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Twisted bilayer transition metal dichalcogenides have emerged as important model systems for the investi-
gation of correlated electron physics because their interaction strength, carrier concentration, band structure,
and inversion symmetry breaking are controllable by device fabrication, twist angle, and, most importantly, gate
voltage, which can be varied in situ. The low-energy physics of some of these materials has been shown to be
described by a “moiré Hubbard model” generalized from the usual Hubbard model by the addition of strong,
tunable spin-orbit coupling and inversion symmetry breaking. In this work, we use a Hartree-Fock approximation
to reach a comprehensive understanding of the moiré Hubbard model on the mean-field level. We determine the
magnetic and metal-insulator phase diagrams, and assess the effects of spin-orbit coupling, inversion symmetry
breaking, and the tunable van Hove singularity. We also consider the spin and orbital effects of applied magnetic
fields. This work provides guidance for experiments and sets the stage for beyond-mean-field calculations.
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I. INTRODUCTION

Twisted bilayer transition metal dichalcogenides (tTMDs)
have recently come to attention as important model systems
for the investigation of basic issues in correlated electron
physics [1–3], due in part to the ability to tune electronic
parameters over wide ranges by varying gate voltages without
changing the device. Experimental studies of twisted homobi-
layer WSe2 (tWSe2) [4–6] demonstrate interesting correlated
electron behavior including continuous metal-insulator tran-
sitions and “bad metallic” and “non-Fermi-liquid” transport.
Unlike the delicate flat band in twisted bilayer graphene,
which arises from phase cancellation of different hopping
pathways and occurs only at specific “magic angles” [7],
the behavior of tTMD materials is controlled by correlation
physics in relatively narrow bands, which can be achieved
over a range of twist angles. Moreover, the monolayer com-
ponents of tTMD materials have both a broken inversion
symmetry and a strong spin-orbit coupling, implying that the
bands of tTMD materials also have these features. Conse-
quences include a Dzyaloshinskii-Moriya (DM) term in the
spin Hamiltonian that describes strongly coupled half-filled
bands and a gate voltage tunable shift in the energy po-
sition of the van Hove singularity. The spin-orbit coupling
also produces a relatively large (9–13 instead of 2) g fac-
tor [8,9] which, with the narrow bandwidth and large unit
cell, dramatically increases the sensitivity to applied magnetic
fields. The ability to tune parameters over wide ranges in an
experimentally accessible manner makes tTMD materials an
important platform to explore open problems in condensed
matter physics and motivates theoretical studies. For exam-
ple, recent experimental studies of twisted homobilayer WSe2

discovered a strange metal behavior near half filling and a

metal-insulator transition that can be tuned continuously by
varying gate voltages [5,6].

Previous work [1–4,10,11] has shown that the low-energy
physics of twisted homobilayers of transition metal dichalco-
genide (TMD) materials such as WSe2 can be modeled as a
variant of the triangular lattice Hubbard model, which we term
the moiré Hubbard model. In this paper, we use Hartree-Fock
calculations to achieve a comprehensive understanding of the
moiré Hubbard model appropriate to tWSe2 on the mean-
field level. We investigate the magnetic and metal-insulator
phase diagram as a function of interaction, gate voltage, and
magnetic field, finding reentrant metal-insulator transitions
driven by magnetic field and gate voltage at fixed carrier
concentrations. We discuss the influence of the gate-voltage-
dependent shift of the van Hove singularity on the phase
diagram. Comparison of our work to experiments helps locate
the experimental materials on the generic Hubbard model
phase diagram and opens up new directions for more accurate
theoretical calculations.

The rest of this paper is organized as follows. In Sec. II we
present the model and parameters and describe their relation
to the actual tWSe2. In Sec. III we present the methods. In
Sec. IV we present the phase diagram as a function of gate
voltage and magnetic field at half filling, and discuss the
physical properties. In Sec. V we discuss possible magnetic
ground states at general fillings. Section VI is a summary and
conclusion. Appendixes present the details of our numerical
methods.

II. MODEL

In this paper, we focus on the twisted WSe2 bilayer
as an example of twisted homobilayer dichalcogenides.
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FIG. 1. (a) Brillouin zones of the top (solid line) and bottom
(dashed line) layer components of a twisted WSe2 bilayer. Blue K0,↑
(red K′

0,↓) represents one valley with spin-up (spin-down) band at
the valence-band edges. Small hexagons indicate moiré Brillouin
zones. (b) An illustrative band structure based on the continuum
model of tWSe2. We highlight the topmost valence bands that can be
matched to the Hubbard model. Blue solid (dashed) arrows represent
the dominant spin of the top (bottom) layer at the �K0 valley. Green
dotted lines indicate the energy level of half filling of the topmost
valence bands.

In monolayer form, WSe2 is a triangular lattice semiconduc-
tor with inversion symmetry breaking and strong spin-orbit
coupling (especially in the valence band). The top of the
valence band occurs at the �K0 and �K ′

0 points of the hexag-
onal Brillouin zone of the two-dimensional monolayer (see
Fig. 1). The strong spin-orbit coupling implies that the single-
particle eigenstates have spin polarized perpendicular to the
plane. Because of the strong inversion symmetry breaking,
the highest-lying valence-band states dispersing downwards
from the �K0 point have spin up and the highest-lying valence
band states dispersing downwards from the �K ′

0 point have spin
down, with a gap ∼0.4 eV to the opposite spin states [12].

Twisted WSe2 is formed by stacking a second WSe2 layer
with a small commensurate twist angle. The resulting system
is again a triangular lattice with a large “moiré” unit cell and
the corresponding “moiré” Brillouin zone, with the �K0 point
of the top layer and the �K ′

0 point of the bottom layer mapping
onto the moiré Brillouin zone �K point, and conversely the
�K ′

0 point in the top layer and the �K0 point in the bottom
layer mapping onto the moiré Brillouin zone �K ′ point [see
Fig. 1(a)].

