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Antiferromagnetic magnons and local anisotropy: Dynamical mean-field study
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We present a dynamical mean-field study of antiferromagnetic magnons in a one-, two-, and three-orbital
Hubbard model of square and bcc cubic lattice at intermediate coupling strength. We investigate the effect of
anisotropy introduced by an external magnetic field or single-ion anisotropy. For the latter we tune continuously
between the easy-axis and easy-plane models. We also analyze a model with spin-orbit coupling in cubic site-
symmetry setting. The ordered states as well as the magnetic excitations are sensitive to even a small breaking
of SU (2) symmetry of the model and follow the expectations of spin-wave theory as well as general symmetry
considerations.
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I. INTRODUCTION

The scalability to multiorbital systems made the dynam-
ical mean-field theory (DMFT) [1–3] a widely used tool
for the investigation of electronic correlations on a material
specific level [4,5]. The primary niche of DMFT is the one-
particle correlation functions (1PCFs) such as the generalized
band structures. Nevertheless, DMFT allows the calculation
of higher order correlation functions as well. In particular,
two-particle correlation functions (2PCFs) play a crucial role
in the description of continuous phase transitions and, in the
form of transport coefficients, dynamical structure factors or
susceptibilities are directly related to numerous experiments.
The solution of the Bethe-Salpeter equation (BSE) makes
the calculation of 2PCFs numerically very demanding. The
DMFT calculations of 2PCFs have so far been limited to
simple models and high symmetry [6–10], or have involved
substantial approximations [11]. Numerical and analytical de-
velopments in representation of 2PCFs [12] and solution of
BSE [13–16] make calculations for realistic models with three
or more orbitals and several atoms in the unit cell feasible.

The collective modes described by 2PCFs play a partic-
ularly important role in ordered phases with spontaneously
broken symmetry. Presence or absence of a gap in 2PCF
spectrum related to the type, discrete vs continuous, of broken
symmetry is decisive for finite-temperature stability of the
ordered state in two dimensions [17]. Therefore it is impor-
tant to understand not only the analytic properties of a given
theory, for DMFT see Refs. [18–20], but also the properties
of the actual numerical implementation. Recently, some of us
demonstrated [21,22] that the dynamical susceptibilities ob-
tained using DMFT respect the Goldstone theorem [23,23,24]
in the case of U (1) × U (1) symmetry breaking in spinful
excitonic condensate [25–27].

The most common and largely studied long-range order in
strongly correlated materials is the antiferromagnetic (AFM)
one [28]. The AFM Heisenberg model [29], which describes
fluctuating spins in Mott insulators, was studied in detail with
analytical [30] as well as with numerically exact methods

[31]. Investigation of antiferromagnetism in the fermionic
Hubbard model, which allows for the description of doped
Mott insulators or AFM metals, relies on weak-coupling
methods such as the random phase approximation [32,33],
two-particle self-consistent approximation [34] or fluctuation-
exchange approximation [35], numerical simulations on finite
systems [36,37] or local approximations to interaction vertices
such as DMFT and its cluster [38,39] or diagrammatic exten-
sions [40,41].

In this paper, we use DMFT and 2PCFs to study AFM
ordering in the half-filled Hubbard model with one, two,
and three orbitals. While the magnetic phase diagram of the
single-orbital Hubbard model in three dimensions (3D) has
been investigated with a number of methods [38,39,42] in-
cluding DMFT [38,42,43], we calculate the magnon spectra
and introduce various symmetry breaking terms such as ex-
ternal field or single-ion anisotropy, in order to analyze their
effect on magnon dispersions. The calculations are performed
for 2D and 3D lattices. Our goal is to demonstrate the utility
of the present approach for the study of the magnetically
ordered phases of multiorbital models. In the 2D case, where
spontaneous symmetry breaking is forbidden in the case of
continuous symmetry [17] but allowed in the case of discrete
symmetry, we investigate a model, which can be continuously
tuned between these cases.

