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Semiclassical description of electron dynamics in extended systems under intense laser fields
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We propose a semiclassical approach based on the Vlasov equation to describe the time-dependent electronic
dynamics in a bulk simple metal under an ultrashort intense laser pulse. We include in the effective potential
not only the ionic Coulomb potential and mean-field electronic Coulomb potential from the one-body electron
distribution but also the exchange-correlation potential within the local-density approximation (LDA). The
initial ground state is obtained by the Thomas-Fermi model. To numerically solve the Vlasov equation, we
extend the pseudoparticle method, previously used for nuclei and atomic clusters, to solids, taking the periodic
boundary condition into account. We apply the present implementation to a bulk aluminum (fcc) conventional
unit cell irradiated with a short laser pulse. The optical conductivity, refractive index, extinction coefficient, and
reflectivity as well as energy absorption calculated with the Vlasov-LDA method are in excellent agreement with
the results by the time-dependent density-functional theory and experimental references.
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I. INTRODUCTION

The interaction of ultrashort (fs-ps) intense laser pulses
with solids is relevant to a wide area of research ranging
from high-order harmonic generation [1–5] to material ma-
chining [6–14]. The process of ultrafast laser micromachining,
which can suppress heat-affected zones, starts from the energy
transfer from the laser to the material by electron excitation,
followed by that from the hot electrons to the lattice. As a
result, the material undergoes phase and/or structural transi-
tion [15], leaving a change of the optical constants or a defect
behind [16], which eventually leads to ablation, drilling, or
structuring [17–32].

The comprehensive modeling of laser material machin-
ing is highly complex, multiscale in both time and space,
multiphase (solid, fluid, plasma, cluster, etc.), and possibly
accompanied by chemical reactions. Plasma or continuum
models [6,8,18,33–35], for example, have been employed
to describe and simulate such processes, advancing under-
standing. However, they have difficulties in examining initial
transient dynamics before the local thermodynamic equilib-
rium is reached.
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It has now become possible to describe the attosecond-
femtosecond electron dynamics under intense laser fields
with the time-dependent density-functional theory (TDDFT)
[36–39] or time-dependent density-matrix methods [40–42].
TDDFT is an ab initio method that offers a good compromise
between accuracy and computational feasibility. Its compu-
tational cost is, however, still very high, especially, if one
wants to perform long-timescale simulation, coupling it with
molecular dynamics and electromagnetic-field analysis.

In TDDFT, each electron orbital satisfies the time-
dependent Kohn-Sham (TDKS) equation [see Eq. (1) below].
The leading order of a semiclassical h̄ expansion of the TDKS
equation reduces to the Vlasov equation, which describes
the temporal evolution of the electron distribution function
in phase space. Thus, Vlasov-based approaches are expected
to be a cost-effective alternative to TDDFT, in particular,
for metals. Such approaches have previously been applied to
ionization and explosion dynamics of molecules [43,44] and
metal clusters [45–50]. The Vlasov equation is numerically
solved with so-called pseudoparticle methods in these studies,
which represent the electron cloud as an assembly of classical
test particles whose motion is governed by Newton’s equa-
tions of motion. There are several reports of application to Na
clusters, well agreeing with TDDFT results [48–52].

In this paper, we extend the pseudoparticle method based
on the Vlasov equation to the description of electron dynamics
in extended systems under intense laser fields. The effective
potential acting on the electrons contains not only the ionic
potential, interelectronic Hartree potential, and interaction
with laser but also the exchange-correlation potential within
the local-density approximation (LDA), and incorporates the
periodic boundary condition. We apply the present method to
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bulk aluminum. The calculated optical conductivity, refractive
index, extinction coefficient, and reflectivity as well as energy
absorption are in excellent agreement with TDDFT calcula-
tions and experimental references.

The present paper is organized as follows. Section II
describes our simulation methods. We review the Vlasov
equation and describe our numerical implementations with the
periodic boundary condition. In Sec. III we describe numeri-
cal application to bulk aluminum and compare the results with
TDDFT and measurement values. The conclusions are given
in Sec. IV.