The highest valence bands of tWSe2 may be understood
[1,4] by taking the bands dispersing from the monolayer
�K0/ �K ′

0 points of each layer, back-folding them into the
moiré Brillouin zone, and then hybridizing them with a ma-
trix element that is diagonal in moiré crystal momentum �k
and in spin. Details are given in Appendix A. The strong
spin-momentum locking of the individual layers and the mo-
mentum alignment, shown in Fig 1(a), indicates that the
spin-up (spin-down) states near the moiré �K point come pre-
dominantly from the top (bottom) layer. The broken inversion
symmetry of the individual layers leads to inversion symmetry
breaking in the the moiré system, which, however, retains
a C3 threefold rotation symmetry and, if the two layers are
identical, a C2x twofold rotation symmetry that swaps the two
layers. The combination of C2x and time-reversal symmetry
leads to a band degeneracy along high-symmetry lines from

FIG. 2. (a) Sketch of the phase φi, j between a given site i
and its neighbor site j on a triangular lattice, which is chosen
based on symmetry. (b) Possible magnetic ordering patterns. For
the tetrahedral order, the magnetic order on site i is defined as

S√
3
(cos �Q0 · �Ri, cos �Q1 · �Ri, cos �Q−1 · �Ri ), with �Q0 = (2π, 0), �Q±1 =

(−π,±√
3π ). The magnetic moment directions on the lattice are

specified by the corresponding arrows shown in the tetrahedral
sketch. For 120◦ order, there are two chiralities. “+” and “−” are
defined by the sign of κ = 2

3
√

3
(�S1 × �S2 + �S2 × �S3 + �S3 × �S1) · �̂ez.

We only draw the basic patterns; others can be generated by applying
appropriate symmetry operations.

�� to �K/ �K ′ and �K/ �K ′ to �M/ �M ′, as seen in Fig. 1(b), up-
per panel. Application of a transverse “displacement field”
(interlayer potential difference tuned by the top and bottom
gate voltages, conventionally denoted as D) breaks the C2x

symmetry between planes, lifting the degeneracy along these
high-symmetry directions and changing the band structure
significantly, as shown in Fig. 1(b), lower panel.

Even for zero displacement field, D = 0, the moiré
single-particle eigenstates at a general wave vector �k are
nondegenerate [13,14]. However, for small twist angle (many
atoms in the moiré unit cell) and weak interlayer hybridiza-
tion we may restrict our attention to monolayer states very
near the single-layer �K0/ �K ′

0 points, so that the single-layer
valence band may be approximated as a parabola: ε�k = −(�k −
�K0)2/2m∗ (“continuum model”). In this approximation the
moiré system has an emergent inversion symmetry [Eσ (�k) =
Eσ (−�k)] if the two individual layers are identical, so combin-
ing with time-reversal symmetry, at D = 0 the bands at any �k
point would be spin degenerate. This degeneracy is broken by
terms of order |�k − �K0|3 in the monolayer band structure [15].
These cubic terms have effects that are small by a factor of
the order of the inverse of the number of atoms in the moiré
unit cell. We neglect these small terms here, so that the model
we study is fully inversion symmetric at D = 0 with inversion
symmetry broken by the displacement field.

The result of these considerations is that the one-electron
properties of the top of the valence band of tWSe2 can be
described by a tight-binding model with hopping c†

i,σ t i, j
σ c j,σ ,

where t i, j
σ = |t |eiσφi j . σ indicates spin and also valley due

to the spin-valley locking, and the phase φ parametrizes the
inversion symmetry breaking arising from a nonzero displace-
ment field. Reference [4] shows that we need only to retain
the nearest-neighbor hopping, with a second neighbor term
∼20% of the first neighbor term. Our convention for φi j

for nearest-neighbor hopping is shown in Fig. 2(a). At zero
displacement field, t i, j may be taken to be independent of σ
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(up to terms of order of the inverse of the number of atoms
in the moiré unit cell, which we neglect); as the displacement
field is increased, the spin dependence of t becomes more pro-
nounced and the magnitude of t changes. Previous work also
indicates that the important interaction effects come from an
on-site repulsion, so the twisted bilayer material is governed
by the generalized “moiré” Hubbard Hamiltonian with only
nearest-neighbor hopping [1,3]:

H = −
∑
�k, �am,

σ = ±

2|t | cos(�k · �am + σφ)c†
�k,σ

c�k,σ
+ U

∑
i

ni↑ni↓,

(1)

where �am=1,2,3 are the lattice vectors, �a1 = aM (1, 0), �a2 =
aM (− 1

2 ,
√

3
2 ), �a3 = aM (− 1

2 ,−
√

3
2 ), and aM is the moiré cell

lattice constant. From previous density functional theory
(DFT) calculations [4], physically achievable values of D
correspond to changing φ over the range 0 � φ � ±π

3 , and
increasing the magnitude of |t | from t0 (hopping amplitude at
zero displacement field) to ∼1.3t0. In this work, we set |t | = 1
as the unit of energy scale, and thereby U represents the ratio
of on-site interaction and the hopping amplitude |t |. Due to
the spin-valley locking, the sum over spins in Eq. (1) is also a
sum over both valleys; consequently, in coupling spins, the U
term also couples the two valleys.

In this model changing φ ↔ −φ interchanges spin up and
spin down, and a particle-hole transformation |t | → −|t | cor-
responds to φ → φ − π , so that the physics can be entirely
reconstructed from the physics of 0 < φ < π/2 by a combi-
nation of particle-hole transformation and spin inversion.

The nearest-neighbor hopping model has additional sym-
metries which may be understood by considering the spin-
dependent phase factor in the hopping |t |eiσφ as either a
spin-dependent Peierls phase factor arising from a spin-
dependent gauge field or a position-dependent spin rotation.
Taking the first point of view we observe that a DM field
characterized by an angle φ corresponds to a system in a spa-
tially varying magnetic field producing a flux of ±3φ through
each triangular plaquette. The flux is opposite for the two spin
directions and changes sign between the two sublattices of the
dual lattice formed by the centers of the triangular plaque-
ttes. The form |t |eiσφ is a gauge choice consistent with this
flux. Changing φ → φ + 2π/3 corresponds to introducing
a flux of ±2π per plaquette which which does not change
the spectrum (although as discussed below it does change
the wavefunction). Changing φ → φ + π/3 corresponds to
introducing a flux of ±π ≡ 3π per plaquette. A phase change
of π on each link is equivalent to a particle-hole transforma-
tion, so the spectrum at n, φ is the same as the spectrum at
2 − n, φ ± π/3.

