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Dynamics of fluctuation correlation in a periodically driven classical system
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A many-body interacting system of classical kicked rotor serves as a prototypical model for studying Floquet
heating dynamics. Having established the fact that this system exhibits a long-lived prethermal phase with a
quasiconserved average Hamiltonian before entering into the chaotic heating regime, we use spatiotemporal
fluctuation correlation of kinetic energy as a two-point observable to probe the above dynamic phases. We
remarkably find the diffusive transport of fluctuation in the prethermal regime suggesting an underlying hydrody-
namic picture in a generalized Gibbs ensemble with a definite temperature that depends on the driving parameter
and the initial conditions. On the other hand, the heating regime is characterized by a diffusive growth of
kinetic energy where the correlation is sharply localized around the fluctuation center for all time. Consequently,
we attribute nondiffusive and nonlocalized structure of correlation to the crossover regime, connecting the
prethermal phase to the heating phase, where the kinetic energy displays a complicated growth structure. We
understand these numerical findings using the notion of relative phase matching where the prethermal phase
(heating regime) refers to an effectively coupled (isolated) nature of the rotors. We exploit the statistical
uncorrelated nature of the angles of the rotors in the heating regime to find the analytical form of the correlator
that mimics our numerical results in a convincing way.
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I. INTRODUCTION

In recent years periodically driven isolated systems have
emerged as an exciting field of research, giving justice to the
fact that driven systems exhibit intriguing properties as com-
pared to their equilibrium counterparts [1–3]. The quantum
systems are studied extensively in this context theoretically
[4–6] as well as experimentally [7–11]; for example, dynam-
ical localization [12–14], many-body localization [15–20],
quantum phase transitions [21,22], Floquet topological in-
sulator [23–31], Floquet topological superconductor [32,33],
Floquet time crystals [34–37], and higher harmonic gen-
eration [38–41] are remarkable nonequilibrium phenomena.
Consequently the heating happens to be a very crucial factor
as far as the stability of the driven systems is concerned
[42–44]. The consensus so far is that the driven quantum
many-body systems heat up to an infinite-temperature state
[16,45–47] with some exceptions [48,49]. However, it has
been shown that heating can be suppressed for integrable
systems due to an infinite number of constants of mo-
tion, as manifested through the nonequilibrium steady states
[13,50,51]. On the other hand, many-body localized systems
prevent heating for their effective local integrals of motion in
the presence of interaction and disorder [15–19]. The high
frequency driving is another alternative route to prohibit the
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heating in the long-lived prethermal region, that grows ex-
ponentially with frequency, before heating up at the infinite
temperature state [52–69].

Interestingly, the quasistationary prethermal state is con-
comitantly described by an effective static Hamiltonian,
obtained using the Floquet-Magnus expansion, in the high-
frequency regime [55,57,58,60–64]. Here arises a very
relevant question whether the classical systems exhibit such
an interesting intermediate prethermal plateau. Recently, us-
ing generic many-body systems of classical chaos theory
[65,68] and periodically driven classical spin chains [66,67],
the classical systems are also found to demonstrate the Floquet
prethermalization. Similar to the quantum case, Floquet-
Magnus expansion leads to an effective static classical
Hamiltonian describing the prethermal phase where heating
is exponentially suppressed [66–68,70,71]. The prethermal
phase is further characterized by the generalized Gibbs en-
semble (GGE) causing hydrodynamic behavior to emerge in
the above phase [72–74].

The framework of fluctuating hydrodynamics becomes
a convenient tool to investigate the equilibrium trans-
port in classical nonlinear systems [75–83]. The integrable
(nonintegrable) classical systems typically admit ballistic
(nonballistic) transport [78,84–87]. The theory of fluctuating
hydrodynamics is also employed to understand the transport
in nonlinear Fermi-Pasta-Ulam-Tsingou-like systems [76,84].
Given the above background, we investigate the nonequilib-
rium dynamics of fluctuation correlation of the kinetic energy
in a model of interacting classical kicked rotors as a probe to
the hydrodynamic behavior of the problem. The motivation
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FIG. 1. Schematic shows the evolution of relative width of spa-
tiotemporal correlations (3), indicated by the log of variance W
(left axis), and the log of average kinetic energy per rotor Ekin(n) =
(1/N )

∑N
j=1〈p2

j (n)/2〉 (right axis, brown solid line), as a function of
number of kicks n for two different values of driving parameters K1

and K2. The kinetic energy is quasiconserved (Ekin(n) ∼ n0, brown
solid line) and the spread of spatiotemporal correlations is self-
similar diffusive (W ∼ n, green solid line) in the prethermal phase
(see Fig. 2). The intermediate crossover regime is associated with
non-diffusive growth of kinetic energy (Ekin(n) �∼ n, brown solid
line) and temporally frozen correlations but exponentially localized
in space (W ∼ n0, blue solid line), see Fig. 3. The diffusive growth
of kinetic energy (Ekin(n) ∼ n1, brown solid line) corresponds to
heating regime where fluctuations tend to be almost δ correlated in
space and time (W → 0, with n → ∞, red solid line), see Fig. 4. In-
terestingly, the lifetime of the prethermal (heating) regime decreases
(increases) with increasing driving parameter K1 > K2. The different
regimes of W are connected by black (grey) dotted line for K1 (K2).
We note that this plot is a cartoon representation while the exact
numerical analysis for the evolution of the kinetic energy is given
in Fig. 2 of Ref. [68].

behind choosing such model is that in the limit of a large
number of particles per site, a Bose-Hubbard model can be
mapped to the above model [68]. More importantly, kicked
rotor systems can be realized in experiments using Josephson
junctions with Bose-Einstein condensates [88]. The time-
periodic delta function kicks can be implemented by varying
the potential depth and width controlling the intensity of
laser light [4,89]. The main questions that we pose in this
work are as follows: How does a typical fluctuation behave
in quasistationary prethermal states, as well as in the regime
where kinetic energy grows in an unbounded manner [68]?
Provided the notion of the GGE in the dynamic prethermal
regime, does diffusive transport as seen for the case of static
Hamiltonian [83] persist? Moreover, our questions are very
pertinent experimentally where Floquet prethermalization has
been realized in optical lattice platforms [90,91].

