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Momentum density spectroscopy of Pd: Comparison of 2D-ACAR and Compton scattering
using a 1D-to-2D reconstruction method
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Two-dimensional (2D) angular correlation of annihilation radiation and Compton scattering are both powerful
techniques to investigate the bulk electronic structure of crystalline solids through the momentum density of
the electrons. Here we apply both methods to a single crystal of Pd to study the electron momentum density
and the occupancy in the first Brillouin zone and to point out the complementary nature of the two techniques.
To retrieve the 2D spectra from one-dimensional Compton profiles, a direct inversion method is implemented
and benchmarked against the well-established Cormack’s method. The comparison of experimental spectra
with first-principles density functional theory calculations of the electron momentum density and the two
photon momentum density clearly reveals the importance of positron probing effects on the determination of
the electronic structure. While the calculations are in good agreement with the experimental data, our results
highlight some significant discrepancies.
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I. INTRODUCTION

Fundamental physical material properties such as mag-
netism, electrical conductivity, and topological effects are
determined by the electronic structure. To improve the un-
derstanding of the various characteristics of materials, the
experimental determination of the electronic structure, and,
particularly, the Fermi surface of metals [1] is of high im-
portance. Angle-resolved photoemission spectroscopy has
established itself as one of the most popular and powerful
tools in this regard, especially in the investigation of two-
dimensional (2D) electronic systems, as it directly probes
the 2D band structure [2]. In contrast, quantum oscillatory
techniques, e. g., exploiting the de Haas–van Alphen (dHvA)
effect, directly probe the bulk Fermi surface but put strong
restrictions on the ambient conditions as they require high
magnetic fields, very low temperatures, and crystals with very
low disorder [3].

Compton scattering and the measurement of the an-
gular correlation of electron-positron annihilation radiation
(ACAR) are two complementary techniques which directly
measure the electron momentum density (EMD) in the bulk
[4]. While Compton scattering delivers the 1D projection of
the EMD, 2D-ACAR measures the integral along a single
direction, i.e., the 2D projection of the two-photon momentum
density (TPMD), which is closely connected to the EMD
but includes the influence of the positron. Both have low
demands on ambient conditions, such as magnetic fields and
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temperature, meaning that they can easily access large regions
of the phase diagram even across phase transitions. While
Compton scattering is equally sensitive to all electrons, 2D-
ACAR is more sensitive to the valence electrons, which are
most relevant for the chemical and physical properties, due
to the repulsive Coulomb interaction between the positrons
and the atomic cores. Furthermore, both techniques enable
the analysis of magnetic materials by spin-resolved measure-
ments. There are numerous examples of the application of
ACAR and Compton scattering on different material classes,
including elemental crystals [5–9], alloys [10,11], magnetic
compounds [12–20], heavy fermions [21], and superconduc-
tors [22–24]. A review on the applications of both techniques
can be found in Ref. [4]. Although there have been mea-
surements of both 2D-ACAR and Compton scattering on the
same material (for example, Mg [9,25] or Y [26,27]) it is very
unusual for measurements to be made on the same physical
sample.

While calculating one-dimensional (1D) projections
from a 2D distribution is mathematically trivial, the
inverse transformation is more complex. Usually, the
1D-to-2D reconstruction problem, e. g., in Compton
scattering, is solved by methods either inspired by the
analytical inversion of the Radon transformation or by
series expansion, e.g., the Cormack method [28]. In this
paper, we present a more general approach to solve this
inverse problem. It employs linear matrices to model the
experiment and a quadratic regularization functional to
reduce experimental noise in the reconstruction. Thus,
the solution of the reconstruction problem is the solution
of a linear system of equations, which can be found by
direct inversion. This is why we call our method the direct
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inversion method (DIM). Similar approaches have been
employed for 2D-to-3D reconstruction in 2D-ACAR
[6,19,29–32]. However, as all of those approaches use an
entropylike, nonlinear regularization functional, iterative
algorithms are required to find a reconstruction. In contrast,
our DIM uses first and second derivative regularization (a
general case of Thikonov regularization [33]) to reconstruct
a large area of interest without iterations. This regularization
functional was also used in the algorithm proposed by Leitner
et al. [34] for the direct reconstruction of the 3D Fermi surface
from 2D data. To benchmark the approach, it is compared with
the Cormack method as modified by Kontrym-Sznajd [35].

