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Numerically exact mimicking of quantum gas microscopy for interacting lattice fermions
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A numerical method is presented for reproducing fermionic quantum gas microscope experiments in equi-
librium. By employing nested componentwise direct sampling of fermion pseudodensity matrices, as they arise
naturally in determinantal quantum Monte Carlo (QMC) simulations, a stream of pseudosnapshots of occupation
numbers on large systems can be produced. There is a sign problem even when the conventional determinantal
QMC algorithm can be made sign-problem free, and every pseudosnapshot comes with a sign and a reweighting
factor. Nonetheless, this “sampling sign problem” turns out to be weak and manageable in a large, relevant
parameter regime. The method allows one to compute distribution functions of arbitrary quantities defined
in occupation number space and, from a practical point of view, facilitates the computation of complicated
conditional correlation functions. While the projective measurements in quantum gas microscope experiments
achieve direct sampling of occupation number states from the density matrix, the presented numerical method
requires a Markov chain as an intermediate step and thus achieves only indirect sampling, but the full distribution
of pseudosnapshots after (signed) reweighting is identical to the distribution of snapshots from projective
measurements.
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I. INTRODUCTION

The Hubbard model is a highly simplified, yet paradig-
matic model of materials with strong correlations which has
found an accurate physical realization in cold atomic gases
in optical lattices [1]. Its phase diagram is still poorly un-
derstood, which has led to an intense synergy of numerical
approaches [2,3].

Remarkably, fermionic quantum gas microscopes [4–9]
(see also Refs. [10,11] and references therein) with single-site
and single-atom resolution give access to the full distribu-
tion function of occupation number states. This has allowed
the direct measurement of two-point correlation functions
[12–14] and of more unconventional quantities such as the
full counting statistics (FCS) of macroscopic operators [15]
or the nonlocal string order parameter characterizing spin-
charge separation [16–18] in 1D. Conditional correlation
functions around dopants [19,20] and the analysis of patterns
in the snapshots [21] have revealed polarons in the doped
Hubbard model, in and out of equilibrium [22]. Furthermore,
time-dependent measurements give access to transport prop-
erties [23–25]. In this context, comparison with numerical
simulations is not only important for calibrating, e.g., the
temperature in cold atoms experiments, but quite generally
for reliable benchmarking to prepare quantum simulators for
parameter regimes where classical simulations are impossible.

Yet, for fermions in d � 2 dimensions, a numerically ex-
act technique for mimicking such projective measurements
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of occupation number shapshots is still missing. A single
hole in a system of infinitely strongly repulsive fermions (t-J
model) can be simulated with a world-line loop algorithm
[26,27] without a sign problem and, more recently, worm
algorithm Monte Carlo [28] applied to the t-J model has
given unbiased results for spin configurations around a small
number of dopants [29,30]. However, by definition, the t-J
model neglects doublon-hole fluctuations, and for the Fermi-
Hubbard model at finite interaction path integral Monte Carlo
simulations [31,32] are only possible in one dimension due to
the fermionic sign problem which is extensive in the system
size. We extend the determinantal QMC (DQMC) algorithm
[33–35] by an inner loop, where Fock configurations are sam-
pled directly, i.e., without autocorrelation time, from a fully
tractable quasiprobability distribution. A common technique
for obtaining a tractable joint probability distribution, which
can be sampled directly, is to model it as a product of con-
ditional distributions [36], i.e., as a directed graphical model
[37]. This idea is at the heart of autoregressive neural networks
[36,38], the generation of natural images pixel by pixel [39],
and recent algorithms for simulation and generative modeling
of quantum systems [40–46].

Alternative DQMC approaches, summing all Fock states
implicitly, exist for computing the FCS of quadratic oper-
ators [47] and all elements of the reduced density matrix
on small probe areas [48]. The nested componentwise direct
sampling technique presented here is more versatile in that
pseudosnapshots can be produced for probe areas as large
as in current experiments with the proviso that a (mild) sign
problem is manageable in experimentally relevant regimes.
The resulting distribution of (a sufficiently large number
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of) pseudosnapshots after reweighting is—within controllable
statistical error—identical to the distribution of snapshots
from projective measurements as generated in quantum gas
microscope experiments.

We calculate (i) the joint FCS of the staggered spin and
pseudospin magnetization of the Hubbard model at half fill-
ing, (ii) the distribution of the total number of holes and
doubly occupied sites as a function of doping at high temper-
ature, and (iii) the magnetization environment of a polaron,
where we find qualitative agreement with a recent quantum
Monte Carlo simulation for a single hole in the t-J model [29].
An apparent discrepancy between Ref. [29] and the quantum
gas microscope experiment of Ref. [19], which we can also
reproduce qualitatively, can be pinpointed to a difference in
doping regimes.

II. NESTED AND COMPONENTWISE DIRECT SAMPLING

We are considering the single-band Hubbard model

H = −t
∑

〈i, j〉,σ=↑,↓
(ĉ†

i,σ ĉ j,σ + H.c.) + U
∑

i

n̂i,↑n̂i,↓

−μ
∑
i,σ

n̂i,σ , (1)

with the usual notation, and treat it within the DQMC
framework [33–35]: after a Trotter-Suzuki decomposition
of the density operator ρ̂ ∼ exp(−βH ) at inverse tempera-
ture β = 1/T into Nτ = β/�τ imaginary times slices and a
Hubbard-Stratonovich (HS) transformation for decoupling the
interactions by introducing a functional integral over HS fields
{s}, the density operator reads [49]

ρ̂ = 1

Z

∑
{s}

∏
σ=↑,↓

(
wσ

{s}
e− ∑

i, j X σ
i, j ({s})ĉ†

i,σ ĉ j,σ

wσ
{s}

)
(2a)

≡ 1

Z

∑
{s}

∏
σ=↑,↓

wσ
{s}ρ̂

σ
{s}. (2b)