While the spectrum is invariant under certain changes in
φ, the wave function (and therefore the magnetic ordering
pattern) will change. To see this, note that a space-dependent
rotation of the electron spin by an angle 2γi about the z axis
is implemented by the matrix Ri = e−iγiσz and leads to the
change ti j → ti jei(γi−γ j )σz . Thus, the DM field can be thought
of as a space-dependent spin rotation.

Twisted WSe2 has a large g factor and a large moiré
unit cell compared to usual untwisted materials. Thus, it is

TABLE I. Estimation of ψAB due to the magnetic field in tWSe2

at different twist angles.

B (T) 1◦ 2◦ 3◦ >3◦

5 0.37π 0.09π 0.04π <0.04π

10 0.74π 0.18π 0.08π <0.08π

interesting to consider the spin and orbital effects of the
magnetic field perpendicular to the lattice. The strong spin
orbital coupling characteristic of monolayer WSe2 implies a
Zeeman interaction term H1 = −gμBBSz with g ∼ 9-13 [8,9].
The consequences of the Zeeman interaction will be discussed
in Sec. IV. In addition, ti j will pick up an additional phase
ψ

i, j
AB ≈ [(e/h̄)

∫ j
i

�A · d�r], where �A is the vector potential, due
to the Aharonov-Bohm effect. The phase can be thought of as
proportional to the flux through a closed loop of a triangular
plaquette of a moiré unit cell. The area of the “moiré” unit
cell is estimated to be S ≈ a2

√
3

4(1−cos θ ) ∝ 1/θ2. Table I shows
the estimated phase ψAB per triangular plaquette of a unit cell
in tWSe2 with monolayer lattice constant a = 0.328 nm.

We see that for small twist angle, achievable fields can
produce a flux per unit cell of order 1. But for the twist angle
>3◦ used in recent experiments, the orbital effects are much
smaller. Thus, we do not consider these effects any further.

III. METHOD

We solve the model in the Hartree-Fock approximation,
focusing on the effects of a nonzero displacement field. For
orientation it is useful to summarize previous considerations
of the half-filled large-U limit, in which the low-energy
physics is described by a Heisenberg model with an in-
teresting dependence on the displacement field [3]. The
Hamiltonian in this limit is given by

H =
∑
〈i j〉

JSz
i Sz

j + J cos 2φ
(
Sx

i Sx
j + Sy

i Sy
j

)

+ J sin 2φ êz · (�Si × �S j ). (2)

Here �S is the vector of S = 1
2 Pauli matrices and 〈i j〉 denotes

nearest neighbors.
Possible ordering patterns are shown in Fig. 2(b). At φ = 0

the Heisenberg model exhibits 120◦ order [16,17]. An alter-
native striped state is found to be slightly higher in energy,
as is a tetrahedral state with a nonvanishing �Si · (�S j × �Sk ) on
each triangular plaquette [18]. As discussed in Refs. [18,19]
and below, the tetrahedral state is favored at electron density
n = 1.5 and weak coupling. At φ = 0 the magnetic states
have a high degree of ground-state degeneracy. For the 120◦
state the spins lie in a plane and there is a family of ground
states characterized by O(3) rotations of the vector normal to
the plane. In addition the ground states are degenerate under
a uniform rotation of all spins about the axis normal to the
plane. Finally, the ground state is characterized by a staggered
chirality (sense of rotation of spins about a triangle) to which
corresponds a Z2 degeneracy. For φ �= 0, π the situation is dif-
ferent. The DM term êz · (�Si × �S j ) breaks the O(3) invariance
[20,21], favoring configurations in which the spins lie in the
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x-y plane, and also breaks the Z2 invariance, favoring only one
staggered chirality. The chirality is fixed by the assignment of
the hopping phase of spin-up electrons, shown in Fig. 2(a).
Furthermore, for π/4 < φ < 3π/4 the in-plane Heisenberg
coupling changes sign, favoring ferromagnetic alignment of
spins.

These considerations lead us to investigate the Hartree-
Fock energies of the stripe, ferromagnetic, tetrahedral, and
120◦ ordered states. More specifically, we propose nine possi-
ble states: 120◦ orders with two opposite staggered chiralities
in the x-y plane (120-xy-1, 120-xy-2) and in the x-z plane
(120-xz-1, 120-xz-2), a ferromagnetic state along the z direc-
tion and in plane (ferro-z, ferro-xy), a stripe state along the z
direction and in plane (stripe-z, stripe-xy), and a tetrahedral
state. These states are illustrated in Fig. 2(b).

In the Hartree-Fock treatment, the on-site interaction in
Eq. (1) is approximated as

Uni↑ni↓ ≈ U
∑

i

〈ni↑〉ni↓ + ni↑〈ni↓〉 − 〈ni↑〉〈ni↓〉

− 〈S+
i 〉S−

i − 〈S−
i 〉S+

i + 〈S+
i 〉〈S−

i 〉. (3)

Different magnetic states correspond to different position
dependencies of the averaged value 〈Sz

i 〉 = 〈ni↑ − ni↓〉 and
〈S±

i 〉 = 〈c†
i↑ci↓〉/〈c†

i↓ci↑〉. For example, in the x-y plane 120◦
magnetic state, the averaged spin on each site i follows 〈Sx

i 〉 =
m cos( �Q · �Ri + θ ), 〈Sy

i 〉 = m sin( �Q · �Ri + θ ), where m is the
magnetization, θ is an arbitrary phase that determines where
the spin points along the x axis, and �Q = (±4π/3, 0) is the
wave vector. Details of the Hartree-Fock Hamiltonian are
given in Appendix B.

We work in the canonical ensemble. In each magnetic
state, the combination of spin order and tσ

i j determines a band
structure. In the band structure, electron states are filled up to
the chemical potential, and m is determined by minimization
of the total energy. In this way, the energy of each possible
magnetic state is calculated, and the final ground state is
chosen as the global minimum.

