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We prove two Lieb-Schultz-Mattis type theorems that apply to any translationally invariant and local fermionic
d-dimensional lattice Hamiltonian for which fermion-number conservation is broken down to the conservation of
fermion parity. We show that when the internal symmetry group Gf is realized locally (in a repeat unit cell of the
lattice) by a nontrivial projective representation, then the ground state cannot be simultaneously nondegenerate,
symmetric (with respect to lattice translations and Gf ), and gapped. We also show that when the repeat unit cell
hosts an odd number of Majorana degrees of freedom and the cardinality of the lattice is even, then the ground
state cannot be simultaneously nondegenerate, gapped, and translation symmetric.
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I. INTRODUCTION

In 1961, Lieb, Schultz, and Mattis (LSM) proved a theo-
rem on the low-lying excited states of the nearest-neighbor
antiferromagnetic quantum spin-1/2 chain [1]. Accordingly,
a quantum spin chain with an odd number of spin-1/2 de-
grees of freedom per repeat unit cell that is simultaneously
translation and SO(3)-spin-rotation symmetric cannot realize
a gapped and symmetric ground state in the thermodynamic
limit.

Since its original formulation, the LSM theorem has been
generalized in a number of ways including extensions to
higher dimensions, other global continuous symmetry groups,
and different kinds of spatial symmetries [2–21]. For instance,
it has been understood that the SO(3)-spin-rotation symmetry
is not an essential requirement for an LSM constraint. In
fact, LSM-type theorems for U(1)-number-conserving Hamil-
tonians have been established in arbitrary dimensions. These
theorems state that systems with noninteger filling fraction
ν, defined as the average number of particles per unit cell,
cannot have a translationally invariant, nondegenerate, and
short-range entangled ground state [2–6,8,9,16]. Similar con-
straints have also been worked out for number-conserving
Hamiltonians that have nonsymmorphic or magnetic space
group symmetries [10–12,15].

A number of LSM-type theorems pertaining to discrete
internal symmetries combined with crystallographic symme-
tries have also been worked out [11,12,15,22–27]. In the
context of spin chains with discrete symmetries, LSM-type
theorems were proved by Ogata et al. in Refs. [26–28]. They
found that a translationally invariant spin chain with half-
integer spin at each site that possesses either time-reversal
or Z2 × Z2-rotation symmetries (rotations by π around two
axis, say x and z), cannot have a nondegenerate, gapped, and
symmetric ground state. The proof of this statement is based
on the fact that a nondegenerate gapped ground state of a

local Hamiltonian satisfies the so called split property [29,30].
LSM-type no-go theorems are then derived for states satisfy-
ing the split property by using operator algebra techniques and
Gelfand–Naimark–Segal (GNS) construction. Alternatively,
similar no-go constraints are obtained in Refs. [31,32] within
the framework of matrix product states (MPS) [33–35]. These
derivations are based on the fact that one can approximate [36]
the nondegenerate gapped ground states of local Hamiltonians
by injective MPS [37,38]. There are two hypothesis common
to many of these LSM-type theorems with discrete symme-
tries. It is presumed that there exist local (on-site) degrees of
freedom that span a local Hilbert space and realize a nontrivial
projective representation of the global symmetry. It is also pre-
sumed that the global Hilbert space is obtained by postulating
that the local degrees of freedom commute when separated
in space. The resulting LSM-type theorems are applicable to
bosonic systems. Generalizations to bosonic quantum systems
in arbitrary dimension with crystallographic symmetries and
general discrete Abelian symmetries have been proposed us-
ing the notion of lattice homotopy [24].

There exists similarities between Hamiltonians obey-
ing LSM-type constraints and the boundary modes of a
symmetry-protected-topological (SPT) insulator. An SPT in-
sulator has a nondegenerate, symmetric, and gapped ground
state when periodic boundary conditions are imposed. When
open boundary conditions are imposed, the effective low-
energy quantum Hamiltonian governing the dynamics of the
boundary modes of an SPT insulator supports a ground state
that is either (i) gapless, (ii) symmetry-broken, (iii) or topolog-
ically ordered if the boundary is no less than two dimensional
[22,39–43]. From a low-energy perspective, both the effec-
tive boundary Hamiltonian of an SPT insulator and the bulk
Hamiltonian satisfying an LSM-type constraint display quan-
tum anomalies [17,44,45]. For the former case, the quantum
anomaly is typically that for a global symmetry that acts
locally on the boundary [46–50]. In the latter case, there is a
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mixed quantum anomaly between a global symmetry that acts
locally and a spatial symmetry such as translation. These par-
allels led to the formulation of so-called weak-SPT-LSM-type
theorems [18,23,44,51,52]. In particular, Ref. [51] has con-
jectured an LSM-type constraint for d-dimensional fermionic
lattice Hamiltonians with the help of a bulk-boundary corre-
spondence. The fermionic d-dimensional lattice Hamiltonian
is interpreted as the low-energy effective theory of a fermionic
d + 1-dimensional lattice Hamiltonian that is gapped but
supports midgap boundary states such that (i) they can be
localized at each site of the d-dimensional lattice (ii) where
they span a local fermionic Fock space. The parent fermionic
(d + 1)-dimensional lattice Hamiltonian is an example of a
weak-SPT fermionic insulator. LSM-like constraints on the
ground states of the d-dimensional lattice Hamiltonian are
inherited from the symmetries that protect the boundary states
of the (d + 1)-dimensional lattice Hamiltonian.

As compared to LSM-type theorems for bosonic and
U(1)-charge-conserving fermionic Hamiltonians, LSM-type
theorems for fermionic Hamiltonians without any U(1)-
conserving symmetries are much less explored [49,51]. These
LSM-type constraints would be relevant for any long-range
superconducting order with fully broken SU(2)-spin-rotation
that coexists with some additional long-range order. Such
fermionic Hamiltonians always admit a formulation in terms
of Majorana degrees of freedom. To the best of our knowl-
edge, there are no proofs of LSM-type constraints relevant
to fermionic lattice Hamiltonians with translation symmetry
and some discrete internal symmetry (such as time-reversal
symmetry, say) for which fermion-number conservation is
broken down to the conservation of fermion parity.

In the present work, we state and prove two LSM-
type theorems. They apply to translationally invariant lattice
Hamiltonians acting on a fermionic Fock space spanned by
Majorana degrees of freedom. The lattice is embedded in d-
dimensional Euclidean space. For Theorem 1, there also exists
a global symmetry associated to a symmetry group G f that
can be realized locally, i.e., the number of Majorana degrees
of freedom in a repeat unit cell of the lattice is even. We
prove within the framework of fermionic MPS (FMPS) that
whenever the Majorana degrees of freedom within a single
repeat unit cell realize a nontrivial projective representation of
G f , then the lattice Hamiltonian cannot have a nondegenerate,
gapped, and symmetric ground state that can be described by
an even- or odd-parity injective FMPS (for d > 1 we must
assume that G f is Abelian and all its elements are represented
by unitary operators), in agreement with the conjecture made
by Cheng in Ref. [51] when the fermion number is conserved.
For Theorem 2, it is only assumed that the repeat unit cell sup-
ports an odd number of Majorana modes, the cardinality of the
lattice is even, and translation symmetry holds. It then follows
that the ground state cannot be simultaneously nondegenerate,
gapped, and translation symmetric.

The rest of the paper is organized as follows. We intro-
duce the main results of the present work in the form of
Theorems 1 and 2 in Sec. II. We present an overview of the
internal symmetry group G f and its projective representations
in Sec. III. We introduce the framework for FMPS and present
a FMPS-based proof of Theorem 1 in Sec. IV when the di-
mension d of space is one. Theorem 2 when d = 1 is then

proved by making use of Theorem 1. An independent proof of
Theorem 2 is given for any dimensions d of space in Sec. V.
A weaker version of Theorem 1 for any d � 1 is also provided
in Sec. V. The latter proof is based on symmetry twisted
boundary conditions on twisted lattices. Finally, we collect
several examples in Sec. VI and conclude the main body of
the paper with a summary in Sec. VII. We present details
about group cohomology, FMPS construction and proof of
Theorem 1 in Appendices A, B, and C, respectively.

II. MAIN RESULTS

The notion of a global fermionic symmetry group G f with
a local action plays a central role in this paper. What we have
in mind with this terminology is any lattice model obtained
by discrete translations of a repeat unit cell. The same even
integer number n = 2m of Majorana degrees of freedom (fla-
vors), i.e., a local fermionic Fock space of dimension 2m, is
attached to any repeat unit cell. The fermion parity can then be
defined for any repeat unit cell. Even though the fermion par-
ity is generically not conserved locally, it must be conserved
globally. Hence, the symmetry group G f necessarily contains
as a subgroup the cyclic group of two elements generated by
the fermion parity. The action of any other element from the
symmetry group G f can be defined locally, i.e., its action is
represented by the same polynomial on the algebra generated
by the Majorana operators within the repeat unit cell for any
repeat unit cell of the lattice. As with the fermion parity, this
symmetry element need not be conserved locally but must be
conserved globally. A translation along the basis that gener-
ates the lattice relates different repeat unit cells. Similarly, any
crystalline symmetry lies outside of the symmetry group G f .

The motivation for Theorem 1 is the following. Given is
a local lattice Hamiltonian Ĥ that is symmetric under the
group Gtrsl × G f , where Gtrsl denotes the group of lattice
translations. Assume that the ground state |�〉 is symmetric
under both Gtrsl and G f , i.e., the ground state can change by
no more than a multiplicative phase factor (combined with
complex conjugation when the symmetry is represented by an
antiunitary operator). Assume that a gap separates the ground
state from all excited states. Are there sufficient and necessary
conditions for |�〉 to be degenerate?

A sufficient condition for all energy eigenvalues to be
degenerate is that at least one generator from Gtrsl and one
element g from G f are represented globally by operators
that commute projectively, i.e., when passing the translation
operator from the left to the right of the operator represent-
ing globally the element g, a multiplicative phase factor that
cannot be gauged to unity arises. Another sufficient condition
for the case when G f has an antiunitarily represented Z2 sub-
group (such as time-reversal symmetry) is that the symmetry
generator g is represented globally by an operator that squares
to minus the identity (Kramers’ theorem). However, none
of these conditions are necessary for the ground state to be
degenerate in the thermodynamic limit. Even if all operators
representing Gtrsl and all global operators representing G f
commute pairwise and if all global operators representing G f
square to unity, a gapped and symmetric ground state might
still be degenerate in the thermodynamic limit.
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To develop an intuition for this last claim, we consider
a one-dimensional lattice with the topology of a ring and
assume that G f is an Abelian group such that any element

g ∈ G f is represented globally by the unitary operator Ûg.

