
fields and corresponding kinetic equations of the form of
Eq. (58). Because our focus is on the self-consistency of the
axion equations, we consider the simplest case of a single
node pair to more clearly highlight the issues that arise. No-
tice that the above equations do not contain any information
about the band structure of the WSM. In Ref. [48], the Weyl
separations appear only implicitly as a shift of the derivatives
of the axion field ∂μθ . We return to this point shortly. Let us
first focus on solving the equations above.

As a concrete example, we again consider a semi-infinite
slab of WSM occupying the upper half-space z � 0. Because
we are focusing on the case where the electric and magnetic
fields are stationary, Eqs. (57) and (58) imply that θ is at
most a linear function of t . Furthermore, for the semi-infinite
slab symmetry, �∇θ can depend on z only. Therefore, the most
general form of θ is

θ = fx(z)x + fy(z)y + ft,0t + θ̃ (z), (59)

where ft,0 is a constant due to the fact that ∂tθ does not depend
on t . The symmetry of the slab geometry also implies that
∂zθ depends on z only. This in turn means that fx(z) = fx,0

and fy(z) = fy,0 are constants. Denoting ∂zθ̃ (z) = fz(z), the
derivatives of the axion thus have the following generic form
for the semi-infinite slab geometry in the case of stationary
electric and magnetic fields:

�∇θ = �f = fx,0x̂ + fy,0ŷ + fz(z)ẑ, ∂tθ = ft,0. (60)

Equations (54)–(58) then reduce to the following set of alge-
braic and ordinary differential equations:

Ex =Eout
x , Ey = Eout

y , Bz = Bout
z , (61)

0 = ft,0Bout
z + fx,0Eout

y − fy,0Eout
x , (62)

∂zEz = − μ0cκ
(

fx,0Bx + fy,0By + fzB
out
z

)
, (63)

∂zBx =μ0κ

c

(
ft,0By + fzE

out
x − fx,0Ez

)
, (64)

∂zBy = − μ0κ

c

(
ft,0Bx + fy,0Ez − fzE

out
y

)
, (65)

∂z fz = − κ

κ0c

(
Eout

x Bx + Eout
y By + EzB

out
z

)
. (66)

Here, we have used that all components of the electric and
magnetic fields are again continuous across the surface, as
follows from arguments similar to those used in the context of
the other two versions of axion electrodynamics considered
in this work. Equation (62) gives a constraint for the axion
derivative fμ; the effect of this constraint depends on how
we choose the applied fields outside the WSM, as is evident
in the examples given below. The examples we consider in-
clude the case where the applied fields are orthogonal to the
WSM surface (Sec. IV A), and where they are parallel to the
surface (Sec. IV B). We also examine energy conservation
in Sec. IV C, where we find evidence that time-independent
solutions should not exist in the case of a dynamical axion.

A. �E,�B ‖ ẑ outside of the WSM

When both the electric and magnetic fields are orthogonal
to the surface, we have Eout

x = Eout
y = 0, and so Eq. (62)

implies that the CME term vanishes, ft,0 = 0, when Bout
z �= 0.

The other boundary conditions are Bx(0) = By(0) = 0 and
Ez(0) = Eout

z . The solutions to Eqs. (63)–(66) in this case are
(see Appendix D 1)

Bx =κ2μ2
0 fx,0 fz,0Bout

z

D2
(−1 + cosh Dz) − Eout

z

cD
sinh Dz, (67)

By =κ2μ2
0 fy,0 fz,0Bout

z

D2
(−1 + cosh Dz) − Eout

z

cD
sinh Dz, (68)

Ez =Eout
z cosh Dz − Bout

z c fz,0κμ0

D
sinh Dz, (69)

fz = fz,0
(
κ0D2 − Bout

z
2
κ2μ0 + Bout

z
2
κ2μ0 cosh Dz

)
κ0D2

− Bout
z Eout

z κ sinh Dz

cκ0D
, (70)
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where we have defined

D2 = κ2μ0
[
Bout

z
2 + (

f 2
x,0 + f 2

y,0

)
κ0μ0

]
κ0

. (71)

Here, we allow for the possibility of a finite jump in the
derivative of the axion at the surface: fz(0) = fz,0. We see that
the fields grow exponentially with z, where the rate of growth
is set by D, which depends on the applied magnetic field and
on the transverse derivatives of the axion. This growth should
ultimately saturate for a finite slab. Aside from this unbounded
growth, which is a simple consequence of the infinite slab
geometry considered here, no pathologies appear to arise in
this case.

Following Ref. [48], one would expect the scale of spatial
and temporal variations in θ to depend on the Weyl momen-
tum and energy separations � �p and �ε. Since the space-time
dependence of θ is determined by the boundary values fx,0,
fy,0, fz,0, and ft,0, it follows that these quantities should de-
pend on the Weyl momentum and energy separations, and thus
they depend on the type of WSM under consideration. It is not
clear whether the precise relationship between the boundary
values of fμ and the Weyl node separation can be obtained in
closed form.

B. �E,�B ‖ x̂ outside of the WSM

Now we consider the case where the fields outside the
slab are parallel to the WSM surface. In particular, we will
take them to both point in the x direction for concreteness.
Explicitly, we have Bout

z = Eout
y = 0, and from the constraint

in Eq. (62), we can see that ft,0 and fx,0 are no longer re-
stricted, while fy,0 = 0. The remaining boundary conditions
in this case are Bx(0) = Bout

x , By(0) = 0, Ez(0) = 0, and we
again allow for a possible discontinuity in fz(z) at the surface:
fz(0) = fz,0. The solutions to Eqs. (63)–(66) in this case are
(see Appendix D 2)

Bx = Bout
x cos D0z + Eout

x fz,0κμ0

cD0
sin D0z, (72)

By = ft,0Eout
x fz,0κ

2μ2
0

c2D2
0

(−1 + cos D0z)

− Bout
x ft,0κμ0

cD0
sin D0z, (73)

Ez = fx,0Eout
x fz,0κ

2μ2
0

D2
0

(−1 + cos D0z)

− Bout
x c fx,0κμ0

D0
sin D0z, (74)

fz = κ

c2D2
0κ0

[
cD0 fz,0

√
κ0μ0 − Eout

x
2

fz,0κμ0(1 − cos D0z)

− Bout
x Eout

x cD0 sin D0z
]
, (75)

where now

D2 = −D2
0 = −κ2μ0

[
Eout

x
2 + κ0μ0

(
f 2
t,0 − c2 f 2

x,0

)]
c2κ0

. (76)

The solutions in this case exhibit oscillating behavior for all
choices of the remaining parameters. Again, no inconsisten-
cies appear in this case.