IV. RESULT AT HALF FILLING

Performing the Hartree-Fock calculation described in
Sec. III at a carrier concentration n = 1 per state, we
find the phase diagram shown in Fig. 3. The solid line
marks the transition to magnetic order, and the dashed line
marks the opening of a charge gap. Three magnetic phases
are found: the in-plane 120◦ phase (with chirality determined
by the DM phase φ), an in-plane ferromagnetic phase, and a
paramagnetic phase. The magnetic phases are insulating over
most of the U values, but exhibit a small range of U where
metallic behavior and magnetic order coexist. The sequence
of magnetic phases occurring as φ is varied at large U may
be understood from the Heisenberg model shown in Eq. (2) or
more generally from the symmetries discussed above. The U
independence of the critical φ at which the magnetic order
changes from 120◦ to ferromagnetic and the periodicity of
the metal-insulator phase boundary as φ → φ + π/3 follow
from the invariance of the spectrum under insertion of integer
multiples of π and the symmetries under φ ↔ −φ. We further
note that the ferromagnetic state at φ = π/2 is connected to

FIG. 3. Phase diagram at half filling. The solid black line marks
the transition to the indicated magnetic order. The dashed black
line marks the opening of the gap. The energy gap is calculated as
the energy difference �E between the highest filled electron state
and the lowest unfilled electron state. The gap opening position is
defined as the position where �E > 0.01. The red arrow shows the
parameter space trajectory followed when the displacement field is
increased in experiments, which changes φ from 0 to ∼ ± π/3 and
increases t , thus decreasing U/t .

the appropriate-chirality 120◦ states by the space-dependent
spin rotation discussed above.

Inclusion of further neighbor hopping terms in the band
structure will break the symmetry. Second-neighbor terms do
not change the phase boundary but inclusion of third-neighbor
hopping will increase slightly the range of φ for which fer-
romagnetism is found and provide a weak U dependence.
Recent beyond-Hartree-Fock studies of the model with φ = 0
suggest that while the 120◦ state found here is the large-U
ground state, this state is separated from the paramagnetic
metal state by an intermediate phase which has a charge gap
but lacks obvious long-ranged magnetic order and is poten-
tially a spin liquid [22–25].

Figure 4 shows the U dependence of the magnetization m
and energy gap at two representative phases φ = 0 and π/6.
The transition between paramagnetic metal and magnetic in-
sulator exhibits a strong φ dependence, which is related to
the van Hove singularity and nesting structure discussed in
the next section. The transition is found to be two staged for
almost all values of φ. As U is increased a first transition
to a magnetically ordered but still metallic state is observed,
and then as U is increased further a metal-insulator transi-
tion occurs. However, it should be noted that the details of
the narrow transition region between paramagnetic metal and
antiferromagnetic insulator are complicated, with different
incommensurately ordered magnetic metal states possibly oc-
curring in a narrow U range between the paramagnetic metal
and antiferromagnetic insulator states [16,17]. More detailed
investigation of these issues in the φ �= 0 model requires con-
sideration of longer-period incommensurate orders which is
beyond the scope of this paper.

Figure 3 shows that at U � 5t the properties are reentrant
as φ is varied, with a metallic phase at φ = 0 giving way to
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FIG. 4. Magnetization m and energy gap of 120◦ spiral order
(120-xy-2) at φ = 0 and π/6 from Hartree-Fock calculation. The
transition is found to be two staged for almost all values of φ

(a magnetic transition followed by a metal-insulator transition). At
φ = π/6, the magnetic transition coincides with the metal-insulator
transition.

an insulating phase for φ near π/6 then evolving back to a
metallic phase as φ is increased beyond π/6. Experimentally,
φ is increased from zero by varying the “displacement field”
D (interlayer potential difference), which also increases |t |, so
the experimental system explores a trajectory shown qualita-
tively by the red dashed lines, going from metallic at D = 0
through insulating and back to metallic as D is increased,
indicating that the interaction in tWSe2 is at an intermediate
level as has previously been noted [4,5].

To clarify the nature of the metal-insulator transition in this
model, we plot in Fig. 5 the band structure in the magnetic
Brillouin zone for φ = 0 and φ = π/6 at a moderate U . At
φ = 0 we see that the band structure consists of a hole pocket
centered at �� and electron pockets centered at the �M point.
As the interaction is increased the energy separation between
the lower and upper bands increases, decreasing the sizes
of the electron and the hole pockets. As φ is varied at fixed
U , the bands flatten and separate, similarly leading to a metal-
insulator transition. At φ = π/6, the perfect nesting, which
will be discussed in next section, leads to flat bands in the
magnetic zone and a metal-insulator transition coincident with
the magnetic transition, which indeed occurs at U = 0.

We next discuss the effect of a Zeeman magnetic field.
A Zeeman field perpendicular to the plane generally will
cause the in-plane magnetic order m(cos �Q · �Ri, sin �Q · �Ri, 0)
to gradually cant towards the z direction with a canting
angle θ . Again we use the Hartree-Fock treatment. We as-
sume the in-plane magnetic state becomes m(cos θ cos �Q ·
�Ri, cos θ sin �Q · �Ri, sin θ ) and then calculate the ground state
by minimizing the energy with respect to m and θ . Results
are summarized in Fig. 6 at several intermediate U . Since
the g factor in tWSe2 has a relatively large uncertainty, and

FIG. 5. Energy bands of 120-xy-2 at φ = 0 and π/6 at an inter-
mediate interaction U . The band is plotted along lines in the folded
zone of the 120◦ three-sublattice spiral order, which is one-third of
the original moiré Brillouin zone. The green zone shows the hole
pocket of the lower band and the yellow zone shows the electron
pockets of the upper band at φ = 0. In the left panel, the dashed blue
line indicates the chemical potential at half filling. In the right panel,
any chemical potential in the band gap corresponds to half filling.

Hartree-Fock approach is good at qualitatively capturing the
changes; the picture is plotted for a wide range of the magnetic
field.

At small U and B = 0, magnetic orders are found around
φ = π

6 (120-xy-2) and π
2 (ferro-xy) with nonzero energy gaps.

Other regions are paramagnetic. As the magnetic field in-
creases, the original in-plane magnetic order first increases
the canting angle θ without changing m much, then increases
both θ and m until they reach a maximum, and the energy gap
gradually decreases to zero. In paramagnetic regions, after the
field is turned on, spins will quickly align to the z direction
with zero energy gap. If the magnetic field is extremely large
(gμBB/t > 6), there will be a new gap opening, due to the
splitting of the spin-up and spin-down bands.