Let Ĥpbc be any local Hamiltonian that is invariant under the

actions of the unitary operators T̂1 representing a translation
by one repeat unit cell and Ûg. Assume that the spectrum of
Ĥpbc shows a gap between its ground and excited states. We

define the operator T̂1,h which translates all lattice repeat unit
cells by one to the right and acts locally with the local unitary
operator representing h ∈ G f on the last repeat unit cell of

the chain. Suppose that there exists a Hamiltonian Ĥtwist that
is constructed by deforming subextensively many local terms
from Ĥpbc and such that Ĥtwist is invariant under the actions of

both T̂1,h and Ûg. As long as the spectral gaps at the end points
λ = 0 and 1 of

Ĥ (λ) := λ Ĥpbc + (1 − λ) Ĥtwist (2.1)

does not close for 0 � λ � 1, Ĥpbc and Ĥtwist must share the
same ground-state degeneracy. Note that generically Hamil-
tonian Ĥ (λ) is not invariant under the actions of T̂1 or T̂1,h

when 0 < λ < 1. This scenario is plausible, for Ĥpbc and Ĥtwist
differ by subextensively many terms in the thermodynamic
limit. Now, we denote with | exp(iKh), exp(iUg)〉 a many-
body ground state of Ĥtwist that is a simultaneous eigenstate
of T̂1,h and Ûg with the eigenvalues exp(iKh) and exp(iUg),
respectively. The many-body state T̂1,h | exp(iKh), exp(iUg)〉
is then also a ground state of Ĥtwist . A sufficient con-
dition for T̂1,h | exp(iKh), exp(iUg)〉 to be orthogonal to
| exp(iKh), exp(iUg)〉 is that the product Ûg T̂1,h differs from
the product T̂1,h Ûg by a multiplicative phase exp(iχg,h) �= 1

that cannot be gauged away. If so the ground state of Ĥtwist is
necessarily degenerate. If the gap never closes as a function
of λ in the interval λ ∈ [0, 1] in Eq. (2.1), then Ĥpbc and Ĥtwist

share the same ground-state degeneracy even though T̂1 and
Ûg commute for all g ∈ G f .

We are ready to state Theorems 1 and 2 for which Gtrsl
stands for the group of lattice translations while G f stands for
the global fermionic symmetry group with a local action (i.e.,
it is an internal symmetry group).

Theorem 1. Any one-dimensional lattice Hamiltonian that
is local and admits the symmetry group Gtrsl × G f can-
not have a nondegenerate, gapped, and Gtrsl × G f -symmetric
ground state that can be described by an even- or odd-parity
injective FMPS if G f is realized by a nontrivial projective
representation on the local Fock space.

Theorem 2. A local Majorana Hamiltonian with an odd
number of Majorana degrees of freedom per repeat unit cell
that is invariant under the symmetry group Gtrsl × G f , cannot
have a nondegenerate, gapped and translationally invariant
ground state.

Comment 1. The thermodynamic limit is implicit in both
theorems.

Comment 2. Theorem 1 is only predictive when G f is real-
ized by a nontrivial projective representation on the local Fock
space. When G f is a Lie group its projective representation

on the local Fock space can be trivial. If so, Theorem 1 is not
predictive. However, one can use complementary arguments
such as the adiabatic threading of a gauge flux to decide if the
ground state is degenerate. It is when G f is a finite group that
the full power of Theorem 1 is unleashed.

Comment 3. Theorem 1 is proved within the FMPS frame-
work in Sec. IV. A weaker form of Theorem 1 holds in any
dimension if it is assumed that G f is Abelian and can be
realized locally using unitary operators. The weaker version
of Theorem 1 that is valid in any dimension is proved using
tilted and twisted boundary conditions in Sec. V.

Comment 4. Theorem 2 applies in any dimension of space
without any restriction on the internal fermionic symmetry
group G f .

Comment 5. The direct product structure of the symme-
try group Gtrsl × G f is crucial in Theorems 1 and 2, and
their generalizations to higher dimensions. Indeed, it has been
shown that when the total symmetry group does not have
a direct product structure, such as is the case with mag-
netic translation symmetries, a symmetric, nondegenerate,
gapped, and short-range entangled ground state is not ruled
out when closed-boundary conditions are imposed [25,53,54].
However, such a short-range entangled ground state must
then necessarily support gapless symmetry-protected bound-
ary states when open boundary conditions are imposed.

III. PROJECTIVE REPRESENTATIONS OF SYMMETRIES
OBEYED BY MAJORANAS

Theorems 1 and 2 relate the quantum dynamics obeyed
by Majoranas to the symmetries they obey. The smallest
symmetry group associated to Majoranas originates from the
conservation of the parity (evenness or oddness) of the to-
tal number of fermions. This symmetry is associated to a
cyclic group of order two that we shall denote with ZF

2 .
Other symmetries are possible, say time-reversal symmetry
or spin rotation symmetry. All such additional symmetries
define a second group G. The first question to be answered
is how many different ways are there to marry into a group
G f the intrinsic symmetry group ZF

2 of Majoranas with the
model-dependent symmetry group G. This problem in known
in group theory as the central extension of G by ZF

2 . It delivers
a family of distinct equivalence classes with each equivalence
class [γ ] in one-to-one correspondence with the cohomology
group H2(G,ZF

2 ). This result is motivated in Sec. III A.
Once a representative symmetry group G f has been

selected from [γ ] ∈ H2(G,ZF
2 ), its representation on the

Fock space spanned by all the local quantum degrees of
freedom, a set that includes Majorana operators, must be
constructed. Hereto, there are many possibilities. Their enu-
meration amounts to classifying the inequivalent projective
representations of the group G f . All the inequivalent projec-
tive representations of any one of the groups G f obtained
in Sec. III A are in one-to-one correspondence with the co-
homology group H2(G f , U(1)c). This result is motivated in
Sec. III B. The computation of H2(G f , U(1)c) is done in
Sec. III B and Sec. VI.

Given two projective representations, a third one can be
obtained from a graded tensor product as is explained in
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Sec. III C. We shall describe the stacking rules used to con-
struct nontrivial projective representations.

A. Marrying the fermion parity with the symmetry group G

For quantum systems built out of an even number of lo-
cal Majorana operators, it is always possible to express all
Majorana operators as the real and imaginary parts of lo-
cal fermionic creation or annihilation operators. The parity
(evenness or oddness) of the total fermion number is always a
constant of the motion. If F̂ denotes the operator whose eigen-
values counts the total number of local fermions in the Fock
space, then the parity operator (−1)F̂ necessarily commutes
with the Hamiltonian that dictates the quantum dynamics,
even though F̂ might not, as is the case in any mean-field
treatment of superconductivity.

We denote the group of two elements e and p

ZF
2 := {e, p | e p = p e = p, e = e e = p p}, (3.1)

whereby e is the identity element and we shall interpret the
quantum representation of p as the fermion parity operator. It
is because of this interpretation of the group element p that we
attach the upper index F to the cyclic group Z2. In addition to
the symmetry group ZF

2 , we assume the existence of a second
symmetry group G with the composition law · and the identity
element id. We would like to construct a new symmetry group
G f out of the two groups G and ZF

2 . Here, the symmetry group
G f inherits the “fermionic” label f from its center ZF

2 . One
possibility is to consider the Cartesian product

G × ZF
2 := {

(g, h) | g ∈ G, h ∈ ZF
2

}
(3.2a)

with the composition rule

(g1, h1) ◦ (g2, h2) := (g1 · g2, h1 h2). (3.2b)

The resulting group G f is the direct product of G and ZF
2 .

However, the composition rule (3.2b) is not the only one
compatible with the existence of a neutral element, inverse,
and associativity. To see this, we assume first the existence of
the map

γ : G × G → ZF
2 ,

(g1, g2) �→ γ (g1, g2),
(3.3a)

whereby we impose the conditions

γ (id, g) = γ (g, id) = e, γ (g−1, g) = γ (g, g−1), (3.3b)

for all g ∈ G and

γ (g1, g2) γ (g1 · g2, g3) = γ (g1, g2 · g3) γ (g2, g3), (3.3c)

for all g1, g2, g3 ∈ G. Second, we define G f to be the set of all
pairs (g, h) with g ∈ G and h ∈ ZF

2 obeying the composition
rule

◦
γ

:
(
G × ZF

2

) × (
G × ZF

2

) → G × ZF
2 ,

((g1, h1), (g2, h2)) �→ (g1, h1) ◦
γ

(g2, h2), (3.3d)

where

(g1, h1) ◦
γ

(g2, h2) := (g1 · g2, h1 h2 γ (g1, g2)). (3.3e)

One verifies the following properties. First, the order within
the composition h1 h2 γ (g1, g2) is arbitrary since ZF

2 is
Abelian. Second, conditions (3.3b) and (3.3c) ensure that G f
is a group with the neutral element

(id, e), (3.4a)

the inverse to (g, h) is

(g−1, [γ (g, g−1)]−1 h−1), (3.4b)

and the center (those elements of the group that commute with
all group elements) given by(

id,ZF
2

)
, (3.4c)

i.e., the group G f is a central extension of G by ZF
2 . Third,

the map γ can be equivalent to a map γ ′ of the form (3.3a) in
that they generate two isomorphic groups. This is true if there
exists the one-to-one map

κ̃ : G × ZF
2 → G × ZF

2 ,
(3.5a)

(g, h) �→ (g, κ (g) h)

induced by the map

κ : G → ZF
2 ,

g �→ κ (g),
(3.5b)

such that the condition

κ̃ ((g1, h1) ◦
γ

(g2, h2)) = κ̃ ((g1, h1)) ◦
γ ′

κ̃ ((g2, h2)) (3.6)

holds for all (g1, h1), (g2, h2) ∈ G × ZF
2 . In other words, γ

and γ ′ generate two isomorphic groups if the identity

κ (g1 · g2) · γ (g1, g2) = κ (g1) · κ (g2) · γ ′(g1, g2) (3.7)

holds for all g1, g2 ∈ G. This group isomorphism defines an
equivalence relation. We say that the group G f obtained by
extending the group G with the group ZF

2 through the map γ

splits when a map (3.5b) exists such that

κ (g1 · g2) · γ (g1, g2) = κ (g1) · κ (g2) (3.8)

holds for all g1, g2 ∈ G, i.e., G f splits when it is isomorphic
to the direct product (3.2).

The task of classifying all the nonequivalent central exten-
sions of G by ZF

2 through γ is achieved by enumerating all
the elements of the second cohomology group H2(G,ZF

2 ), see
Appendix A. We define an index [γ ] ∈ H2(G,ZF

2 ) to repre-
sent such an equivalence class, whereby the index [γ ] = 0 is
assigned to the case when G f splits.

B. Projective representations of the group Gf

We denote with 	 a d-dimensional lattice with j ∈ Zd

labeling the repeat unit cells. We are going to attach to 	 a
Fock space on which projective representations of the group
G f constructed in Sec. III A are realized. This will be done
using four assumptions.

Assumption 1. We attach to each repeat unit cell j ∈ 	 the
local Fock space F j . This step requires that the number of
Majorana degrees of freedom in each repeat unit cell is even.
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It is then possible to define the local fermion number operator
f̂ j and the local fermion-parity operator

p̂ j := (−1) f̂ j . (3.9)

We assume that all local Fock spaces F j with j ∈ 	 are
“identical,” in particular they share the same dimensionality
D. This assumption is a prerequisite to imposing translation
symmetry.