We systematically compare Compton scattering and 2D-
ACAR by performing measurements on the same disk-shaped
Pd single crystal (∅ = 10 mm, 1 mm thick, surface normal
[011]), serving as a model system with a well-characterized
electronic structure [37,38]. During the 1970s, several the-
oretical and experimental studies focused on the electronic
structure of Pd to determine the main features of the Fermi
surface. Even today, it continues to attract the interest of
scientists to explain subtler details such as the impact of
electron-electron interactions [39] or the exact shape of the
L-hole Fermi surface pocket [40] (see Fig. 1). In this paper, we
will not discuss specific features of the electronic structure of
the system in detail. Here, 1D and 2D projections of the EMD
and TPMD are compared in p space as well as in the reduced
zone scheme of the first Brillouin zone (k space). Additionally,
the experimental data are compared to first-principles calcula-
tions.

II. METHODS

A. Compton scattering

In a Compton scattering experiment, a so-called 1D Comp-
ton profile, J (pz ), is measured,

J (pz ) =
∫∫

ρ(p)dpxdpy, (1)

which is the twice-integrated 3D-EMD, ρ(p), where pz is
the electron momentum along the scattering vector. From
a quantum-mechanical point of view, ρ(p) would have to
be expressed in terms of the excitations of the many-body
wave function of the whole system. However, if treated in
the independent-electron model and explicitly neglecting cor-
relations, common in the Kohn-Sham formalism of density
functional theory (DFT), ρ(p) can be written in terms of
the momentum space wave functions, �k, j (p) [41], which
are the Fourier transform of the real-space wave functions,
ψk, j (r),

ρ(p) =
∑
k, j

nk, j |�k, j (p)|2 =
∑
k, j

nk, j

∣∣∣∣
∫

ψk, j (r)e−ip·rdr

∣∣∣∣
2

,

(2)
where nk, j is the occupation of the electron in band j with
wave vector k, and with nk, j = 0 and nk, j = 1 for completely
unoccupied and fully occupied states, respectively. ρ(p) ex-
hibits the crystal point symmetries, but does not have the
(discrete) translational symmetry of the reciprocal lattice.
To recover the translational symmetry, the Lock-Crisp-West

(a)

(b)

FIG. 1. (a) �-centered electron sheet and X -hole pockets of the
Fermi surface of Pd in the first Brillouin zone. The �, X, K, and L
high-symmetry points are shown in red (with � at the zone center).
(b) Open-hole sheet and L-hole pockets of the Fermi surface. Addi-
tionally, the dHvA α and ε orbit is shown. The ε orbit lies in the (001)
plane through the center of the Brillouin zone (plotted in XCRYSDEN

[36]).

(LCW) theorem [42] can be applied to transform ρ(p) into
the crystal momentum k space.

In this paper, ten Compton profiles were measured along
crystallographic directions spaced equally between �-X and
�-K. The measurements were performed at room temperature
on the Cauchois-type high-resolution Compton spectrometer
at beamline BL08W, SPring-8, using synchrotron radiation
with an incident energy of 115 keV and a scattering angle
of 165 ◦ [43–45]. The resolution of the spectrometer was
determined to be 0.14 a.u. (FWHM). For the measurement of
the Compton profiles, the crystal was mounted on a rotating
stage with the [001] crystallographic direction oriented along
the vertical rotation axis. For every profile, data was collected
for at least 380 min, leading to more than 1.6 × 105 counts
in the Compton peak. Additionally, calibration measurements
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using a BiTl sample were made. Background spectra were
taken along the �-X and �-K directions and halfway between
them. The background for all other directions was linearly
interpolated.

The data were corrected for several systematic effects
to retrieve the Compton profiles from the measured data,
in consecutive order: Saturation effects of the detector,
pincushion-type geometrical correction, background, detec-
tion efficiency, multiple scattering [46], and absorption inside
the sample. Further details on the different corrections can
be found elsewhere [9,29]. Finally, the 1D profiles are nor-
malized to the number of electrons in the corresponding
momentum range (determined from Hartree-Fock free-atom
Compton profiles [47]) and have units of electrons per atomic
unit of momentum space (el/a.u.).