For intermediate U , applying a z-direction magnetic field
can produce xy order at φ values where there is no order
at B = 0. For example, at U/t = 3.5, the left panel (“phase
diagram”) clearly shows that the φ range of magnetic orders
widens as B is increased. For this interaction strength, increas-
ing B can produce an energy gap in a finite range of B (see
curve marked in Fig. 6). Thus, by tuning the displacement
field and the magnetic field, there could be some gap opening
and closing, related to the appearance of canted magnetic
order.

To conclude this section we consider briefly some exten-
sions of our results. The Hartree-Fock theory we present here
is restricted to classically definable magnetic orders. The pu-
tative spin liquid phases indicated by numerics for the model
with φ = 0 are not captured by our formalism. Understanding
how such phases evolve as φ is varied is an important open
problem. Our restriction to only first-neighbor hopping fixes
the critical value of φ where the van Hove point coincides with
the half-filled Fermi surface to be φ = (2n + 1)π/6. Inclusion
of further neighbor hopping would shift the critical φ and
would remove the perfect nesting, but the van Hove singu-
larity remains, and the qualitative behavior is unchanged.
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FIG. 6. (a) Phase diagram, (b) energy gap, and (c) magnetization at half filling for 0 � φ � π/2 for several U values. (a) In the phase
diagram, gray represents the paramagnetism. The intensity of the blue and orange indicates the canting angle θ of the magnetic order. Dark
orange and dark blue represent the 120-xy-2 order and ferro-xy, correspondingly, and the white regions have no xy moment. (b, c) In the
energy gap and magnetic order plots, the colors represent the corresponding DM phase φ. For g ≈ 10 in tWSe2 with bandwidth around
100 meV ≈ 10t , gμBB/t = 1 corresponds to B ≈ 17 T.

V. GENERAL FILLINGS

When the density n �= 1, charge fluctuations mean that
Hartree-Fock calculations become less reliable. A compli-
cated variety of commensurate and incommensurate ordered
phases along with regions of phase separation have been re-
ported for the model without spin-orbit coupling [19,26], but
the effect of beyond-Hartree-Fock fluctuations has not been
established. In this section, we present a qualitative discus-
sion focused on the φ-dependent weak-coupling instabilities,
which are controlled by nesting and van Hove singularities,
for which a Hartree-Fock-based approach is more reliable.

For general φ the spin-up and spin-down Fermi surfaces do
not coincide. The van Hove (saddle-point) singularity, which
is generically present in two-dimensional band structures, lies
at a band filling which varies smoothly with displacement field
φ, and is visible as a divergence in the density-of-states plots,
as shown in Fig. 7(a). We extract the numerically calculated
density nvHs where the Fermi surface intersects with the van
Hove singularity, and find that the numerically calculated nvHs

is well fitted by nvHs ≈ cos(3φ)/2 + 1.

Figure 7(b) shows the electron energy dispersion for spin
up at zero interaction for different values of DM phase φ,
along with the energy isosurface that passes through the van
Hove points. For the nearest-neighbor model studied here, the
energy contour passing through the van Hove points has flat
regions, leading to nesting. The combination of density-of-
states divergence and nesting destabilizes the paramagnetic
metal state at infinitesimal U if the density n = nvH (φ) is
chosen so that the Fermi energy passes through the van Hove
point.

In the nearest-neighbor hopping model considered here,
the van Hove points at φ = 0, π/6, and π/2 are special. At
φ = 0 the van Hove points of the spin-up and spin-down
Fermi surfaces coincide and the van Hove points are at the
�M and �M ′ points of the Brillouin zone. As φ is increased

from zero the van Hove points shift asymmetrically away
from the �M/ �M ′ points while remaining at the zone boundary.
At φ = π/6 the van Hove points coalesce into a third-order
singularity at the �K (spin-up) or �K ′ (spin-down) points; for
π/6 < φ < π/2 the van Hove points move inwards along
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FIG. 7. (a) Density of states versus filling calculated at U = 0.
Colors represent different choices of φ. (b) Dispersion of spin-up
electrons in the moiré Brillouin zone calculated at U = 0. The
dashed white line shows the constant energy surface that intersects
the energy saddle point. The labeled point in each plot indicates one
of the van Hove locations.

the ��- �K/ �K ′ lines, coalescing again at a third-order singu-
larity at the �� point at φ = π/2. The particular numerical
values of φ = 0, π/6, π/2 at which the three special condi-
tions occur are particular to the nearest-neighbor-only model;
use of a more general dispersion will change the values
of displacement field at which the three special van Hove
points occur and the band fillings at which they lie at the
Fermi surface, but the special van Hove points will in general
exist.

The weak-coupling physics can be understood via consid-
eration of the saddle-point action

S[{ �m}] = Tr ln
[
G−1

0,σ + �mi · �σ
] +

∑
i

�m2
i

U
, (4)

where G−1
0 = ∂τ − tσ

i j − μ is the noninteracting Green’s func-
tion, �σ is the Pauli matrix, and �mi is a Hubbard-Stratonovich
field proportional to the expectation value of the spin
on site i. We study the free energy of static configura-
tions of the �mi, evaluating the trace term by expansion
in �mi. After the Fourier transformation, the second-order
term is

F (2)
φ =

∑
�Q

1

2

∑
a,b

ma
�Q
(
U −1δab − χab

0 ( �Q)
)
mb

− �Q, (5)

FIG. 8. An illustrative sketch of occupied states. Blue (red) area
represents the occupied Brillouin zone of spin up (down). Blue (red)
dots are the van Hove locations of spin up (down). The arrow in-
dicates the wave vector that connects the perfect nesting electrons
between the same spins ( �Q0,±1) and between spin up and spin down
( �Qφ

0,±1).

where ma is the component of �m in Cartesian direction a, and
we introduce the susceptibility coefficient χab

0 ,

χab
0 ( �Q) = Tr[σaG0(�k)σbG0(�k + �Q)], (6)

where G0 is the (diagonal) Green’s function matrix in spin and
momentum space, and the trace is over spin and momentum
indices.