II. METHODS

A. Vlasov equation

Among the methods for treating quantum many-body dy-
namics, TDDFT provides a feasible computational framework
for treating electronic systems’ optical response or charged
particles’ collision phenomena [53]. The time propagation of
a Ne-electron system comes down to solving a set of equations
for the Kohn-Sham orbitals {φi(r, t )} that evolve in a self-
consistent mean field [54],

ih̄
∂

∂t
φi(r, t ) = hKS[ne(r, t )]φi(r, t ), (1)

where

hKS[ne(r, t )] = − h̄2

2m
∇2 + Veff [ne(r, t )] (2)

denotes the Kohn-Sham Hamiltonian, m the electron mass,
Veff the effective potential (see below), and the time-dependent
electron density ne(r, t ) is defined as

ne(r, t ) =
Ne∑

i=1

|φi(r, t )|2. (3)

Analogously, the density operator ρ̂(t ) is defined as

〈r|ρ̂(t )|r′〉 =
Ne∑

i=1

φ∗
i (r, t )φi(r′, t ), (4)

whose evolution is governed by the von Neumann equation
(vNE),

∂

∂t
ρ̂(t ) = − i

h̄
[ĥKS(t ), ρ̂(t )]. (5)

Performing the Wigner transformation [55] and taking the
limit h̄ → 0, the density operator ρ̂(t ) is mapped onto a real
function f (r, p, t ), which obeys the Vlasov equation,

∂

∂t
f (r, p, t ) = − p

m
· ∇r f (r, p, t )

+ ∇rVeff [ne(r, t )] · ∇p f (r, p, t ), (6)

which is a classical alternative to the vNE, Eq. (5), where p
is the electron canonical momentum. Here, f (r, p, t ) is inter-
preted as the electron distribution in phase space. Since the
Vlasov equation cannot describe discrete levels, the present
approach is justified for metals under situations where inter-
band transitions play a relatively minor role.

The effective potential Veff is a functional of the electron
density distribution ne(r, t ) and decomposed into

Veff [ne(r, t )] = VCoulomb[ne(r, t )] + Vxc[ne(r, t )] + Vext (r, t ),

(7)

with the exchange-correlation potential Vxc, external field po-
tential Vext, and

VCoulomb[ne(r, t )] =
∑

i

Vps(r − ri ) + VH[ne(r, t )], (8)

where i, Vps, and VH denote the label of ions and the
spherically symmetric ionic pseudopotential and the electron-
electron Hartree potential, respectively.

Several previous works for Na clusters have used their
original pseudopotentials [45,46], adjusted so that the simu-
lation results reproduce the static and dynamical properties
of the system. In this work, instead, we employ the modified
Heine-Abarenkov type local pseudopotential for Vps,

Vps(r) = − z

R
e

{
1

r
[1 − (1 + βr)e−αr − Ae−r]

}
(r = |r|),

(9)

where z is the number of the valence electrons, and A, R, α,
and β are material-dependent parameters determined by ab
initio density-functional formalism in Ref. [56], thus, inde-
pendent from Vlasov simulations. Their values for the bulk
aluminum crystal are A = 3.574 a.u., α = 3.635 a.u., β =
0.8343 a.u., R = 0.334 a.u., and z = 3. VH is evaluated by
solving the Poisson equation,

�VH[ne(r, t )] = −4πene(r, t ). (10)

Here, let us introduce a real-space simulation box 	, on
which the periodic boundary condition is imposed, and trans-
lation vectors G. 	 is defined as

	 =
{

r =
∑

j=x,y,z

a je j

∣∣∣∣∣ 0 � a j < 1

}
, (11)

where {e j} are the lattice vectors along the j axis ( j = x, y, z),
whose lengths are denoted by Lj = |e j |. Integrals with respect
to r are taken over 	 in what follows. The translation vectors
are given by

G =
∑

j=x,y,z

Mje j (Mj = 0,±1,±2, . . .). (12)

Taking the periodic boundary condition into account, the
Coulomb terms Vps and VH are represented as a Fourier series
expansion. The pseudopotential term is rewritten as