Given the fact that the time dynamics of the kinetic energy
for the above system can be divided into three different tem-
poral regimes depending on the nature of its growth [65,68],
in this work, while numerically investigating the propagation
of fluctuation (3) through the system as a function of time,
we show that these dynamical regimes are characterized by
distinct space-time behavior of the kinetic energy fluctuation
correlation (see Fig. 1). Following the initial transient, the

(a)

(b)

FIG. 2. (a) The space-time spreading of kinetic energy correla-
tion (3) for K = 0.14 in the prethermal regime. (b) The diffusive
Gaussian scaling of correlation is observed with appropriate renor-
malization: C(x, t ) = AKt−1/2 f (xt−1/2), (

y ) = e−y2/2D/
√

2πD with
parameters D ∼ 0.727 and AK ∼ 0.0026. The inset shows the
quadratic variation of the total area under the curve

∑N
x=1 C(x, t ) with

K . The parameters are N = 2048, and tw = 64.

system enters into the prethermal regime, characterized by
almost constant kinetic energy with exponentially suppressed
heating, where the fluctuation spreads over space diffusively
as a function of time (see Fig. 2). The spatio-temporal corre-
lation becomes Gaussian whose variance W increases linearly
with time. Once the system starts absorbing energy from the
drive, the fluctuation becomes exponentially localized around
the site of disturbance and temporally frozen referring to the
constant nature of W with time (see Fig. 3). We refer to this
intermediate window as a crossover region that connects the
spatially and temporally quasilocalized behavior of correla-
tions at long time (see Fig. 4) with the prethermal phase.
In that quasilocalized phase, W decays to vanishingly small
values while the kinetic energy of the system grows linearly
with time. Therefore, the kinetic energy localization (diffu-
sion) corresponds to the diffusion (localization) of fluctuation
correlation. We qualitatively understand the underlying en-
ergy absorption mechanism in the prethermal phase based on
the hydrodynamic description. Our study considering fluctua-
tion correlation of kinetic energy as a two-point observable,
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FIG. 3. The space-time spreading of kinetic energy
correlation (3) for (a) K = 0.45, tw = 142 and K = 0.7,
tw = 64 (b), respectively, in the intermediate crossover
regime. The correlation distribution is fitted with stretched
exponential C(x, t ) ∼ AK

2α−1/β�(1+ 1
β

)
e−α|x|β with α ∼ 0.36 [1.05], β ∼

0.63 [0.65], AK ∼ 5.16 [41.51] for (a) [(b)]. The system size is
N = 2048 for both cases.

FIG. 4. The correlations (3) become fully localized such as
nearly a δ-function in the heating region for K = 3, with tw = 142,
N = 2048. The blue circles denote the correlation values as a func-
tion of initial wait time and the kick strength given by Eq. 9.

reveals new insight to the dynamic phases that are not ac-
counted for by the one-point observables. Moreover, dynamic
features such as quasilocalization and localization of spa-
tiotemporal correlations do not have any static analog.

II. MODEL AND CORRELATION FLUCTUATION

We consider a generic nonequilibrium many-body system
of classical chaos theory as given by [92–98]:

H =
N∑

j=1

[
p2

j

2
− κ

+∞∑
n=−∞

δ(t − nτ )V (r j )

]
, (1)

where stretched variable r j = φ j − φ j+1 and V (r j ) = 1 +
cos(r j ). Here φ j , j = 1, · · · , N , are the angles of the rotors
and p j are the corresponding angular momenta. The parame-
ter κ denotes the interaction as well as kick strength, and τ is
the time period of delta kicks. The system described in Eq. (1)
can have infinite energy density due to the unbounded nature
of kinetic energy. We note that the total angular momentum
of the system is an exact constant of motion, because the
Hamiltonian in Eq. (1) is invariant under a global translation
φ j → φ j + α, α being an arbitrary real number. Moreover, the
Hamiltonian has discrete time translation symmetry H (t ) =
H (t + τ ). Using classical Hamilton’s equations of motion,
one can get the discrete maps of φ j and p j between n-th and
(n + 1)-th kicks:

p j (n + 1) = p j (n) − κ (V ′(r j−1) − V ′(r j ))

φ j (n + 1) = φ j (n) + p j (n + 1)τ. (2)

Here V ′ describes derivative of V with respect to r j evaluated
after the nth kick. We consider periodic boundary conditions
φN+i = φi. From Eq. (2), it can be noticed that the dynamics
of the system is determined by only one dimensionless pa-
rameter, K = κτ that we use for all our further calculations
[65,68].

We compute here the spatiotemporal correlation of kinetic
energy fluctuations, defined by

C(i, j, t, tw ) = 1
4

[〈
p2

i (t )p2
j (tw )

〉 − 〈
p2

i (t )
〉〈

p2
j (tw )

〉]
, (3)

where i and j, respectively, represent the positions of ith
and jth rotors; t (tw) represents an arbitrary final time (ini-
tial waiting time). We always consider t > tw throughout the
paper. The symbol 〈..〉 denotes the average over the initial
conditions where φ j (0) are chosen from a uniform distribution
∈ [−π, π ], and the corresponding momenta, p j (0) = 0 for
j = 1, · · · , N . The spatiotemporal correlation captures how a
typical small perturbation applied at time tw spreads in space
x ≡ i − j (with translation symmetry) and time t through
the system. We refer to the correlator in Eq. (3) as C(x, t )
while investigating below. The system shows an exponen-
tially long prethermal state where the kinetic energy becomes
almost constant, and eventually heats up after a crossover
regime when the kinetic energy grows linearly with time
[65,68]. We have further analyzed different temporal regimes
investigating the behavior of spatiotemporal correlation. The
prethermal state can be characterized appropriately by a time-
averaged Hamiltonian [see Eq. (5)]. Therefore, although, the
driven system breaks continuous time-translation symmetry,
it preserves an effective time-translation symmetry inside the
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prethermal regime due to quasiconservation of the Floquet
Hamiltonian at high frequencies. Thus, the spatio-temporal
correlator becomes a function of space x ≡ i − j and time
t ≡ t − tw inside the prethermal regime. However, for other
two regimes where the total energy is not a constant of motion,
the correlator generally becomes a function of both t and tw in
addition to x.