Assumption 2. Each repeat unit cell j ∈ 	 is equipped with
a representation û j (g) of G f through the conjugation

ô j �→ û j (g) ô j û†
j (g), [û j (g)]−1 = û†

j (g), (3.10a)

of any operator ô j acting on the local Fock space F j . The
representation (3.10a) of g ∈ G f can either be unitary or an-
tiunitary. More precisely, let

c : G f → {1,−1},
g �→ c(g),

(3.10b)

be a homomorphism. We then have the decomposition

û j (g) :=
{
v̂ j (g), if c(g) = +1,

v̂ j (g) K, if c(g) = −1,
(3.10c)

where

v̂−1
j (g) = v̂

†
j (g), p̂ j v̂ j (g) p̂ j = (−1)ρ(g) v̂ j (g), (3.10d)

is a unitary operator with the fermion parity ρ(g) ∈ {0, 1} ≡
Z2 acting linearly on F j and K denotes complex conjugation
on the local Fock space F j . Accordingly, the homomorphism
c(g) dictates if the representation of the element g ∈ G f is
implemented through a unitary operator [c(g) = 1] or an an-
tiunitary operator [c(g) = −1]. Finally, we always choose to
represent locally the fermion parity p ∈ ZF

2 by the Hermitian
operator p̂ j ,

û j (p) := p̂ j ≡ (−1) f̂ j . (3.10e)

Assumption 3. For any two elements g, h ∈ G f [to simplify
notation, g ◦

γ
h ≡ gh for all g, h ∈ G f ], whereby e = gg−1 =

g−1 g denotes the neutral element and g−1 ∈ G f the inverse of
g ∈ G f , we postulate the projective representation

û j (e) = 1̂D, (3.11a)

û j (g) û j (h) = eiφ(g,h) û j (gh), (3.11b)

[û j (g) û j (h)]û j ( f ) = û j (g)[û j (h) û j ( f )], (3.11c)

whereby the identity operator acting on F j is denoted 1̂D and
the function

φ : G f × G f → [0, 2π ),

(g, h) �→ φ(g, h),
(3.12a)

must be compatible with the associativity in G f , i.e.,

φ(g, h) + φ(gh, f ) = φ(g, h f ) + c(g) φ(h, f ), (3.12b)

for all g, h, f ∈ G f .1 The map φ taking values in [0, 2π )
and satisfying (3.12b) is an example of a 2-cocycle with the
group action specified by the Z2-valued homomorphism c. In
the vicinity of the value 0, φ generates the Lie algebra u(1).
The associated Lie group is denoted U(1). Given the neutral
element e ∈ G f , a normalized 2-cocycle obeys the additional
constraint

φ(e, g) = φ(g, e) = 0 (3.12c)

for all g ∈ G f . Two 2-cocycles φ(g, h) and φ′(g, h) are said to
be equivalent if they can be consistently related through a map

ξ : G f → [0, 2π ),

g �→ ξ (g),
(3.13)

as follows. The equivalence relation φ ∼ φ′ holds if the trans-
formation

û(g) = eiξ (g) û′(g), (3.14a)

implies the relation

φ(g, h) − φ′(g, h) = ξ (g) + c(g) ξ (h) − ξ (gh), (3.14b)

between the 2-cocycle φ(g, h) associated to the projective
representation û(g) and the 2-cocycle φ′(g, h) associated to the
projective representation û′(g).2 In particular, û is equivalent
to an ordinary representation (a trivial projective representa-
tion) if φ′(g, h) = 0 for all g, h ∈ G f . Any φ ∼ 0 is called a
coboundary. For any coboundary φ there must exist a ξ such
that

φ(g, h) = ξ (g) + c(g) ξ (h) − ξ (gh). (3.15)

The space of equivalence classes of projective representa-
tions is obtained by taking the quotient of 2-cocycles (3.12)
by coboundaries (3.15). The resulting set is the second
cohomology group H2(G f , U(1)c), which has an additive
group structure. Appendix A gives more details on group
cohomology.

Assumption 4. We attach to 	 the global Fock space F	

by taking the appropriate product over j of the local Fock
spaces F j . This means that we impose some algebra on all
local operators differing by their repeat unit cell labels.

Example 1. Any two local fermion number operators f̂ j and

f̂ j′ must commute

[ f̂ j, f̂ j′] = 0 (3.16)

1One recognizes that Eq. (3.12b) is a generalization of Eq. (3.3c) if
one identifies the exponential of φ in Eq. (3.12b) with γ in Eq. (3.3c)
[up to the homomorphism (3.10b)].

2One recognizes that Eq. (3.14b) is a generalization of Eq. (3.7) if
one identifies the exponential of ξ in Eq. (3.14b) with κ in Eq. (3.7)
[up to the homomorphism (3.10b)].
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for any two distinct repeat unit cell j �= j′ ∈ 	. The total
fermion and fermion-parity numbers are

F̂	 :=
∑
j∈	

f̂ j, P̂	 := (−1)F̂	, (3.17)

respectively.
Example 2. Any two Majorana operators labeled by j �=

j′ ∈ 	 must anticommute.
Example 3. The algebra

û j (g) û j′ (g
′) = (−1)ρ(g) ρ(g′ ) û j′ (g

′) û j (g) (3.18)

holds for any distinct j �= j′ ∈ 	 and any g, g′ ∈ G f because
of Eq. (3.10d). We then define the operator

Û (g) :=
{∏

j∈	 v̂ j (g), if c(g) = +1,[∏
j∈	 v̂ j (g)

]
K, if c(g) = −1,

(3.19)

that implements globally on the Fock space F	 the operation
corresponding to the group element g ∈ G f .

Theorem 1 refers to nontrivial projective representations of
the symmetry group G f constructed in Sec. III A. We are go-
ing to characterize the projective representations constructed
in Sec. III B by two indices [(ν, ρ)] and show that the second
cohomology group H2(G f , U(1)c) is equivalent to the equiv-
alence classes [(ν, ρ)] of a tuple (ν, ρ).

Theorem 1 presumes the existence of a local projective rep-
resentation of the symmetry group G f . This is only possible
if the local Fock space F j defined in Sec. III B is spanned by
an even number of Majorana operators. This hypothesis pre-
cludes a situation in which a fermion number operator is well
defined globally but not locally, for example when the lattice
	 is made of an even number of repeat unit cells, but a repeat
unit cell is assigned an odd number of Majorana operators.
(This can happen upon changing the parameters governing the
quantum dynamics as is illustrated in Fig. 1.) We introduce
the index μ = 0, 1 to distinguish both possibilities. The case
μ = 0 applies when the number of local Majorana operators
at site j ∈ 	 is even, in which case the number of repeat unit
cells in 	 is any positive integer. The case μ = 1 applies
when the number of local Majorana operators at site j ∈ 	

is odd, in which case the number of repeat unit cell in 	 must
necessarily be an even positive integer. The triplet

([(ν, ρ)], μ) :=
{

([(ν, ρ)], 0), if μ = 0,

(0, 0, 1), if μ = 1,
(3.20)

of indices allows to treat Theorems 1 and 2 together, as we are
going to explain.

A similar set of three indices also appears in the classifi-
cation of one-dimensional fermionic SPT phases. This is not
an accident, for fermionic SPT phases can also be classified in
terms of the projective representations realized by the global
symmetries after projection on the boundaries [55–59].

1. Indices [(ν, ρ)]

Theorem 1 is only predictive once it is established that
a projective representation of G f is non trivial. We recall
that (i) the group G f is a central extension of the group
G by ZF

2 through the map γ defined in Eq. (3.3) and (ii)

(c)

(b)

(a)

FIG. 1. The repeat unit cells of a lattice 	 are represented pic-
torially by squares. The lattice 	 is chosen for simplicity to be
one dimensional. (a) The repeat unit cell is decorated with two
circles, one empty, the other filled. If periodic boundary conditions
are imposed, translations by one repeat unit cell are symmetries. The
permutation of the empty and filled circle within all repeat unit cells
is not a symmetry. (b) If the filling pattern is smoothly tuned (through
an on-site potential whose magnitude is color coded, say) so that
both circles in an repeat unit cell have the same filling, then the
permutation of the left and right circles within all repeat unit cells is
a symmetry. One may then choose a smaller repeat unit cell, a square
centered about one circle only. (c) Image of (a) under the permutation
of the empty and filled circle within all repeat unit cells.

only the equivalence classes [γ ] ∈ H2(G,ZF
2 ) deliver non-

isomorphic groups. Choosing an element [γ ] ∈ H2(G,ZF
2 )

specifies G f . In turn, a projective representation of G f is
specified by choosing an element φ from the equivalence class
[φ] ∈ H2(G f , U(1)c) where the 2-cocycle φ was defined in
Eq. (3.12). By convention, a projective representation of G f is
trivial if φ ∼ 0, i.e.,

[φ] ≡ 0 (3.21)

is the trivial (i.e., neutral) element of H2(G f , U(1)c) equipped
with the addition as group composition.

Deciding if a projective representation of G f is non trivial

amounts to calculating H2(G f , U(1)c). This task is facilitated

by the fact that H2(G f , U(1)c) can be related to H2(G,ZF
2 ),

C2(G, U(1)), and C1(G,Z2) together with a set of appro-
priately defined cocycle and coboundary conditions, (see
Appendix A for definitions of these sets and conditions) as
was shown in the physics literature by Turzillo and You in
Ref. [58]. When the equivalence class [γ ] ∈ H2(G,ZF

2 ) is
trivial, [γ ] = 0, the second cohomology group H2(G f , U(1)c)
reduces to the direct product of the cohomology groups
H2(G, U(1)c) and H1(G,Z2) as we shall explain.

To understand this claim, we consider first the simpler case
when the central extension G f of the group G by ZF

2 splits,
i.e., when

[γ ] = 0 ⇐⇒ G f = G × ZF
2 (3.22)
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according to Sec. III A. If so, we can apply the Kuenneth
formula for group cohomology,

H2(G f , U(1)c) = H2
(
G × ZF

2 , U(1)c
)

= H2(G, U(1)c) × H1(G,Z2). (3.23)

Equation (3.23) states that the Abelian group H2(G f , U(1)c)

is the direct product between the Abelian group H2(G, U(1)c)
and the Abelian group H1(G,Z2).

The cohomology group H2(G, U(1)c) is obtained by re-
stricting the domain of definition of the function φ in Eq.
(3.12) to the domain of definition G × G. We will reserve the
letter ν to denote such a function. An element of the Abelian
group H2(G, U(1)c) with the addition as group composition
is the equivalence class [ν] with the neutral element

[ν] = 0. (3.24)

The presence of the cohomology group H1(G,Z2) on the
right-hand side of Eq. (3.23) can be understood as follows.
Choose h in Eq. (3.11b) to be the fermion parity p (by the
inclusion map). We then have

û(g) û(p) = eiφ(g,p) û(g p), û(p) û(g) = eiφ(p,g) û(p g).
(3.25)

Because p belongs to the center of G f , g p = p g implies that

û(g) û(p) = ei[φ(g,p)−φ(p,g)] û(p) û(g). (3.26)

Because the eigenvalues of the fermion parity operator are 0
or 1,

φ(g, p) − φ(p, g) = n π (3.27)

for some integer n, i.e., the projective representation of the
parity operator û(p) either commutes (n even) or anticom-
mutes (n odd) with the projective representation û(g) of any
element of G. Hence, we may define the map

ρ : G → Z2,
(3.28)

g �→ ρ(g) := φ(g, p) − φ(p, g)

π
mod 2,

whose equivalence classes [ρ] under the gauge transformation
induced by Eq. (3.14a) define H1(G,Z2). We recognize that
the map (3.28) is the fermion parity ρ(g) ∈ {0, 1} ≡ Z2 de-
fined in Eq. (3.10d). Even though the subgroup G of G × ZF

2
commutes with the subgroup ZF

2 , this need not be true under
a projective representation. This possibility is captured by the
presence of H1(G,Z2) on the right-hand side of Eq. (3.23).
The neutral element of H1(G,Z2) equipped with the addition
is

[ρ] = 0. (3.29)