Here, formally, we have exp(−X σ ) ≡ ∏Nτ

l=1 Bσ
l where

Bσ
l = e−�τV σ

l ({sl })e−�τK is the matrix representation of the
single-particle propagators for spin σ of the potential and
kinetic part after HS transformation [35]. Note that we use
the conventional HS transformation [50] in which the discrete
auxiliary fields couple to the Sz component of the electron
spin, Sz

i = n̂i,↑ − n̂i,↓, which, as will be discussed below, is
crucial. After integrating out the fermionic degrees of free-
dom, wσ

{s} = det(1 + e−X σ ({s}) ) ≡ Z ({s}) is the contribution of
the spin component σ to the Monte Carlo weight of the HS
field configuration {s}, which can also be interpreted as the
partition sum of the noninteracting fermion system ρ̂σ

{s}. Since
the kinetic and potential matrices in the matrix product leading
to Eq. (2) do not commute, the resulting matrix e−Xσ ({s})

Z ({s}) is
not Hermitian and (except in 1D) not all diagonal matrix
elements of ρ̂{s} are semipositive-definite; hence ρ̂{s} is termed
a pseudodensity matrix, while the total ρ̂ in Eq. (2) is a true
density matrix.

The structure of the density matrix in Eq. (2) suggests a
nested sampling approach, in which the HS fields of the pseu-
dodensity matrices ρ̂{s} are sampled using the Markov chain

FIG. 1. Componentwise direct sampling in a single configuration
of Hubbard-Stratonovich fields {s}. (a) Lattice sites (red circles)
are ordered boustrophedonically and the joint distribution of their
occupation numbers is written as a chain of conditional probabilities.
For each sampled component (i.e., lattice site k), the pseudoprob-
ability distribution p{s}(nk ) is reweighted such that samples can be
drawn from a valid probability distribution q(nk ). (b) Pseudosnap-
shot generated for a given Hubbard-Stratonovich field configuration.
Doublon-hole (d-h) fluctuations, first revealed experimentally by
bunching of “antimoments” [12], are clearly visible in this pseudos-
napshot, which comes with a positive sign and a modest reweighting
factor of R ≈ 1.22. Square lattice with parameters U/t = 10, βt =
10, 〈n〉 = 1, L = 16.

of the conventional determinantal QMC algorithm, while the
occupation numbers can be sampled directly, i.e., without
autocorrelation time, from each free-fermion pseudodensity
matrix ρ̂{s}, given that for fixed {s} their distribution function
and all its marginals can be calculated efficiently.

From the chain rule of basic probability theory every
probability distribution can be decomposed into a chain of
conditional probabilities,

p{s}(n1, n2, . . . , nD) =
D∏

k=1

p{s}(nk|nk−1, nk−2, . . . , n1), (3)

where some ordering of the random variables n1, n2, . . . , nD

is implied. A sample from the joint distribution is then

generated by traversing the chain as p{s}(n1)
n1∼p{s}(n1 )−−−−−−→

p{s}(n2|n1)
n2∼p{s}(n2 )−−−−−−→ p{s}(n3|n2, n1) → . . ., where

nk ∼ p{s}(nk ) denotes sampling variable nk from
p{s}(nk|nk−1, nk−2, . . .) and the sampled value is “inserted”
into the next conditional probability along the chain [see
Fig. 1(a)].

Below we discuss how to calculate the conditional
quasiprobabilities in Eq. (3) for a free fermion pseudodensity
matrix ρσ

{s}. Note that for fixed HS field configuration, the
pseudodensity matrices for spin up and down are statistically
independent. Per HS sample, spin up and down occupancies
are sampled independently and then combined into full pseu-
dosnapshots; see Fig. 1(b). Henceforth we drop the subscripts
{s} and σ for notational convenience.
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A. Direct sampling in the grand canonical ensemble

In the atomic microscopy, the quantity of central interest
is the quasiprobability to find a given snapshot of the fermion
occupation:

p(n1, n2, . . . , nD) = Tr(ρ�n1�n2 · · · �nD ), (4)

where ni = 0, 1 is the occupation number on a given
site i. The projectors �ni=0 = ĉiĉ

†
i and �ni=1 = ĉ†

i ĉi

project onto the Fock states with occupation number

ni. We may think of n1, n2, . . . , nD as an ensemble of
D random binary variables. Provided that we can eas-
ily compute the marginals p(n1) = Tr(ρ�n1 ), p(n1, n2) =
Tr(ρ�n1�n2 ), etc. and thus the conditional quasiprobabilities,
we may sample n1, n2, . . . , nD by a componentwise direct
sampling.

In the grand canonical ensemble all marginal quasiprob-
ability distributions of the occupation numbers can be
computed straightforwardly, namely

p(n1, n2, . . . , nk ) = (−)n1+n2+···nk det

⎛
⎜⎜⎝

G11 − n1 G12 · · · G1k

G21 G22 − n2 · · · G2k
...

...
. . .

...

Gk1 Gk2 · · · Gkk − nk

⎞
⎟⎟⎠, (5)

where Gi j ≡ Gσ
i j ({s}) = 〈ci,σ c†

j,σ 〉{s} is the equal-time single-
particle Green’s function of spin species σ for a given HS field
configuration {s} at a randomly chosen imaginary time slice.
Equation (5) is proven in Appendix A.

We now decompose the high-dimensional quasiprobability
distribution Eq. (4) into a chain of conditional quasiprobabil-
ity distributions, which by definition can be computed as

p(nk+1|n1, n2, . . . , nk ) = p(n1, n2, . . . , nk, nk+1)

p(n1, n2, . . . , nk )
. (6)

Inserting Eq. (5) and using the determinant formula for block
matrices we find

p(0|n1, n2, . . . , nk ) = Gk+1,k+1 − �Gk+1, (7a)

p(1|n1, n2, . . . , nk ) = 1 − Gk+1,k+1 + �Gk+1, (7b)

with the “correction term”

�Gk+1 =
k∑

i=1

Gk+1,i(GK,K − NK,K )−1Gi,k+1, (8)

and where K = {1, 2, . . . , k} denotes the ordered set of site
indices, GK,K is the corresponding submatrix of the Green’s
function, and NK,K = diag(n1, n2, . . . , nk ) is a diagonal matrix
whose entries are the sampled occupation numbers on the
sites K .