We have summarized our main result of spatio-temporal
correlation and its connection with the evolution of kinetic
energy schematically in Fig. 1. In this context, we consider
the width of the spatiotemporal correlations, i.e., variance

W =
∑N/2

x=−N/2 x2C(x, t )∑N/2
x=−N/2 C(x, t )

, (4)

to characterize different dynamical regimes. In order to mea-
sure the relative width of the fluctuations, the appropriate
normalization of the distribution as described by the denom-
inator is crucial. In the prethermal regime, the denominator
is independent of time due to conservation of energy, while
in the other regimes, the denominator is time dependent and
normalizes the distribution at all times. We have schemat-
ically drawn the evolution of W in Fig. 1 by acquiring
detailed knowledge about spatio-temporal correlation in dif-
ferent phases as discussed below.

The observables are averaged over 105 to 106 initial con-
ditions. Otherwise specifically mentioned in our simulations,
we fix τ = 1 and N = 2048. This makes t = n, and we use
these terms interchangeably. The lifetime of the prethermal
state for such systems [see Eq. (1)] increases exponentially in
1/K [68]. For small values of K , the prethermal state persists
for astronomically large time, thus making the numerical cal-
culation extremely costly to probe all the dynamical phases by
varying time. In order to circumvent this problem, we choose
to tune K such that the lifetime of the prethermal state can
be substantially minimized and we can investigate the phase
where fluctuations get localized within our numerical facili-
ties. However, provided the distinct nature of these regimes,
our findings would remain unaltered if one addresses them by
varying time only. In our numerical calculations, we choose
both t, tw within the same phase.

We would like to emphasize the choice of t and tw such
that the fluctuation correlation of kinetic energy can behave
distinctly in different regimes. There can be some quantitive
but no qualitative changes in the correlator for t and tw chosen
from same regimes while quantitive changes are observed
for t and tw chosen from different regimes. In order to give
an idea about the choice of t and tw, we exemplify a situ-
ation with K = 0.3 where 101 < t, tw < 103 for prethermal
regime, 6 × 103 < t, tw < 104 for the crossover regime and
2 × 105 < t, tw < 107 for the heating regime [68]. As dis-
cussed above the temporal width of various regimes vary with
K and hence t and tw are needed to be appropriately chosen
within the same regimes.

III. RESULTS

We first focus on the spreading of fluctuation (3) in the
prethermal phase that is denoted by the green solid lines in
Fig. 1. The prethermal phase can be described by a GGE with

the total energy as a quasiconserved quantity [68]. In terms of
the inverse frequency Floquet-Magnus expansion, the lowest
order term of the Floquet Hamiltonian is the average Hamilto-
nian that governs the prethermal state at high frequency, given
by

H∗ = 1

τ

∫ τ

0
H (t )dt =

N∑
j=1

[
p2

j

2
− κ

τ
(1 + cos (φ j − φ j+1))

]
.

(5)

Employing the notion of GGE, the composite probability dis-
tributions can be written as

P∗({p j, r j}) = 1

Z∗

N∏
j=1

e−(
p2

j
2 − κV (r j )

τ
)/T ∗

, (6)

where Z∗ is the partition function for the GGE and T ∗ is the
temperature associated with the prethermal phase. Given the
particular choice of the initial conditions here, the prether-
mal temperature is found to be T ∗ = 0.938363 K

τ 2 [68]; for
more details see Appendix A. Moreover, this description of
the GGE does not depend on the number of rotors N , thus
indicating the thermodynamic stability of this phase.

We associate the prethermal phase with the diffusive spa-
tiotemporal spread of kinetic energy correlation as shown in
Fig. 2(a). A relevant renormalization of x and y axes with
time yields the following scaling form of the correlation:
C(x, t ) ∼ AKt−1/2 f (xt−1/2), with f (y) = e−y2/2D/

√
2πD, as

depicted in Fig. 2(b); for more detailed discussions see Ap-
pendix B. We thus find that the correlation at different space
time collapse together. Here, AK denotes the amplitude of the
Gaussian distribution, respectively, for a given value of K .
The diffusion constant D is a measure of variance W , being
weakly dependent on the parameter K , and grows linearly
with time W ∼ t . One can observe that the fluctuation spreads
in a way such that the area under the correlation curves keep
their area constant, i.e., the sum rule

∑
x C(x, t ) is approxi-

mately independent of time in the prethermal phase. The sum
rule determines AK = ∑N/2

x=−N/2 C(x, t ) ≈ ∑N/2
x=−N/2 C(x, 0) =

δx,0(〈p4〉 − 〈p2〉2)/4 = 0.4402K2/τ 4δx,0, by considering the
fact that the energy absorption is exponentially suppressed
in the prethermal regime [68]; for more details see Appendix
A. This supports our numerical result of quadratic growth of
AK as shown in the inset of Fig. 2 (b). The apparent 27%
mismatch in the prefactor of AK with the numerically value
might be due to the fact that exponentially slow variation of
the kinetic energy in the prethermal phase is not taken into
account theoretically.

The energy correlations of the static rotor system at
the high temperature platform exhibits diffusive transport
[99,100]. This is in resemblance with the present case of
Floquet prethermalization at high frequency. Owing to the
quasivalidity of equipartition theorem in the GGE picture
[65,68], the kinetic and potential energy behave in an iden-
tical fashion. As a result, the correlation of total energy
qualitatively follows the correlation of kinetic energy in the
prethermal regime.