All told, when the central extension G f of the group G by ZF
2

splits, the Kuenneth formula (3.23) predicts that

[φ] ≡ ([ν], [ρ]) (3.30a)

with the trivial projective representation defined by the condi-
tion

0 = [φ] = ([ν], [ρ]) = (0, 0). (3.30b)

When the central extension G f of the group G by ZF
2 does not

split, i.e., when

[γ ] �= 0 (3.31)

according to Sec. III A, then the identification (3.30a) is no
longer correct. Turzillo and You in Ref. [58] have shown in
the context of SPT phases of matter that, the equivalence
classes [(ν, ρ)] of the pair (ν, ρ) ∈ C2(G, U(1)) × C1(G,Z2)
that satisfy the conditions

(δν − π ρ � γ , δρ) = (0, 0), (3.32a)

are in one to one correspondence with the second cohomology
classes [φ] ∈ H2(G f , U(1)c). Here, the operation δ is defined
in Eq. (A3), while � denotes the cup product defined in Eq.
(A11). Two pairs (ν, ρ) and (ν ′, ρ ′) are equivalent to each
other if there exists another pair (α, β ), whereby

α : G → [0, 2π ),

g �→ α(g),
(3.32b)

while β ∈ Z2 such that

(ν, ρ) = (ν ′, ρ ′) + (δα + πβ � γ , δβ ). (3.32c)

(See Appendix A 2 for a detailed discussion.) Hence, the
second cohomology class is identified with

[φ] ≡ [(ν, ρ)]. (3.32d)

It can be seen from Eqs. (3.32a) and (3.32c) that if [γ ] = 0
then δν = 0, which is the defining condition for ν to be a
2-cocycle. We may then identify the gauge equivalent classes
[ν] with the elements of the Abelian group H2(G, U(1)c) and
the identification (3.32d) reduces to the one in Eq. (3.30a).
However, when [γ ] �= 0, the function ν : G × G → U(1) is
called a 2-cochain and belongs to the set C2(G, U(1)). In prac-
tice, Eq. (3.32) ties the 2-cochain ν to the 2- and 1-cochains
γ and ρ that belong to the sets C2(G,ZF

2 ) and C1(G,Z2),
respectively. From now on, we shall use the notation (3.32d)
to trade in general the second cohomology class [φ] with the
equivalence class [(ν, ρ)] and reserve the notation ([ν], [ρ])
of Eq. (3.30a) for the case when the underlying fermionic
symmetry group G f splits (i.e., [γ ] = 0).

C. Stacking rules

In this section, we review the so-called stacking rules,
according to which the indices [(ν, ρ)] and μ classifying an
LSM constraint can be “added.”

Given two Fock spaces F (1)
j and F (2)

j , let û(1)
j and û(2)

j
be two local projective representations of G f with indices

([(ν1, ρ1)], 0) and ([(ν2, ρ2)], 0), respectively. Stacking F (1)
j

and F (2)
j refers to taking the graded tensor product3

F (1⊗g2)
j := F (1)

j ⊗g F
(2)
j . (3.33)

3To account for the fermionic statistics, instead of the standard
tensor product one must use a Z2 graded one. Fermionic Fock spaces
then carry the structure of a Z2 graded vector space, also called a
supervector space. See Appendix B for more details on this construc-
tion.
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The local representation of G f over F (1⊗g2)
j is

û
(1⊗g2)
j (g) :=

{
v̂

(1)
j (g) v̂

(2)
j (g), if c(g) = +1,

v̂
(1)
j (g) v̂

(2)
j (g) K, if c(g) = −1.

(3.34a)

This representation satisfies the composition rule

û
(1⊗g2)
j (g) û

(1⊗g2)
j (h) = eiφ(g,h)û

(1⊗g2)
j (gh), (3.34b)

where the phase φ(g, h)∈ [0, 2π ) is

φ(g, h) = φ1(g, h) + φ2(g, h) + πρ1(h) ρ2(g). (3.34c)

The first two terms arise due to the composition rule of the
two representations û(1)

j and û(2)
j . The last term encodes the

fact that representation (1) of element h and representation (2)
of element g anticommute if both of them have odd fermion
parity. Equation (3.34c) can be decomposed into the stacking
relations

([(ν, ρ)], 0) = ([(ν1 + ν2 + π ρ1 � ρ2, ρ1 + ρ2)], 0).
(3.35)

Here, ρ1 � ρ2 is the cup product of the two 1-cochains ρ1
and ρ2 (see Appendix A for the definition of the cup prod-
uct). Turzillo and You in Ref. [58] have shown that a similar
relationship holds in the context of SPT phases of matter.
The graded tensor product also allows to stack two projective
representations (0, 0, μ1) and (0, 0, μ2) with μ1 = 1 mod 2
and μ2 = 1 mod 2. The result is a projective representation of
the form ([(ν, ρ)], 0) since it is then possible to define a local
Fock space.

IV. MAJORANA LSM THEOREM IN ONE DIMENSION

In this section, we sketch the proofs for Theorems 1 and
2 in 1D space using the machinery of fermionic matrix prod-
uct states (FMPS). We relegate some intermediate steps and
technical details to Appendix C. We begin with a definition
of FMPS in Sec. IV A (further background can be found in
Appendix B and Refs. [56–58,60]).

The strategy that we follow is to prove that so-called in-
jective FMPS are only compatible with a trivial projective
representation of the symmetry group G f discussed in Sec. III.
The main steps of the proof for Theorems 1 and 2, the first
main results of this paper, are provided in Sec. IV B and IV C,
respectively. We close by discussing parallels with the SPT
phases in Sec. IV D.

A. Fermionic matrix product states

Consider a one-dimensional lattice 	 ∼= ZN . At the repeat
unit cell j = 1, . . . , N , the local fermion number operator
is denoted f̂ j and the local Fock space of dimension D j is

denoted F j
∼= CD j . We define with∣∣ψσ j

〉
, σ j = 1, . . . ,D j, (4.1a)

an orthonormal basis of F j such that

(−1) f̂ j |ψσ j
〉 = (−1)|σ j ||ψσ j

〉. (4.1b)

The fermion parity eigenvalue of the basis element |ψσ j
〉 is

thus denoted (−1)|σ j | with |σ j | ≡ 0, 1. The local Fock space
F j admits the direct sum decomposition

F j = F (0)
j ⊕ F (1)

j , (4.2a)

where, given p = 0, 1,

F (p)
j := span

{∣∣ψσ j

〉
, σ j = 1, . . . ,D j

∣∣ |σ j | = p
}
. (4.2b)

One verifies that dim F (0)
j = dim F (1)

j = D j/2. To construct
the Fock space F	 for the lattice 	, we demand that the direct
sum (4.2) also holds for F	. This is achieved with the help of
the Z2 tensor product ⊗g. This tensor product preserves the
Z2-grading structure. We define the reordering rule∣∣ψσ j

〉 ⊗g

∣∣ψσ
j′

〉 ≡ (−1)|σ j | |σ j′ |
∣∣ψσ

j′

〉 ⊗g

∣∣ψσ j

〉
(4.3)

on any two basis elements |ψσ j
〉 and |ψσ

j′
〉 of F j and F j′

for any two distinct sites j ∈ 	 and j′ ∈ 	, respectively. The
rule (4.3) guarantees that states are antisymmetric under the
exchange of an odd number of fermions on site j with an odd
number of fermions on site j′ while symmetric otherwise. We
then define the fermionic Fock space F	 for the lattice 	 to
be

F	 := span

{
|�σ〉

∣∣∣∣∣ |�σ〉 ≡
N⊗

j=1
g |ψσ j

〉,

σ ≡ (σ1, . . . , σN ) ∈ {1, . . . ,D1} × · · · × {1, . . . ,DN }
}

.

(4.4)

As the parity |σ j | of the state |ψσ j
〉 can be generalized to the

parity |σ| of the state |�σ〉 through the action of the global
fermion number operator

F̂	 :=
N∑

j=1

f̂ j, |σ| ≡
N∑

j=1

|σ j | mod 2, (4.5)

the Fock space (4.4) inherits the direct sum decomposition
(4.2a),

F	 = F (0)
	 ⊕ F (1)

	 . (4.6)

Any state |�〉 ∈ F	 has the expansion

|�〉 =
∑

σ

cσ |�σ〉 (4.7a)

with the expansion coefficient cσ ∈ C. Such a state is homo-
geneous if it belongs to either F (0)

	 or F (1)
	 , in which case it

has a definite parity |�| ≡ 0, 1. From now on, we assume that
all local Fock spaces are pairwise isomorphic, i.e.,

D j = D, F j
∼= F j′ 1 � j < j′ � N. (4.8)

This assumption is needed to impose translation symmetry
below. We describe the construction of two families of states
that lie in F (0)

	 and F (1)
	 , respectively. To this end, we choose

the positive integer M, denote with 1M the unit M × M matrix
and define the following pair of 2M × 2M matrices

P :=
(
1M 0

0 −1M

)
, Y :=

(
0 1M

−1M 0

)
. (4.9)
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The 2 × 2 grading that is displayed is needed to represent the
Z2 grading in Eq. (4.6) as will soon become apparent. The an-
ticommuting matrices P and Y belong to the set Mat(2M,C)
of all 2M × 2M matrices. This set is a 4M2-dimensional vec-
tor space over the complex numbers.4 For any σ j = 1, . . . ,D
with j ∈ 	, we choose the matrices

Bσ j
,Cσ j

, Dσ j
, Eσ j

, Gσ j
∈ Mat(M,C) (4.10a)

with the help of which we define the matrices

A(0)
σ j

:=

⎧⎪⎪⎨⎪⎪⎩
(Bσ j

0

0 Cσ j

)
, if |σ j | = 0,(0 Dσ j

Eσ j
0

)
, if |σ j | = 1,

(4.10b)

and

A(1)
σ j

:=

⎧⎪⎪⎨⎪⎪⎩
(Gσ j

0

0 Gσ j

)
, if |σ j | = 0,( 0 Gσ j

−Gσ j
0

)
, if |σ j | = 1,

(4.10c)

from Mat(2M,C). Observe that Eq. (4.10c) is a special case
of Eq. (4.10b). For any σ j = 1, . . . ,D with j ∈ 	, the ma-

trix P commutes (anticommutes) with A(p)
σ j

when |σ j | = 0
(|σ j | = 1),

P A(p)
σ j

= (−1)|σ j | A(p)
σ j

P (4.11)

for both p = 0, 1. In contrast, the matrix Y commutes with
A(1)

σ j

Y A(1)
σ j

= A(1)
σ j

Y (4.12)

for all σ j = 1, . . . ,D with j ∈ 	.
We are ready to define the FMPS. We define states with

either periodic boundary conditions (PBC) or antiperiodic
boundary conditions (APBC) denoted by the parameter b = 0
or 1, respectively. They are∣∣{A(0)

σ j

}
; b

〉
:=

∑
σ

tr
[
Pb+1A(0)

σ1
· · · A(0)

σN

]|�σ〉 (4.13a)

and ∣∣{A(1)
σ j

}
; b

〉
:=

∑
σ

tr
[
Pb Y A(1)

σ1
· · · A(1)

σN

]|�σ〉 (4.13b)

for any choice of the matrices (4.10b) and (4.10c), respec-
tively, and with the basis (4.4) of the Fock space F	. The
following properties follow from the cyclicity of the trace and
from the fact that Y is traceless.