II. COMPUTATIONAL METHOD

The studied Hamiltonian consists of the intersite hopping,
diagonal in orbital and spin indices, and the onsite part Hi con-
sisting of the electron-electron interaction, external Zeeman
field, and spin-orbit coupling (the specific form will be given
later for each studied case)

H = t
∑
〈i j〉,σ

N∑
l=1

c†
ilσ c jlσ +

∑
i

Hi. (1)
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Here, c†
ilσ and cilσ are the fermionic creation and annihilation

operators for electrons with spin σ in orbital l at site i of a
square or bcc cubic lattice. The number of orbitals N ranges
from 1 to 3 in the studied models. For later use we define
the occupation number operator nilσ ≡ c†

ilσ cilσ and the local
spin operators Sα

i ≡ ∑
lνν ′ σα

νν ′c†
ilνcilν ′ , where σα are the Pauli

matrices. For the sake of consistency with previous work [44]
we choose t = 1/8 and use it for all studied cases.

The calculations follow the standard DMFT procedure.
The lattice model is mapped onto an auxiliary Anderson
impurity model with self-consistently determined parameters
[2,6], for which the 1PCFs are evaluated using the ALPS im-
plementation [45–47] of the strong-coupling continuous-time
quantum Monte-Carlo (CT-QMC) algorithm [48]. The model
hosts two competing phases: the normal paramagnetic one and
the AFM phase with a staggered spin configuration charac-
terized by the Néel vector N = 1

2 〈SA − SB〉. We focus on the
dynamical spin susceptibility χαα (q, ω), which is obtained by
analytic continuation from its Matsubara representation

1

N

〈
S̃α

−qS̃α
q

〉
ωn

= 1

N

∫ β

0
dτeiωnτ

〈
S̃α

−q(τ )S̃α
q (0)

〉
. (2)

Here 〈X 〉 = 1
Z Tr Xe−βH denotes the thermal average, N is the

number of lattice sites, and X̃ = X − 〈X 〉. We also evaluate
the 1P observables such as the static magnetization 〈SR〉 and
the 1P spectral functions. The analytic continuation employs
the maximum entropy method [49]; for details of the present
implementation see Refs. [21,50].

The calculations are performed in a two-site unit cell
where the sites are labeled by the sublattice index s = A, B.
The reciprocal space operators in Eq. (2) are then given by
S̃α

q = ∑
R e−iq·R(S̃α

R,A + e−iq·sS̃α
R,B), where the sublattice vec-

tor s assumes the value ( 1
2 , 1

2 ) or ( 1
2 , 1

2 , 1
2 ) for the 2D and

3D models, respectively. The correlation function in Eq. (2)
is then obtained as a linear combination of the sublattice
contributions

〈S̃−qS̃q〉ω = 〈S̃−q,AS̃q,A〉
ω

+ 〈S̃q,BS̃−q,B〉
ω

+ eiq·s〈S̃−q,BS̃q,A〉
ω

+ e−iq·s〈S̃−q,AS̃q,B〉
ω
.

Each term is a contraction of the generalized susceptibility
χi js,kls′ (q, ω) over the spin-orbital indices

1

N

〈
S̃α

−q,sS̃
α
q,s′

〉
ω

= Mα
i jM

α
klχi js,kls′ (q, ω)

with matrix elements Mα
i j following from the definition of

the spin operators above. To simplify the notation we use
underline to indicate summation over the corresponding
indices [51].

The calculation of the generalized susceptibility within
DMFT [3,6,7,44] requires a more general object—the 2PCF
Xi jsν,kls′ν ′ (q, ω), where i, j, k, l are the spin-orbital indices,
s, s′ are the sublattice indices, and ν, ν ′ are fermionic indices,
which represent the imaginary time evolution, e.g., Matsubara
frequencies or imaginary time. Since the fermionic indices
appear only as dummy variables in the BSE, the equation
is invariant under their unitary transformation. In the present
calculations we use the Legendre basis [7] for the fermionic
indices. The susceptibility χ...,...(q, ω) is obtained by the con-

traction of X...ν,...ν ′ (q, ω) with the basis dependent structure
factor Fν [7,52]

χi js,kls′ (q, ω) = FνFν ′Xi jsν,kls′ν ′ (q, ω). (3)

The 2PCF Xi jsν,kls′ν ′ (q, ω) is the solution of the lattice BSE
(4) using the local 2P-irreducible vertices 	s

i jν,klν ′ (ω) and the
lattice bubbles X 0

i jsν,kls′ν ′ (q, ω). The vertices are related to the
impurity 2PCF xi jν,klν ′ (s; ω) via the impurity BSE (5) for each
sublattice s.