We now investigate the spatiotemporal evolution of corre-
lation (3) in the intermediate crossover regime, designated by
the blue solid line in Fig. 1, that lies between the prethermal
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and the heating region of kinetic energy. The system starts to
absorb energy from the drive through many-body resonance
channels causing the kinetic energy to grow in a subdiffusive
followed by super-diffusive manner [65,68]. However, the
probability of the occurrence of such resonances decreases
exponentially with 1/K in the high frequency limit. We find
that the oscillators are maximally correlated with each other
at x = 0 and falls rapidly to zero in two sides x as shown
in Figs. 3(a) and 3(b), for K = 0.45 and 0.7, respectively.
To be precise, correlation decays stretched exponentially in
short distances: C(x, t ) ∼ AK e−α|x|β while it falls exponen-
tially (i.e., more rapidly than stretched exponential) in long
distances: C(x, t ) ∼ e−γ |x|; for more details see Appendix D.
Here, β and γ weakly depend on K referring to the fact that
driving parameter K can in general control the spatial spread
of fluctuation. These profiles do not change with time within
the crossover region referring to the fact that variance of
the spatial correlation distribution remains constant with time
W ∼ t0. This allows us to differentiate it from the diffusive
transport that occurs in the prethermal phase. However, with
increasing time, one can observe that long distance correlation
becomes more noisy leaving the spatial structures qualita-
tively unaltered.

At the end, we discuss the time zone where the average
kinetic energy shows unbounded chaotic diffusion, as denoted
by the red solid line in Fig. 1, resulting in the effective temper-
ature to increase linearly with time [65,68]. The correlation of
the kinetic energy is fully localized in space and temporally
frozen as shown in Fig. 4). To be precise, the correlation is
nearly a δ function centered around x = 0, i.e., fluctuation gets
localized at the site of disturbance for all time. In this regime,
the system shows fully chaotic behavior in the phase space and
the angles of the rotors become statistically uncorrelated both
in space and time. It is noteworthy that there is no descrip-
tion of average Hamilton exist here as the inverse frequency
Floquet-Magnus expansion does not converge [66,67]. In con-
trast to the prethermal phase, the amplitude of correlation
peak in the crossover and heating regime increases as Kη

with η > 2. On the other hand, the variance in the heating
regime becomes decreasing function of n, precisely, W → 0
for n → ∞ that is markedly different from the behavior of W
in remaining two earlier regimes. Finally, we stress that our
findings in this heating regime do not suffer from finite size
effect suggesting the thermodynamic stability of this phase.

It is noteworthy that 〈p2
i (t )p2

j (tw )〉 and 〈p2
i (t )〉〈p2

j (tw )〉 in
the kinetic energy fluctuation both individually depend on
time t and the initial waiting time tw. On the contrary, the con-
nected part, i.e., C(i, j, t, tw ) as a whole does not depend on t
instead depends on tw such that the peak height of C(i, j, t, tw )
profile increases with tw. This can be physically understood
as an initial value problem in terms of pi, j (tw ) for the rotors
that subsequently uncorrelated in the heating region. The peak
value of the correlator is also found to be dependent on the
coupling parameter K . In this region, the time-independent
correlator effectively freezes into three discrete spatial points,
i.e., at the site of disturbance with i = j and the remaining two
adjacent sites with i = j ± 1.

We shall now exploit the assumption of statistically uncor-
related (both in space and time) nature of the rotors to shed
light on this intriguing behavior analytically. In terms of the

stretched variable r j (n) = φ j+1(n) − φ j (n), the assumption
leads to the following mathematical form:

〈sin(ri(n)) sin(r j (m))〉
= 1

2 δn,mδi, j, 〈sin(ri(n)) sin(r j (n
′) sin(rk (m)) sin(rl (m

′))〉
= 1

4 (δn,n′δm,m′δi, jδk,l + δn,mδn′,m′δi,kδ j,l

+δn,m′δn′,mδi,lδ j,k ) + 3
8δn,n′δm,m′δm,nδi, jδk,lδi,k, (7)

where the average is carried over different initial conditions,
i, j, k, l represent the position of the rotor and n, n′, m, m′
denote the various times t’s in terms of the number of kicks.
We note that r j (n) becomes uniform random variable in the
heating region. The momentum of ith rotor at any time t
can be formulated from the equation of motion [Eq. (2)].
The first term of the kinetic energy fluctuation correlator with
t > tw � 1 can be calculated in the heating regime as follows:

〈p2
i (t )p2

j (tw )〉
= K4

(
2 t2

wδi, j + 1
2 t2

wδi, j+1 + 1
2 t2

wδi, j−1

+ 3
4 twδi, j + 3

8 twδi, j+1 + 3
8 twδi, j−1 + ttwδi,iδ j, j

)
. (8)

The last term reminds us the diffusive growth of kinetic energy
〈p2

i (t )〉 = K2t that is obtained in the heating region. There-
fore, the kinetic energy fluctuation correlation [Eq. (3)] takes
the following form:

C(i, j, t, tw ) = K4

(
t2
w

2
δi, j + 3tw

16
δi, j + t2

w

8
δi, j+1 + 3tw

32
δi, j+1

+ t2
w

8
δi, j−1 + 3tw

32
δi, j−1

)

= K4

(
t2
w

2
δi, j + t2

w

8
δi, j+1 + t2

w

8
δi, j−1

)
+ O(tw ).

(9)

We note that for tw � 1, the O(t2
w ) terms dominate over

O(tw ) term. This clearly suggests that the assumption of un-
correlated nature of rotors is able to mimic the numerical
outcome convincingly in the heating region i.e., C(x, t ) �= 0
for x = 0 and ±1. In Fig. 4, we compare the numerical results
with the prediction of Eq. (9) and find a match within 6%
error. The above result is derived considering the assumption
that rotors are always uncorrelated under driving. As a result,
the independent rotor approximation works better to explain
the numerical outcomes for higher values of K as the driven
system enters into the heating region quite early. Most im-
portantly, the analytical form in Eq. (9) correctly captures the
value of the correlator at the adjacent sites of the disturbance
i = j ± 1 drops to 1