Property 1. The FMPS |{A(p)
σ j

}; b〉 is homogeneous and be-

longs to F (p)
	 for p = 0, 1. This claim is a consequence of the

4The set Mat(2M,C) of all 2M × 2M matrices is a 8M2-
dimensional vector space over the real numbers.

identities

N∑
j=1

|σ j | = 1 mod 2 ⇒ tr
(
Pb P A(0)

σ1
· · · A(0)

σN

) = 0, (4.14a)

N∑
j=1

|σ j | = 0 mod 2 ⇒ tr
(
Pb Y A(1)

σ1
· · · A(1)

σN

) = 0. (4.14b)

Property 2. The FMPS |{A(p)
σ j

}; b〉 changes by a multiplica-
tive phase under a translation by one repeat unit cell. Indeed,
one verifies that

T̂b

∣∣{A(p)
σ j

}
; b

〉 = eiπ (2k+b)/N
∣∣{A(p)

σ j

}
; b

〉
, (4.15)

where T̂b is the generator of translation by one repeat unit cell
with boundary conditions b = 0, 1 and k ∈ Z.

Property 3. The FMPS (4.13a) and (4.13b) are not uniquely
specified by the choices {A(p)

σ j
} for p = 0, 1, respectively. For

example, the similarity transformation

A(0)
σ j

�→ U A(0)
σ j

U −1, σ j = 1, . . . , D, j = 1, . . . , N,

(4.16)
with U any matrix that commutes with P leaves the trace
unchanged. Another example occurs if there exists a nonva-
nishing matrix Q = Q2 ∈ Mat(2M,C) such that

Q A(0)
σ j

= Q A(0)
σ j

Q, σ j = 1, . . . ,D. (4.17)

Indeed, one verifies that Eq. (4.17) implies the identity

tr
[
Pb+1 A(0)

σ1
· · · A(0)

σN

] = tr
[
Pb+1 Ã(0)

σ1
· · · Ã(0)

σN

]
(4.18a)

with Ã(0)
σ j

the matrix

Ã(0)
σ j

:= Q A(0)
σ j

Q + (1M − Q) A(0)
σ j

(1M − Q). (4.18b)

While conditions (4.17) imply that all matrices A(0)
1 , . . . , A(0)

D
are reducible, conditions (4.18b) imply that all matrices
Ã(0)

1 , . . . , Ã(0)
D are decomposable into the same block diagonal

form. A necessary and sufficient condition on the D matri-
ces A(0)

1 , . . . , A(0)
D to prevent that Eq. (4.17) holds for some

Q ∈ Mat(2M,C) is to demand that there exists an integer
1 � �� � N such that the vector space spanned by the D��

matrix products

A(0)
σ1

· · · A(0)
σ

��
, σ1, . . . , σ�� = 1, . . . ,D, (4.19a)

is Mat(2M,C).5 More precisely, for any A ∈ Mat(2M,C), it
is possible to find D��

coefficients a(0)
σ1,...,σ��

∈ C such that6

A =
D∑

σ1,...,σ��
=1

a(0)
σ1,...,σ��

A(0)
σ1

· · · A(0)
σ

��
. (4.19b)

In order to restrict the redundancy in the choice of the
matrices (4.10) that enter the FMPS (4.13), we make the
following definitions.

5If D = 2, M = 1, A(0)
1 is i times the second Pauli matrix, and A(0)

2

is the third Pauli matrix, then �� = 4.
6The basis (4.19a) is in general overcomplete owing to the condi-

tion D�� � 4M2.
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Definition 1. The even-parity FMPS (4.13a) is injective
if there exists an integer �� � 1 such that the D��

products
A(0)

σ1
· · · A(0)

σ
��

of 2M × 2M matrices span Mat(2M,C).
Definition 2. The odd-parity FMPS (4.13b) is injective if

there exists an integer �� � 1 such that the D��

products
Gσ1

· · · Gσ
��

of M × M matrices span Mat(M,C).
The need to distinguish the definitions of injectivity for

even- and odd-parity FMPS stems from the fact that for an
odd-parity FMPS the matrix Y commutes with A(1)

1 , . . . , A(1)
D .

In other words, Y is in the center of the algebra closed by
products of A(1)

1 , . . . , A(1)
D . Injectivity requires this center to be

generated by 12M and Y , i.e., the algebra closed by products
of matrices A(1)

1 , . . . , A(1)
D is a Z2-graded simple algebra. For

the center to be generated by no more than 12M and Y , the
product of G1, . . . , GD must close a simple algebra of M × M
matrices, which is precisely the Definition 2. The following
properties of FMPS are essential to the proofs of Theorems 1
and 2.

Property 4. Let � � ��. The D� products A(0)
σ1

· · · A(0)
σ

�
of

2M × 2M matrices span Mat(2M,C) for any injective even-
parity FMPS. The D� products Gσ1

· · · Gσ�
of M × M matrices

span Mat(M,C) for any � � �� injective odd-parity FMPS.
Property 5. If two sets of matrices {A(p)

σ j
} and {Ã(p)

σ j
} gen-

erate the same injective FMPS, there then exists an invertible
matrix U and a phase ϕU ∈ [0, 2π ) such that [56]

Ã(p)
σ j

= eiϕU U A(p)
σ j

U −1, (4.20a)

for any σ j = 1, . . . ,D, and

P = ±U P U −1, (4.20b)

for p = 0, while

P = U P U −1, Y = ±U Y U −1, (4.20c)

for p = 1. Here, the phase ϕU is needed to compensate for
the possibility that the matrix U anticommutes with P or
Y . We also observe that the index σ j that labels the local
fermion number is preserved under the conjugation by U . The
transformation (4.20) that leaves an injective FMPS invariant
is called a gauge transformation.

Property 6. Definitions 1 and 2 ensure that the two-point
correlation function of any pair of local operators taken in
an injective FMPS decays exponentially fast with their sepa-
ration. This provides an additional motivation to study them
as they can be used to describe nondegenerate and gapped
ground states [56].

With the formalism introduced in Secs. III and IV A, we
restate Theorem 1 as follows: If an even- or odd-parity in-
jective FMPS is translation-invariant and symmetric under a
projective representation of the symmetry group G f defined
in Sec. III, then the projective representation of G f must have
a trivial second group cohomology class [φ] = 0. We recover
Theorem 1 by negating this statement.

B. Proof of Theorem 1

Our strategy is inspired by the study of injective bosonic
MPS assumed to be Gtrsl × G-invariant made by Tasaki in
Ref. [32]. For the fermionic case, we shall distinguish the
cases of even- and odd-parity FMPS, as each case demands

distinct conditions for injectivity. For the case of even-parity
injective FMPS, we shall establish the following identity
between any matrix A ∈ Mat(2M,C) and a given norm pre-
serving W ∈ Mat(2M,C) that is induced by a projective
representation of the symmetry group G f . There exists a phase
δ ∈ [0, 2π ) and a nonvanishing positive integer �� such that

A = ei� δ W −1 AW, (4.21a)

holds for all � = ��, �� + 1, �� + 2, · · · and all A ∈
Mat(2M,C). This is only possible if

δ = 0, (4.21b)

which obviously holds when A is the identity matrix 12M . For
the case of odd FMPS, we shall establish the same identity
as (4.21) for any matrix A ∈ Mat(2M,C) that commutes with
matrix Y , i.e., Y is in the center of the algebra spanned by
such matrices A. Theorem 1 will follow from the interpretation
of the condition δ = 0 as the projective representation of G f
defined in Sec. III to have trivial second group cohomology
class.

1. Case of even-parity injective FMPS

We start from the even-parity injective FMPS∣∣{A(0)
σ j

}
; b

〉
:=

∑
σ

tr
[
Pb+1 A(0)

σ1
· · · A(0)

σN

]|�σ〉. (4.22)

Let g be an element from G f be represented by the operator

Û (g) as defined in Sec. III B.
On the one hand, we have the identity

Û (g)
∣∣{A(0)

σ j

}
; b

〉 =
∑

σ

tr
[
Pb+1A(0)

σ1
· · · A(0)

σN

]
Û (g) |�σ〉

≡
∑

σ

tr
[
Pb+1A(0)

σ1
(g) · · · A(0)

σN
(g)

]|�σ〉,
(4.23a)

where

A(0)
σ j

(g) :=
D∑

σ ′
j=1

[U (g)]σ jσ
′
j
Kg

[
A(0)

σ ′
j

]
, (4.23b)

[U (g)]σ jσ
′
j

:= 〈
ψσ j

∣∣v̂ j

∣∣ψσ ′
j

〉
, (4.23c)

Kg

[
A(0)

σ j

]
:=

{
A(0)

σ j
, if c(g) = 0,

K A(0)
σ j

K, if c(g) = 1.
(4.23d)

(Complex conjugation is denoted with K.) On the other hand,
we have the identity

Û (g)
∣∣{A(0)

σ j

}
; b

〉 = eiη(g;b)
∣∣{A(0)

σ j

}
; b

〉 = ∣∣{eiη(g;b)/N A(0)
σ j

}
; b

〉
(4.24)

for some phase η(g; b) ∈ [0, 2π ) if we assume that
Û (g)|{A(0)

σ j
}; b〉 is an eigenstate of the norm-preserving oper-

ator Û (g), as it should be if G f is a symmetry. By the assump-
tion of injectivity, the matrices A(0)

σ j
(g) and eiη(g;b)/N A(0)

σ j
are

related by a similarity transformation (4.20), i.e., there exists
an invertible matrix U(g) and a phase ϕ

(b)
U (g) ∈ [0, 2π ) such that

eiη(g;b)/N A(0)
σ j

= eiϕ(b)
U (g) U (g) A(0)

σ j
(g)U −1(g) (4.25)
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for any σ j . We massage Eq. (4.25) into

eiθ (g;b) U †(g) A(0)
σ j

U (g) =
D∑

σ ′
j=1

[U (g)]σ jσ
′
j
Kg

[
A(0)

σ ′
j

]
, (4.26a)

where we have introduced the phase

θ (g; b) := η(g; b)

N
− ϕ

(b)
U (g). (4.26b)

Consider a second element h ∈ G f asides from g ∈ G f . We
can use the relation (4.26a) with g replaced by the composition
gh. We can also iterate the relation (4.26a) by evaluating the
composition Û (g) Û (h) |{A(0)

σ j
}; b〉. After some algebra (Ap-

pendix C 1), one finds that (i) the phase

δ(g, h; b) := c(g) θ (h; b) + θ (g; b) − φ(g, h) − θ (gh; b)
(4.27a)

that relates the normalized 2-cocycle defined in Eqs. (3.11)
and (3.12) to the phase (4.26a), (ii) the map represented by

V (g) :=
{

U (g), if c(g) = 0,

U (g) K, if c(g) = 1,
(4.27b)

and the D matrices A(0)
σ j

, are related by

eiδ(g,h;b) A(0)
σ j

W (g, h) = W (g, h) A(0)
σ j

(4.27c)

for any σ j = 1, . . . ,D, where

W (g, h) := V (g)V (h)V −1(gh). (4.27d)

We are going to make use of the injectivity of the FMPS a
second time after massaging Eq. (4.27c) into

A(0)
σ j

= eiδ(g,h;b) W −1(g, h) A(0)
σ j

W (g, h) (4.28)

for any σ j = 1, . . . ,D. For any integer � = 1, 2, · · · , iteration
of Eq. (4.28) gives

�∏
j=1

A(0)
σ j

= ei� δ(g,h;b) W −1(g, h)

[
�∏

j=1

A(0)
σ j

]
W (g, h). (4.29)

When � � �∗, injectivity of the FMPS implies that any matrix
A ∈ Mat(2M,C) can be written as a linear superposition of all
the possible monomials

∏�
j=1 A(0)

σ j
of order �, each of which

obeys Eq. (4.29) [recall Eq. (4.19b)]. Hence, we arrive at the
identity

A = ei� δ(g,h;b) W −1(g, h) AW (g, h), ∀� � ��, (4.30)

for any A ∈ Mat(2M,C), which implies, in turn, that W (g, h)
belongs to the center of the algebra spanned by mono-
mials

∏�
j=1 A(0)

σ j
. For even-parity FMPS, this center is

one-dimensional as it is generated by the unit matrix 12M . In
particular, we can choose A = 12M for which

12M = ei� δ(g,h;b) 12M , (4.31a)

which implies that

δ(g, h; b) = 0, (4.31b)

and, therefore, [φ] = 0 [recall Eq. (3.15)].