The action is dominated by the susceptibility with per-
fect nesting wave vectors. From Fig. 8, we see that in the
nearest-neighbor model we consider here, there are two kind
of nesting vectors: �Q0,±1 that connects the the Fermi surface
of same spins, and �Qφ

0,±1 that connects the Fermi surface

from spin up to spin down. �Qφ

0 = (2π − 4φ, 0), and �Qφ

±1 =
R±2π/3 �Qφ

0 is obtained from �Qφ

0 by rotations of ±2π/3 about
the z axis. For φ �= 0, π/6, π/2, the wave vector �Qφ

0,±1 both
connects the nesting surfaces and the van Hove points. The
result is log2 divergences in susceptibilities, corresponding to
shifting an electron by �Q and flipping spin up to spin down.
We also see that the wave vectors − �Qφ

0,±1 do not connect
van Hove points or flat regions of Fermi surface from spin
up to down. Furthermore, for generic φ �= 0, π/6, π/2, �Q0,±1

does not connect the van Hove points, and the flat regions of
Fermi surface connected by �Q0 are of different lengths, leav-
ing only a logarithmic divergence with a smaller coefficient.
The result is that the dominant terms in χab are susceptibilities
χ+−

0 ( �Qφ

0,±1) = χ−+
0 (− �Qφ

0,±1), implying linear instabilities to
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the three stripe spiral orders with spin pattern

Sx
l ( �R) = Sl cos( �Ql · �R + θl ), Sy

l ( �R) = Sl sin( �Ql · �R + θl ),

(7)

where �Ql = �Qφ

0,±1, and θl determines the locations where the

spin points along x in the spiral with wave vector �Ql . The
corresponding order parameters are most conveniently written
as 〈m+

l 〉 = 〈mx
l + imy

l 〉 = Slei( �Ql · �R+θl ).
At the quadratic level the three spiral directions are equiv-

alent. At quartic level, expansion of the action gives terms

F (4)
φ = β1

4T 2

∑
l

(
S+

Ql
S−

−Ql

)2 + β2

4T

∑
l �=s

(
S+

Ql
S−

−Ql

)(
S+

Qs
S−

−Qs

)
,

(8)

where β1,2 are constants, and the factors of T arise because if
all four S share the same wave vector then the corresponding
diagram is ∼G(p)2G(p + Q)2 and is strongly divergent at the
nesting wave vector while if two different wave vectors are
involved then at most one pair of G can be nested.

Minimizing Eqs. (5) and (8), we find that the free energy
minimum corresponds to three x-y plane spirals, along the
three wave vectors �Qφ

0,±1, each of equal amplitude, and with
phases θl that are arbitrary. In the nearest-neighbor hopping
model considered here the trio of spiral states fully gaps the
Fermi surface, leading to an insulator at the corresponding
nesting density. As the coupling strength is increased, com-
mensurability energies come into play and we expect that
the physical state corresponds to regions of commensurate
order with incommensurations that can trap charge carriers,
in analogy to the stripe states found in the square lattice
Hubbard model [27–30]. Therefore, there will be an insulator-
metal transition as interaction increases. If further neighbor
hopping is included, the perfect nesting is spoiled and re-
gions of the Fermi surface could remain ungapped at weak
coupling.

We now consider the three special cases, beginning with
φ = 0 at n = 1.5. For this φ the spin-up and spin-down Fermi
surfaces coincide. The van Hove points are at the M and
M ′ points of the moiré Brillouin zones (density n = 1.5),
and the nesting vectors are at �Q0 = ±(2π, 0) and �Q±1 =
±2π (− 1

2 ,±
√

3
2 ). The coincidence of spin-up and spin-down

Fermi surfaces mean that the nearest-neighbor model has
SU(2) spin invariance, seen here in the fact that the spin-up
Fermi surface nests with both the spin-up and spin-down
Fermi surfaces, and ± �Ql are both nesting vectors. The wave
vector �Q0 = (2π, 0) means that the spiral has vanishing pitch,
so the state is a collinear stripe of the form shown in Fig. 2(b).
An analysis similar to that sketched in Eqs. (5) and (8) gives
an SU(2)-invariant theory with quadratic term

∑
l
�S( �Ql ) ·

�S( �Ql ) and dominant quartic term
∑

l (�S( �Ql ) · �S(− �Ql ))2 so
that at this level the free energy is minimized by three
equal-amplitude collinear stripes, with orthogonal spin di-
rections. As noted in Ref. [18], sixth-order terms in the
free energy then fix the phase between the three stripes,
inducing a chirality. The chiral state is disfavored by the spin-
orbit coupling appearing if further neighbor interactions are
considered.

FIG. 9. (a) nvHs-φ curve for 0 < φ < π

2 at U = 0. The blue
points are extracted from the numerical density-of-states calculation.
nvHs is the density filling where the Fermi surface intersects with the
van Hove singularity. The orange line is an empirical formula nvHs ≈
cos(3φ)/2 + 1 that fits the numerical calculation well. (b) Sketch of
the predicted phase diagram with only nearest-neighbor hopping in
the weak-coupling limit.

As φ increases from zero, we see from Fig. 8 that for the
same-spin nesting, the length of one nesting edge decreases
continuously to zero, and the nesting vector is separated
from van Hove locations, implying a rapid decrease in the
strength of the divergence. On the other hand, the nesting
vector of opposite spins still connects the van Hove lo-
cations, implying the rapid development of an easy-plane
anisotropy.

At φ = π
6 , the same-spin nesting vectors disappear, and

the spin-up (spin-down) van Hove points merge at the
high-symmetry points �K ( �K ′), producing a cubic van Hove
singularity (εk ∼ k3

x − 3kxk2
y ). Such a high-order van Hove

singularity will lead to a power-law-divergent density of states
and χ±, implying a stronger tendency towards order [31–34].
The ordering wave vector �Qφ

0 = ( 4π
3 , 0) is equivalent to its C3

rotations (up to a reciprocal lattice vector), so the three spiral
states merge into one 120◦ spiral in-plane order with a definite
staggered chirality. This state will gain substantial commen-
surability energy, and it is likely that the general �Q states
found at other values of the displacement field will evolve
into defected versions of the 120◦ state as the interaction is
increased.