C. Energy conservation

Now let us check whether energy is conserved in a
WSM described by a dynamical axion field subject to sta-
tionary electric and magnetic fields. In dielectric media,
the energy-momentum tensor of the electromagnetic fields
might not be conserved. This is related to the long-standing
Abraham-Minkowski controversy, which continues to be de-
bated [63–65]. While the electromagnetic stress-energy tensor
is generally not conserved in the presence of matter, here we
still expect it to be conserved because the material has been
replaced by an axion field, and so we are effectively dealing
with axion electrodynamics in vacuum. We can obtain the
stress-energy tensor from the Lagrangian density L in Eq. (52)
[66]:

T μν = ∂L
∂ (∂μAσ )

∂νAσ + ∂L
∂ (∂μθ )

∂νθ − ημνL (77)

or, more explicitly,

T μν = κ0∂
μθ∂νθ − 1

μ0
Fμγ ∂νAγ

− κ

2
θεμγσλFσλ∂

νAγ − ημνL. (78)

After simplification, the energy density T 00 reads as

T 00 = 1

2

(
ε0 �E2 + 1

μ0

�B2

)
+ 1

2
κ0(∂0θ∂0θ + ∂iθ∂iθ ), (79)

where there is an implicit sum over the index i. The first term
is the energy density of the electromagnetic field, while the
second term is the energy density of the dynamical axion
field. On one hand, if one does not have a kinetic term in
the Lagrangian, one would only get the energy density of
the electromagnetic fields, which is the case considered in
Sec. II. The energy density is continuous across the boundary
in this case since the electromagnetic fields are continuous.
On the other hand, when one includes the kinetic terms for θ ,
demanding that the energy density be continuous across the
boundary requires the kinetic term to vanish at the boundary:

f 2
x,0 + f 2

y,0 + f 2
z,0 + 1

c2
f 2
t,0 = 0. (80)

This can only be satisfied if all the axion derivatives vanish at
the surface:

fx,0 = fy,0 = fz,0 = ft,0 = 0. (81)

Referring back to Eqs. (57) and (59), we see that this forces
the chiral magnetic term to vanish. We also see that the con-
straint shown in Eq. (62) holds automatically and does not
place any restriction on the electromagnetic fields. Although
fx,0 and fy,0 will always be zero inside of the WSM, fz could
still be nonzero. Therefore, nontrivial solutions can still be
obtained. However, these solutions only provide signatures of
the AHE term. Perhaps one way to obtain a response from
the chiral magnetic term would be to relax the assumption of
static applied fields and to instead consider time-dependent
fields. Whether or not self-consistent solutions can be ob-
tained in this case will be investigated in future work.

Before we finish this section, it is worth considering
whether the solutions to the dynamical axion equations have
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any relation to the solutions obtained in Sec. II in the case of
a nondynamical axion (with a linear chiral magnetic term).
Naively, one can try to insert the latter into the dynamical
axion equations. However, one immediately finds that this
does not work because the left-hand side of Eq. (58) evaluates
to zero, yielding a constraint on the electric and magnetic
fields (they must be orthogonal), while the other equations
remain the same. Even if we chose the applied fields to be
orthogonal to each other, it is not guaranteed that they will
remain orthogonal inside the WSM. Indeed, we have checked
whether �E · �B = 0 is approximately obeyed by the solutions
of Sec. II, and we found that �E · �B instead grows quickly with
depth into the WSM. (Note that this is unlike the solutions
obtained in the case of a nonlinear chiral magnetic term, where
in Sec. III we found several instances in which �E · �B → 0 as
z → ∞.) Therefore, there does not appear to be a sense in
which the nondynamical axion solutions (Sec. II) approximate
the dynamical axion solutions obtained in the present section.

V. CONCLUSIONS

Whether or not the axial anomaly exists in WSMs remains
a subtle question. The motivation for our work is to identify
alternative diagnostics based on electromagnetic signatures
that could be exploited to experimentally confirm the presence
of an anomaly. To this end, we considered three versions
of axion electrodynamics that have been put forward in the
literature. In each case, we attempted to solve the equations in
simple geometries.

In the first version, we started from an effective action for
nondynamical axions given by Refs. [27,28]. In the case of a
semi-infinite slab, we found that the magnetic field inside the
WSM can be magnified substantially assuming the Weyl node
momentum separation and the frequency of the applied fields
are both sufficiently large, which happens with or without the
Ohmic current term. We also found that when the conduc-
tivity is sufficiently large, this magnification effect is further
enhanced. This potentially provides a detectable signature of
the axial anomaly. The solutions are generally self-consistent
for this version of axion electrodynamics.

In the second version, rather than starting from an effec-
tive action, the axion equations are instead obtained from
a semiclassical kinetic theory as in Ref. [32]. In contrast
to the first version, this yields a nonlinear chiral magnetic
term. We found that the resulting equations generally do not
admit self-consistent, physical solutions. In the case of a
semi-infinite slab, no solutions exist aside from a few special
cases, while for an infinite cylindrical wire, solutions exist but
exhibit unphysical field divergences. These findings suggest
that this version of axion electrodynamics, which has been
considered in several recent experimental works, may not be
self-consistent.

The third version of axion electrodynamics we considered
involves dynamical axions. That is, the axions are described
by independent fields rather than by fixed background fields
as in the previous two versions. We found that self-consistent
solutions can be obtained only in cases where the chiral mag-
netic term is exactly zero, as otherwise the solution violates
energy conservation. It is possible that this issue could be
lifted in the case of time-dependent applied fields.

Going forward, more work needs to be done, both theo-
retically and experimentally, to better understand the nature
of the axial anomaly in WSMs and the impact it has on the
electromagnetic response of these materials.
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APPENDIX A: CONDUCTIVITY

From the calculation by Ref. [54], we write the conductiv-
ity

σ (ω) = 1

iω + 1
τ

v2
F e2g

3π2(h̄vF )3

∫ ∞

0
dε ε2

(
−∂ f 0(ε, T )

∂ε

)
.