4 of the peak value at i = j, as observed
in Fig. 4. The nonzero value of correlation in the adjacent
sites might be the effect of nearest-neighbor interactions of the
system. In addition, the correlator is independent of final time
t , whereas it depends on tw, when the disturbance is applied on
the system. It indicates that the correlator depends on the value
of momentum at t = tw, from where we start measuring the
correlator, but the correlator does not spread further with time
since the rotors are effectively uncorrelated in this regime. The
detailed analytical derivation is presented in Appendix E.
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We here stress that Fig. 1, being a cartoon representation,
can compactly demonstrate the results shown in Figs. 2, 3,
and 4 as well as shed light on the physical understanding.
We superimpose the time evolution of the variance W of
the correlation C(x, t ), obtained from analyzing the corre-
lation profile in Figs. 2, 3, and 4, with the kinetic energy
Ekin(n) that has already been reported [68]. In the prethermal
regime, Ekin(n) ∼ n0 and the self-similar Gaussian scaling of
C(x, t ) ∼ f (xt−1/2) suggests W ∼ n [see Fig. 2(b)]. In the
crossover region, Ekin �∼ n and the temporally frozen stretched
exponential C(x, t ) ∼ f (x, t0) yields W ∼ n0 (see Fig. 3). In
the heating region, Ekin ∼ n, fluctuations become nearly δ

correlated but frozen in time C(x, t ) ∼ f (x, t0)δx,l with l ∈
[0,±1], leads to the following situation W → 0 as n → ∞
(see Fig. 4). Therefore, the disjoint nature between the spatial
and temporal structures of the correlation in crossover and
heating regions causes distinct features in W as compared to
its combined spatiotemporal nature for the prethermal region.

IV. DISCUSSION

It is clearly noted in our study that the spatiotemporal
correlation provides a deep insight to characterize different
dynamical phases. The phase matching between adjacent ro-
tors, captured by stretched variables r j (n) = φ j+1(n) − φ j (n),
play very important role in determining the nature of spread-
ing of the fluctuations. The time evolution of the stretched
variable, following the equations of motion (2), is given as
r j (n + 1) = r j (n) + (p j+1(n + 1) − p j (n + 1))τ . Upon satis-
fying the resonance condition pj − p j+1 = 2πm/τ with m
as an integer number, the stretched variable rotates by 2π

angle between two subsequent kicks. When all the rotors go
through these resonances, their relative phase matching is
lost and the eventually the coupled rotor system turned into
an array of uncoupled independent rotors. At this stage, the
system absorbs energy from the drive at a constant rate in an
indefinite manner. This is precisely the case for heating up the
regime where fluctuation correlations do not spread in time
and space. On the other hand, the resonances are considered to
be extremely rare events in the prethermal regime suggesting
the fact that relative phase matching between adjacent rotors
allows the fluctuation to propagate diffusively throughout the
system in time. The notion of the time independent average
Hamilton in the prethermal region might be related to the
fact that all the rotors rotate with a common collective phase
and eventually controlled by an underlying synchronization
phenomena [39,101].

Coming to the phenomenological mathematical descrip-
tion, the exponential suppressed heating and the validity of
the constant sum rule in the prethermal phase suggest a hy-
drodynamic diffusion picture (with diffusion constant D) for
the fluctuation [102–105]:

∂t u(x, t ) = ∂x

(
D

2
∂xu(x, t ) + Bζ (x, t )

)
, (10)

where u(x, t ) = 1
2 (p2(x, t ) − 〈p2(x, t )〉) such that 〈p2(x, t )〉 �=

〈p2(x, t ′)〉. The conservative noise ζ (x, t ) of strength B is delta
correlated in space and time 〈ζ (x, t )ζ (x′, t ′)〉 = δxx′δ(t − t ′).
In the high-frequency limit, the equilibrium fluctuation dissi-
pation relation can be extended to the long-lived prethermal

regime: B2 ∼ DT ∗2; for more details see Appendix C. Given
the plausible assumption that the noise part B of the fluctuat-
ing current increases with increasing K , one can understand
the diffusion process in a phenomenological way. The diffu-
sion constant D is then considered to be independent of K
while prethermal temperature is determined by K , as observed
in the GGE picture. Moreover, the self-similar Gaussian na-
ture of the fluctuation correlation in the prethermal phase
can be understood from the solution of Eq. 10 such that
C(x, t ) ∼ 〈u2(0, τi )〉e−x2/(2Dt )/

√
2πDt . In the other limit in-

side the infinite temperature heating regime, the nondiffusive
transport leaves the u(x, t ) to be δ correlated in space while
almost frozen in time. Now there is an extended crossover
region, connecting the prethermal state to the heating regime,
where the diffusion equation does not take such a simple form
causing the system to exhibit an amalgamated behavior.

Before we conclude, we would like to re-emphasize that
unlike the equilibrium case tw plays crucial role for the
nonequilibrium case. To be more precise, only the relevant
time variable is the relative time t ≡ t − tw for the equilibrium
case respecting time translation symmetry. This is not true
in the present case and the correlation is expected to exhibit
complex structure for arbitrarily chosen t and tw with t > tw.
Thanks to the GGE description of the prethermal region, we
can consider the relative time t ≡ t − tw as the appropriate
variable. One can think that the average Hamiltonian em-
beds an effective time translation symmetry in the prethermal
phase. However, the effective GGE description fails for the
crossover and heating regions, resulting in the fact that the
two time instants t and tw are equally important there. The
effective time translation symmetry is no longer valid in the
above two regions. This is what we clearly see for the heating
regime where the peak value of the correlator depends on tw.