For π
6 < φ < π

2 , the van Hove points move to the interior
of the zone along the ��- �K ( �K ′) line, and the opposite-spin
nesting continues to exist at wave vectors �Qφ

0,± 2π
3

(see Fig. 8).

At φ = π
2 , all van Hove singularities merge into the third-

order singularity at ��, there is no nesting, and the predicted
magnetic state is ferromagnetic.

To summarize, for weak coupling, the nearest-neighbor
hopping model predicts magnetically ordered insulating states
along the line in the density-φ plane shown in Fig. 9(a). For
most values of φ the insulating states correspond to a triple
of x-y spirals with a fixed staggered chirality (φ-dependent
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wave vector), but at φ = 0 the state is the chiral tetrahedral
ordered state and at φ = π/2 the state is an x-y ferromagnet.
If further neighbor hopping is included, then the incomplete
nesting means the very weak-coupling state is a magnetic
metal. At general φ, the incommensurate value of the spiral
wave vector and the absence of any energetic term fixing
the relative phases of the spirals means that the state is very
susceptible to fluctuations. Also, as U is increased other states
may occur. For example, at n near 1.5 and φ = 0, Hartree-
Fock calculation indicates that the tetrahedral state is replaced
by a ferromagnetic state as U is increased above a critical
value ∼3.5|t | [19]. For φ closer to π/6 the commensurability
energy gain of the simple �Q = (4π/3, 0) 120◦ spiral state
suggests that at intermediate and large U the state is likely to
be a defected 120◦ state. However, if weak-coupling versions
of the material can be implemented, the lines of phase tran-
sition noted here should be observed. In Fig. 9(b), we show a
sketch of the predicted phase diagram for the nearest-neighbor
hopping model, where the insulator behavior could be found
for general φ, with the wave vector of the insulating spiral
state varying.

VI. CONCLUSION

In this work, we present a comprehensive Hartree-Fock
study of the moiré Hubbard model believed to represent the
low-energy physics of twisted WSe2 and related materials.
The new feature of the moiré Hubbard model is strong tun-
able spin-orbit coupling, leading to a magnetic easy-plane
anisotropy and highly tunable van Hove singularity. The g
factor parametrizing the electron-spin interaction is large and
anisotropic. The O(2) rather than SU(2) spin symmetry of
the generic model is expected to reduce the importance of
quantum fluctuations, increasing the parameter ranges where
the orders found in the Hartree-Fock calculation are stabilized,
and also ensuring that magnetic phases found at T = 0 will
persist for a range of nonzero temperatures.

At half filling, we find that for U greater than a critical
value ∼5|t |, the model is magnetically ordered with a charge
gap at all φ. The predicted magnetic order depends on φ,
with regions of 120◦ spiral and regions of ferromagnetism.
The ferromagnetic regions occur at φ values corresponding
to displacement fields at the edge of what can be realized
experimentally. At smaller U , a reentrant phase diagram is
found, with a metallic phase at φ = 0 giving way to an
insulating phase for φ near π/6 and then reverting to a metal-
lic phase. Experimental results for devices with twist angle
∼4◦-5◦ indicate a similar reentrance, placing these devices in
the intermediate-coupling regime. Smaller twist angles would
enlarge the unit cell [3], decreasing both the hopping and the
interaction terms. Since the hopping decreases faster, the net
effect of a smaller twist angle is to increase U/t , pushing the
system into the strong-coupling regime.

At general band fillings and interaction strengths, previ-
ous Hartree-Fock studies of the SU(2)-invariant model find
an intricate phase diagram, with regions of stripes, phase
separation, and defected commensurate phases all occurring
at general interaction strengths and carrier concentrations.
Figure 10 shows our Hartree-Fock phase diagram as a func-
tion of displacement field, where only nine commensurate

FIG. 10. Hartree-Fock phase diagram at general fillings at weak
and strong couplings with nine commensurate orders considered.
Each color represents a different magnetic order. “xy” indicates
that the magnetic order is in the x-y plane, and “z” represents the
z direction. Regions filled by more than one color are viewed as
degenerate regions, where the energy difference between the two
magnetic orders is smaller than 10−3 from numerical calculations.

orders are considered. In the weak-coupling limit, if incom-
mensurate orders are included in the nearest-neighbor model,
the insulating behavior should be found along the van Hove
density and DM phase nvHs-φ curve, due to the van Hove
singularities and perfect nesting, as shown in Fig. 9. When
the density is away from half filling, as interaction increases,
it is likely that a commensurate-incommensurate transition
will occur in the magnetism, so that away from half filling
the incommensurate insulating phases would be replaced by
commensurate magnetic metal phases.

A particularly interesting feature of the phase diagram of
the SU(2)-invariant triangular lattice Hubbard model is that
at half filling the large-U 120◦ phase is separated from the
low-U Fermi liquid metallic phase by an intermediate phase
occurring for U/t ∼ 9 that has no obvious long-ranged order
and has been interpreted as a spin liquid [23], though the iden-
tification is not yet confirmed. The evolution of this potential
spin liquid state as φ and carrier concentration are varied is an
interesting open problem.

In conclusion we further observe that the moiré Hubbard
model studied here, this model is an approximate description
of emergent low-energy properties of a richer and more com-
plex system. For example, the microscopic origin of spin-up
and spin-down states in terms of the two valleys of the top
and bottom layer, along with the strong spin-orbit coupling,
raises the possibility of anomalous electron-phonon interac-
tions. The study of these and related phenomena are important
open questions for future research.
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APPENDIX A: BAND STRUCTURE

The band structure was originally calculated using density
functional theory (DFT) in Ref. [4]. It can be understood
and qualitatively modeled based on a low-energy continuum
model [35].