(A1)

Here e, vF , g, and τ are the electron charge, Fermi veloc-
ity, light-matter coupling, and scattering time, respectively.
f 0(ε, T ) is the Fermi-Dirac distribution. The integral above
leads to a constant �(T ) decided by the temperature. Consid-
ering the limit ω → 0 and T → 0, denoting �0 = �(0) and
σ0 = σ (0), we have

σ0 = v2
F e2gτ�0

3π2(h̄vF )3
. (A2)

Now we calculate this �0; since

f 0(ε) = 1

e
ε−μ

kBT + 1
, (A3)

we integrate by parts

lim
T →0

∫ ∞

0
dε ε2

(
−∂ f 0(ε, T )

∂ε

)

= − lim
T →0

ε2 f 0(ε, T )|∞0 + lim
T →0

∫ ∞

0
2ε f 0(ε, T )dε

= 2 lim
T →0

∫ ∞

0

εdε

e
ε−μ

kBT + 1
= μ2 = ε2

F = �0. (A4)

Therefore, we obtain

σ0 = e2gτε2
F

3π2h̄3vF
= e2gτk2

F v2
F

3π2h̄3vF
= e2gτk2

F vF

3π2h̄3 . (A5)

Meanwhile the zero-temperature carrier density is [54]

n = gk3
F

6π2
. (A6)
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Therefore, the conductivity and the carrier density have the
relation σ0 ∝ n

2
3 .

APPENDIX B: NONDYNAMICAL AXIONS AND LINEAR
CHIRAL MAGNETIC TERM

Here, we show in detail how we obtain the solutions de-
scribed in Sec. II. Starting with Eqs. (3)–(7), we consider both
vanishing current and nonzero current cases. Based on Ohm’s
law, we assume

�j = σ0 �E , (B1)

where the conductivity σ0 is calculated in Appendix A. In
WSMs, n can be very low. When this happens, the Ohmic
conductance can be ignored, and we can set �j = 0 in the
axion equations. In other cases when n is large enough, the
conductivity cannot be ignored, and thus �j �= 0.

1. Zero current case:�j = 0

Now we set ρ = 0, �j = 0 and �E (�r, t ) = eiωt �E (�r), �B(�r, t ) =
eiωt �B(�r). Since the EM fields are necessarily real, considering
the time derivative relations, if we focus on the real part of
eiωt in �E (�r, t ), we should take the real part of �E (�r) as well,
and correspondingly we should take the imaginary part of eiωt

and �B(�r) in �B(�r, t ). Thus, we have

�∇ · �E = −μ0cκ� �p · �B, (B2)

�∇ × �E = −iω �B, (B3)

�∇ · �B = 0, (B4)

�∇ × �B = i
ω

c2
�E + μ0κ

c
(−�ε �B + � �p × �E ). (B5)

We consider a semi-infinite slab with WSM filling z � 0.
According to the symmetry of this setup, one should expect
the fields to only depend on z. First let us consider the fields
outside the WSM. In this region (z < 0), we have

�∇ · �E = 0, (B6)

�∇ × �E = −iω �B, (B7)

�∇ · �B = 0, (B8)

�∇ × �B = i
ω

c2
�E . (B9)

Thus, we have

∂zEz = 0, (B10)

∂zExŷ − ∂zEyx̂ = −iω �B, (B11)

∂zBz = 0, (B12)

∂zBxŷ − ∂zByx̂ = 1

c2
iω �E . (B13)

The solution is

Ex = Ex,1ei ω
c z + Ex,2e−i ω

c z, (B14)

Ey = Ey,1ei ω
c z + Ey,2e−i ω

c z, (B15)

Bx = 1

c
Ey,1ei ω

c z − 1

c
Ey,2e−i ω

c z, (B16)

By = −1

c
Ex,1ei ω

c z + 1

c
Ex,2e−i ω

c z. (B17)

For the explicit example discussed in Sec. II, we choose Ez =
0 = Bz, Ex,1 = Ex,2 = 1

2 Ex,0, and Ey,1 = Ey,2 = 1
2 Ey,0, and so

we have

Ex = Ex,0 cos
ω

c
z, (B18)

Ey = Ey,0 cos
ω

c
z, (B19)

Bx = i

c
Ey,0 sin

ω

c
z, (B20)

By = − i

c
Ex,0 sin

ω

c
z. (B21)

To obtain the boundary conditions at the surface of the
WSM (z = 0), one can integrate over an infinitely small vol-
ume or area that overlaps the boundary. This leads to the
requirement that the fields be continuous at the boundary, as
we now show. Equation (B2) gives the integral

lim
V →0

∫
�∇ · �E dV = lim

V →0

∮
�E · d �S

= − lim
V →0

κc2
∫

� �p · �B dV = 0, (B22)

E in
z

∣∣
z=0 = Eout

z

∣∣
z=0. (B23)

By doing the loop line integral, Eq. (B3) gives

lim
S→0

∫
( �∇ × �E ) · d �S = lim

S→0

∮
�E · d�l

= −iω lim
S→0

∫
�B · d �S = 0, (B24)

E in
x = Eout

x , (B25)

E in
y = Eout

y . (B26)

Again, by doing the volume and loop line integrals of
Eqs. (B4) and (B5), respectively, we obtain

Bin
z =Bout

z , (B27)

Bin
x =Bout

x , (B28)

Bin
y =Bout

y . (B29)

Therefore, for the particular example of Eqs. (B18)–(B21), at
the boundary z → 0 one has

Ex(0) = Ex,0 = Eout
x , (B30)

Ey(0) = Ey,0 = Eout
y , (B31)

Bx(0) = 0, (B32)
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By(0) = 0, (B33)

Ez(0) = 0, (B34)

Bz(0) = 0. (B35)

Inside the WSM, according to Eqs. (B2)–(B5), we have

∂zEz = − μ0cκ (�pxBx + �pyBy + �pzBz ), (B36)

∂zExŷ − ∂zEyx̂ = − iω �B, (B37)

∂zBz =0, (B38)

∂zBxŷ − ∂zByx̂ = 1

c2
iω �E − μ0κ

c
�ε �B + μ0κ

c
[(�pyEz

− �pzEy)x̂ + (�pzEx − �pxEz )ŷ

+ (�pxEy − �pyEx )ẑ]. (B39)

Equation (B37) gives

Bz = 0, (B40)

By = i

ω
∂zEx, (B41)

Bx = − i

ω
∂zEy, (B42)

which also satisfies Eq. (B38). Now we take a look at the z
component of Eq. (B39):