V. CONCLUSION

In conclusion, our study demonstrates that a typical two-
point observable such as, the fluctuation correlation of kinetic
energy, can be scrutinized to probe different dynamic phases
of classical many-body kicked rotor system [106]. It is in-
deed counterintuitive that the average kinetic energy per rotor
and their spatiotemporal correlations, being derived from the
former quantity, yet yield opposite behavior. The GGE de-
scription of prethermal phase obeys diffusive transport where
the spatiotemporal correlation follows a self-similar Gaus-
sian profile. During this diffusion, the correlation curves keep
their area constant due to the quasiconservation of the kinetic
energy. In the long time limit where kinetic energy grows dif-
fusively, fluctuation interestingly becomes frozen in space and
time. We have also calculated the behavior of kinetic energy
fluctuation analytically using the statistically uncorrelated na-
ture of the angles of the rotors inside the heating regime and
find a good match with the numerical results. There exists
an extended crossover region where kinetic energy increases
in a complicated way exhibiting both subdiffusive to super-
diffusive nature. The fluctuation interestingly shows a rapidly
(slowly) decaying short (long) range stretched (regular) ex-
ponential localization. In this case the fluctuation does not
have any time dynamics. Therefore, correlated phenomena
in the prethermal phase gradually assembles to a completely
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uncorrelated heat up phase through a crossover region. These
nontrivial phases of matter are the consequences of the driving
and do not have any static analog. Provided the understand-
ing of long-range quantum systems [107–112], it would be
interesting to study the fate of the above phases along with
the crossover region in long-range classical systems. Fur-
thermore, the various intriguing nature of correlators can be
observed for t and tw chosen from different phases that is
beyond the scope of the present study. The microscopic under-
standing of hydrodynamic picture and fluctuation-dissipation
relation in dynamic systems are yet to be extensively analyzed
in future.
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APPENDIX A: GIBBS DISTRIBUTION
IN PRETHERMAL PHASE

Assuming that in the prethermal region, the ensemble is
governed by a Gibbs ensemble with

P∗ = (Z∗)−1e−(H∗+γ p̄+δr̃)/(T ∗ ), (A1)

where p̄ = ∑N
j=1 p j and Z∗ = ∫

d pdre−(H∗+γ p̃+δr̃)/T ∗
are the

total angular momentum and the GGE partition function of
the system, respectively [68]. Equating the initial energy with
the GGE average energy, we obtain the effective temperature
of the system. The kinetic energy Ekin of the driven system in
the prethermal phase is given by

Ekin = 1

N

N∑
j=1

∫ p2
j

2Z∗

N∏
j′=1

e−(p j′−p̃)2
/(2T ∗ )d p j′ = T ∗ + p̃2

2
,

(A2)

where p̃ = γ T ∗/N with γ being a constant. On the other hand,
the total energy in this phase is given by

E∗ =
N∑

j=1

〈
p2

j

〉
∗

2
+ κ

τ

N∑
j=1

〈1 − cos (φ j − φ j+1)〉∗. (A3)

The potential energy and total energy take the following form:

〈1 − cos(r j )〉∗ = (Z∗)−1
∫

dr(1 − cos(r j ))e
− κ

τT ∗ (1−cos(r j ))

= 1 − I1(ε)

I0(ε)

E∗ = N
T ∗ + p̃2

2
+ Nκ

τ

(
1 − I1(ε)

I0(ε)

)
(A4)

with ε = κ/(T ∗τ ) and In(x) denotes the modified Bessel’s
function of order n for the argument x.

The microcanonical initial energy of the system is E0 =
N p̃2

2 + N κ
τ

. Now neglecting the initial growth of the kinetic
energy in the transient phase and quasi-conserved nature of

the kinetic energy in the prethermal phase, one can consider
E0 � E∗. One thus arrives at the following:

1

ε
+

(
I1(ε)

I0(ε)

)
= 0 ⇒ ε = 1.06569. (A5)

This implies T ∗ = 0.938363 κ
τ

. In the prethermal phase (with
p̃ = 0), the average energy is then given by

E∗/N = T ∗

2
+ κ

τ

(
1 − I1(ε)

I0(ε)

)
= κ

τ

(0.938363

2
+ 0.530819

)

= κ

τ
. (A6)

One can redefine the standard energy per site, which is equiva-
lent to average energy pumped into the site over a time period.
In the prethermal phase, the probability distribution of kinetic
and potential energies take the form

P∗(p) =
N∏

j′=1

e−(p j′ )
2
/(1.876 κ

τ ), (A7)

P∗(r j ) =
N∏

j′=1

e−(1−cos(r j ))/1.876. (A8)

The specific heat at constant volume can be obtained at the
prethermal value as Cv = ∂E/∂T |T ∗ with

E = T ∗

2
+ κ

τ

(
1 − I1(κ/(T ∗τ )

I0(κ/(T ∗τ )

)
, (A9)

Cv = ∂E/∂T |T ∗ = κ2

τ 2T ∗2 − κ2I1
(

κ
T ∗τ

)
2

τ 2T ∗2I0
(

κ
T ∗τ

)
2

− κI1
(

κ
T ∗τ

)
τT ∗I0

(
κ

T ∗τ

) + 1

2

= 0.88572. (A10)

Note that this value is independent of the driving frequency
in the prethermal regime. It implies that the system absorbs
heat at a constant rate irrespective of the driving frequency in
the prethermal state.

The correlation functions assuming the system is in the
prethermal GGE can be computed from the sum rule such
that area under the correlation curves keep their area con-
stant, AK = ∑

x C(x, t ) ≈ 1
4 (〈p4〉 − 〈p2〉2), where the average

is defined as 〈y(p)〉 = ∫ ∞
−∞ d p y(p) e−p2/T ∗

/
∫ ∞
−∞ d p e−p2/T ∗

.
We find AK ∼ 2T ∗2/4 = 1.72348K2/4 = 0.4402K2/τ 4. We
analyze this sum rule AK in Fig. 2(b) of the main text.