If the correction term �Gk+1 were zero, then the condi-
tional probability p(nk+1|n1, n2, . . .) would be simply given
by the diagonal element Gk+1,k+1 of the Green’s function and
be independent of the other occupation numbers [51]. There-
fore, the correction term is crucial for intersite correlations.
While traversing the chain of conditional probabilities, the
block structure of the matrix whose inverse is required in
Eq. (8) can be exploited recursively such that no calculation
of a determinant or matrix inverse from scratch is necessary
(see Appendix B).

B. Reweighting

As said earlier, the pseudodensity operator ρ̂{s} is not
Hermitian and not all conditional quasiprobabilities in Eq. (7)

are non-negative. Therefore, we rewrite them as

p(nk ) = sgn[p(nk )]
|p(nk )|
Nk

Nk, (9)

with the shorthand notation p(nk ) ≡ p(nk|n1, n2, . . . , nk−1).
The sampling for component k is then carried out using the
valid probability distribution q(nk ) ≡ |p(nk )|

Nk
with normaliza-

tion Nk = |p(nk = 0)| + |p(nk = 1)| [see Fig. 1(a)].
Having sampled the entire chain of conditional proba-

bilities for both spin components, the generated snapshot
is associated with a (signed) reweighting factor R = R↑R↓,
where

Rσ = sgn(wσ
{s})

D∏
k=1

{
sgn

[
p{s}

(
nσ

k

)]
N σ

k

}
, (10)

and all quantities O(n) = O(n1, n2, . . . , nD) that are evaluated
on M generated snapshots {ni}M

i=1 need to be reweighted as

〈O〉 =
∑M

i=1 RiO(ni )∑M
i=1 Ri

. (11)

The joint pseudoprobability p(n1, n2, . . .) can be factored
in arbitrary order into components. However, the reweighted
distribution q(n1, n2, . . .) and thus the magnitude and sign of
the reweighting factor depends on the chosen factor ordering,
leaving room for optimization in a given HS sample.

The severity of the sign problem is basis dependent: we
find that it strongly depends on the single-particle basis for
sampling and the chosen HS transformation. Sampling in the
Sx or Sy basis of the electron spin (or in the Sz basis in
momentum space) leads to a very strong sign (phase) problem.
Choosing the HS transformation that couples to the electron
charge density [35] rather than the electron spin also gives a
very severe sign problem.

Even at half filling, where the DQMC algorithm can be
made sign-problem free for the purpose of computing ex-
pectation values, there is a sampling sign problem, with a
nonuniform dependence on U/t . The average sign dimin-
ishes as U/t increases from U/t = 0 and reaches a minimum
at an intermediate value (U/t )MIC ≈ 4–7, where a metal-to-
insulator crossover [52] occurs [53]. For U/t > (U/t )MIC the
sign problem again gradually becomes much less severe. The
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FIG. 2. Joint distribution P(Mz
stag, Qz

stag ) at half filling. (a) Weak Hubbard interaction U/t = 1, βt = 4, L = 12, LA = 12. Even-odd oscil-
lations, which are visible in the joint distribution, are smeared out in the marginal distributions (left and bottom of each panel). (b) Close to the
metal-insulator crossover: U/t = 8, βt = 5, L = 12, LA = 12. In the heat map outliers have been set to zero. (c) Strong Hubbard interaction:
U/t = 14, βt = 5, L = 16, LA = 8.

dependence of the sampling sign problem on temperature,
interaction strength, and doping is presented in Figs. 4–6 in
Appendix C. The average sampling sign of pseudosnapshots
for the parameters in all figures of the main text is 〈s̃〉 � 0.75
with 〈s̃〉 defined in Eq. (C2).

In all simulations, we use a Trotter discretization of �τ t =
0.02 and generate around 20 pseudoshapshots per HS sample
on equidistant imaginary time slices. The simulation code has
been verified by comparing with exact diagonalization results
(see Appendix D).

III. APPLICATIONS

A. Joint full counting statistics (FCS)

At half filling, the Hubbard model has an enlarged
[SU (2) × SU (2)]/Z2 = SO(4) symmetry [54], which is the
combination of spin-rotational and particle-hole symmetry
and is generated by two commuting sets of angular momen-
tum operators describing the total spin and total pseudospin
of the system, respectively. As the temperature is lowered,
domains form with an order parameter of the same symmetry,
which, apart from fluctuating in length, can rotate [15,47]
on an SO(4) sphere between antiferromagnetic, s-wave pair-
ing and charge-density wave correlations, as one goes from
one domain to a neighboring domain. A joint histogram of
the operators representing different components of the or-
der parameter should reflect that they are projections of the
same vector along different directions in order parameter
space. Figure 2 shows the joint distribution of the projections
of the staggered magnetization Mz

stag = ∑NA
i=1(−1)i(n̂i,↑ −

n̂i,↓) and the staggered pseudospin Qz
stag = ∑NA

i=1(−1)i(n̂i,↑ +
n̂i,↓ − 1) on a square probe area of size NA = L2

A, as ob-
tained from reweighted pseudosnapshots. As U/t increases
[Figs. 2(a)–2(c)], the suppression of charge fluctuations man-
ifests itself in the narrowing of the pseudospin distribution.
The even-odd effect visible in the joint distributions is due to
the fact that an even number of sites can only accommodate
an even magnetization of spin- 1

2 (pseudospin) moments.
Note that P(Mz

stag, Qz
stag) could also be obtained using the

generating function approach of Ref. [47]. This is not true

for the FCS of the number of doublons Nd = ∑NA
i=1 n̂i,↑n̂i,↓

and the total number of holes Nh = ∑NA
i=1(1 − n̂i,↑)(1 − n̂i,↓),

since these operators are nonquadratic in fermionic operators.
We find that, e.g., for U/t = 12 and βt = 4, the FCS of Nh and
Nd as a function of doping are accurately modeled by (shifted)
binomial distributions (see Appendix E).