2. Case of odd-parity injective FMPS

The odd-parity FMPS differs from the even-parity FMPS
in that the D� products A(1)

σ1
· · · A(1)

σ
�

for any � � �� span a
subalgebra of Mat(2M,C) with the center spanned by 12M
and Y . This difference is of no consequence until reaching
the odd-parity counterpart to Eq. (4.25). However, for the
odd-parity counterpart to Eq. (4.25) multiplication of U(g)
from the left by any element from the center generated by 12M
and Y ,

[a(g) 12M + b(g)Y ]U (g), |a(g)|2 + |b(g)|2 = 1, (4.32)

leaves Eq. (4.25) unchanged. To fix this subtlety, we replace
U(g) in Eq. (4.25) by U (0)(g) which is defined by

U (g) := [a(g) 12M + b(g)Y ]U (0)(g), (4.33a)

P U (0)(g) P = U (0)(g). (4.33b)

With this change in mind, all the steps leading to Eq. (4.27)
for the even-parity case can be repeated for the odd-parity
case. The analog to the even-parity coboundary condition
(4.31b) then follows, thereby completing the proof of Theo-
rem 1.

C. Proof of Theorem 2

Theorem 1 presumes the existence of a local fermionic
Fock space, i.e., of an even number of Majorana degrees
of freedom per repeat unit cell. This hypothesis precludes
translation invariant lattice Hamiltonians with odd number of
Majorana operators per repeat unit cell such as

ĤK :=
2M∑
j=1

iγ̂ j γ̂ j+1. (4.34a)

Here, the Hermitian operators {γ̂ j = γ̂
†
j } obey the Majorana

algebra

{γ̂ j, γ̂ j′ } = 2δ j j′ , j, j′ = 1, . . . , 2M, (4.34b)

and the total number 2M of repeat unit cell is an even integer.
Hamiltonian ĤK realizes the critical point between the two
topologically distinct phases of the Kitaev chain. In the con-
tinuum limit, it describes a helical pair of Majorana fields and
has a gapless spectrum.

Motivated by this example, we now prove a separate LSM
constraint on Majorana lattice models with an odd Majorana
flavors per repeat unit site. We use Theorem 1 for the proof.

Let n � 0 be an integer and

χ̂ j := (χ̂ j,1, χ̂ j,2, · · · , χ̂ j,2m+1)T (4.35)

be the spinor made of 2m + 1 Majorana operators. Let the
Hamiltonian Ĥ be local and translationally invariant. We write

Ĥ ≡
2M∑
j=1

ĥ(χ̂ j−q, . . . , χ̂ j, . . . , χ̂ j+q ), (4.36)

where ĥ is a Hermitian polynomial of 2q Majorana spinors
{χ̂ j−q, . . . , χ̂ j+q} with q a positive integer. The finiteness of
q renders Ĥ local. Hamiltonian (4.36) is defined over 2M
sites, since an even number of Majorana operators are needed
to have a well-defined Fock space. We assume that Ĥ has
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a nondegenerate gapped ground state |�0〉. We are going to
deliver a contradiction by making use of Theorem 1, thereby
proving Theorem 2.

Define the Hamiltonian,

Ĥ ′ :=
2M∑
j=1

2∑
α=1

ĥ
(
χ̂

(α)
j−q, · · · , χ̂

(α)
j+q

)
, (4.37a)

which is the sum of two copies of Hamiltonian (4.36). The
repeat unit cell labeled by j = 1, . . . , 2M now contains two
Majorana spinors labeled by α = 1, 2. Hamiltonian (4.37)
thus acts on a Fock space which is locally spanned by an
even number of Majorana flavors. At each site j = 1, . . . , 2M,
one can define a local fermionic Fock space. Since there is
no coupling between the two copies α = 1, 2 of Majorana
spinors, Ĥ ′ inherits from Ĥ the nondegenerate gapped ground
state

|� ′
0〉 := |�0〉 ⊗g |�0〉. (4.37b)

Since at each site j, there is no term coupling the two
copies χ̂

(1)
j and χ̂

(2)
j , Ĥ ′ is invariant under any local permu-

tation (
χ̂

(1)
j

χ̂
(2)
j

)
�→

(
χ̂

(2)
j

χ̂
(1)
j

)
. (4.38a)

The local representation of the fermion parity operator is

P̂j :=
2n+1∏
l=1

[
i χ̂ (1)

j,l χ̂
(2)
j,l

]
. (4.38b)

Under the transformation (4.38a), the local fermion parity
operator P̂j acquires the phase (−1)2n+1 = −1. Therefore the
symmetry transformation (4.38a) anticommutes with P̂j . This
anticommutation relation implies a nontrivial second group
cohomology class [φ] �= 0 of G f , independent of the group of
onsite symmetries of Hamiltonian (4.36).7 Therefore by The-
orem 1 Hamiltonian Ĥ ′ cannot have a nondegenerate gapped
ground state. This is in contradiction with the initial assump-
tion that Hamiltonian (4.36) has the nondegenerate gapped
ground state |�0〉.

We observe that dimensionality d of space played no role
in the proof of Theorem 2 until Theorem 1 was used. Hence,
Theorem 2 holds for any d if Theorem 1 holds for any d .

One can interpret Theorem 2 as the inability to write down
an injective FMPS for the ground state of translationally in-
variant Hamiltonians with an odd number of Majorana flavors
per repeat unit cell. This is because one cannot define the
matrices Aσ j

as there is no well-defined Fock space at site j
to begin with.

D. LSM constraints and classification of 1D fermionic SPTs

In order to prove Theorem 1, we have shown that δ(g, h; b)
defined in Eq. (4.27a) vanishes. Consequently, W (g, h; b) de-
fined in Eq. (4.27d) must be proportional to the unit matrix

7This anticommutation relation implies nontrivial index [ρ] which
is defined in Sec. III B 1.

12M . If so, the similarity transformations V (g; b), V (h; b), and
V −1(gh; b) that enter W (g, h; b) must also realize a projective
representation of G f . This observation allows us to draw a
bridge to the classification of 1D fermionic SPT phases.

It is known that group cohomology classes corresponding
to representations of G f induced by similarity transformations
V (g) classify bosonic [22,39,61] and fermionic [55–59,62]
SPT phases. Similarly, for a given symmetry group G f and
in 1D, fermionic SPT phases are classified by a triplet of
indices ([(ν, ρ)], μ). Indices [(ν, ρ)] are related to [φ] ∈
H2(G f , U(1)c). The component ν of the indices [(ν, ρ)] en-
codes the information about the projective representations
of the symmetry group G. The component ρ of the indices
[(ν, ρ)] encodes the algebra between the representations of a
group element g ∈ G and the fermion parity p ∈ ZF

2 . Finally,
the index μ ∈ {0, 1} characterizes the total fermion parity of
the SPT ground state, or equivalently the parity of the total
number of boundary Majorana modes.

Although the same cohomology group H2(G f , U(1)c) ap-
pears in the classification of 1D LSM-type constraints and 1D
SPT phases, they have a different origin. For the 1D LSM-
type constraints, H2(G f , U(1)c) arises when classifying the
projective representations of G f on a local Fock space. For

the 1D SPT phases, H2(G f , U(1)c) arises when classifying
the boundary projective representations of global symmetries.

V. MAJORANA LSM THEOREMS IN HIGHER
DIMENSIONS

In this section, we extend Theorem 1 to any dimension
d of space when the symmetry group G f is Abelian and all
elements g ∈ G f are represented by unitary operators. Our
method is inspired by the one used recently in Ref. [63] for
quantum spin Hamiltonians.

Consider a d-dimensional lattice 	 with periodic bound-
ary conditions in each linearly independent direction μ̂ =
1̂, . . . , d̂ such that 	 realizes a d-torus. Let each repeat unit
cell be labeled as j and host a local fermionic Fock space F j
that is generated by a Majorana spinor χ̂ j with 2n components
χ̂ j,l , l = 1, . . . , 2n. The fermionic Fock space attached to the
lattice 	 is denoted by F	. We impose the global symmetry
corresponding to the central extension G f of G by ZF

2 as
defined in Sec. III A, whereby G f is assumed to be Abelian.
We also impose translation symmetry. If the d-dimensional
lattice 	 has Nμ̂ repeat unit cell in the μ̂ direction and thus
the cardinality

|	| ≡
d̂∏

μ̂=1̂

Nμ̂, (5.1)

the translation group is

Gtrsl ≡ ZN
1̂
× ZN

2̂
× · · · × ZN

d̂
. (5.2)

By assumption, the combined symmetry group is the Carte-
sian product group

Gtotal ≡ Gtrsl × G f . (5.3)
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The representation of the translation group (5.2) is generated
by the unitary operator T̂μ̂ whose action on the Majorana
spinors is

T̂μ̂ χ̂ j T̂ −1
μ̂ = χ̂ j+eμ̂

, T̂ −1
μ̂ = T̂ †

μ̂ , (5.4a)

along the μ̂ direction (eμ̂ is a basis-vector along the μ̂ direc-
tion). Imposing periodic boundary conditions implies

(T̂μ̂)Nμ̂+1 = T̂μ̂. (5.4b)

The representation Û (g) of g ∈ G f is defined in Sec. III B.
Any translationally and G f -invariant local Hamiltonian acting
on F	 can be written in the form

Ĥpbc :=
d̂∑

μ̂=1̂

Nμ̂∑
nμ̂=1

(T̂μ̂)nμ̂ ĥ j (T̂ †
μ̂ )nμ̂ , (5.5a)

where ĥ j is a local Hermitian operator centered at an arbitrary
repeat unit cell j. More precisely, it is a finite-order poly-
nomial in the Majorana operators centered at j that is also
invariant under all the nonspatial symmetries, i.e.,

ĥ j = Û (g) ĥ j Û −1(g) = (ĥ j )
† (5.5b)

for any g ∈ G f . Instead of extracting spectral properties of

Hamiltonian Ĥpbc directly, we shall do so with the family of
Hamiltonians indexed by g ∈ G f and given by

Ĥ tilt
twis(g) :=

|	|∑
a=1

(
T̂1̂(g)

)a
ĥtilt

1

(
T̂ −1

1̂
(g)

)a
, (5.6)

where ĥtilt
1 is a G f -symmetric and local Hermitian operator

and T̂
1̂
(g) is the “g-twisted translation operator” to be defined

shortly. We shall derive LSM-like constraints for Ĥ tilt
twis(g) and

then explain why those LSM-like constraints also apply to
Ĥpbc. To this end, we will explain what is meant by the upper
index “tilt” for tilted and the lower index “twis” for twisted
and how Ĥ tilt

twis(g) and Ĥpbc differ.