B. Direct inversion method in Compton scattering

The reconstruction of the 2D projection of the EMD from
1D profiles is one way to compare Compton and 2D-ACAR
experiments. The starting point for our approach is a linear
operator, Tα (dimension n × m), which projects the 2D plane
projection, ρ2D, of the EMD onto a 1D line spectrum, yα (i. e.,
the Compton profiles, each of which is a vector of intensity
values with length n), and thus mimics the Compton scatter-
ing experiment. In the DIM algorithm and for the following
discussion, we formally write the two-dimensional array of
projected densities ρ2D as a vector with length m. One fact that
we implicitly take into account is that a 3D-to-1D projection
can be seen as successive projections from 3D to 2D and then
from 2D to 1D. Tα distributes the density in every pixel of ρ2D

into the bins of yα , where α indexes the N measured Compton
profiles,

yα = Tαρ2D. (3)

While yα can be computed easily from a given ρ2D, solving
the inverse problem, i. e., finding ρ2D from a small number of
projections, is more complex since it is underdetermined.

Many elements of ρ2D are equivalent due to the crystal
point symmetry. Therefore, we can introduce the symmetry
operator, S, which reduces the dimension of the problem to
the independent degrees of freedom, x, representing the irre-
ducible area of the reconstructed plane projection,

ρ2D = Sx. (4)

The exact dimensions of S and x depend on the symmetry of
the reconstructed 2D projection. However, as a rule of thumb,
we can state that x has approximately the length of m divided
by the number of symmetry operations.

By concatenating the yα vectors to a vector y with length
l (where l = nN for Compton profiles of equal length), rep-
resenting all of the measured data, and the Tα matrices to a
corresponding projection operator, T (dimension l × m), the
α index can be neglected in the following. The maximum-
likelihood estimation of the EMD, x, can now be obtained by
minimizing the χ2-functional:

χ2(x) = (y − TSx)�W (y − TSx). (5)

The weighting matrix, W (dimension l × l), is a diagonal
matrix with the values σ−2

i , where σi are the uncertainties of
each measured data point.

Since the inverse problem is underdetermined, a large num-
ber of different reconstructions, x, may give χ2 values in
accordance with the correct statistical accuracy. Additionally,
were χ2(x) to be minimized without any additional regular-
ization, the Poisson noise of the data would arguably lead to
noise in the reconstruction, commonly known as overfitting. A
regularization functional, r(x), is therefore introduced to find
a smooth and, thus, physically meaningful solution. This leads
to the new functional,

f (x) = χ2(x) + r(x), (6)

which has to be minimized.
In Compton scattering, the momentum density decays

only slowly with increasing momentum as all electron states
(including the strongly localized core states) contribute to
the measurement. Conventionally, a large momentum range
thus has to be reconstructed to avoid reconstruction artifacts,
implying either an excessive increase of the required com-
putational power or a coarse sampling of momentum space.
We solved this problem by utilizing the fact that the core
levels, which are exclusively responsible for the densities
at large momenta, have a signature that is isotropic for all
practical purposes. This leads us to the following procedure:
All spectra, yα , are averaged and fitted with a sum of Gaus-
sians centered at zero momentum. The sum of Gaussians is
then subtracted from every Compton profile, giving the 1D
anisotropies. From those, the 2D anisotropy is reconstructed
and, since the transformation of a Gaussian from 1D to 2D
is known, the isotropic 2D-Gaussian functions can be added
to the reconstruction of the anisotropy afterward, which gives
the reconstruction of the full signal.