Xi jsν,kls′ν ′ (q, ω) = X 0
i jsν,kls′ν ′ (q, ω) + X 0

i jsν,mns1ν1
(q, ω)

×	
s1
mnν1,pqν2 (ω)Xpqs1ν2,kls′ν ′ (q, ω) (4)

xi jν,klν ′ (s; ω) = x0
i jν,klν ′ (s; ω) + x0

i jν,mnν1
(s; ω)

×	s
mnν1,pqν2

(ω) xpqν2,klν ′ (s; ω). (5)

The lattice and local bubbles

X 0
i jsν,kls′ν ′ (q, ω) = −δνν ′Gis,ks′ (k+q, ν+ω)Gls′, js(k, ν)

x0
i jν,klν ′ (s; ω) = −δνν ′Gis,ks(k, ν+ω)Gls, js(k′, ν)

are obtained from the 1P propagator

Gis, js′ (k, ν) = [iν − hk − �(ν)]−1
is, js′ .

Note that in the 2P quantities, such as Xi jsν,kls′ν ′ (q, ω), the
spin-orbital indices i and j (k and l) point to the same lat-
tice site and thus share the sublattice index s (s′). This is
because we are interested in correlators of local operators, i.e.,
products of the type c†

Rs...cRs... and because the DMFT vertex
	s

jkν,klν ′ (ω) is local. As a result the corresponding matrices
scale with the square of the number of spin orbitals per site
but only linearly with the number of sites per unit cell.

We used the 1P propagators at 300 Matsubara frequen-
cies and a uniform 55 × 55 (25 × 25 × 25) k mesh in the
2D (3D) case to compute the lattice and local bubbles
Xi jsν,kls′ν ′ (q, ω) and x0

i jν,klν ′ (s; ω). These are then transformed
into the Legendre representation [7]. The 2P correlation func-
tion xi jν,klν ′ (s; ω) is sampled using the CT-QMC directly in the
Legendre basis. The local 2P-irreducible vertex 	s

i jν,klν ′ (ω)
is obtained from the impurity BSE (5). Next we solve the
lattice BSE (4) independently for each bosonic Matsubara
frequency and q point. We use from 22 (for the zeroth bosonic
frequency) to 45 Legendre coefficients (for the fourteenth
bosonic frequency). A sizable reduction of the computational
and storage cost can be achieved with the procedure of
Refs. [12,53].

We found that 15 bosonic Matsubara frequencies allow
for a stable analytic continuation in the low-energy region,
which for the chosen interaction strengths dominates over
the high-energy particle-hole continuum, which we do not
attempt to extract. In particular, it allows us to detect the open-
ing of spin gaps and the suppression of otherwise divergent
spectral weights caused by minor lowering of the Hamiltonian
symmetry. Given the insufficient data statistics we have used
a conservative estimate of the uncorrelated standard devia-
tions of 0.02 at each Matsubara frequency point [50]. Similar
calculations for weaker interaction strength, for which the
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FIG. 1. The AFM ordering in the single-band Hubbard model.
Left: Imaginary part of the dynamical susceptibility χ (q, ω) (B̃k(ω)
with C = 5.5 is plotted) along the 	(0, 0)−X (π, π )−M(2π, 0) path
in the extended Brillouin zone for the two-site unit cell plotted as
color plot for various temperatures. The top row corresponds to the
normal state at T ≈ 1.12Tc. The lower rows are obtained in the AFM
state with N along the x axis. The white line (right axis) shows the
integrated spectral weight k. Right: The corresponding 1P spectral
functions.

particle-hole continuum coexists with magnon modes, would
require more Matsubara frequencies.

The spectral functions Bαα
k (ω) = − 1

π
Im χαα (q, ω) are our

final product. Given the divergence of Bk(ω) at the order-
ing wave vector, we introduce an effective cutoff by plotting
B̃k(ω) = Bk (ω)

C+Bk (ω) instead of Bk(ω) itself. To represent the am-

plitude we also plot the spectral weight k = ∫ 0.5
0 Bk(ω)dω.