A. Case of a d = 1-dimensional lattice

As a warm up, we first consider the one-dimensional case,
i.e., 	 ∼= ZN . We impose two assumptions in addition to those
previously assumed. These are that every element in G f is
unitarily represented (Assumption 5) and that G f is an Abelian
group (Assumption 6). These two assumptions were superflu-
ous when proving Theorem 1 using injective FMPS in Sec. IV.
This drawback is compensated by the possibility to extend the
proof that follows to any dimension d of space.

Twisted boundary conditions are implemented by defining
the symmetry twisted translation operator

T̂1̂(g) := v̂1(g) T̂1̂ (5.7a)

through its action

T̂1̂(g) χ̂ j T̂ −1
1̂

(g) =
{

(−1)ρ(g) χ̂ j+1, if j �= N ,

v̂1(g) χ̂1 v̂−1
1 (g), if j = N ,

(5.7b)

for j = 1, . . . , N , where ρ(g) ∈ {0, 1} ≡ Z2 is defined in
Eq. (3.10d) [see also Eq. (3.28)]. We then consider any Hamil-
tonian of the form (5.6) where the operator ĥtilt

1 in Eq. (5.6) is

nothing but the operator ĥ j in Eq. (5.5a) with 	 restricted to
a one-dimensional lattice. Such a twisted boundary condition
is equivalent to coupling the Majorana operators to a back-
ground Abelian gauge field with a holonomy g ∈ G f around
the spatial cycle. The effect of turning on such a background
field is that it delivers the operator algebra (see Appendix D)

[T̂1̂(g)]N = Û (g), g ∈ G f (5.8a)

and

Û (h)−1 T̂1̂(g) Û (h) = eiχ (g,h) T̂1̂(g), h ∈ G f , (5.8b)

where

χ (g, h) := φ(h, g) − φ(g, h) + (N − 1)π ρ(h)[ρ(g) + 1].
(5.8c)

The same algebra with ρ(g) ≡ 0 for all g ∈ G f was ob-
tained by Yao and Oshikawa in Refs. [63,64]. The phase
χ (g, h) is vanishing if and only if the second cohomol-
ogy class [φ] is trivial (see Appendix D). As explained in
Sec. III B, we can trade the index [φ] with the indices [(ν, ρ)].

If χ (g, h) mod 2π is nonvanishing, one-dimensional rep-
resentations of (5.8) are not allowed. The ground state of any
Hamiltonian of the form (5.6) is either degenerate or sponta-
neously breaks the symmetry in the thermodynamic limit. We
have rederived the Theorem 1 for the Abelian group G f that is
represented unitarily when twisted boundary conditions apply.

If we assume that the choice of boundary conditions cannot
change the ground-state degeneracy when all excited states are
separated from the ground states by an energy gap, then the
Theorem 1 applies to all boundary conditions compatible with
translation symmetry that are imposed on the one-dimensional
chain 	 and, in particular, to Hamiltonians of the form (5.5)
with 	 restricted to a one-dimensional lattice that obey pe-
riodic boundary conditions. A necessary condition for this
assumption to hold is that all correlation functions between
local operators decay sufficiently fast, a condition known
to be an attribute of any Hamiltonian with gapped ground
states [65].

We emphasize that, in rederiving Theorem 1, we have taken
(i) the group G f to be Abelian and (ii) representation û j (g) to
be unitary for all g ∈ G f . There exist several challenges in
relaxing both of these assumptions. When the group is taken
to be non-Abelian, one cannot consistently define a twisted
Hamiltonian (5.6) that is invariant under both global sym-
metry transformations Û (h) and symmetry twisted translation
operators T̂

1̂
(g) without imposing stricter constraints on local

operators ĥtilt
1 than Eq. (5.6). The challenges with imposing

antiunitary twisted boundary conditions with the group ele-
ment g ∈ G f are the following. First, complex conjugation is
applied on all the states in the Fock space F	. This means that
Hamiltonian (5.5) can differ from Hamiltonian (5.6) through
an extensive number of terms when c(g) = −1, in which
case it is not obvious to us how to safely tie some spectral
properties of Hamiltonians (5.6) and (5.5). Second, not all
representations of the group G f are either even or odd under

complex conjugation, in which case conjugation of T̂
1̂
(g) by

Û (h)−1 need not result anymore in a mere phase factor mul-
tiplying T̂

1̂
(g) when c(g) = −1. In view of this difficulty with
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FIG. 2. Example of a path that visits all the sites of a two-
dimensional lattice that decorates the surface of a torus.

interpreting antiunitary twisted boundary conditions, we ob-
serve that the FMPS construction of LSM-type constraints is
more general than the one using twisted boundary conditions.

B. Case of a d > 1-dimensional lattice

We now assume that 	 is a d > 1-dimensional lattice. We
would like to generalize the twisted boundary conditions (5.7)
obeyed by the Majorana operators to arbitrary spatial dimen-
sions. There is no unique way for doing so. In what follows,
we construct a group of translations Gtilt

trsl that is cyclic. This is
achieved by imposing tilted or sheared boundary conditions.
After constructing Gtilt

trsl, we twist the boundary conditions in
a particular way using the local representations of elements
of the on-site (internal) symmetry group G f . The operators
representing translations on the lattice with tilted and twisted
boundary conditions may not commute with the operators
representing elements of G f , even though all elements of
Gtilt

trsl commute with all elements of G f by assumption (5.3).
When this is so, the representation of Gtilt

total = Gtilt
trsl × G f is

necessarily larger than one dimensional, in which case the
ground states are either degenerate or the symmetry group
Gtilt

total = Gtilt
trsl × G f is spontaneously broken.

Our strategy is to construct the counterpart of Eqs. (5.7)
and (5.8). To this end, we are going to trade the translation
symmetry group (5.2), which is a polycyclic group when d >

1, for the cyclic group

Gtilt
trsl ≡ ZN

1̂
···N

d̂
(5.9)

and define the combined symmetry group

Gtilt
total ≡ Gtilt

trsl × G f . (5.10)

The intuition underlying the construction of the tilted trans-
lation symmetry group Gtilt

trsl is provided by Fig. 2. As a set,
the elements of Gtilt

trsl can be labeled by the elements of Gtrsl,
namely

Gtilt
trsl := {(

(t1̂ )n
1̂ , · · · , (t

d̂
)n

d̂

) |
nμ̂ = 1, . . . , Nμ̂, μ̂ = 1̂, . . . , d̂

}
. (5.11)

However, as a group we would like to label the elements of
Gtilt

trsl as those of the cyclic group with |	| elements, i.e.,

Gtilt
trsl := {t n | n = 1, . . . , |	|}. (5.12)

This is achieved by carefully choosing the group composition
for the elements (5.11), i.e., by iterating d − 1 central exten-
sions.

Step 1. We consider ZN
1̂

generated by t
1̂

and extend it by
ZN

2̂
generated by t

2̂
through the map

�1̂ : ZN
1̂
× ZN

1̂
→ ZN

2̂
,

�1̂((t1̂ )a, (t1̂ )b) := (t2̂ )
1

N
1̂

(a+b−[a+b]N
1̂

)
,

(5.13a)

for any a, b = 1, . . . , N
1̂
, to obtain ZN

1̂
N

2̂
, the group of trans-

lations on the tilted lattice restricted to R2. Here, the notation
[a + b]n is used to denote addition modulo n. This group
extension can be summarized by the short exact sequence

1 → ZN
2̂
→ ZN

1̂
N

2̂
→ ZN

1̂
→ 1 (5.13b)

and is labeled by the extension classes

[�1̂] ∈ H2
(
ZN

1̂
,ZN

2̂

)
. (5.13c)

Using this extension class and the standard expression for
group composition in an extended group, we may identify t

1̂
as the generator of ZN

1̂
N

2̂
.

Step 2. We consider ZN
1̂

N
2̂

generated by t
1̂

and extend it by
ZN

3̂
generated by t

3̂
through the map

�2̂ : ZN
1̂

N
2̂
× ZN

1̂
N

2̂
→ ZN

3̂
,

�2̂ ((t1̂ )a, (t1̂ )b) := (t3̂ )
1

N
1̂

N
2̂

(a+b−[a+b]N
1̂

N
2̂

)
,

(5.14a)

for any a, b = 1, . . . , N
1̂

N
2̂
, to obtain ZN

1̂
N

2̂
N

3̂
the group of

translations on the tilted lattice restricted to R3. This group
extension can be summarized by the short exact sequence

1 → ZN
3̂
→ ZN

1̂
N

2̂
N

3̂
→ ZN

1̂
N

2̂
→ 1 (5.14b)

and is labeled by the extension classes

[�2̂] ∈ H2
(
ZN

1̂
N

2̂
,ZN

3̂

)
. (5.14c)

Using this extension class and the standard expression for
group composition in an extended group, we may identify t

1̂
as the generator of ZN

1̂
N

2̂
N

3̂
.

Step d − 1. We consider ZN
1̂
···N

d̂−1̂
generated by t

1̂
and

extend it by ZN
d̂

generated by t
d̂

through the map

�
d̂−1̂

: ZN
1̂
···N

d̂−1̂
× ZN

1̂
···N

d̂−1̂
→ ZN

d̂
,

�
d̂−1̂

((t1̂ )a, (t1̂ )b) := (t
d̂
)

1
N

1̂
···N

d̂−1̂
(a+b−[a+b]N

1̂
···N

d̂−1̂
)
,

(5.15a)

for any a, b = 1, . . . , N
1̂
· · · N

d̂−1̂
, to obtain ZN

1̂
··· N

d̂
the group

of translations on the tilted lattice 	. This group extension can
be summarized by the short exact sequence

1 → ZN
d̂
→ZN

1̂
···N

d̂
→ ZN

1̂
···N

d̂−1̂
→ 1 (5.15b)

and is labeled by the extension classes

[�
d̂−1̂

] ∈ H2
(
ZN

1̂
···N

d̂−1̂
,ZN

d̂

)
. (5.15c)
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Using this extension class and the standard expression for
group composition in an extended group, we may identify t

1̂
as the generator of ZN

1̂
···N

d̂
.

At the quantum level, we represent the cyclic group (5.9)
by replacing Eq. (5.4) with

T̂μ̂ χ̂ j T̂ −1
μ̂ = χ̂tμ̂( j), (5.16a)

where tμ̂( j) is the action of the cyclic group Gtilt
trsl on the

repeat unit cell j ∈ 	. The cyclicity of Gtilt
trsl ≡ ZN

1̂
···N

d̂
≡ Z|	|

is enforced by

(T̂μ̂)Nμ̂ =
{

T̂
μ̂+1̂

, if μ̂ = 1̂, . . . , d̂ − 1̂,

1̂	, if μ̂ = d̂.
(5.16b)

With this convention, (T̂
1̂
)a with a = 1, . . . , |	| represents

all the elements (t
1̂
)a with a = 1, . . . , |	| of Gtilt

trsl. Equation
(5.5) is replaced by

Ĥ tilt :=
|	|∑
a=1

(T̂1̂ )a ĥtilt
1

(
T̂ −1

1̂

)a
, (5.17a)

whereby

ĥtilt
1 = Û (g) ĥtilt

1 Û −1(g) = (
ĥtilt

1

)†
(5.17b)

holds for any g ∈ G f . The locality of the polynomial ĥtilt
1 is no

longer manifest when comparing the integers that now label
the local Majorana operators in ĥtilt

1 . The locality of ĥtilt
1 is

inherited from the fact that ĥ j is local while ĥtilt
1 is nothing

but a mere rewriting of ĥ j in the cyclic representation of
j ∈ 	. Hamiltonian (5.17) differs from Hamiltonian (5.5) by
a subextensive number of terms of order |	|/N

1̂
. The same

number of terms would distinguish Hamiltonian (5.5) from
the Hamiltonian Ĥtwis(g) obtained by replacing the periodic
boundary conditions (5.4b) by twisted a one, i.e., by multiply-
ing the right-hand side of Eq. (5.4b) with Û (g) for g �= e and
μ̂ = 1̂.