B. Three-point spin-charge correlator

A three-point spin-charge correlator in the reference frame
of the hole [19] was calculated for a single hole in the t-J
model at zero temperature with DMRG and trial wave func-
tions [55] and at finite (high and low) temperature using
worm algorithm QMC [29]. Presumably the same correlator
was measured experimentally in Ref. [19] for the Hubbard
model at large interactions. For the purpose of meaningful
comparison between the Hubbard and t-J model we calculate
the slightly modified correlator:

C|d|(r) =
〈
Ph

r0
Sz

r0+r+ d
2

Sz
r0+r− d

2

〉
〈
Ph

r0

〉 , (12)

where Sz
r = n̂r,↑ − n̂r,↓, and the projector

Ph
r0

= n̂h
r0

n̂s
r0+êx

n̂s
r0−êx

n̂s
r0+êy

n̂s
r0−êy

× n̂s
r0+êx+êy

n̂s
r0+êx−êy

n̂s
r0−êx−êy

n̂s
r0−êx+êy

, (13)

with n̂h
r = (1 − n̂r,↑)(1 − n̂r,↓) and n̂s

r = (1 − n̂r,↑)n̂r,↓ +
(1 − n̂r,↓)n̂r,↑, selects configurations with an empty site at
position r0 surrounded from eight sides by spin-only states,
which serves to exclude nearest- and next-nearest-neighbor
doublon-hole pairs from the statistics. The conditional corre-
lation functions in the reference frame of the hole, Eq. (12),
are implemented straightforwardly by applying a filter to
the pseudosnapshots, whereas implementing such higher or-
der correlation functions using a generalized form of Wick’s
theorem would require separate coding for each specific cor-
relator, thus hampering quick experimentation (although this
would give better statistics since all Fock states are summed
implicitly).
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FIG. 3. Three-point spin-charge correlations C|d|(|r|), as depicted in the insets, around an isolated hole (see main text). U/t = 14, μ/t =
−3, βt ∈ {2, 2.5}, system size L × L with L = 10. A total number of 108 pseudosnapshots has been generated with 224 independent Markov
chains. For μ/t = −3 and L = 10, the average number of excess holes is 〈Nh〉 − 〈Nd〉 ≈ 0.35 (see FCS of Nh and Nd in Appendix E). The data
is consistent with data for comparable parameters of temperature and interactions (βt = 2.2 and βJ = 0.66) from Ref. [29] where a single
hole in the t-J model was simulated.

Figure 3 shows overall qualitative agreement of C|d|(r) for
our data for the Hubbard model and that of Ref. [29] for the
t-J model, with some notable differences in C√

2 and C2 in
the immediate vicinity of the hole. A careful comparison of
the t-J model with the Hubbard model would require a renor-
malization of all correlators in the former by a polynomial in
t/U [56] (although certain qualitative model differences may
not be captured perturbatively [57]).

There are qualitative differences to the experimental data
of Ref. [19], which were already noted in Ref. [29]. The
data of Ref. [19] can be reproduced by nested componentwise
sampling, pointing, however, to a very different conclusion:
namely, that magnetic polarons may have disappeared for the
relatively high doping level of Ref. [19]. This is illustrated in
Appendix F.

IV. CONCLUSION

In conclusion, the presented method for generating pseu-
dosnapshots allows both theorists to take part in the explo-
ration of fermionic quantum microscopy and experimentalists
to use numerical simulations in a more versatile way [58].
The data analysis of pseudosnapshots is quite analogous to
that of experimental snapshots generated by projective mea-
surements except that a signed reweighting factor needs to be
taken into account. While it is not meaningful to compare in-
dividual pseudosnapshots with actual experimental snapshots,
the full distribution of pseudosnapshots after reweighting is
identical to the distribution of snapshots from projective mea-
surements. The difference is that quantum gas microscope
experiments achieve direct sampling of occupation number
states from the density matrix, whereas the method presented
here relies on indirect sampling from the overall interacting
fermion density matrix (we can achieve direct sampling only
at the level of the constituent free fermion density matrices).
Arbitrary quantities can be evaluated on the reweighted pseu-
dosnapshots, including those that cannot be feasibly expressed
as expectation values of operators. A case in point is the FCS
of macroscopic operators which are higher than quadratic in
fermionic operators; there, the generating function method of

Ref. [47] does not apply, and evaluation as a sum of projectors
onto Fock states would require a number of terms which is
exponential in the number of sites.

Our nested componentwise direct sampling method is
generic to all fermionic Monte Carlo methods that are
based on the “free fermion decomposition” [49] and is
easily adapted to projector DQMC [35] for accessing zero-
temperature properties where Slater determinants rather than
thermal free-fermion pseudodensity matrices are sampled
directly in the inner loop of the Markov chain. For Hub-
bard models around intermediate interaction strength U/t ≈
(U/t )MIC further improvements are required to reduce the
sampling sign problem. There, the interest lies in potentially
observing non-Gaussian fluctuations [59] or characterizing
attraction and spin correlations between dopants [30] in the
crossover from a polaronic metal to a Fermi liquid [20]. While
a general solution of the sampling sign problem is unlikely, it
remains to be investigated how more general HS decouplings
and representations of the electron operator [60], which were
successful at eliminating the sign problem of the Monte Carlo
weights, affect the sampling sign problem and whether snap-
shots in another single-particle basis can be generated.

The total computing time spent on the generation of
Figs. 1–3 amounts to the equivalent of approximately 3 × 104

CPU hours on an Intel(R) Core(TM) i5-6300U CPU with
2.40 GHz clock cycle.
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APPENDIX A: INDUCTIVE PROOF OF EQ. (5) IN THE
MAIN TEXT

Let

G(0)
iα, jβ

= 〈ĉiα ĉ†
jβ
〉0 (A1)

be the single-particle Green’s function of a free fermion sys-
tem, and α, β ∈ {1, . . . , D}. First we prove the well-known
fact that Wick’s theorem for higher-order correlation functions
can be expressed in the compact determinant form〈
(ĉi1 ĉ†

j1
)
(
ĉi2 ĉ†

j2

) · · · (ĉin ĉ†
jn

)〉
0 = det

(
G(0)

I={i1,i2,...,in};J={ j1, j2,..., jn}
)

≡ [G(0)]I;J . (A2)

We use the convention that [A]I;J refers to the determinant of
the submatrix of A whose row index (column index) runs in
the set I (J), which is the “inclusive” definition of the minor.