∞∑
i

Vps(r − ri ) =
Nion∑

G,i=1

Vps(r − ri − G), (13)

where Nion denotes the number of ions in 	 and∑
G

Vps(r − ri − G)

= F−1

[∑
i

e−Q·ri

{
Vps(Q) + 4π

Q
z

}]
(14)
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with Q being the coordinates in the Fourier domain (Q = |Q|),
F[·] the Fourier series expansion within 	, and

Vps(Q) = 4πzeR2

[
− 1

(QR)2
+ 1

(QR)2 + α2

+ 2αβ

{(QR)2 + α2}2
+ 2A

{(QR)2 + 1}2

]
. (15)

One obtains the solution of the Poisson equation [Eq. (10)] for
the electron density ne given within 	 as

VH[ne(r, t )] = F−1

[
F[ne(r, t )]

4πe

Q2

]
. (16)

For the exchange-correlation potential Vxc, one employs the
LDA by Perdew and Zunger [57]. The laser-electron interac-
tion is described in the length gauge,

Vext (r, t ) = −eE(t ) · r, (17)

within the dipole approximation, where E denotes the laser
electric field vector. In this case, p becomes the kinetic
momentum, and, thus, the electronic current density J(t ) av-
eraged over 	 is given by

J(t ) = 1

|	|
∫∫

	

(
− e

p
m

)
f (r, p, t )dr dp. (18)

B. Numerical implementations

1. Pseudoparticle method

The direct propagation of the distribution function would
require the treatment of six-dimensional time-dependent func-
tion on grids [58]. To avoid such a massive computation,
one introduces the pseudoparticle method [45–47,59], where
the distribution function f (r, p, t ) is expressed by a set of
pseudoparticles with mass m as

f (r, p, t ) = 1

Ns

Npp∑
i=1

gr[r − ri(t )]gp[p − pi(t )]. (19)

Here ri, pi are the position and canonical momentum of each
pseudoparticle labeled by i. The total number of pseudopar-
ticles Npp is given by Npp = NsNe, where Ns and Ne are the
number of pseudoparticles per electron and the total number
of the electrons contained in 	, respectively. Statistical error
is reduced by increasing Ns. Ns is set to 10 000 in this study.
gr (r) and gp(p) denote smoothing kernel functions for the
position and momentum, respectively, of Gaussian forms,

gr (r) =
∑
{G}

1

π3/2d3
r

exp
( − |r + G|2/d2

r

)
, (20)

gp(p) = 1

π3/2d3
p

exp
( − |p|2/d2

p

)
, (21)

where dr and dp are smoothing widths. Only the nearest neigh-
bor cells are included in summation over G in Eq. (20). The
kernel functions are normalized as∫

	

gr (r)dr = 1, (22)∫
gp(p)dp = 1, (23)

so that ∫∫
	

f (r, p, t )dr dp = Ne. (24)

The scattering cross section of the electron and the effective
potential is adjusted through dr ; the smaller dr , the larger the
cross section. Here we use dr = 1.1 a.u. so that the linear re-
sponse, to be discussed below in Fig. 3, is in overall agreement
with that obtained by TDDFT in the spectral range between 2
and 25 eV. In the present collisionless case, dp is not used
explicitly.

The field quantities such as Veff and ne are evaluated on
three-dimensional grids discretized into Nj ( j = x, y, z) in-
tervals on the j axis with a spatial step � j = Lj/Nj . In
our calculation we set �x = �y = �z = 0.95 a.u. Here,
dr/�x 	 1.15 is a good parametrization leading to stable sim-
ulation [46]. It should be noted that dr is the only adjustable
parameter in our formalism. The electron density on a grid
point r is calculated as

ne(r, t ) =
∫

dp f (r, p, t ) = 1

Ns

Npp∑
i=1

gr[ri(t ) − r]. (25)

The current density J(t ) [Eq. (18)] is evaluated as

J(t ) = − 1

|	|
e

Ns

Npp∑
i=1

pi(t )

m
. (26)

The Hamiltonian in pseudoparticle representation is writ-
ten as

Hpp = 1

Ns

Npp∑
i

[
p2

i (t )