III. RESULTS AND DISCUSSION

A. S = 1/2 and magnetic field

First, we discuss the antiferromagnetism of the single or-
bital 2D model. The local term in Eq. (1) adopts the form

Hi = Uni↑ni↓ + h(ni↑ − ni↓). (6)

At U = 1 the model is close to the maximal transition tem-
perature between the weak-coupling RPA and strong-coupling
Heisenberg regimes [44,54,55]. In Fig. 1 we show the evolu-
tion of the electron spectral density and the dynamical spin
susceptibility across the AFM transition along with the local
1P spectral densities. The location of the studied temperatures
in the phase diagram is shown in Fig. 2(a). The direction of the
staggered magnetization 〈SR〉 = (−1)|R|N is chosen along the
x axis. The elements χ yy and χ zz reflect the two linear Gold-
stone modes [56] arising from breaking of SU (2) symmetry in
an antiferromagnet. Note that their spectral weight diverges at
the ordering wave vector (M point). While the Hamiltonian (1)
for h = 0 is isotropic in spin space, the numerical treatment of
χ yy is kept independent of that of χ zz. Nevertheless, the results
reflect the symmetry quite accurately.

Application of a uniform magnetic field is known to polar-
ize an isotropic antiferromagnet perpendicularly to the field,
N ⊥ h, while the spin density acquires a uniform component

0 1 2
U

0.025

0.05

T
em
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ra
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0 0.1 0.2
h

(a)

AFM
AFM

N

N

)b()a(

FIG. 2. (a) The phase boundary between AFM and normal (N)
phase adapted from Ref. [44]. (b) The schematic phase diagram
in the T − h plane (U = 1). Symbols mark the points of actual
calculations.

parallel to the field: 〈SR〉 = M + (−1)|R|N, with M ‖ h. The
symmetry of the Hamiltonian is reduced from SU (2) to U (1)
[57]. Its breaking leads to a single linear Goldstone mode
(χ yy) with polarization perpendicular to both N and M, which
corresponds to spin rotation in the xy plane. Indeed, the (χ zz)
mode polarized along the field direction is gapped, as shown
in Fig. 3. At the same time its spectral weight at the M point

FIG. 3. The same as in Fig. 1 for various amplitudes of the
external field h (along the z axis) at T = 1/30. The top row cor-
responds to the AFM state without field, the bottom row to a fully
polarized normal state. The arrows show the size and tilt of the
sublattice spin polarization. The Néel vector N points along the x
axis.
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FIG. 4. (Top) The spectral weight of the transverse (xx or yy)
magnons of Fig. 3 compared to the induced moment 〈Sz〉. (Bottom)
The static uniform transverse susceptibility χ xx (0, 0) = χ yy(0, 0)
compared to its exact value 〈Sz〉

h . The dotted line in the top panel is
piecewise: a quadratic fit to the data and a constant (reflecting the
spin saturation). In the lower panel the same curve is divided by h.
Note that at h = 0 the equivalence of χ xx and χ yy is broken. The
empty circle marks the value of χ xx (0, 0), while the full circle that of
χ yy(0, 0).

becomes finite. The element χ yy acquires a finite spectral
weight at the 	 point at energy equal to 2h [20]. With in-
creasing h and progressing tilt of the local moments, χ zz loses
its spectral weight while the weight of χ xx grows from the 	

point outwards. These observations agree with zero tempera-
ture exact diagonalization of Ref. [36], although multimagnon
satellites are as expected absent in the DMFT spectra. Even-
tually, the AFM order is lost, as shown in Fig. 2(b), and
the system becomes fully spin polarized and recovers the
U (1) symmetry of its Hamiltonian. The perpendicular sus-
ceptibilities (χ xx and χ yy) describe gapped magnons (perhaps
better called magnetic excitons—a spin flip propagating in a
spin-polarized background). The field-driven transition can be
viewed as the Bose-Einstein condensation of these magnons,
which takes place when the magnon gap is closed. The direc-
tion of N within the xy plane plays the role of the condensate
phase.

The uniform susceptibilities (at the 	 point) reflect the
conservation of the total spin moment along the field direc-
tion (Sz), which leads to (i) χ zz(0, ω) = β〈(Sz )2〉δ(ω) having
no dynamics and therefore vanishing imaginary part, (ii)
χ xx(0, ω) = χ yy(0, ω). For a simple proof see Appendix A.
Our empirical observations showed that the numerical noise in
χαα (q, ωn) is essentially independent of q. This is consistent
with the fact that such noise mostly originates from the QMC
calculation of the local 2PCF, which is used in the determi-
nation of the local irreducible vertex. As a consequence, one
may subtract χαα (q, ωn) − χαα (0, ωn) for ωn > 0 in order to
reduce the noise in cases where (i) holds.