The proof goes by induction. The case n = 1 is true by
virtue of the definition (A1). In the induction step, we use
Wick’s theorem writing all nonvanishing contractions for a

product of n + 1 pairs of fermionic operators as

〈(
ĉi1 ĉ†

j1

) · · · (ĉin+1 ĉ†
jn+1

)〉
0

= −G(0)
i1, jn+1

〈(
ĉin+1 ĉ†

j1

)(
ĉi2 ĉ†

j2

) · · · (ĉin ĉ†
jn

)〉
0

−
n−1∑
k=2

G(0)
ik , jn+1

〈(
ĉi1 ĉ†

j1

)(
ĉi2 ĉ†

j2

) · · · (ĉin+1 ĉ†
jk

)
× (

ĉik+1 ĉ†
jk+1

) · · · (ĉin ĉ†
jn

)〉
0 − G(0)

in, jn+1

〈(
ĉi1 ĉ†

j1

) · · ·
× (

ĉin−1 ĉ†
jn−1

)(
ĉin+1 ĉ†

jn+1

)〉
0

+ G(0)
in+1, jn+1

〈(
ĉi1 ĉ†

j1

) · · · (ĉin ĉ†
jn

)〉
0
. (A3)

The minus sign, e.g., in the second line of Eq. (A3), comes
from the permutation of ĉin+1 with ĉ†

jk
. Using the induction

hypothesis Eq. (A2), valid for n pairs of fermionic operators,
the remaining correlators in Eq. (A3) can be expressed as
determinants:

〈(
ĉi1 ĉ†

j1

) · · · (ĉin+1 ĉ†
jn+1

)〉
0

= −G(0)
i1, jn+1

det

⎛
⎜⎜⎜⎜⎝

G(0)
in+1, j1

G(0)
in+1, j2

· · · G(0)
in+1, jn

G(0)
i2, j1

G(0)
i2, j2

· · · G(0)
i2, jn

...
...

. . .
...

G(0)
in, j1

G(0)
in, j2

· · · G(0)
in, jn

⎞
⎟⎟⎟⎟⎠

− G(0)
i2, jn+1

det

⎛
⎜⎜⎜⎜⎝

G(0)
i1, j1

G(0)
i1, j2

· · · G(0)
i1, jn

G(0)
in+1, j1

G(0)
in+1, j2

· · · G(0)
in+1, jn

...
...

. . .
...

G(0)
in, j1

G(0)
in, j2

· · · G(0)
in, jn

⎞
⎟⎟⎟⎟⎠ − · · ·

− G(0)
in, jn+1

det

⎛
⎜⎜⎜⎜⎝

G(0)
i1, j1

G(0)
i1, j2

· · · G(0)
i1, jn

...
...

. . .
...

G(0)
in−1, j1

G(0)
in−1, j2

· · · G(0)
in−1, jn

G(0)
in+1, j1

G(0)
in+1, j2

· · · G(0)
in+1, jn

⎞
⎟⎟⎟⎟⎠

+ G(0)
in+1, jn+1

det

⎛
⎜⎜⎜⎜⎝

G(0)
i1, j1

G(0)
i1, j2

· · · G(0)
i1, jn

G(0)
i2, j1

G(0)
i2, j2

· · · G(0)
i2, jn

...
...

. . .
...

G(0)
in, j1

G(0)
in, j2

· · · G(0)
in, jn

⎞
⎟⎟⎟⎟⎠. (A4)

By rearranging rows in (A4), it can be concluded that (A4) is
the expansion of the (n + 1) × (n + 1) determinant

det

⎛
⎜⎜⎜⎜⎝

G(0)
i1, j1

G(0)
i1, j2

· · · G(0)
i1, jn+1

G(0)
i2, j1

G(0)
i2, j2

· · · G(0)
i2, jn+1

...
...

. . .
...

G(0)
in+1, j1

G(0)
in+1, j2

· · · G(0)
in+1, jn+1

⎞
⎟⎟⎟⎟⎠ (A5)

along the last column according to Laplace’s formula. This
completes the inductive proof. Except for the last determi-
nant in Eq. (A4), row exchanges are necessary to obtain the
correct submatrix structure. In the determinant accompanying

the single-particle Green’s function G(0)
ik , jn+1

in Eq. (A4) we
need to perform (n − k) row exchanges which results in a
factor (−1)n−k such that the total sign is (−1)n−k+1, which
is identical to the alternating factor (−1)n+1+k coming from
Laplace’s formula.

Equation (5) differs from Eq. (A2) in that instead of pair-
ings (ĉik ĉ†

jk
) there are projectors of the form

�k = nkĉ†
jk

ĉ jk + (1 − nk )ĉ jk ĉ†
jk
. (A6)

Depending on whether nk = 0 or nk = 1, only one of either
term in (A6) applies. Let us replace for the moment only the
kth pairing (ĉik ĉ†

jk
) in Eq. (A2) by �k . If nk = 0, the resulting
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expression is covered by Eq. (A2). The case nk = 1 is different
since ĉ†

jk
is to the right of ĉ jk . Using ĉ†

jk
ĉ jk = 1 − ĉ jk ĉ†

jk
, one

obtains

〈(ĉi1 ĉ†
j1

· · ·�k · · · (ĉin ĉ†
jn

)〉0 = (−1)nk nk
[

det
(
G(0)

I\ jk ,J\ jk

)
− det

(
G(0)

I,J

)]
. (A7)

To make the connection with Eq. (5) we consider the matrix

(G̃(0) )i j = (G(0) )i j − nkδi, jk δ j, jk (A8)

and develop its determinant with respect to the kth column:

det(G̃) =
n∑

l=1

(−1)l+k ( ˜G(0) )il , jk [ ˜G(0)]I\il ,J\ jk (A9)

=
n∑

l=1

(−1)l+k (G(0) )il , jk [G(0)]I\il ,J\ jk − nk (−1)2k

× [G(0)]I\ jk ,J\ jk . (A10)

Here, angular braces (·) denote matrix elements and square
brackets [·] denote the inclusive definition of the minor. Note
that the minors [ ˜G(0)]I\il ,J\ jk = [G(0)]I\il ,J\ jk since ˜G(0) and
G(0) only differ in the element ( jk, jk ) which is excluded from
the minors. Now, one can recognize in the first sum Eq. (A10)
the Laplace expansion of G(0) with respect to the kth column

and undo it again to recover det(G(0) ):

det( ˜G(0) ) = det(G(0) ) − nk[G(0)]I\ jk ,J\ jk . (A11)

Equation (A11) is identical to Eq. (A7), which proves that

〈(ĉi1 ĉ†
j1

) · · · �k · · · (ĉin ĉ†
jn

)〉0

= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G(0)
i1, j1

G(0)
i1, j2

· · · · · · G(0)
i1, jn

G(0)
i2, j1

G(0)
i2, j2

· · · · · · G(0)
i2, jn

...
...