In the monolayer WSe2, the two valleys �K0 and �K ′
0 are

dominated by opposite spins and are related by time-reversal
symmetry, as discussed Sec. II. Here we focus on the �K0

valley, which is dominated by spin up. Using �k · �p theory [15],
the single-layer Hamiltonian of the top valence band can be
approximated as

h(�k − �K0) = − (�k − �K0)2/2m∗ + τC|�k − �K0|3 cos(3α�k ),

(A1)

where m∗ is the effective mass, τ = 1 indicates the valley

K0 (−1 for K ′
0), and α�k = arctan (�k− �K0 )|y

(�k− �K0 )|x . The term C|�k −
�K0|3 cos(2α�k ) preserves the C3 symmetry of the �K0 point of
the monolayer and was not explicitly written in Ref. [35].
In the bilayer, this term preserves the C3 rotation symmetry
and C2x symmetry and protects a band degeneracy along cer-
tain high-symmetry lines in the Brillouin zone. When C = 0,
the monolayer dispersions entering the bilayer model have
an O(2) rotation invariance which becomes an emergent in-
version symmetry [Eσ (�k) = Eσ (−�k)] in the moiré Hubbard
model. This symmetry is broken by a nonzero C.

After stacking a second WSe2 layer with a small twist
angle θ , the effective Hamiltonian around the �K0 valley is

H �K0,↑ =
∫

d2�r �†(�r)

(
ht (�k − �K ) + D �T (�r)

�
†
T (�r) hb(�k − �K ′) − D

)
�(�r), (A2)

where �(�r) = (ψt (�r), ψb(�r))T is a two-component spinor
with the top and bottom layer components. D represents the
effect of the displacement field. The diagonal term ht (�k −
�K ) = h(Rθ/2(�k − �K )) is the single-layer Hamiltonian for the
top layer after a twist angle θ

2 . hb is obtained from ht by
replacing θ by −θ and �K by �K ′. And the off-diagonal term
�T describes the interlayer tunneling and is approximated as
�T (�r) = w(1 + e−i �G1·�r + e−i �G2·�r ), where �Gi is the reciprocal
lattice vector. In the strict continuum model with C = 0 and
�k-independent hybridization the eigenvalues of ht (�k) are the
same as those of hb(−�k) so that the moiré bands have an ef-
fective inversion symmetry. However, a nonzero C combined
with the nonzero twist angle means that the eigenvalues of
ht (�k) and hb(−�k) are not equal except along certain high-
symmetry lines such as �-K .

After a Fourier transform, with basis �( �p) =
(ψt ( �p), ψb( �p), ψb( �p + �q1), ψb( �p + �q2), . . .)T, the highest
moiré band can be viewed as a result of back-folding the
monolayer bands into the moiré Brillouin zone with spinless
hybridization. In Fig. 11(a), we plot the band structure
for a strict continuum model keeping only the quadratic
term h0 = −(�k − �K0)2/2m∗ in the monolayer Hamiltonian
[Eq. (A1)]. If the higher-order term C|�k − �K0|3 cos(3α�k ) is
retained [Fig. 11(b)], the degeneracy is lifted at general k
points; for example, a small splitting along �� to �M in the
moiré Brillouin zone is evident. These symmetry-breaking
terms are small for small twist angle because only small
deviations of �k from the single-layer �K point are relevant.
This symmetry-breaking term can be described by further
neighbor hopping in the moiré Hubbard model, with hopping
amplitude � 20% of the first-neighbor hopping, and does not

change the physics much. On the other hand [Figs. 11(c) and
11(d)], a nonzero displacement field distinguishes the top and
bottom layers and thus strongly splits the degeneracy except
along special high-symmetry lines such as ��- �M where the
symmetry of the monolayer protects the spin degeneracy [4].

APPENDIX B: MEAN-FIELD APPROXIMATION

The Hubbard model is written as

H =
∑

�k, σ = ±
ε�k,σ

c†
�k,σ

c�k,σ
+ U

∑
i

ni↑ni↓, (B1)

where ε�k,σ
= −2|t | cos(�k · �am + σφ) is the single particle’s

dispersion of the nearest-neighbor tight-binding model. As

FIG. 11. Band structure of the continuum model of tWSe2 with
and without the displacement field D and the high-order term C|�k −
�K0(′)|3 cos(3α�k ). Blue and red solid lines represent �K0 and �K ′

0 valleys.
Green dashed lines indicate the energy level of half filling of the
topmost valence bands.
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mentioned in Sec. III, in the mean-field treatment, the interac-
tion is factorized as an approximation shown in Eq. (3). Here
we use 120◦ spiral order in the x-y plane as an example and
construct its Hamiltonian.

Assume the averaged spin on site i is 〈Sz
i 〉 = 0 and

〈Sx
i 〉 + i〈Sy

i 〉 = mei �Q· �Ri , where m is the magnetization, and
�Q = (±4π/3, 0) is the wave vector of 120◦ spiral order. Plus

and minus signs indicate different staggered chiralities. We
assume the averaged electron density on each site is 〈ni↑〉 +
〈ni↓〉 = n. Therefore,

〈c†
i,σ ci,σ 〉 =

(
n/2 mei �Q· �Ri

me−i �Q· �Ri n/2

)
. (B2)

The interaction term is

V = U
∑

i

c†
i↑ci↑c†

i↓ci↓ − c†
i↑ci↓c†

i↓ci↑

≈ U
∑

i

〈ni↑〉ni↓ + ni↑〈ni↓〉 − 〈ni↑〉〈ni↓〉 − 〈S+
i 〉S−

i − 〈S−
i 〉S+

i + 〈S+
i 〉〈S−

i 〉

= − mU
∑

k

(c†
�k↓c�k− �Q↑ + c†

�k↑c�k+ �Q↓) + UN (n2/4 + m2). (B3)

The Brillouin zone is threefold, and the basis is chosen as (c�k− �Q↑, c�k↑, c�k+ �Q↑, c�k− �Q↓, c�k↓, c�k+ �Q↓)T. After diagonalizing the
Hamiltonian, we find six eigenvalues e j :

e1,2 = ε�k+ �Q,↑ + ε�k− �Q,↓
2

±
√

(mU )2 +
(

ε�k+ �Q,↑ − ε�k− �Q,↓
2

)2

,

e3,4 = ε�k,↑ + ε�k+ �Q,↓
2

±
√

(mU )2 +
(

ε�k,↑ − ε�k+ �Q,↓
2

)2

,

e5,6 = ε�k− �Q,↑ + ε�k,↓
2

±
√

(mU )2 +
(

ε�k− �Q,↑ − ε�k,↓
2

)2

. (B4)

And the total energy is written as

E =
∑

�k

6∑
j

e j (�k)n j�k + UN (n2/4 + m2). (B5)
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