2m
+

∫
	

Veff (r, t )gr (ri − r)dr
]
. (27)

The motion of each pseudoparticle is governed by the Newton
equations under the effective potential Veff with the periodic
boundary condition as

ṙi = pi

m
, ṗi = −

∫
	

Veff (r)∇ri gr (ri − r)dr. (28)

As long as pseudoparticle canonical variables ri, pi obey the
Newton equation [Eq. (28)], one-body distribution [Eq. (19)]
satisfies the Vlasov equation [Eq. (6)]. The force term is
given as the gradient of the Npp-body Hamiltonian Hpp. One
numerically integrates it as∫

Veff (r)∇rgr (ri − r)dr

	
∑
r∈	

Veff (r)∇ri gr (ri − r)�x�y�z, (29)

using the analytical form of ∇ri gr (ri − r),

∇ri gr (ri − r)

=
∑
{G}

−2(ri − r + G)

π3/2d5
r

exp
( − |ri − r + G|2/d2

r

)
. (30)

The integration of Eq. (28) is performed by the Verlet method
[60] with time step �t = 0.02 a.u. Particles exiting 	 are to
reenter 	 from the other side.
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FIG. 1. Algorithm for the ground state preparation.

2. Ground state

The initial state is the stationary solution of the Vlasov
equation described by the Thomas-Fermi model. The total
energy functional,

Eall[ne(r)] =
∫

	

[
3

10

h̄2(3π2)2/3

m
n5/3

e (r) + 1

2
VH(r)ne(r)

+
Nion∑

G,i=1

Vps(r − ri − G)ne(r) + Exc[ne(r)]

]
dr,

(31)

is variationally minimized with respect to ne(r) under the
constraint that the box 	 contains Ne electrons. This leads to
the following coupled equations:

h̄2

2m
[3π2ne(r)]2/3 + Veff (r) = μ, (32)

Veff (r) = VCoulomb[ne(r)] + Vxc[ne(r)], (33)

where μ denotes the chemical potential, playing the role of
a Lagrange multiplier. These equations are to be solved for
ne(r) self-consistently.

An adopted algorithm to solve the coupled equations (32)
and (33) is shown in Fig. 1.

FIG. 2. Algorithm for pseudoparticle distribution.

First, the chemical potential μ and the electron density
nin

e in the real space are guessed so that the total number
of electrons within 	 is Ne (line 3). Then, one distributes
pseudoparticles according to the guessed nin

e using random
numbers (line 7; also see below). The electron density nps re-
alized by the pseudoparticle distribution is calculated through
Eq. (25) (line 8). The effective potential Veff (r) is obtained
by substituting nps into the right-hand side of Eq. (33) (line
9). Then, we update the electron density ne(r) by substituting
thus obtained Veff (r) to Eq. (32) and solving it with respect to
ne (line 10), simultaneously updating μ by a bisection method
to satisfy the condition that the total number of electrons is Ne

(line 11). The updated ne is used as nin
e in the next iteration of

the loop (line 13). One repeats the above operations until con-
vergence,

∫
	

dr|nin
e − ne| < ε, where we set ε = 10−7 here

for crystalline Al (line 12). After convergence, one distributes
the momenta of the pseudoparticles uniformly within the local
Fermi radius p f by acceptance-rejection sampling of uniform
pseudorandom numbers (lines 17–25).

The algorithm to distribute the pseudoparticles (line 7 in
Fig. 1) is shown in Fig. 2.

We introduce subgrid points (line 3) by dividing each voxel
of the computational grid into N j

inp regions along the j axis

( j = x, y, z). The electron density ninp
e on each subgrid point

is evaluated, based on the trilinear interpolation from those of
the surrounding eight computational grid points, from which
one calculates the number of pseudoparticles N local

pp around the
subgrid point (lines 4 and 5). Then, the N local

pp pseudoparticles
are uniformly distributed around the subgrid point using ran-
dom numbers (lines 8–17).