Ez = μ0κc
i

ω
(�pxEy − �pyEx ). (B43)

Taking the derivative with respect to z on both sides, we obtain

∂zEz = μ0κc
i

ω
(�px∂zEy − �py∂zEx ). (B44)

Replacing the electric field derivatives by B field components,
we have

∂zEz = −μ0κc(�pxBx + �pyBy), (B45)

which is exactly Eq. (B36). This is consistent with the in-
terpretation of Eq. (B36) as a boundary condition in time,
as discussed in Refs. [67,68]. Plugging Eq. (B43) into (B39)
allows us to reduce the number of variables down to only Ex

and Ey. Thus, we have

∂2
z Ey + ω2

c2
Ey − μ0κ

c
�ε∂zEx

− μ2
0κ

2�px(�pxEy − �pyEx ) − iω
μ0κ

c
�pzEx

= 0, (B46)

∂2
z Ex + ω2

c2
Ex + μ0κ

c
�ε∂zEy

+ μ2
0κ

2�py(�pxEy − �pyEx ) + iω
μ0κ

c
�pzEy

= 0. (B47)

Now we can use the operator method to solve these two equa-
tions. First, we replace the derivatives with a parameter: ∂z =
d , which converts the differential equations into algebraic
equations that can then be cast into a vanishing determinant
condition:

(
d2 + ω2

c2
− μ2

0κ
2�p2

x

)
Ey −

(
�ε

μ0κ

c
d − μ2

0κ
2�px�py + iω

μ0κ

c
�pz

)
Ex = 0,

(
�ε

μ0κ

c
d + μ2

0κ
2�px�py + iω

μ0κ

c
�pz

)
Ey +

(
d2 + ω2

c2
− μ0κ

2�p2
y

)
Ex = 0, (B48)∣∣∣∣ d2 + ω2

c2 − μ2
0κ

2�p2
x −(

�ε
μ0κ

c d − μ2
0κ

2�px�py + iωμ0κ

c �pz
)

�ε
μ0κ

c d + μ2
0κ

2�px�py + iωμ0κ

c �pz d2 + ω2

c2 − μ0κ
2�p2

y

∣∣∣∣ = 0, (B49)

which gives

d4 +
(

2
ω2

c2
− μ2

0κ
2
(
�p2

x + �p2
y

) + �ε2 μ2
0κ

2

c2

)
d2

+ 2iω�ε
μ2

0κ
2

c2
�pzd + ω4

c4

− μ2
0κ

2ω2

c2

(
�p2

x + �p2
y + �p2

z

)
= 0. (B50)

The four roots d1, d2, d3, d4 of this characteristic equation
are generically all different. The solution for the transverse
electric field components can then be expressed in terms of
these roots:

Ey =
4∑

i=1

aie
diz, Ex =

4∑
i=1

bie
diz. (B51)

One can put these expressions back into Eq. (B48) to reduce
the eight unknown coefficients ai and bi to four, the rest of
which are determined by boundary conditions.

Now if we assume the momentum separation is only along
the z direction, i.e., �px = �py = 0, we have Ez = 0 and the
two equations become

∂2
z Ey + ω2

c2
Ey − μ0κ

c
�ε∂zEx − iω

μ0κ

c
�pzEx = 0, (B52)

∂2
z Ex + ω2

c2
Ex + μ0κ

c
�ε∂zEy + iω

μ0κ

c
�pzEy = 0. (B53)

Thus, the operator equation becomes

d4 +
(

2
ω2

c2
+ �ε2 μ2

0κ
2

c2

)
d2 + 2iω�ε

μ2
0κ

2

c2
�pzd

+ ω4

c4
− μ2

0κ
2ω2

c2
�p2

z

= 0. (B54)
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2. Nonzero case:�j �= 0

Here we set �j = σ0 �E and �E (�r, t ) = eiωt �E (�r), �B(�r, t ) =
eiωt �B(�r). Therefore, the current can also be separated into tem-
poral and spatial parts: �j(�r, t ) = eiωt �j(�r). As for ρ, one will
find this cannot be zero, as we will see later. Again, since the
EM fields are necessarily real, considering the time derivative
relations, if we focus on the real part of eiωt in �E (�r, t ), we
should take the real part of �E (�r) as well, and correspondingly
we should take the imaginary part of eiωt and �B(�r) in �B(�r, t ).
Thus, we have

�∇ · �E = ρ

ε0
− μ0cκ� �p · �B, (B55)

�∇ × �E = −iω �B, (B56)

�∇ · �B = 0, (B57)

�∇ × �B = i
ω

c2
�E + μ0σ0 �E + μ0κ

c
(−�ε �B + � �p × �E ).

(B58)

The boundary conditions and outside fields are the same as
when �j = 0 since charges and currents are in the bulk instead
of on the surface. Therefore, at the boundary z → 0 one has

Ex(0) = Ex,0 = Eout
x , (B59)

Ey(0) = Ey,0 = Eout
y , (B60)

Bx(0) = 0, (B61)

By(0) = 0, (B62)

Ez(0) = 0, (B63)

Bz(0) = 0. (B64)

Now we have

∂zEz = ρ

ε0
− μ0cκ (�pxBx + �pyBy + �pzBz ), (B65)

∂zExŷ − ∂zEyx̂ = − iω �B, (B66)

∂zBz =0, (B67)

∂zBxŷ − ∂zByx̂ = 1

c2
iω �E + μ0σ0 �E − μ0κ

c
�ε �B

+ μ0κ

c
[(�pyEz − �pzEy)x̂

+ (�pzEx − �pxEz )ŷ

+ (�pxEy − �pyEx )ẑ]. (B68)

Equation (B66) leads to

Bz = 0, (B69)

By = i

ω
∂zEx, (B70)

Bx = − i

ω
∂zEy. (B71)

Now let us look at the z component of Eq. (B68):

Ez = i
μ0σ0c2

ω
Ez + μ0κc

i

ω
(�pxEy − �pyEx ). (B72)

Taking the derivative with respect to z on both sides, we obtain

∂zEz = i
μ0σ0c2

ω
∂zEz + μ0κc

i

ω
(�px∂zEy − �py∂zEx ).