As the anisotropy of the data comprises positive and neg-
ative values, the classical maximum entropy regularization
[48] cannot be applied since the logarithm can only deal with
positive densities. Additionally, as mentioned above, the regu-
larization should penalize noise. However, while the 3D-EMD
shows sharp steps at the Fermi surface, the 2D projection of
the EMD is smeared. The projection integral, in general, leads
to continuous 2D EMDs. To bias the reconstruction toward the
aforementioned behavior, the use of a sum of first and second
derivatives as a regularization functional seems reasonable.
The first derivative operator D1 can be expressed as a discrete
difference operator which, by operating on ρ2D, gives the
difference between every pixel and the pixel to the right of
it, and the difference between the pixel and the pixel below
it. Thus, if ρ2D consists of m pixels, D1 has a dimension of
2m × m (neglecting boundary effects). The second derivative
operator D2 can easily be derived by multiplying D1 with
its transpose matrix. To summarize, f (x) can be written as
follows:

f (x) =χ2(x) + λ1x�S�U�D�
1 D1USx

+ λ2x�S�U�D�
2 D2USx,

(7)

where λ1,2 are positive real numbers. As a given absolute
variation of anisotropy is more likely where the intensity itself
is high, we scale the trial densities so as to correspond to
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the relative deviations from the isotropic 2D reconstruction.
This is achieved through multiplication by a diagonal scaling
matrix U (dimension m × m) before applying the derivative
operators.

To find the minimum of the quadratic function f (x) we
have to find the x which makes ∇ f (x) = 0. The matrices
associated to both the χ2 and the regularization functionals
can be written as the square of real matrices (or a sum thereof)
and are consequently positive semidefinite. The null space of
the regularization functional matrix consists of the space of
constant densities, which is not in the null space of the χ2

functional matrix, thus the quadratic form f (x) is positive def-
inite, its associated matrix is invertible, and the linear system
of equations,

0 = −2S�T�W �(y − TSx)

+ 2λ1S�U�D�
1 D1USx

+ 2λ2S�U�D�
2 D2USx, (8)

has exactly one solution. This unique x can easily be cal-
culated by standard methods for solving linear systems of
equations and is formally given by

x = [
S�(

T�W T + λ1U�(
D�

1 D1
)
U

+ λ2U�(
D�

1 D1D�
1 D1

)
U

)
S
]−1

(S�T�W y). (9)

This makes the DIM reconstruction technique fast and ef-
ficient in comparison to reconstruction algorithms applying
nonlinear regularization functionals. Furthermore, in the case
of the iterative methods, a convergence criterion has to be
defined. This is not necessary for the DIM as the inversion
directly gives the final result.

C. 2D-ACAR

2D-ACAR exploits the annihilation of electron-positron
pairs to investigate the electronic structure [5,6,19,49]. After
implantation into the sample, positrons thermalize within a
few picoseconds and subsequently propagate in Bloch states,
as they also feel the crystal potential. The annihilation of these
Bloch-state positrons with electrons leads predominately to
the emission of two photons. In the center-of-mass (rest)
frame of the electron-positron pair, the photons are emitted in
opposite directions with equal energy due to conservation of
momentum. However, in the laboratory frame, the transverse
(i.e., perpendicular to the emission direction of the photons)
components of the electron and positron momenta lead to a
proportional deviation of the emission angle from 180 ◦ (the
small angle approximation is valid because the electron and
positron momenta are small in comparison with the momen-
tum of a 511 keV photon).

The coincident measurement of the angular distribution of
the two gamma quanta yields the projection of the TPMD,
ρ2γ . Neglecting electronic correlations, the TPMD can be
expressed as follows:

ρ2γ (p) =
∑
k, j

nk, j

∣∣∣∣
∫ √

γ (r)ψk, j (r)ψ+(r)e−ip·rdr

∣∣∣∣
2

, (10)

which is closely related to the definition of the EMD in
Eq. (2). They only differ by the positron wave function, ψ+(r),
and electron-positron correlations described by the so-called
enhancement factor [50,51], γ (r). The TPMD can be thought
of as the EMD as seen by the positron. When no electron-
positron enhancement is included (γ = 1), the calculation is
described as being in the independent-particle model (IPM).

The positron experiments were performed on the 2D-
ACAR spectrometer at the Technical University of Munich,
which offers a detector-detector distance of 17.5 m. For fur-
ther details on the experimental setup, we refer to Ref. [52].
In total, five measurements within the (011) plane were per-
formed. The projections were taken along the crystallographic
cubic high symmetry directions [100], [01̄1], and [11̄1], and
at 27.4 ◦ and 72.4 ◦ away from [100] in the (011) plane.
All measurements were made at 10 K to minimize the res-
olution degradation due to thermal motion of the positron,
and more than 5 × 107 coincident counts were collected per
spectrum. Owing to the relatively short detector-detector dis-
tance, the experimental resolution (FWHM) was 0.21 and
0.17 a.u. in the phorizontal and pvertical directions, respectively
[53]. Both momentum directions are perpendicular to the
detector-detector direction.