APPENDIX B: EXPONENTIALLY SUPPRESSED
VARIATION OF PRETHERMAL TEMPERATURE

AND DIFFUSION CONSTANT

In the prethermal regime, the average kinetic energy is
slowly changing in time, and heating is exponentially sup-
pressed. This is shown in Fig. 5(a), where the ratio of
the prethermal temperature at time t and tw, defined by∑

i pi(t )2/
∑

i pi(τw )2, is analyzed. The almost constant na-
ture of variable T (t )/T (tw ) signifies that the temperature is
not significantly changing with time. For high frequency drive
with K = 0.14, the temporal extent of the prethermal region
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FIG. 5. (a) Plot of prethermal temperature at time tw to time t
as defined by T (t )/T (tw ) = ∑

i pi(t )2/
∑

i pi(τw )2. For smaller val-
ues K , the heating is suppressed for a larger timescale, while for
K = 0.24 the heating sets in early causing the prethermal temporal
window to shrink. (b) Unsubtracted correlations of kinetic energy
〈p2

i (t )p2
j (tw )〉 for K = 0.14 are shown. We find the drift in time for

the correlation functions. With the deterministic part 〈p2
i (t )〉〈p2

j (tw )〉
subtracted, this drift goes to zero. This is in contrast to an equilibrium
system, where the average is independent of time.

is larger than that of K = 0.24. These clearly indicate that
the departure from the prethermal phase is caused by low
frequency drive with higher values of K . We present this result
in Fig. 1 of the main text. On the other hand, the unsubtracted
correlation functions 〈p2

i (t )p2
j (tw )〉 in the prethermal region

with K = 0.14 are shown in Fig. 5(b) referring to the drifts
for the correlation in time. We note that correlation propagates
even into the substantially separated rotors from fluctuation
core at x = 0. However, once the connected part is subtracted,
the correlations decay to zero away from the x = 0, which
suggest the hydrodynamic picture as discussed in the main
text.

In the prethermal regime, a typical fluctuation spreads in
space and time diffusively in the system. A proper diffusive
scaling makes the spatiotemporal correlation function col-
lapse to a Gaussian distribution, with two free parameters:
the amplitude of the Gaussian and the diffusion coefficient of
the Gaussian. The mathematical form of the correlation for a
given value of K is thus given by C(x, t ) ∼ AKt−1/2 f (xt−1/2),
with f (y) = e−y2/2D/

√
2πD where AK and D are the ampli-

tude and the diffusion coefficient for the Gaussian distribution.
However, extracting the dependence of the diffusion coeffi-

FIG. 6. The diffusion constant extracted by fitting the scaled dy-
namical correlations at time t = 1024. The diffusion constant looks
very slowly changing with 0.15 < K < 0.23 but appears to be satu-
rating around 0.775. Note that for smaller K , time 1024 is not large
enough for the hydrodynamical scale, hence the results are severely
affected by the finite time effect.

cient on driving frequency is numerically more difficult due to
both finite time and finite size effects. Our analysis suggests
that the diffusion coefficient is very weakly dependent on the
driving frequency of the system. We plot the dependence in
Fig. 6 where it looks like the typical K dependence might be
due to the finite time effect.

APPENDIX C: SOLUTION OF THE HYDRODYNAMIC
EQUATION

We now discuss the hydrodynamic picture of the driven
system at times when the prethermal description is valid,
i.e., at times much less than the marginalized time (t � tm)
[65,68]. This time scales with the driving frequency as tm ∼
e3/K . The emergent fluctuations in the prethermal region can
be represented by the diffusion equation

∂t u(x, t ) �
D

2
∂2

x u(x, t ) + B∂xζ (x, t ), (C1)

where u(x, t ) = 1
2 (p2(x, t ) − 〈p2(x, t )〉) such that 〈u(x, t )〉 �=

〈u(x, t ′)〉. The averages are taken over a GGE at temperature
T ∗. In the prethermal region, the temperature increment is
exponentially suppressed, resulting in an effective hydrody-
namic description of the system. The noise ζ (x, t ) of strength
B is delta correlated in space and time 〈ζ (x, t )ζ (x′, t ′)〉 =
δxx′δ(t − t ′). The derivative under the noise term is due to
the almost conserved nature of the total energy of the system
in the prethermal phase. There could be an additional expo-
nentially small forcing term present in the diffusion equation.
This term might drive the system out of the prethermal phase
at a later time.

One can solve the above equation by Fourier transform
u(x, t ) = 1√

2π

∫
dkeikxuk (t ) and ζ (x, t ) = 1√

2π

∫
dkeikxζk (t ).

The equation becomes

∂t uk (t ) = −Dk2

2
uk (t ) + ikBζk (t ), (C2)

where the noise correlations are now given as 〈ζk (t )ζk′ (t ′)〉 =
δkk′δ(t − t ′). The general solution to the above equation is
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given as

uk (t ) = e− Dk2

2 t uk (0) + ik
∫ t

−∞
dt ′e− Dk2

2 (t−t ′ )Bζk (t ′). (C3)

From this solution the correlation function is obtained by
multiplying this equation by uk (τw ) and taking an equilibrium
average to get

〈uk (t )uk′ (τw )〉 = e− Dk2

2 (t−τw )〈uk (τw )2〉δk,k′ . (C4)

The average is over the prethermal state. As shown in
Ref. [68] the different modes (away from k = 0) in the
prethermal state are independent and acquire marginal lo-
calization independent of the wave numbers. Following an
inverse Fourier transform, we get the spatiotemporal corre-
lation functions as

C(x, t − τw ) = 1√
2π

∫
dke−ikxe− Dk2

2 (t−τw )〈uk (τw )2〉

= 〈u(τw )2〉√
2πD(t − τw )

e−x2/(2D(t−τw )). (C5)

For fluctuation dissipation in the large time limit Eq. (C3),
the first part vanishes and the memory of the initial condition
vanishes. One can obtain

uk (t ) = lim
t→∞ ik

∫ t

−∞
dt ′e− Dk2

2 (t−t ′ )Bζk (t ′). (C6)

Squaring both sides and using the correlations of the noise, we
have

〈uk (t )2〉 = −k2
∫ t

−∞
dt ′′

∫ t

−∞
dt ′e− Dk2

2 (t−t ′ )e− Dk2

2 (t−t ′′ )

× B2〈ζk (t ′)ζk (t ′′)〉

= −k2
∫ t

−∞
dt ′′

∫ t

−∞
dt ′e− Dk2

2 (t−t ′ )e− Dk2

2 (t−t ′′ )

× B2δ(t ′ − t ′′) t→∞= −k2
∫ t

−∞
dt ′e− Dk2

2 2(t−t ′ )B2

= B2/D, (C7)

where we assumed that at large time t , the system is approxi-
mately in the prethermal state defined by the GGE temperature
T ∗. The fluctuations of average in the prethermal region is
〈u2

k〉T ∗ = 〈u2〉T ∗ = C. Note that this relation is exact in the
case when the system is static. In the prethermal region, this
relation is approximately correct to a large time scale, before
the heating mechanism takes place. This yields DC � B2,
which we refer to as the approximate fluctuation dissipation
relation (AFDR) in the prethermal phase. The correction to
this is of the order of 1/k2, if we consider a delta correlated
noisy forcing term. In the large wavelength limit, i.e., at short
but enough coarse-grained space, this contribution goes away
and the result approximately holds true.