(B73)

Replacing the electric field derivatives by B field components,
we have

∂zEz = i
μ0σ0c2

ω
∂zEz − μ0κc(�pxBx + �pyBy). (B74)

Comparing this equation to Eq. (B65), we see that self-
consistency requires

ρ

ε0
= i

μ0σ0c2

ω
∂zEz. (B75)

If the charge density were zero here, we would have

Ez = Ez0 = �pxEy − �pyEx, (B76)

∂zEz = 0 = �px∂zEy − �py∂zEx, (B77)

which means Ex and Ey should be linearly dependent on
each other. The same is true for the magnetic fields due to
Eqs. (B70) and (B71). However, we are free to choose the
boundary conditions outside, and so it requires fine tuning to
obey these conditions. Therefore, if we include the nonzero
current, we must have nonzero net bulk charges, which means
ρ �= 0 as well. Another possibility is that �px = �py = 0. In
this special case we can have zero net bulk charge. This is also
the simple case we will consider next.

In this case, we can still use our previous approach to
solve these new equations. For simplicity, we still consider
the momentum separation to be only along the z direction,
i.e., �px = �py = 0, we have Ez = 0 and the two equations
become

∂2
z Ey + ω2

c2
Ey − iμ0σ0ωEy

− μ0κ

c
�ε∂zEx − iω

μ0κ

c
�pzEx = 0, (B78)

∂2
z Ex + ω2

c2
Ex − iμ0σ0ωEx

+ μ0κ

c
�ε∂zEy + iω

μ0κ

c
�pzEy = 0. (B79)

The operator equation becomes

d4 +
[

2

(
ω2

c2
− iμ0σ0ω

)
+ �ε2 μ2

0κ
2

c2

]
d2

+ 2iω�ε
μ2

0κ
2

c2
�pzd

+
(

ω2

c2
− iμ0σ0ω

)2

− μ2
0κ

2ω2

c2
�p2

z

= 0. (B80)

The remaining steps are described in the main text.
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APPENDIX C: NONDYNAMICAL AXIONS WITH
NONLINEAR CHIRAL MAGNETIC TERM

Here, we provide details about the solutions described in
Sec. III. We consider three geometries for the WSM: a semi-
infinite slab, whole space, and an infinite cylindrical wire. In
all cases, the starting point is a version of axion electrodynam-
ics in which the chiral magnetic term is nonlinear:

�∇ · �E = ρ

ε0
− μ0cκ� �p · �B, (C1)

�∇ × �E = 0, (C2)

�∇ · �B = 0, (C3)

�∇ × �B = μ0σ0 �E + μ0σa( �E · �B) �B + μ0κ

c
� �p × �E . (C4)

First, let us consider a semi-infinite slab case when �j = σ0 �E �=
0. The WSM occupies z � 0, while z < 0 is vacuum. We as-
sume the outside fields are in the xy plane: �E = Ex,0x̂ + Ey,0ŷ
and �B = Bx,0x̂ + By,0ŷ. From Eq. (C1), we have

∂zEz = ρ

ε0
− μ0cκ (�pxBx + �pyBy + �pzBz ). (C5)

From Eq. (C2), we have

∂zExŷ − ∂zEyx̂ = 0, (C6)

Ex = const = Ex,0, (C7)

Ey = const = Ey,0. (C8)

From Eq. (C3), we have

Bz = const. (C9)

From Eq. (C4), we have

∂zBxŷ − ∂zByx̂

=
(
μ0σ0Ex + μ0σaEiBiBx + μ0κ

c
�pyEz − μ0κ

c
�pzEy

)
x̂

+
(
μ0σ0Ey+μ0σaEiBiBy+ μ0κ

c
�pzEx − μ0κ

c
�pxEz

)
ŷ

+
(
μ0σ0Ez+μ0σaEiBiBz+ μ0κ

c
�pxEy − μ0κ

c
�pyEx

)
ẑ.

(C10)

Now we have three variables Ez, Bx, and By and four equa-
tions:

∂zEz = ρ

ε0
− μ0cκ (�pxBx + �pyBy), (C11)

∂zBy = μ0σ0Ex,0 −
[
μ0σa(Ex,0Bx + Ey,0By)Bx

+ μ0κ

c
�pyEz − μ0κ

c
�pzEy,0

]
, (C12)

∂zBx = μ0σ0Ey,0 + μ0σa(Ex,0Bx + Ey,0By)By

+ μ0κ

c
�pzEx,0 − μ0κ

c
�pxEz, (C13)

μ0σ0Ez =�pyEx,0 − �pxEy,0. (C14)

The last equation tells us Ez is a constant determined by the
Weyl separations and the boundary conditions of Ex and Ey,

which implies

Ez = Ez,0 = �pyEx,0 − �pxEy,0

μ0σ0
. (C15)

However, as we know Ez,0 should be chosen freely. Thus, this
fine-tuning problem leads a generic inconsistency. For sim-
plicity, from now on, we assume that the current and charge
are both zero, i.e., ρ = 0 and �j = 0:

�∇ · �E = −μ0cκ� �p · �B, (C16)

�∇ × �E = 0, (C17)

�∇ · �B = 0, (C18)

�∇ × �B = μ0σa( �E · �B) �B + μ0κ

c
� �p × �E . (C19)

1. Semi-infinite slab case

We first consider a semi-infinite slab of WSM occupying
z � 0, while z < 0 is vacuum. First, we assume the outside
fields are in the xy plane: �E = Ex,0x̂ + Ey,0ŷ and �B = Bx,0x̂ +
By,0ŷ. From Eq. (C16), we have

∂zEz = −μ0cκ (�pxBx + �pyBy + �pzBz ). (C20)

From Eq. (C17), we have

∂zExŷ − ∂zEyx̂ = 0, (C21)

Ex = const = Ex,0, (C22)

Ey = const = Ey,0. (C23)

From Eq. (C18), we have

Bz = const. (C24)

From Eq. (C19), we have

∂zBxŷ − ∂zByx̂

=
(
μ0σaEiBiBx + μ0κ

c
�pyEz − μ0κ

c
�pzEy

)
x̂

+
(
μ0σaEiBiBy + μ0κ

c
�pzEx − μ0κ

c
�pxEz

)
ŷ

+
(
μ0σaEiBiBz + μ0κ

c
�pxEy − μ0κ

c
�pyEx

)
ẑ.