The uniform susceptibility in external field offers fur-
ther simple consistency tests. First, its static part is exactly
χ xx(0, 0) = 〈Sz〉

h , reflecting the fact that application of an in-
finitesimal transverse field simply rotates the net moment in
the new field direction. Second, the spectral weight is equal to
the net moment xx

0 = 〈Sz〉 (see Eq. D.4 of Ref. [20]). Figure 4

shows that our numerical results respect these properties with
great accuracy across all field values.

B. S = 1 and single-ion anisotropy

Next, we investigate the effect of single-ion anisotropy on
the magnon dispersion. To this end we study a two-orbital
model (at half filling n = 2)

Hi = U
∑
l=1,2

nil↑nil↓ + U ′ ∑
σ,σ ′

ni1σ ni2σ ′

− J
∑

σ

(ni1σ ni2σ + γ c†
i1σ ci1σ̄ c†

i2σ̄ ci2σ ) (7)

with U = 1, J = 0.25 and U ′ = 0.5 [58]. The single ion
anisotropy is introduced by unequal weights of the Ising and
spin-flip terms in the interaction Hamiltonian. This way the
SU (2) symmetry (γ = 1) is reduced to a Z2 × U (1) for γ �=
1. The residual symmetry of the AFM state depends on γ .
For γ > 1 the atomic ground state corresponds to |S, Sz〉 =
|1, 0〉, i.e., a state with no spin dipole moment. However,
for moderate deviations γ � 1 the intersite exchange, which
favors (dipole) magnetic order, enforces AFM order within
the xy plane. The in-plane order breaks the U (1) symmetry
and thus one linear Goldstone mode is expected. For γ < 1
the atomic ground state corresponds to |S, Sz〉 = |1,±1〉, i.e.,
an Ising ground state. The intersite exchange leads to the
formation of AFM order with moments along the z axis.
The residual symmetry of the ordered state is U (1) and only
the discrete Z2 symmetry is broken at the transition. Therefore
no gapless Goldstone mode is expected. The numerical results
are presented in Fig. 5. In the SU (2) symmetric case we have
numerically tested the stability of the AFM state with arbitrary
orientation of the Néel vector N. We observe two linear Gold-
stone modes in the response to a field perpendicular to the
Néel vector, i.e., χ yy and χ zz for N‖x. For γ �= 1 the system
self-consistently picks the expected Néel vector. For γ > 1
with the in-plane order, we choose N‖x. As in the SU (2)
symmetric case we find minor longitudinal response and
progressive gapping of the out-of-plane χ zz component with
increasing γ . For γ < 1 the system picks N‖z. In this case,
the residual U (1) symmetry is reflected in the equivalence
of χ xx = χ yy, both of which are progressively gapped when
lowering γ < 1.

The presence of a spin gap is known to stabilize the
long-range order in 2D. On the other hand, linear gapless
magnon mode is detrimental to the long-range order at any
finite temperature [17] if the thermal population of this mode
is properly taken into account. This is not the case of the
DMFT treatment, in which the low-energy long-range spin
fluctuations do not feed back to the calculation of the 1P and
2P vertices. Nevertheless, the present results show that DMFT
accurately captures the behavior of the spin gap. Therefore it
provides a useful reference and a starting point for more so-
phisticated approaches such as D	A [59,60] or dual fermions
[41,61]. The model with tunable γ not only hosts both states
with gapped and gapless magnons but allows a continuous
tuning between them. Investigation of Tc(γ ) dependence may
thus provide a useful test of the above methods as well as a
quantitative measure of their accuracy.
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FIG. 5. Imaginary part of the dynamical susceptibility χ (q, ω)
[B̃k(ω) with C = 8.5 is plotted] at T = 1/30 in the AFM
state of the two-orbital Hubbard model for various single-ion
anisotropy. The rows 1 and 2 correspond to easy (xy) plane,
row 3 to SU (2) symmetry, and rows 4 and 5 to easy (z) axis
anisotropy. The white line (right axis) shows the integrated spectral
weight k.