In the driven system, all the oscillators individually get
kicked periodically in time. The kick inflicts extra energy to
the system that gets dissipated in the system eventually. This
results in an effective time averaged current in the system j ∼
K〈∇xV ′(x)〉. This makes the noise coefficient B ∼ K . Along
with the AFDR, this give that D ∼ K0.

FIG. 7. Plot of the correlations in the semilog scale for the
crossover region with K = 0.7. The same quantity is plotted in Fig. 3
in linear scale with stretched exponential fit around the disturbance
core at x = 0. We here emphasize the accuracy of the stretched
exponential fit by redrawing it in the semilog scale.

APPENDIX D: STRETCHED EXPONENTIAL
CORRELATIONS IN CROSSOVER REGION

We here discuss the intermediate crossover region, where
the correlations are exponentially localized in real space with
no time dynamics. As mentioned in the main text and Fig. 3 of
the main text, we find that the stretched exponential descrip-
tion of the system is in good agreement when the correlation
are measured in the close vicinity of fluctuation core x �
|N/2|, where N is the system size [−N/2 : N/2]. We redraw
the same quantity in the semilog scale with stretched exponen-
tial fit in Fig. 7. We can observe that even in logarithmic scale,
the stretched exponential fit of the correlator is appropriate
around the disturbance core x = 0. This indicates the robust-
ness of the stretched exponential fit of the spatiotemporal
correlator in the crossover regime. One can clearly notice that
correlation becomes heavily fluctuating with time and space.
The time scale of this crossover decreases with time, and in the
infinitely large time limit, the correlations become spatially
delta correlated as shown in Fig. 4 of the main text.

APPENDIX E: FROZEN CORRELATION
IN HEATING REGION

We here discuss the analytical form of the correlation in the
heating region that is derived with the help of the assumptions
as given in Eq. (7). We start by using Eq. (2), the momentum
of ith rotor at any time t can be written as

pi(t ) = pi(0) − K
t−1∑
n=0

[sin(ri(n)) − sin(ri−1(n))], (E1)

where pi(0) is the momentum of the ith rotor at time t = 0. In
our numerical calculations, we have assumed the initial mo-
menta of all the rotors to be zero. The momentum of a rotor at
any stroboscopic time t depends on the initial momentum, and
the values of angles of that rotor and its nearest neighbors at
the earlier time. We below derive the correlator assuming the
fact that rotors are always uncorrelated from the very begin-
ning of the dynamics. This allows us to write the summation
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over time starting from n = 0 as described below. However,
we know from the numerical analysis that the driven system
requires some time to enter into the heating region. Hence we

note that the independent rotor approximation works better to
explain the numerical outcomes for higher values of K as the
driven system enters into the heating region quite early.

Now the first term of the kinetic energy fluctuation correlator with t > tw can be calculated in the heating regime as follows:

〈p2
i (t )p2

j (tw )〉 = K4

〈
t−1∑

n,n′=0

tw−1∑
m,m′=0

[[sin(ri(n)) − sin(ri−1(n))]

× [sin(ri(n
′)) − sin(ri−1(n′))] × [sin(r j (m)) − sin(r j−1(m))][sin(r j (m

′)) − sin(r j−1(m′))]]

〉

= K4

〈
t−1∑

n,n′=0

tw−1∑
m,m′=0

[[sin(ri(n)) sin(ri(n
′)) + sin(ri−1(n)) sin(ri−1(n′))

− sin(ri(n)) sin(ri−1(n′)) − sin(ri−1(n)) sin(ri(n
′))]

× [sin(r j (m)) sin(r j (m
′)) + sin(r j−1(m)) sin(r j−1(m′))

− sin(r j (m)) sin(r j−1(m′)) − sin(r j−1(m)) sin(r j (m
′))]]

〉

= K4
t−1∑

n,n′=0

tw−1∑
m,m′=0

(
2 δn,mδn′,m′δi, j + 1

2
δn,mδn′,m′δi, j+1 + 1

2
δn,mδn′,m′δi, j−1 + δn,n′δm,m′δi,iδ j, j

+ 3

4
δn,n′δm,m′δm,nδi,iδ j, jδi, j + 3

8
δn,n′δm,m′δm,nδi,iδ j, jδi, j+1 + 3

8
δn,n′δm,m′δm,nδi,iδ j, jδi, j−1

)

= K4

(
2 t2

wδi, j + 3

4
twδi, j + 1

2
t2
wδi, j+1 + 3

8
twδi, j+1 + 1

2
t2
wδi, j−1 + 3

8
twδi, j−1 + ttwδi,iδ j, j

)
. (E2)

Here we use the fact that δi, jδi′, j = δi, jδi, j′ = 0. The second part 〈p2
i (t )〉〈p2

j (tw )〉 now looks like

〈p2
i (t )〉〈p2

j (tw )〉 = K4

〈
t−1∑

n,n′=0

[sin(ri(n)) − sin(ri−1(n))][sin(ri(n
′)) − sin(ri−1(n′))]

〉

×
〈

tw−1∑
m,m′=0

[sin(r j (m)) − sin(r j−1(m))][sin(r j (m
′)) − sin(r j−1(m′))]

〉

= K4ttwδi,iδ j, j. (E3)

This leads to write the kinetic energy correlator as

C(i, j, t, tw ) = 1

4

[〈
p2

i (t )p2
j (tw )

〉 − 〈
p2

i (t )
〉〈

p2
j (tw )

〉] = K4
( t2

w

2
δi, j + t2

w

8
δi, j+1 + t2

w

8
δi, j−1

)
+ O(tw ). (E4)
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