(C25)

Now we have three variables Ez, Bx, and By and four equa-
tions:

∂zEz = − μ0cκ (�pxBx + �pyBy), (C26)

∂zBy = −
[
μ0σa(Ex,0Bx + Ey,0By)Bx

+ μ0κ

c
�pyEz − μ0κ

c
�pzEy,0

]
, (C27)

∂zBx = μ0σa(Ex,0Bx + Ey,0By)By

+ μ0κ

c
�pzEx,0 − μ0κ

c
�pxEz, (C28)

�pxEy,0 =�pyEx,0. (C29)
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Following the same logic as in Appendix B, it again fol-
lows that all the fields are continuous at the boundary. Thus,
Eq. (C29) gives a strong constraint on the fields outside of the
Weyl semimetal. Since the separation of two Weyl nodes is
given and fixed, this is inconsistent with the free choice of the
fields outside the sample.

Let us ignore this inconsistency for the time being and
consider the case where the outside fields are in the z di-
rection, i.e., �E = Ez,0ẑ and �B = Bz,0ẑ, and further assume
�px = �py = 0. Directly from Eq. (C16), we have

∂zEz = −μ0cκ�pzBz. (C30)

From Eq. (C17), we have

∂zExŷ − ∂zEyx̂ = 0, (C31)

Ex = const = Eout
x,0 = 0, (C32)

Ey = const = Eout
y,0 = 0. (C33)

From Eq. (C18), we have

Bz = const = Bz,0. (C34)

From Eq. (C19), we have

∂zBxŷ − ∂zByx̂

= μ0σaEzBz,0Bxx̂ + μ0σaEzBz,0Byŷ + μ0σaEzB
2
z,0ẑ.

(C35)

Since we are free to choose Bz,0 (which is a component of the
applied magnetic field), the z component of this last equation
gives

Ez = 0, (C36)

while the other two components yield

Bx =Bx,0 = 0, (C37)

By =By,0 = 0, (C38)

∂zEz =0 = −μ0cκ�pzBz, (C39)

Bz =Bz,0 = 0. (C40)

This contradicts the assumption that the applied magnetic field
is nonzero, Bz0 �= 0. Thus, we again arrive at an inconsistent
solution.

2. Whole space case

Here, we consider the case where the whole space is a
WSM. Thus, the fields must be constant due to symmetry. We
have

�∇ · �E = −μ0cκ� �p · �B = 0, (C41)

�∇ × �B = μ0σa( �E · �B) �B + μ0κ

c
� �p × �E = 0. (C42)

The WSM has the momentum separation � �p. We choose the
direction of this vector to be ẑ, i.e., � �p = �pzẑ, and so we
have �B = (Bx, By, 0) from the first equation. From the second

equation, we obtain

μ0σa(ExBx + EyBy)Bx − μ0κ

c
�pzEy = 0, (C43)

μ0σa(ExBx + EyBy)By + μ0κ

c
�pzEx = 0, (C44)

which gives

Ex = −μ0σaBxBy − μ0κ

c �pz

μ0σaB2
x

Ey, (C45)

Ex = − μ0σaB2
y

μ0σaBxBy + μ0κ

c �pz
Ey. (C46)

So we have Ex = Ey = 0 or

μ2
0σ

2
a B2

xB2
y −

(
μ0κ

c

)2

�p2
z = μ2

0σ
2
a B2

xB2
y . (C47)

Since �pz �= 0, the only possibility is

Ex = Ey = 0, (C48)

Ez = Ez,0. (C49)

This means the electric field can only exist along the direction
of the Weyl separation, while the magnetic field must be
perpendicular to this direction. Thus, the CME cannot exist
in this case.

3. Cylindrical wire case

Here, we consider an infinite cylindrical wire with radius
R made from a WSM. The axis of the cylinder is along the ẑ
direction. Again we start with Eqs. (C16)–(C19). To maintain
cylindrical symmetry, we focus on the case � �p = �pzẑ. Be-
cause of this symmetry, all fields should depend on r only. We
obtain the equations

1

r

∂

∂r
(rEr ) = −μ0cκ�pzBz, (C50)

∂Ez

∂r
= 0, (C51)

1

r

∂

∂r
(rEφ ) = 0, (C52)

1

r

∂

∂r
(rBr ) = 0, (C53)

− ∂Bz

∂r
φ̂ + 1

r

∂

∂r
(rBφ )ẑ

= μ0σa(ErBr + EφBφ + EzBz ) �B
+ μ0κ

c
�pzEr φ̂ − μ0κ

c
�pzEφ r̂. (C54)

Thus, we have

1

r

∂

∂r
(rEr ) + μ0cκ�pzBz = 0, (C55)

Ez = Ez,0, (C56)

Eφ = C1

r
= 0, (C57)

Br = C2

r
= 0, (C58)
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∂Bz

∂r
+ μ0σaEz,0BzBφ + μ0κ

c
�pzEr = 0, (C59)

−1

r

∂

∂r
(rBφ ) + μ0σaEz,0B2

z = 0. (C60)

Choosing C1 = C2 = 0 prevents some of the field components
from becoming singular at r = 0. The continuity of the fields
across the WSM surface can again be established by per-
forming volume or area integrations, as we showed for the
semi-infinite slab geometry. In the case of the cylindrical wire,
the same analysis yields the following continuity conditions:

E in
r

∣∣
r=R = Eout

r

∣∣
r=R, (C61)

E in
z = Eout

z = Ez,0, (C62)

E in
φ = Eout

φ = 0, (C63)

Bin
r = Bout

r = 0, (C64)

Bin
φ

∣∣
r=R = Bout

φ

∣∣
r=R, (C65)

Bin
z |r=R = Bout

z |r=R. (C66)

In summary, all fields are continuous across the boundary.

APPENDIX D: DYNAMICAL AXIONS

Here, we show details of the solutions for dynamical axions
obtained in Sec. IV. We consider a semi-infinite slab of WSM
occupying the half-space z � 0. We consider two cases: one
in which the applied fields are orthogonal to the surface, and
one in which the fields are parallel to the surface. The solution
details for both cases are given below. In both cases, all the
fields are continuous across the surface, as follows from an
analysis similar to the one we performed for the other two
versions of axion electrodynamics considered in this work.