D. First-principles electronic structure calculation

To compare with the experimental momentum densi-
ties, ground-state electronic structure calculations were per-
formed. The ELK code [54], a highly-accurate full-potential
augmented plane-wave plus local orbital (FP-APW+lo)
method, was used to calculate the ground-state electronic
structure of face-centered-cubic Pd at the experimentally
determined [55] cubic lattice constant, a = 3.890 Å. Con-
vergence was achieved with a 16 × 16 × 16 k-point grid
with a plane-wave cutoff in the interstitial region of |G +
k|max = 8.0/Rmt (where Rmt = 2.57 a.u. was the muffin-tin
radius) and the Perdew-Burke-Ernzerhoff generalized gra-
dient approximation (PBE-GGA) [56] was used for the
exchange-correlation functional. The valence electron config-
uration was 4s24p64d10 and the remaining 28 electrons were
considered to be core. Since Pd has a relatively high atomic
number, the spin-orbit interaction was included in the calcu-
lations by adding a term of the form σ · L (where σ is the spin
vector and L is the orbital angular momentum vector) to the
second variational Hamiltonian. Because the Compton scat-
tering and 2D-ACAR experiments were performed at room
temperature and at T = 10 K, respectively, smearing widths
(effective electronic temperatures) of 300 K and 30 K were
used in the ground-state calculations from which the EMD
and TPMD, respectively, were calculated using the method
of Ernsting et al. [57]. Compton scattering is equally sensi-
tive to all electrons (core and valence) and, while the EMD
was calculated only for the valence electrons, the momen-
tum cutoff was |p|max = 16.0 a.u. to include contributions
from the most tightly bound semicore valence states. In the
case of the TPMD, this cutoff could be reduced to |p|max =
8.0 a.u. due to the small overlap of the positron wave function
with the more tightly bound electron states. To understand
the effect of electron-positron correlations on the measured
densities, two different TPMD calculations were performed
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FIG. 2. 2D radial anisotropy of the five measured ACAR spectra (left half of each subplot) and the corresponding theoretical calculation,
with (bottom right) and without Drummond (top right) enhancement. All calculations have been convolved with the experimental resolution,
and all experimental spectra were symmetrized to the according crystal symmetry. The angle � denotes the angle measured from the [100]
direction within the (011) plane.

with the IPM, namely, one assuming no enhancement [γ (r) =
1] and a second applying the positron enhancement model
proposed by Drummond et al. [51] with gradient corrections
[58].

III. RESULTS AND DISCUSSION

A. 2D-ACAR and 1D Compton scattering:
Experiment and theory

First, we compare the experimental results with the cor-
responding theoretical calculations, namely, the experimental
2D-ACAR data to TPMD calculations and Compton data to
EMD calculations. One of the first useful quantities to con-
sider is the radial anisotropy in which the isotropic average
density (averaged on circles of fixed momentum) is subtracted
from the density itself. In the case of a simple metal, this radial
anisotropy can be dominated by the presence of the Fermi
surface but it also contains information about the anisotropy of
the wave functions of electrons in filled bands. Figure 2 shows
the radial anisotropy of the five 2D-ACAR measurements and
the corresponding theoretical TPMD calculations (IPM and
Drummond enhancement). The theoretical spectra are con-
volved with a two-dimensional Gaussian function accounting
for the instrumental momentum resolution. All experimental
spectra were symmetrized according to the expected crystal
symmetry. Comparing the calculation with Drummond [51]
enhancement to the IPM, we can see that the enhancement
generates stronger anisotropies at higher momenta due to
the fact that the positron, which is screened by an electron
cloud, has an increased overlap with the more tightly bound
electrons (which contribute at larger momentum) due to the
weaker Coulomb repulsion [59]. Overall, we can state that,
while there are regions of the experimental data which agree
more closely with either one or the other approximations,
it is certainly not the case that the enhancement produces a
significant improvement in the radial anisotropy.