C. S = 3/2 and spin-orbit coupling

Finally, we study the more realistic 3D case of a three
orbital model on a bcc cubic lattice and introduce spin-orbit
coupling as the source of spin anisotropy

Hi =
∑
l,l ′

∑
σ,σ ′

hsoc
lσ,l ′σ ′c†

ilσ cil ′σ ′

+ U
∑

l

nil↑nil↓ + U ′ ∑
l>l ′

∑
σ,σ ′

nilσ nil ′σ ′

− J
∑
l>l ′

∑
σ

(nilσ nil ′σ + c†
ilσ cilσ̄ c†

il ′σ̄ cil ′σ ), (8)

where U = 2, J = 0.5 and U ′ = 1. The form of hsoc
lσ,l ′σ ′ is

given in Appendix B. We point out that the present CT-QMC

FIG. 6. Imaginary part of the transverse dynamical susceptibility
χ (q, ω) [B̃k(ω) with C = 20 is plotted] at T = 1/40 in the AFM
state of the three-orbital Hubbard model (N‖z axis) with (right) and
without (left) the spin-orbit coupling. The data are plotted along
the 	(0, 0, 0)−H (2π, 0, 0)−N (π, π, 0)−P(π, π, π ) path in the ex-
tended Brillouin zone for the two-site unit cell. The white line (right
axis) shows the integrated spectral weight k.

calculation may become impossible at low temperatures due
to the sign problem associated with the spin-orbit coupling
[62]. Nevertheless, in the half-filled case the effect of spin-
orbit coupling is rather moderate [62,63] and we are able
to reach the AFM phase without problems. The Néel vec-
tor picks an orientation along a cubic axis (N‖z). In Fig. 6
we show the calculated transverse susceptibilities. Without
spin-orbit coupling we observe a linear Goldstone mode. The
spin-orbit coupling leads to the opening of a finite spin gap. In
the 3D case, the AFM order is physically realistic. The DMFT
transition temperature Tc provides a realistic estimate, which
misses corrections due to long-range spin fluctuations, while
in 2D the corrections dominate.

IV. CONCLUSIONS

We have presented DMFT calculations of the AFM phase
of the half-filled Hubbard model with one, two, and three
orbitals in the intermediate coupling regime in two and three
dimensions. We find that the expected behavior of magnons in
response to external magnetic field or single-ion anisotropy is
well captured. While the 3D description of AFM ordering is
physically relevant, the ordering behavior in 2D is not correct
since DMFT is not sensitive to dimensionality and violates
the Mermin-Wagner theorem, which prohibits spontaneous
breaking of continuous symmetry at finite temperature. Nev-
ertheless, the fact that DMFT magnons properly describe the
opening of the spin gap suggests that DMFT is a good starting
point of theories, which properly include the long-range spin
fluctuations. The two-orbital model with variable single-ion
anisotropy provides an ideal test case for such theories as it
allows one to continuously tune between the breaking of a dis-
crete and a continuous symmetry. On the computational level
we have shown that three-orbital calculations, which cover
for example models of ruthenates or iridates, are numerically
feasible.
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APPENDIX A

The susceptibilities at the 	 point correspond to correlators
of total spin momenta Sα = ∑

R Sα
R. The Hamiltonian (6)

commutes with Sz, [Sz, H] = 0. First, we show that the zz
correlator does not depend on the imaginary time τ

〈Sz(τ )Sz〉 ≡ 〈eτH Sze−τH Sz〉 = 〈(Sz )2〉.
This implies that only χ zz(0, νn = 0) is finite and equal to
β〈(Sz )2〉.

To prove the equality of χ xx and χ yy we write the cor-
responding spin-spin correlation functions with the help of
ladder operators Sx = S− + S+ and Sy = i(S− − S+):

〈Sx(τ )Sx〉 = 〈eτH S+e−τH S−〉 + 〈eτH S−e−τH S+〉
+ 〈eτH S−e−τH S−〉 + 〈eτH S+e−τH S+〉

〈Sy(τ )Sy〉 = 〈eτH S+e−τH S−〉 + 〈eτH S−e−τH S+〉
− 〈eτH S−e−τH S−〉 − 〈eτH S+e−τH S+〉.

Since H commutes with Sz only the +− and −+ contribu-
tions are nonzero, while the ++ and −− contributions are
equal to zero, which implies the 	-point equality χ xx(0, ω) =
χ yy(0, ω).

APPENDIX B

The spin-orbit coupling mimics that in the t2g sub-
space of atomic d shell [64] commonly found in real
materials (with cubic site symmetry). In the onsite basis
{1↑, 1↓, 2↑, 2↓, 3↑, 3↓} it reads

hSOC = −ζ

2

⎛
⎜⎜⎜⎜⎜⎝

0 0 −i 0 0 1
0 0 0 i −1 0
i 0 0 0 0 −i
0 −i 0 0 −i 0
0 −1 0 i 0 0
1 0 i 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

.

The calculations presented in this work use ζ = 0.1.
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