1. �E,�B ‖ ẑ outside of the WSM

From the main text Eqs. (61)–(66), we have

Ex,0 = Ey,0 = 0, (D1)

ft,0 = 0. (D2)

Replacing ∂z with operator P, we have four variables and four
equations:

fx,0Bx + fy,0By + 1

μ0cκ
PEz + Bz,0 fz =0, (D3)

PBx + μ0κ

c
fx,0Ez =0, (D4)

PBy + μ0κ

c
fy,0Ez =0, (D5)

κ

κ0c
Bz,0Ez + P fz =0. (D6)

The determinant is then∣∣∣∣∣∣∣∣∣

fx,0 fy,0
1

μ0cκ P Bz,0

P 0 μ0κ

c fx,0 0
0 P μ0κ

c fy,0 0
0 0 κ

κ0c Bz,0 P

∣∣∣∣∣∣∣∣∣
= 0. (D7)

The operator equation reads as

P2(P2 − D2) = 0, (D8)

where

D2 = κ2μ0
[
B2

z,0 + (
f 2
x,0 + f 2

y,0

)
κ0μ0

]
κ0

. (D9)

This means we have four roots for P:

P1 = P2 = 0, (D10)

P3 = D, (D11)

P4 = −D. (D12)

The solutions of the ordinary differential equations (ODEs)
are of the form

xi = aie
Dz + bie

−Dz + ciz + di, (D13)

where we associate the indices to the fields as follows: Bx →
1, By → 2, Ez → 3, fz → 4. Putting the general forms of the
solutions back into the four equations, we obtain

fx,0a1 + fy,0a2 + 1

μ0cκ
Da3 + Bz,0a4 = 0, (D14)

Da1 + μ0κ

c
fx,0a3 = 0, (D15)

Da2 + μ0κ

c
fy,0a3 = 0, (D16)

κ

κ0c
Bz,0a3 + Da4 = 0, (D17)

fx,0b1 + fy,0b2 − 1

μ0cκ
Db3 + Bz,0b4 = 0, (D18)

−Db1 + μ0κ

c
fx,0b3 = 0, (D19)

−Db2 + μ0κ

c
fy,0b3 = 0, (D20)

κ

κ0c
Bz,0b3 − Db4 = 0, (D21)

fx,0c1 + fy,0c2 + Bz,0c4 = 0, (D22)

μ0κ

c
fx,0c3 = 0, (D23)

μ0κ

c
fy,0c3 = 0, (D24)

κ

κ0c
Bz,0c3 = 0, (D25)

fx,0d1 + fy,0d2 + 1

μ0cκ
c3 + Bz,0d4 = 0, (D26)

c1 + μ0κ

c
fx,0d3 = 0, (D27)

c2 + μ0κ

c
fy,0d3 = 0, (D28)

κ

κ0c
Bz,0d3 + c4 = 0. (D29)

Thus, we can fix many coefficients based on the equations
above:

a2 = a1
fy,0

fx,0
, (D30)
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a3 = a1

c
√

B2
z,0 + (

f 2
x,0 + f 2

y,0

)
κ0μ0

fx,0
√

κ0μ0
, (D31)

a4 = a1
Bz,0

fx,0κ0μ0
, (D32)

b2 = b1
fy,0

fx,0
, (D33)

b3 = b1

c
√

B2
z,0 + (

f 2
x,0 + f 2

y,0

)
κ0μ0

fx,0
√

κ0μ0
, (D34)

b4 = b1
Bz,0

fx,0κ0μ0
, (D35)

c1 = c2 = c3 = c4 = 0, (D36)

d3 = 0, (D37)

d4 = −d1 fx,0 + d2 fy,0

Bz,0
, (D38)

where a1, b1, d1, d2 are determined by the boundary condi-
tions of the four fields.

If we set Bx(0) = By(0) = 0, Ez(0) = Ez,0, and fz(0) = 0,
we obtain

a1 = −b1 = − Ez,0 fx,0

2c
√

f 2
x,0 + f 2

y,0 + B2
z,0

κ0μ0

, (D39)

d1 = d2 = 0. (D40)

The solutions of the unknown fields are

Bx = −Ez,0 fx,0κμ0 sinh(Dz)

cD
, (D41)

By = −Ez,0 fy,0κμ0 sinh(Dz)

cD
, (D42)

Ez = Ez,0 cosh Dz, (D43)

fz = −Bz,0Ez,0κ sinh Dz

cκ0D
. (D44)

If we set Bx(0) = By(0) = 0, Ez(0) = Ez,0, and fz(0) =
fz,0, we obtain

a1 = −
fx,0

√
κ0μ0

[
B2

z,0Ez,0 + Ez,0
(

f 2
x,0 + f 2

y,0

)
κ0μ0 − Bz,0c fz,0

√
κ0μ0

√
B2

z,0 + (
f 2
x,0 + f 2

y,0

)
κ0μ0

]
2c

[
B2

z,0 + (
f 2
x,0 + f 2

y,0

)
κ0μ0

] 3
2

, (D45)

b1 =
fx,0

√
κ0μ0

[
B2

z,0Ez,0 + Ez,0
(

f 2
x,0 + f 2

y,0

)
κ0μ0 + Bz,0c fz,0

√
κ0μ0

√
B2

z,0 + (
f 2
x,0 + f 2

y,0

)
κ0μ0

]
2c

[
B2

z,0 + (
f 2
x,0 + f 2

y,0

)
κ0μ0

] 3
2

, (D46)

d1 = − Bz,0 fx,0 fz,0κ0μ0

B2
z,0 + (

f 2
x,0 + f 2

y,0

)
κ0μ0

, (D47)

d2 = − Bz,0 fy,0 fz,0κ0μ0

B2
z,0 + (

f 2
x,0 + f 2

y,0

)
κ0μ0

. (D48)

The solutions of the unknown fields are

Bx = fx,0κμ0[Bz,0c fz,0κμ0(−1 + cosh Dz) − DEz,0 sinh Dz]

cD2
, (D49)

By = fy,0κμ0[Bz,0c fz,0κμ0(−1 + cosh Dz) − DEz,0 sinh Dz]

cD2
, (D50)

Ez = Ez,0 cosh Dz − Bz,0c fz,0κμ0

D
sinh Dz, (D51)

fz = c fz,0(κ0D2 − B2
z,0κ

2μ0 + B2
z,0κ

2μ0 cosh Dz) − Bz,0Ez,0κD sinh Dz

cκ0D2
. (D52)

2. �E,�B ‖ x̂ outside of the WSM

Now we consider the case where the fields outside the slab
are parallel to the surface. Setting Bz = Bz,0 = 0 and Ey,0 = 0,
we immediately find that ft,0, fx,0 are free parameters, and

fy,0 = 0, (D53)