Figure 3 shows the directional difference between four
Compton profiles measured along different directions and the
Compton profile measured along the �-K direction. In all
but the lowest Z elemental metals, the anisotropy between
directions is usually dominated by the electrons in filled
bands (since there are many more of them), rather than the
(small number of) partially filled bands which give rise to the
Fermi surface. All measurements show very good agreement

with the first-principles calculations (which have been con-
volved with a one-dimensional Gaussian accounting for the
experimental resolution). This is also true for the other five
directions which are not explicitly shown here. The uncertain-
ties are calculated from counting statistics propagated through
the corrections.

B. 2D reconstruction from 1D-Compton profiles

As the Compton experiment measures 1D projections of
the EMD, the 2D projection has to be reconstructed from
a series of 1D measurements to compare it with the 2D-
ACAR measurements. This was achieved with both the DIM
algorithm and the well-known Cormack method [35] to
benchmark the algorithm. The required computational effort
is much higher in DIM compared to Cormack due to the
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FIG. 3. Directional differences of experimental (blue) and the-
oretical Compton profiles (red). The labeled angles are measured
from the �-K direction towards the �-X direction of the fcc Brillouin
zone. The calculated profiles are convolved with a one-dimensional
Gaussian accounting for the experimental resolution. For every third
experimental data point, an error bar showing the statistical error
of one standard deviation is plotted. The plots have been offset by
0.4 el/a.u. from one another for clarity.
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FIG. 4. (a) 2D radial anisotropy of the projected EMD calculated
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experimental resolution. (b) Cut through the 2D radial anisotropy
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high number of free parameters in the DIM. However, a
standard PC is still capable of calculating a reconstruction
of 512 × 512 pixels from the ten Compton profiles within
several minutes. To compare the results of both algorithms, it
is, again, useful to consider the radial anisotropy of the (pro-
jected) EMD. This anisotropy will have contributions from
both filled (due the anisotropy of the electron wavefunctions)
and from partially filled bands (in which case it additionally
contains information about the Fermi surface). Figure 4(a)
shows the radial anisotropy of the reconstructed spectra and
of the first-principles calculations. All of the main features
of the theoretical spectrum are reconstructed comparably well
by both methods. At high momenta, the noise of the DIM
reconstruction is more isotropic and, compared to Cormack,
exhibits smaller variation in the radial direction than the tan-
gential direction. Figure 4(b) shows a cut through the 2D
anisotropy along high-symmetry directions according to the
red path (1→ 2 →3) shown in (a). This cut highlights more
clearly the good agreement of both reconstructions within the
error bars.

The LCW backfolded data, presented in Fig. 5, is almost
identical for both reconstruction methods. One interesting
difference between theory (bottom right) and experiment (left)
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Reconstructed experimental spectrum by DIM (top left) and recon-
structed experimental data by Cormack (bottom left); theoretical
EMD (bottom right); reconstruction from theoretical 1D Compton
profiles by Cormack (top right, T.C.) and DIM (top right, T.D.).
The theoretical data in the right half of the plot was convolved
with a two-dimensional Gaussian accounting for the experimental
resolution, before back-folding.

is the intensity distribution around the center (projected �-
point), where the theory shows a high intensity while both
reconstructions give a clear dip. The possibility of this be-
havior being an artifact of the reconstruction was excluded
by reconstructing the 2D LCW from theoretically calculated
1D Compton profiles (top right), which did not show a dip
in the center of the LCW. Typically, theoretical calculations
using the LDA or GGA are not fully capable of reproducing
all parts of the Fermi surface equally well [60]. From our
Fermi surface calculations (Fig. 1), we numerically extracted
multiple dHvA orbits using the SKEAF code [61]. Most of
the orbits agree well with dHvA measurements [62] and the
area of the so-called ε orbit, which originates from a heavy
electron band with an effective cyclotron mass of 12.5 me,
agrees with our calculations within 1% [63]. However, the
area of the so-called α orbit is about 11.5% smaller in DFT
in comparison to the dHvA experiment [62]. As this orbit
also originates from a heavy band, such differences might
be expected as a slight change in the position of the band
relative to the Fermi energy and can hence strongly influence
the Fermi surface created by the band. To get a feeling of the
size of the Fermi surface tube corresponding to the α orbit in
our Compton experiment, we calculated the first derivatives
of cuts through the LCW along the �-X and �-K directions.
Both curves indicate a hole pocket at the projected X points
which is larger than expected from theory. Therefore, we
attribute the dip in the experimental LCW at the center of the
projected Brillouin zone (where the X points also projects) to
this difference between theory and experiment.
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FIG. 6. 2D radial anisotropy of the EMD reconstructed (DIM)
from ten 1D Compton spectra (left) and the corresponding 2D pro-
jection obtained by 2D-ACAR (right). Both spectra were normalized
to the corresponding electron density of the EMD before calculating
the radial anisotropy. The positions of the projected high-symmetry
�, K, and X points are indicated.