C. Linear response

We evaluate the linear optical response via impulse re-
sponse by doing dynamical simulations with the initial
pseudoparticle momenta pi shifted from the ground-state val-
ues pGS

i by a small amount �p,

pi = pGS
i + �p, (34)
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where �p = (0, 0, 0.1 a.u.) in this study. This is equivalent to
the application of an impulse electric field,

E(t ) = −1

e
�p δ(t ), (35)

where δ(t ) is the delta function. Noting that this field has
a constant power spectrum across all frequencies, one can
readily obtain the optical conductivity as

σmn(ω) = −eĴm(ω)

�pn
(m, n = x, y, z), (36)

where �pm and Ĵm (m, n = x, y, z) denote the m component
of the momentum shift and the temporal Fourier transform
of the current density, respectively. The fast Fourier transfor-
mation algorithm [61] is used for the evaluation of Ĵm(ω).
Assuming isotropic media, the dielectric function εmm(ω), the
complex refractive index n(ω), and the reflectivity R(ω) are
given by

εmm(ω) = 1 + 4π i
σmm(ω)

ω
, (37)

n(ω) =
√

εmm(ω), (38)

R(ω) =
∣∣∣∣
√

εmm(ω) − 1√
εmm(ω) + 1

∣∣∣∣
2

, (39)

respectively, especially, εxx(ω) = εyy(ω) = εzz(ω).

III. RESULTS

In this section, we compare the results of the Vlasov-LDA
simulations for extended systems described in the previous
section with the experimental values as well as the simulation
results of the ab initio TDDFT method obtained by the open
source code SALMON [36,62–64], which can calculate linear
and nonlinear optical properties and the energy transfer from
intense laser pulses to materials [65]. We take aluminum as a
target material. For Vlasov-LDA, simulation parameters are
Ns = 10 000, Ne = 12, and time step �t = 0.025 a.u. For
TDDFT, we employ a norm-conserving pseudopotential [66]
and the LDA functional [57], with the number of k points
483, number of real-space grids 143, and dt = 0.15 a.u. We
assume an external electric field linearly polarized along the
�-X direction of the following temporal profile:

E (t ) = E0 sin

[
ω

(
t − T

2

)]
sin2

(
t

T
π

)
(0 � t � T ),

(40)

where E0 denotes the field amplitude, h̄ω the photon energy,
and T the (foot-to-foot) full pulse duration. The corresponding
full width at half maximum duration of the laser intensity
profile is about 0.36T .

A. Linear response

Let us first discuss the complex optical conductivity, refrac-
tive index, extinction coefficient, and reflectivity as a function
of photon energy. Despite the simpleness of the Vlasov-LDA
approach, its results excellently agree with the TDDFT results

FIG. 3. (a) Optical conductivity σ (ω), (b) refractive index n and
extinction coefficient k, and (c) reflectivity R(ω), calculated with the
Vlasov-LDA method and TDDFT as well as reported in experimen-
tal reference [67]. The experimental values are plotted at 1.03 eV
(1200 nm), 1.2 eV (1030 nm), 1.55 eV (800 nm), 3.1 eV (400 nm),
6.2 eV (200 nm), and 15.5 eV (80 nm).

and experimental values (Fig. 3), especially above 2 eV pho-
ton energy. The peak and dip around 1.5 eV in the TDDFT
results are due to interband absorption, which is not repro-
duced by the present Vlasov approach, since the latter takes
only the single free-electron dispersion into account. Focusing
on reflectivity behavior around the plasma frequency, one
finds some differences between the two approaches. This
difference would be contributions by the above-mentioned
interband resonance and nonunity effective mass in TDDFT.
We have confirmed it through the decomposition of the re-
sponse obtained by TDDFT into Drude and Lorentz model
components. With the resonance energy set to 1.85 eV, the
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FIG. 4. Loss functions by TDDFT, Vlasov-LDA, combined
Drude and Lorentz models (meff = 1.09m), and Drude model (meff =
m). The peak of the loss function gives plasma frequency.

biggest oscillator around 1.5 eV [68], the estimated effective
mass meff is 1.09m, and the damping constant is 0.51 eV−1,
consistent with the values reported previously (1.16m [69] and
0.80 eV−1 [68], respectively). The loss functions, Imε(ω)−1,
are shown in Fig. 4. The TDDFT result is excellently re-
produced by the combined Drude and Lorentz contributions
with meff = 1.09m. Although Vlasov-LDA overestimates the
plasma frequency compared to TDDFT, it agrees with the
Drude model with meff = m, which implies that the Vlasov
dynamics is dominated by free-particle intraband motion.