∂zEz = − μ0cκ fx,0Bx, (D54)

∂zBx = μ0κ

c
( ft,0By − fx,0Ez + Ex,0 fz ), (D55)

∂zBy = − μ0κ

c
ft,0Bx, (D56)

∂z fz = − κ

κ0c
Ex,0Bx. (D57)

Replacing ∂z with operator P, again, we have four variables
and four equations:

− c

μ0κ
PBx + ft,0By − fx,0Ez + Ex,0 fz = 0, (D58)

ft,0Bx + c

μ0κ
PBy = 0, (D59)
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fx,0Bx + 1

μ0cκ
PEz = 0, (D60)

Ex,0Bx + κ0c

κ
P fz = 0. (D61)

The determinant is then∣∣∣∣∣∣∣∣
− c

μ0κ
P ft,0 − fx,0 Ex,0

ft,0
c

μ0κ
P 0 0

fx,0 0 1
μ0cκ P 0

Ex,0 0 0 κ0c
κ

P

∣∣∣∣∣∣∣∣ = 0. (D62)

The operator equation reads as

P2(P2 − D2) = 0, (D63)

where

D2 = −κ2μ0
[
E2

x,0 + κ0μ0
(

f 2
t,0 − c2 f 2

x,0

)]
c2κ0

. (D64)

This means we have four roots for P:

P1 = P2 = 0, (D65)

P3 = D, (D66)

P4 = −D. (D67)

The solutions of the ODEs have the general form

xi = aie
Dz + bie

−Dz + ciz + di, (D68)

where the indices are associated with the field components
according to Bx → 1, By → 2, Ez → 3, fz → 4. Plugging the
general forms of the solutions into the four equations, we
obtain

− c

μ0κ
Da1 + ft,0a2 − fx,0a3 + Ex,0a4 = 0, (D69)

ft,0a1 + c

μ0κ
Da2 = 0, (D70)

fx,0a1 + D

μ0cκ
a3 = 0, (D71)

Ex,0a1 + κ0c

κ
Da4 = 0, (D72)

c

μ0κ
Db1 + ft,0b2 − fx,0b3 + Ex,0b4 = 0, (D73)

ft,0b1 − c

μ0κ
Db2 = 0, (D74)

fx,0b1 − D

μ0cκ
b3 = 0, (D75)

Ex,0b1 − κ0c

κ
Db4 = 0, (D76)

ft,0c2 − fx,0c3 + Ex,0c4 = 0, (D77)

ft,0c1 = 0, (D78)

fx,0c1 = 0, (D79)

Ex,0c1 = 0, (D80)

− c

μ0κ
c1 + ft,0d2 − fx,0d3 + Ex,0d4 = 0, (D81)

ft,0d1 + c

μ0κ
c2 = 0, (D82)

fx,0d1 + 1

μ0cκ
c3 = 0, (D83)

Ex,0d1 + κ0c

κ
c4 = 0. (D84)

Solving these equations we obtain

a2 = ia1
ft,0

√
κ0μ0√

E2
x,0 + f 2

t,0κ0μ0 − c2 f 2
x,0κ0μ0

, (D85)

a3 = ia1
c2 fx,0

√
κ0μ0√

E2
x,0 + f 2

t,0κ0μ0 − c2 f 2
x,0κ0μ0

, (D86)

a4 = ia1
Ex,0

√
κ0μ0

√
E2

x,0 + f 2
t,0κ0μ0 − c2 f 2

x,0κ0μ0

, (D87)

a2 = − ib1
ft,0

√
κ0μ0√

E2
x,0 + f 2

t,0κ0μ0 − c2 f 2
x,0κ0μ0

, (D88)

a3 = − ib1
c2 fx,0

√
κ0μ0√

E2
x,0 + f 2

t,0κ0μ0 − c2 f 2
x,0κ0μ0

, (D89)

a4 = − ib1
Ex,0

√
κ0μ0

√
E2

x,0 + f 2
t,0κ0μ0 − c2 f 2

x,0κ0μ0

, (D90)

c1 = c2 = c3 = c4 = 0, (D91)

d1 = 0, (D92)

d4 = d2 ft,0 + d3 fx,0

Ex,0
. (D93)

Now denoting

D0 = D

i
, (D94)

if we set Bx(0) = Bx,0, By(0) = 0, Ez(0) = 0, and fz(0) = 0,
we obtain

a1 = b1 = 1
2 Bx,0, (D95)

d2 = d3 = 0, (D96)

which gives

Bx = Bx,0 cos D0z, (D97)

By = − Bx,0 ft,0κμ0

cD0
sin D0z, (D98)

Ez = − Bx,0c fx,0κμ0

D0
sin D0z, (D99)

fz = − Bx,0Ex,0κ

cκ0D0
sin D0z. (D100)

If we set Bx(0) = Bx,0, By(0) = 0, Ez(0) = 0, and fz(0) =
fz,0, we obtain

a1 = 1

2

⎛
⎝Bx,0 − iEx,0 fz,0

√
κ0μ0√

E2
x,0 + f 2

t,0 − c2 f 2
x,0

⎞
⎠, (D101)
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b1 = 1

2

⎛
⎝Bx,0 + iEx,0 fz,0

√
κ0μ0√

E2
x,0 + f 2

t,0 − c2 f 2
x,0

⎞
⎠, (D102)

d2 = − Ex,0 ft,0 fz,0κ0μ0

E2
x,0 + f 2

t,0 − c2 f 2
x,0

, (D103)

d3 = − c2Ex,0 fx,0 fz,0κ0μ0

E2
x,0 + f 2

t,0 − c2 f 2
x,0

, (D104)

which gives

Bx = Bx,0 cos D0z + Ex,0 fz,0κμ0

cD0
sin D0z, (D105)

By = ft,0Ex,0 fz,0κ
2μ2

0

c2D2
0

(−1 + cos D0z)

− Bx,0 ft,0κμ0

cD0
sin D0z, (D106)

Ez = fx,0Ex,0 fz,0κ
2μ2

0

D2
0

(−1 + cos D0z)

− Bx,0c fx,0κμ0

D0
sin D0z, (D107)

fz = κ

c2D2
0κ0

[
cD0 fz,0

√
κ0μ0 + E2

x,0 fz,0κμ0(−1 + cos D0z)

− Bx,0Ex,0cD0 sin D0z
]
. (D108)
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