C. Comparison of ACAR and Compton (in 2D and 1D)

Now we compare the results of ACAR and Compton using
the DIM algorithm. Figure 6 shows the experimental radial
anisotropy of the DIM-reconstructed 2D-EMD (from Comp-
ton) and the 2D-TPMD (from 2D-ACAR). The labeled �, K,
and X points are the projected positions of the high symmetry
points of the three-dimensional face-centered cubic Brillouin
zone. The 2D-ACAR shows significantly larger anisotropy,
especially at low momenta, compared to Compton scattering,
which is expected because the positron wave function overlaps
strongly with that of the delocalized electrons (particularly
with electrons at the Fermi surface), but only overlaps very
weakly with that of the most tightly bound states. Most of
the main features like the low intensity pocket around X and
the butterfly-shaped high intensity around the K-point are
revealed by both techniques. However, obvious differences
are also present, particularly at higher momenta, e. g., for
|p| > 2 a.u., where 2D-ACAR hardly reveals any anisotropy,
again due to the wave-function overlap.

For a further comparison, the spectra are backfolded into
the first Brillouin zone [42]. The Compton LCW is nor-
malized, so the integral over one Brillouin zone equals 18
valence electrons and a constant (k-independent) contribu-
tion of 28 core electrons is added, since Compton scattering
probes every electron equally. Although this normalization is
not technically valid for the TPMD measured by 2D-ACAR,
the LCW is also normalized in the same way for easier
comparison. In the upper half of Fig. 7, the LCWs of the
experimental 2D-EMD and 2D-TPMD are shown on the left
and right sides, respectively. In contrast to the Compton ex-
periment, the 2D-ACAR experiment does not show a dip in

0 1
ρ2D

LCW (arb. units)

2

k [
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0]
 (

π/
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FIG. 7. 2D-LCW of the reconstructed (DIM) Compton spec-
trum (top left) and the 2D-ACAR spectrum (top right). 2D-LCW
calculated from the radial anisotropies of the reconstructed (DIM)
Compton spectrum (bottom left) and the 2D-ACAR spectrum (bot-
tom right).

the center of the Brillouin zone. This is not expected from
positron enhancement effects because the difference between
the theoretical calculation including positron enhancement
and the calculation using the IPM suggests a reduced intensity
at the projected �-point (see Fig. 8). We attribute the increased
LCW backfolded density at low momenta to a contribution
of positrons annihilating in vacancy-type defects. As shown
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ρLCW
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FIG. 8. Difference between the TPMD calculation including en-
hancement (Drummond model [51]) and the IPM calculation in the
reduced zone scheme.
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FIG. 9. Directional differences between 1D projections along �-
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(blue) and TPMD, calculated with (brown) and without (orange)
positron enhancement. The calculated profiles are convolved with
Gaussian functions accounting for their respective experimental res-
olutions. For every fourth experimental data point, error bars show
the statistical error of one standard deviation.

by Dugdale and Laverock [64], the Fermi surface informa-
tion can still be recovered by instead backfolding the radial
anisotropy to the first Brillouin zone instead of calculating the
LCW from the full density. This is shown for Compton data
(left) and 2D-ACAR data (right) in the lower half of Fig. 7. As
depicted, the LCW of the backfolded anisotropies agree very
well over the whole Brillouin zone, including the zone center.