. . . · · · ...

...
... G(0)

jk , jk
− nk · · · ...

...
...

...
. . .

...

G(0)
in, j1

G(0)
in, j2

· · · · · · G(0)
in, jn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A12)

Repeatedly replacing each pairing (ĉil ĉ
†
jl

) in Eq. (A2) by a
projector �l of the form (A6) and repeating the derivation
from (A8) to (A12), with a Laplace expansion carried out with
respect to the lth column, completes the proof of Eq. (5).

APPENDIX B: EXPLOITATION OF BLOCK MATRIX
STRUCTURE

Equation (5) implies that the expressions for the joint
quasiprobability distributions of successive numbers of com-
ponents are related by a block matrix structure. Using the
formula for the determinant of a block matrix and noticing
that G(y, y) is just a number,

p(x1, x2, . . . , xk−1; y) = 1

Z
det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Xk−1

G(x1, y)

G(x2, y)
...

G(xk−1, y)
G(y, x1) G(y, x2) · · · G(y, xk−1) G(y, y)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B1)

= 1

Z
det(Xk−1)

[
G(y, y) −

k−1∑
i, j=1

G(y, xi )
[
X −1

k−1

]
i, j

G(x j, y)

]
. (B2)

Given that Xk−1 is itself a block matrix

Xk−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Xk−2

G(x1, xk−1)

G(x2, xk−1)
...

G(xk−2, xk−1)
G(xk−1, x1) G(xk−1, x2) · · · G(xk−1, xk−2) G(xk−1, xk−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B3)

with G(xk−1, xk−1) just a number and assuming that the inverse X −1
k−2 is already known, one can make use of the formula for the

inversion of a block matrix to compute the inverse of Xk−1 in an economical way. We define

g ≡ G(xk−1, xk−1) −
k−2∑

i, j=1

G(xk−1, xi )
[
X −1

k−2

]
i, jG(x j, xk−1) (B4)
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FIG. 4. Sampling sign problem at half filling. The probe area is
the total L × L square system (L = LA). (a) Average sign of a pseu-
dosnapshot. (b) Average (unsigned) reweighting factor (full lines)
and average maximum reweighting factor (dashed lines). The red
dashed-dotted line indicates a rough estimate of the threshold of
maximum reweighting factors below which numerically exact results
can be obtained with modest computational effort.

and recognize that

g = p(x1, x2, . . . , xk−1)

p(x1, x2, . . . , xk−2)
= p(xk−1|xk−2, . . . , x2, x1), (B5)

which means that we have computed g already previously
when sampling the (k − 1)th component.

Using the formula for the inverse of a block matrix

X −1
k−1 =

(
X −1

k−2 + g−1�u ⊗ �vT −g−1�u
−g−1�vT g−1

)
, (B6)

where

[�u]i =
k−2∑
j=1

[
X −1

k−2

]
i jG(x j, xk−1), (B7)

[�vT ] j =
k−2∑
i=1

[
X −1

k−2

]
i jG(xk−1, xi ), (B8)

and

[�u ⊗ �vT ]i j = [�u]i[�vT ] j . (B9)

Thus the update X −1
k−2 → X −1

k−1 requires the computation
of �u, �vT , and the exterior product �u ⊗ �vT , which is of or-
der O((k − 2)2). It is easy to see that the sampling of Np

particle positions requires O(
∑Np

i=1 i2) = O(N3
p ) floating point

operations. It is not necessary to compute any inverse or
determinant from scratch.

FIG. 5. Conventional sign problem and sampling sign problem away from half filling: dependence on U/t . (a),(c) Average sign (〈s〉, full
lines) and average sampling sign (〈s̃〉, dashed lines); (b),(d) average reweighting factor (full lines) and average maximum reweighting factor
(dotted lines). The inverse temperature β is in units of 1/t . The probe area is equal to the system size with LA = L = 8.
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APPENDIX C: SIGN PROBLEM FOR NESTED
COMPONENTWISE DIRECT SAMPLING AT AND AWAY

FROM HALF FILLING

The severity of the conventional sign problem in the deter-
minantal QMC algorithm is measured by the average sign of
the Monte Carlo weight

〈s〉 = 1

NHS samples

∑
{s}

sgn(w↑
{s}w

↓
{s}), (C1)

where the sum is over auxiliary field configurations of the
Hubbard-Stratonovich samples. To quantify the “sampling
sign problem” in the nested componentwise sampling algo-
rithm we introduce the average sign of a snapshot, 〈s̃〉, which
is given by

〈s̃〉 = 1

M

∑
{s}

sgn(w↑
{s}w

↓
{s})

Nsnapshots per HS∑
i=1

∏
σ=↑,↓

D∏
k=1

sgn[p(i)
{s}(n

σ
k )],

(C2)

where M = NHS samples × Nsnapshots per HS is the total number of
generated snapshots. Here, it is understood that snapshots
drawn from the same HS sample, the number of which is
Nsnapshots per HS, are multiplied by the sign of the corresponding
Monte Carlo weight w

↑
{s}w

↓
{s}, in case that there is already a

conventional sign problem at the level of the determinantal
QMC algorithm. Note that within one HS sample, {s}, snap-
shots for spin-↑ and spin-↓ can be paired up arbitrarily into

a full snapshot due to the statistical independence of the two
spin species.