B. Energy absorption

Let us next investigate the energy absorption from the laser
pulse. We evaluate the energy absorption by the electrons as
their energy increment by the pulse irradiation. The energy is
calculated as �E = Hpp(t = ∞) − Hpp(t = 0) in the Vlasov-
LDA simulation and as 〈hKS(t = ∞)〉 − 〈hKS(t = 0)〉 in the
TDDFT simulation. We show the fluence dependence for the
fixed intensity (1012 W/cm2) at 80 nm wavelength in Fig. 5
as well as that for the fixed pulse width of 3.8 fs at the
ultraviolet (200 and 400 nm) wavelengths in Fig. 7 and at the
near-infrared wavelengths (800, 1030, and 1200 nm) in Fig. 8.

FIG. 5. Calculated absorbed energy vs pulse fluence or pulse
width for a fixed intensity (1 TW/cm2). Pink circles: Vlasov-
LDA; black squares: TDDFT;, solid line: linear dependence passing
through the square (TDDFT) for the 3.8-fs pulse.

FIG. 6. Solid lines: temporal evolution of the absorbed energy
for three different pulse widths 75, 187, and 375 fs. Dashed lines:
maximum values for each pulse width.

We see in Fig. 5 that both Vlasov-LDA and TDDFT results
are linear in fluence and agree well with each other in the
lower fluence region (�50 mJ/cm2). On the other hand, the
Vlasov-LDA does not reproduce the TDDFT results for the
higher fluence, where the latter deviate from the linear behav-
ior and even decrease with increasing fluence. This difference
is due to Rabi-like oscillation [70], as confirmed in Fig. 6,
which shows the temporal evolution of absorbed energy for
several pulse widths. The maximum electron energy gain

FIG. 7. Absorbed energy vs pulse fluence or peak intensity for a
fixed pulse width of 3.8 fs for the case of ultraviolets, (a) 200 nm and
(b) 400 nm wavelength. Pink circles: Vlasov-LDA; black squares:
TDDFT; solid line: linear dependence passing through the square
(TDDFT) for 1011 W/cm2 intensity.
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FIG. 8. Absorbed energy vs pulse fluence or peak intensity for
a fixed pulse width of 3.8 fs for the case of infrareds, (a) 800 nm,
(b) 1030 nm, and (c) 1200 nm wavelength. Pink circles: Vlasov-
LDA; black squares: TDDFT; solid line: linear dependence passing
through the square (TDDFT) for 1011 W/cm2 intensity.

during the pulse, which is indicated by horizontal dashed
lines, does not depend much on the pulse width, suggest-
ing Rabi-like coherent oscillation. Thus, there is an optimum
pulse width for a fixed intensity in terms of energy absorption.
The appearance of an additional bump around 400 fs for the
case of 375 fs pulse width might be because the system is not
a pure two-level one.

Figures 7 and 8 indicate that the energy absorp-
tion calculated by the Vlasov-LDA approach exhibits a
linear dependence on fluence or pulse intensity, except for
a slight saturation at high intensity. We can see a nonlinear
behavior, on the other hand, in the TDDFT results, espe-
cially �40 mJ/cm2 for 200 nm and �2 mJ/cm2 for 400 nm

FIG. 9. Absorbed energy vs pulse fluence or peak intensity for
a fixed pulse width of 3.8 fs for the case of infrareds, (a) 800 nm,
(b) 1030 nm, and (c) 1200 nm. Pink circles: Vlasov-LDA; black
squares: TDDFT; solid line: linear dependence passing through the
square (TDDFT) for 1011 W/cm2 intensity. dr is set to 1.25 a.u., the
result of adjustment referring to 5 × 1012 W/cm2 at 800 nm.