To get a more quantitative comparison between 2D-ACAR
and Compton scattering, 1D projections of the the 2D-ACAR
measurements along the �-K and �-X directions are retrieved
by summation of the [011] projection along the horizontal
and vertical measurement directions, respectively. To visual-
ize details of anisotropic features of the distributions more
clearly, the directional differences of the two 1D profiles
are calculated. The results are shown in Fig. 9 for Compton
and 2D-ACAR measurements as well as for the EMD and
TPMD (IPM and including enhancement) calculations. First,
comparing the results of the DFT calculations, as expected,
we can see significant differences between EMD and TPMD,
which can be attributed to the influence of the positron. The
same holds true if we compare the ACAR and Compton
measurements, especially in the region from 1 a.u. to 2.2 a.u..
Furthermore, we can clearly see an enhancement effect on the
TPMD calculations by comparing the results from the IPM
and the calculation using the Drummond enhancement model.
Comparing experimental data to theory, we see that the Comp-
ton experiment is very well described by the calculated EMD.
The 2D-ACAR data is not equally well described by either of
the two TPMD models over the whole momentum range. At
low momenta and around 1.6 a.u., the data is better described
by the IPM, while, at other momenta, the Drummond model
seems to deliver the better approximation. This clearly shows
how strongly TPMD calculations and 2D-ACAR experiments
are influenced by positron wave function and enhancement
effects that make theoretical modeling of positron spectra
much more difficult.

IV. CONCLUSION

We performed Compton scattering and 2D-ACAR mea-
surements on a high-quality Pd single crystal to compare the
results from both experiments and reveal the influence of
positron probing effects on the measured electronic structure.
To allow a reliable comparison of the 2D projections of the
TPMD from 2D-ACAR with the 1D Compton profiles, a di-
rect reconstruction technique was developed for the 1D-to-2D
reconstruction of Compton data. Our DIM algorithm uses the
direct inversion of linear matrices and is a general case of
Thikonov regularization to solve the reconstruction problem.
The results from the DIM agree well with a reconstruction
by the well-known Cormack method. Even if this approach
is computationally more demanding than Cormack’s method,
with modest computational power, the DIM algorithm still en-
ables an efficient method to get a high quality reconstruction
of the 2D EMD.

To tackle the 3D reconstruction problem from either 1D
Compton data or 2D-ACAR data, the application of the DIM
seems reasonable as it is based on a very universal approach.
It could offer some advantages like the easy inclusion of the
experimental resolution function into the reconstruction algo-
rithm or more freedom in choosing your projection directions
during the experiment. However, some caution has to be taken
in choosing an appropriate regularization functional. Since
the first derivative regularization would probably lead to a
relatively smooth 3D density, as it does in other approaches
like the Hermite polynomials or spherical harmonics, the uti-
lization of the zeroth order derivative might be a good choice.

Differences between theory and experiment in the LCW
backfolded spectra support earlier findings by dHvA experi-
ments that the DFT calculations underestimate the size of the
of the so-called α orbit.

To analyze the influence of positron probing effects on
the determination of the electronic structure, first-principles
calculations of the EMD and TMPD were performed. For the
TPMD, clear differences between both models (namely, the
IPM and the Drummond enhancement model) can be found,
however, neither are fully capable of describing the experi-
mental data over the whole momentum range.

A huge advantage of 2D-ACAR is the direct measurement
of a 2D projection of the TMPD compared to a 1D projection
of the EMD measured in Compton scattering. This drawback
can be compensated by reconstruction of the 2D informa-
tion from 1D Compton profiles along different directions.
Although in this paper an efficient reconstruction technique
was used, the data treatment including the reconstruction of
the 2D spectrum needed in Compton scattering is much more
demanding compared to 2D-ACAR. Besides the fact that
Compton scattering is practically insensitive to vacancy-type
defects, the biggest advantage of Compton scattering is the
much simpler calculation of theoretical spectra, compared to
the calculation of 2D-ACAR spectra in which enhancement
and positron wave-function effects, which are difficult to cal-
culate, might play an important role. This can be clearly seen
in the directional differences between the EMD and TPMD
calculations, as well as the convincing agreement between
EMD and Compton measurements, while the positron experi-
ment and theory show obvious discrepancies.
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