Furthermore, one can define the average (unsigned)
reweighting factor

Rav = 1

M

∑
{s}

Nsnapshots per HS∑
i=1

∏
σ=↑,↓

D∏
k=1

N σ,(i)
k,{s} (C3)

and the average maximum reweighting factor, averaged over
independent Markov chains,

Rav max = 1

NMarkov chains

NMarkov chains∑
m=1

max
snapshots i

from mth Markov chain

(|Ri|).

(C4)

The average maximum reweighting Rav max is the most rel-
evant indicator of the severity of the sign problem as it
quantifies the “inflation” of value of an individual snapshot.
Because the reweighting factor can fluctuate over several or-
ders of magnitude, the average sign alone is not sufficient for
a characterization of the “sampling sign problem.” How the
sampling sign and the reweighting factor depend on doping,
inverse temperature βt and interaction strength U/t is shown
in Figs. 4–6.

The snapshots generated in quantum gas microscope ex-
periments originate from independent experimental runs,
whereas the pseudosnapshots of the nested componentwise
sampling are affected by the autocorrelation time inherent in

FIG. 6. Conventional sign problem and sampling sign problem away from half filling: dependence on inverse temperature βt . System size
LA = L = 8.
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FIG. 7. Probabilities P(s) of all microstates s in the occupation
number basis. Comparison with exact diagonalization (ED) for the
parameters shown in the upper panel and for the hopping matrix of
Eq. (D2). The total number of Fock samples is 107, generated by 56
independent Markov chains.

the sampling of Hubbard-Stratonovich field configurations via
the standard determinantal QMC algorithm. For large U/t ,
pseudosnapshots taken from the same HS sample (and at the
same imaginary time slice) differ mostly in the positions of
holes and doubly occupied sites, while the spin background
stays largely fixed.

Additionally, pseudosnapshots come with a sign and
reweighting factor due to the non-Hermiticity of the pseu-
dodensity operator within each HS sample. Therefore, ex-
perimental snapshots and pseudosnapshots are not directly
comparable. An important question is how many pseudos-
napshots M are required to obtain a comparable precision of

measurement quantities as from M (expt) experimental snap-
shots. Taking into account the average maximum reweighting
factor, the effective number of pseudosnapshots M ′ that is
equivalent to M (expt) can be roughly estimated as

M ′ = M/
(
τ

DQMC
AC × Rav max

) ↔ M (expt). (C5)

Here, τ
DQMC
AC is some measure of the autocorrelation of the

Markov chain generated by the standard determinantal QMC
algorithm.

The “sampling sign” deteriorates exponentially with the
probe area NA = L2

A. Yet, an extent of the probe area LA ∼
ξ (T/t,U/t, L), where ξ is the correlation length, is often
sufficient for meaningful simulations.

APPENDIX D: CODE VERIFICATION

For benchmarking purposes an irregular model instance of
the Hubbard model on five sites [see inset in Fig. 7(b)] is
chosen,

H = −
∑

〈i, j,〉,σ=↑,↓
tσ
i j (c

†
i,σ c j,σ + H.c.) + U

5∑
i=1

ni,↑ni,↓

−
∑

σ=↑,↓
μσ

5∑
i=1

ni,σ , (D1)

which breaks translational, point group, and spin rotational
symmetry. The hopping matrix is identical for both spin
species and reads

[tσ ]i, j = t

⎛
⎜⎜⎜⎝

0 0.7 1.1 0 0.8
0.7 0 1.05 0.9 1.2
1.1 1.05 0 1.0 0
0 0.9 1.0 0 0

0.8 1.2 0 0 0

⎞
⎟⎟⎟⎠. (D2)

FIG. 8. (a) Probabilities of spin-only states around an empty site as obtained from reweighted pseudosnapshots in the reference frame of
the hole. Parameters: U/t = 12, μ/t = −2, βt = 2.5, L × L square lattice with L = 8. For this system size, the average number of holes and
doubles 〈Nh〉 ≈ 1.50 and 〈Nd 〉 ≈ 1.31 so that the average number of excess holes is 〈Nh〉 − 〈Nd〉 ≈ 0.19. With 56 independent Markov chains a
total number of 70 × 106 occupation number samples of the entire system was obtained. In the reference frame of the hole, those states around
the hole position are filtered out which do not contain charge fluctuations (“spin-only states”). Per Hubbard-Stratonovich configuration, 200
direct sampling steps were performed during the Monte Carlo sweeps at different imaginary time slices. Trotter discretization �τ t = 0.02.
(b) Illustration of the most important spin-only states around an isolated hole which are marked in panel (a). Dashed lines delineate different
antiferromagnetic domains.
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FIG. 9. FCS of the total number of doubly occupied sites 〈Nd〉
and holes 〈Nh〉, obtained from reweighted pseudosnapshots for differ-
ent levels of hole doping (top and bottom panel). Dashed and dotted
lines are binomial distributions; the dashed-dotted line is a “shifted”
binomial distribution. Parameters: U/t = 12, βt = 4, L = 8.

The on-site repulsion is U/t = 4 and the chemical poten-
tial for spin up and down is μ↑/t = 1.5 and μ↓/t = 1.8,
respectively; the inverse temperature is βt = 4 discretized
into Nτ = 256 Trotter time slices with �τ t = βt/Nτ = 1/64.
Figure 7 compares the probabilities P(s) of all microstates s in

the occupation number basis with results from exact diagonal-
ization. An enlarged view of Fig. 7(a) is shown in Fig. 7(b).
The occupation number state n = [n1,↑ . . . n5,↑; n1,↓ . . . n5,↓]
with ni,σ ≡ nα ∈ {0, 1} is interpreted as a bit string and
is represented by the integer s = ∑2Nsites−1

α=0 nα2α . With the
knowledge of the eigenenergies Ei and eigenvectors |φi〉 of the
Hamiltonian H the probability of an occupation number state
s is