(Fig. 7). This would be interpreted as saturable absorption
as is widely observed in various materials [71]. We could
not obtain the Vlasov-LDA results for the low-fluence re-
gion (�2 mJ/cm2) because of statistical error. This could
be improved by increasing the total number of pseudoparti-
cles, in principle. Nevertheless, the Vlasov-LDA results, if
extrapolated to the low-fluence region, appear to agree well
with the TDDFT results. For the case of near-infrared exci-
tation (Fig. 8), the Vlasov results overestimate the electron
energy absorption compared to the TDDFT ones, probably
because the present Vlasov approach cannot reproduce inter-
band transitions around 1.5 eV, as has been discussed in Fig. 3.

075157-7



TANI, OTOBE, SHINOHARA, AND ISHIKAWA PHYSICAL REVIEW B 104, 075157 (2021)

FIG. 10. (a) Time-dependent current density J (t ) and (b) elec-
tron energy absorption �E (t ). Pink dashed lines: Vlasov-LDA; black
solid lines: TDDFT.

Nevertheless, the agreement in Fig. 8 is fair. We have adjusted
dr = 1.1 a.u. to achieve overall agreement between the Vlasov
and TDDFT results for linear response over a wide range of
photon energy (2–25 eV), as mentioned above. If we choose to
give priority to agreement in the near-infrared range instead,
one can improve it by tuning dr to 1.25 a.u. (Fig. 9). The
nonlinear behavior in the TDDFT results appearing at high
intensity in Figs. 8 and 9 may suggest the onset of multiphoton
excitation.

Figure 10 shows the temporal evolution of the current
density and absorbed energy for 1012 W/cm2 peak intensity,
200 nm wavelength, and 3.8 fs pulse width. Again, overall, the
Vlasov results excellently reproduce the TDDFT results. In
Fig. 10(b), although energy fluctuation due to the pseudopar-
ticle statistical error is seen at <2 fs, it becomes negligible at
the end of the pulse.

Our code is partially parallelized using OpenMP and
MPI. One of the most time-consuming parts is the Fourier
transformation, which is computed by the naive approach.
Nevertheless, the computational time of the present Vlasov-
LDA code is typically only 1/20 of that of TDDFT using the
SALMON code. With more sophistication and parallelization,
the efficiency of the Vlasov-LDA method will be further im-
proved, which will be advantageous for applications such as
parameter optimization in laser material processing.

IV. CONCLUSIONS

We have extended the Vlasov-LDA semiclassical approach
and implemented it with the pseudoparticle method to pe-
riodic systems in order to compute the electron dynamics
in solids, especially in metals, under ultrashort intense laser
pulses. The Vlasov equation can be regarded as the leading
order of a semiclassical h̄ expansion of the time-dependent
Kohn-Sham equations. The electronic distribution function
is expressed by pseudoparticles, incorporating the periodic
boundary condition. They play the role of Lagrangian markers
embedded randomly in the electron gas. The initial distribu-
tion is calculated from the Thomas-Fermi model.

We have applied this approach to crystalline aluminum.
Although the method has only one adjustable parameter dr ,
the calculated optical conductivity, refractive index, extinction
coefficient, and reflectivity as well as energy absorption are
overall in excellent agreement with the TDDFT and experi-
mental results over a wide range of photon energy and fluence,
demonstrating the capability of the present approach to ac-
curately describe the dynamics of metallic conduction-band
electrons. On the other hand, the Vlasov results deviate from
the TDDFT ones around 1.5 eV photon energy, where inter-
band transitions are involved, and at the high-fluence region,
where a Rabi-like oscillation takes place.

The next step will be to incorporate electron-electron
collisions, as has been done for metal clusters [45]. This ex-
tension will offer another advantage over TDDFT, in addition
to the reduced computational cost, since the description of
electron-electron collisions is limited in TDDFT. Vlasov-LDA
is expected to provide valuable insights into complex laser-
material processing if we further couple it with molecular
dynamics [46] and electromagnetic field analysis [64]. The
Vlasov approach will also be able to be applied to nonperiodic
systems.
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