P(s) =
dim(H )∑

i=1

e−βEi

Z
|〈s|ϕi〉|2. (D3)

where Z = ∑dim(H )
i=1 e−βEi . In order to demonstrate that the

nested componentwise direct sampling method yields con-
sistent microscopic states also for much larger system sizes,
Fig. 8 shows the probabilities of spin-only states on the eight
sites around an isolated, mobile hole for a system of 10 × 10
lattice sites at small doping. Only isolated holes, i.e., those
surrounded exclusively by singly occupied sites, are consid-
ered [see Eq. (13) of the main text]. With the labeling of sites
around a hole as shown in the right panel of Fig. 8, the spin
environment is characterized by the state σ = [σ0σ1 . . . σ7],
where σp = 1 if there is a spin-↑ at position p around the hole
and σp = 0 if it is a spin-↓. With this convention, the state
index in Fig. 8 is given as s = ∑7

p=0 σp2p. Figure 8 shows that
there is a hierarchy of groups of states (right panel of Fig. 8).
Furthermore, states related by symmetry, which are grouped
together in colored boxes in Fig. 8, appear with approximately
the same probability. This is not a built-in feature of the
nested componentwise sampling algorithm and thus provides

FIG. 10. Three-point spin-charge correlation function C|d|=2(|r|) of Eq. (F1) computed on a 4 × 4 system (a)–(c) as well as a 6 × 6 system
(d)–(g) with periodic boundary conditions and with parameters U/t = 14, βt = 2.5, μ = −4.0, −4.5, . . . ,−6.5. The dashed magenta line in
(c) [denoted “conditional C2”] shows the correlation function C|d|=2(|r|) calculated for μ/t = −4.0 according to Eq. (12) in the main text, in
which only those snapshots are counted where the hole is surrounded on eight sites by spin-only states (i.e., it is not adjacent to a doublon
or a hole and can be regarded as an isolated dopant). The experimental data of Ref. [19] are also shown for comparison. There, the system
size is approximately 4 × 6 to 6 × 6 lattice sites (slightly inhomogeneous with open boundary conditions), interactions U/t ≈ 14, and stated
temperature T = 1.4J , which corresponds to T/t ≈ 0.4 (i.e., βt = 2.5) for J = 4t2/U . In the quantum gas microscope experiment, there are
on average 1.95(1) dopants present in each experimental realization (doublon doped instead of hole doped) [19]. For our setting on a 4 × 4
system at μ/t = −4.0, on the other hand, the average number of holes (hole doped) is 〈Nh〉 = 0.72, which is small enough for measuring the
spin environment of an isolated dopant. (d) Randomly chosen pseudosnapshots for μ/t = −4 (left) and μ/t = −5 (right).
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strong evidence that all relevant occupation number states are
sampled with their correct probabilities.

APPENDIX E: FCS OF NUMBER OF DOUBLONS AND
HOLES

Figure 9 displays the doping dependence of the FCS of the
number of doubly occupied sites Nd = ∑NA

i=1 ni,↑ni,↓ and holes
Nh = ∑NA

i=1(1 − ni,↑)(1 − ni,↓) for U/t = 12, βt = 4 on an
L × L system with L = LA = 8 and NA = L2

A. For small
doping values, the FCS are well described by binomial dis-
tributions (dashed and dotted lines) which are generated by
populating lattice sites independently with doublons (holes)
with probability pd = 〈n↑n↓〉 [ph = 〈(1 − n↑)(1 − n↓)〉] ac-

cording to the distribution Bn,p(x) = (n
x)px(1 − p)n−x with

n = NA and p ∈ {pd , ph}. In the strongly doped case (lower
panel), the distribution of the number of holes can be modeled
accurately by a “shifted” binomial distribution (dashed-dotted
line), which is obtained by populating the lattice with holes
arising from doublon-hole fluctuations according to a bino-
mial distribution with parameter p = pd (since the number
of doublon-hole pairs is approximately equal to the number
of doublons), which is then shifted so that the distribution is
centered about its mean. Of course, for a large probe area and
away from a critical point, the distribution of holes (doublons)
should approach a Gaussian distribution which could be char-
acterized by computing the mean and variance directly.

APPENDIX F: ADDITIONAL DATA FOR THE POLARON
PROBLEM

This section illustrates the significance of numerical sim-
ulations for exploring the parameter space. In agreement
with Ref. [29] for the t-J model and the results of Fig. 3
for the Hubbard model, one can identify the joint condition
C|d|=2(|r| = 0) < 0 and C|d|=2(|r| = 1) > 0 as a character-
istic correlation pattern of a magnetic polaron. However,
C|d|=2(|r| = 0) < 0 by itself occurs also for larger doping
values where the antiferromagnetic spin background is too
diluted to host polarons. Figure 10 juxtaposes the evolution
of the three-point correlation function in the reference frame
of a hole

C|d|=2(|r|) =
〈
n(h)

r0
Sz

r0+r+ d
2

Sz
r0+r− d

2

〉
〈n(h)

r0 〉 (F1)

FIG. 11. FCS of the number of doubly occupied (Nd ) and empty
sites (Nh) for the same parameters as in Fig. 3 of the main text, which
are L = 10,U/t = 14, μ/t = −3.0, βt = 2.5.

as a function of chemical potential μ/t for L = 4 (c) and L =
6 (e), respectively, with the distribution of the number of holes
(b),(g) and doubly occupied sites (a),(f). Unlike in Eq. (12) of
the main text, for the study of the hole environment in Fig. 10
no projection operator restricting the sites around the hole to
be singly occupied has been applied prior to evaluating the
correlation function. The data points connected by a thick red
line are taken from Fig. 4(c) of Ref. [19]. From μ/t = −4.0
to μ/t = −5.5 the correlator C|d|=2(|r|) changes markedly,
which leads to the conclusion that Fig. 4 of Ref. [19] is
consistent with the disappearance rather than the presence of
magnetic polarons, which is due to the relatively high level of
doping chosen in Ref. [19]. This picture is supported by vi-
sually comparing the two randomly selected pseudosnapshots
for μ/t = −4.0 versus μ/t = −5.0 in Fig. 10(d). However,
note that the pseudosnapshots should not be taken at face
value since they come with a sign and a reweighting factor.
Figure 11 shows the FCS of the number of doubly occupied
sites and holes for the same parameters as in Fig. 3 of the
main text, indicating that only a small number of excess holes
is present in the pseudosnapshots.
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