Because of the cyclicity of Gtilt
trsl ≡ ZN

1̂
···N

d̂
≡ Z|	| and of

its quantum representation, we can adapt the definition (5.7)
for the twisted translation operator when d = 1 to that when
d > 1. We define for any g ∈ G f with c(g) = +1 the generator
of twisted translation

T̂1̂(g) := ûI (g) T̂1̂, û−1
I (g) = û†

I (g), (5.18a)

through its action

T̂1̂(g) χ̂ j T̂ −1
1̂

(g) =
{

(−1)ρ(g) χ̂t
1̂
( j), if j �= N,

ûI (g) χ̂I û−1
I (g), if j = N,

(5.18b)

on any Majorana operator labeled by j ∈ 	. Here, I ≡
(1, . . . , 1) ∈ 	, N = (N

1̂
, . . . , N

d̂
) ∈ 	, and j = (n

1̂
, . . . , n

d̂
)

with nμ̂ = 1, . . . , Nμ̂. One verifies that these twisted transla-
tion operators satisfy the twisted operator algebra

Û (h)−1 T̂1̂(g) Û (h) = eiχ (g,h) T̂1̂(g), (5.19a)

where

χ (g, h) := φ(g, h) − φ(h, g) + (|	| − 1)π ρ(h)[ρ(g) + 1],

(5.19b)

which is nothing but the algebra (5.8) with the identifica-
tion N → |	| ≡ N

1̂
· · · N

d̂
. Finally, we define the family of

Hamiltonians (5.6) that obey twisted boundary conditions.
The proof of Theorem 1 when d > 1 for Hamiltonians of
the form (5.6) is the same as that when d = 1. Because the
family of Hamiltonians (5.6) only differ from the family of
Hamiltonians (5.5) obeying periodic boundary conditions by
a subextensive number of terms, the LSM-like conditions
characterizing the existence of nondegenerate gapped ground
states valid for Hamiltonians of the form (5.6) are conjectured
to be also valid for Hamiltonians of the form (5.5).

C. Theorem 2 in d > 1 dimensions

We have extended Theorem 1 to any spatial dimension d .
As discussed at the end of Sec. IV C, if Theorem 1 holds for
any d , then so does Theorem 2. It is nevertheless instructive
to provide an alternative proof of Theorem 2 for any spatial
dimension d without relying on Theorem 1.

We consider a d-dimensional lattice 	 such that at each
repeat unit cell labeled by j ∈ 	, there exists a Majorana
spinor χ̂ j with 2n + 1 components χ̂ j,l , l = 1, . . . , 2n + 1. To
have a well-defined total Fock space on lattice 	, we set the
total number of sites |	| in the lattice to be even. On lattice 	,
we impose the tilted translation symmetry group Gtilt

trsl defined
in Eq. (5.12). Let T̂

1̂
be the representation of the generator of

the cyclic group Gtilt
trsl with the action (5.16) on the Majorana

spinors χ̂ j .
In terms of the Majorana spinors χ̂ j , the total fermion

parity operator P̂ has the representation

P̂ := i|	|/2
∏
j∈	

2n+1∏
l=1

χ̂ j,l . (5.20)

Conjugation of the fermion parity operator P̂ by the tilted
translation operator T̂

1̂
delivers

T̂
1̂

P̂ T̂ −1
1̂

= (−1)|	|−1P̂ = −P̂, (5.21)

where we arrived at the last equality by noting that |	| is an
even integer. The factor (−1)|	|−1 arises since each spinor
χ̂ j consists of an odd number of Majorana operators. The
nontrivial algebra (5.21) implies that the ground state of any
Hamiltonian that commutes with P̂, the generators of the tilted
translation group, and the generators of G f is either degener-
ate or spontaneously breaks translation or G f symmetry. We
have proven Theorem 2. We note that the algebra (5.21) was
shown in Ref. [49] for a one dimensional Majorana chain and
interpreted as the existence of Witten’s quantum-mechanical
supersymmetry [66].

VI. EXAMPLES

All our results apply to any central extension G f of the
group G by the group ZF

2 associated to the fermion parity.
Establishing LSM-type conditions requires (i) constructing
a projective representation of G f and (ii) verifying which

one of the group cohomology classes [φ] ∈ H2(G f , U(1)c)
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is realized by this projective representation. We have shown
how the group cohomology classes [φ] ∈ H2(G f , U(1)c) are

associated to the indices ([(ν, ρ)], μ) with ν ∈ C2(G, U(1)),
ρ ∈ C1(G,Z2), and μ = 0, 1 the evenness or oddness of the
local number of Majorana degrees of freedom (flavors). It
is impossible to proceed any further without choosing the
group G.

We shall choose the central extension G f of the group G by
the group ZF

2 to be the split Abelian group G f = G × ZF
2 with

G = ZT
2 , the split Abelian group G f = G × ZF

2 with G =
Z2 × Z2, and the nonsplit Abelian group G f = ZFT

4 with G =
ZT

2 . Their group cohomology is reviewed in Appendix A. For
the first two cases (split groups), we denote the corresponding
indices by ([ν], [ρ], μ) as explained in Sec. III B 1.

Given any one of these groups, we shall define a global
fermionic Fock space F	 = F0 ⊕ F1 and construct a pro-
jective representation that realizes the indices ([(ν, ρ)], μ)
labeling H2(G f , U(1)c). The global fermionic Fock space
F	 = F0 ⊕ F1 is here always constructed from n |	|
Hermitian operators

χ̂ j,a = χ̂
†
j,a, j ∈ 	, a = 1, . . . , n, (6.1a)

obeying the Majorana (Clifford) algebra

{χ̂ j,a, χ̂ j′,a′ } = 2δ j, j′ δa,a′ , j, j′ ∈ 	, a, a′ = 1, . . . , n.

(6.1b)
The index μ takes the value 0 when n = 2m is an even

integer, in which case the cardinality |	| of the lattice 	 is
any positive integer and we may always define the fermionic
creation and annihilation operators

ĉ†
j,2b−1 := χ̂ j,2b−1 − iχ̂ j,2b

2
, ĉ j,2b−1 := χ̂ j,2b−1 + iχ̂ j,2b

2
,

(6.2a)

with j ∈ 	 and b = 1, . . . , m. The local and global fermionic
Fock space F j and F	 are then

F j := span

{
m∏

b=1

(
ĉ†

j,2b−1

)n j,2b−1 |0〉
∣∣∣∣∣

n j,2b−1 = 0, 1, ĉ j,2b−1 |0〉 = 0

}
(6.2b)

and

F	 := span

{∏
j∈	

m∏
b=1

(ĉ†
j,2b−1)n j,2b−1 |0〉

∣∣∣∣∣
n j,2b−1 = 0, 1, ĉ j,2b−1 |0〉 = 0

}
, (6.2c)

respectively. In order to define the operation of complex con-
jugation K on both the local and global Fock space, we define

K(z ĉ†
j,2b−1 + w ĉ j′,2b′−1)K := z∗ ĉ†

j,2b−1 + w∗ ĉ j′,2b′−1

(6.3a)

for any pair of complex number z,w ∈ C (for any j, j′ ∈ 	

and b, b′ = 1, . . . , m) and

K |0〉 ≡ |0〉. (6.3b)

This implies the transformation law

K χ̂ j,2b−1 K = +χ̂ j,2b−1, K χ̂ j,2b K = −χ̂ j,2b, (6.3c)

for any j ∈ 	 and b = 1, . . . , m.
The index μ takes the value 1 when n = 2m + 1 is an odd

integer, in which case the cardinality |	| of the lattice 	 must
be an even positive integer. For notational simplicity, we shall
assume that 	 is bipartite, that is the disjoint union of two
interpenetrating sublattices 	A and 	B such that all nearest
neighbors of the sites in 	A belong to 	B and vice versa. We
impose on 	 the topology of a torus. We define the fermionic
creation and annihilation operators

ĉ†
j,a := χ̂ j,a − iχ̂( j+μ),a

2
, ĉ j,a := χ̂ j,a + iχ̂( j+μ),a

2
, (6.4a)

where j ∈ 	A, a = 1, . . . , 2m + 1, and μ is any fixed basis
vectors spanning 	. The global fermionic Fock space F	 is
then

F	 := span

{ ∏
j∈	A

2m+1∏
a=1

(ĉ†
j,a)n j,a |0〉

∣∣∣∣∣
n j,a = 0, 1, ĉ j,a |0〉 = 0

}
. (6.4b)

In order to define the operation of complex conjugation K
on the global Fock space, we define

K(z ĉ†
j,a + w ĉ j′,a′ )K := z∗ ĉ†

j,a + w∗ ĉ j′,a′ (6.5a)

for any pair of complex number z,w ∈ C (for any j, j′ ∈ 	A
and a, a′ = 1, . . . , 2m + 1) and

K |0〉 ≡ |0〉. (6.5b)

This implies the transformation law

K χ̂ j,a K = +χ̂ j,a, K χ̂( j+μ),a K = −χ̂( j+μ),a, (6.5c)

for any j ∈ 	A and a = 1, . . . , 2m + 1.
Both for μ = 0, 1, we shall assume a quantum dynam-

ics governed by Hamiltonians of the form (5.5) where ĥ j
in Eq. (5.5b) is a finite-order polynomial in the Majorana
operators. The order of each monomial entering this poly-
nomial is necessarily even for ZF

2 to be a symmetry group.
The Hamiltonian is noninteracting if the order of ĥ j is two,
interacting otherwise. The finiteness of the order guarantees
locality. We also introduce the notion of range of ĥ j which
is the largest separation between the lattice indices of the
Majorana operators present in ĥ j . If the range vanishes, then
Hamiltonian (5.5) is the sum over |	| commuting Hermitian
operators, in which case the spectrum of Hamiltonian (5.5) is
obtained by diagonalizing ĥ j .

For the split Abelian group G f = G × ZF
2 with G = ZT

2 ,
we find that only the projective representations of the group
algebra that belong to the trivial group cohomology class can
be realized by noninteracting fermions. Any projective repre-
sentation of the group algebra that belong to a nontrivial group
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cohomology class prohibits bilinear terms in the fermions in
any G f -symmetric Hamiltonian of the form (5.5). Such intrin-
sically interacting Hamiltonians are quantum perturbations of
classical Ising-type Hamiltonians.

For the split Abelian group G f = G × ZF
2 with G = Z2 ×

Z2 and the nonsplit group G f = ZFT
4 with G = ZT

2 , we find
that any projective representation of the group algebra that
belongs to a nontrivial group cohomology class implies that
any G f -symmetric Hamiltonian of the form (5.5) is nec-
essarily gapless when quadratic in the fermions. For any
one-dimensional lattice Hamiltonian, Theorem 1 then predicts
that any G f -symmetric interaction of the form (5.5) that opens
a spectral gap in the noninteracting spectrum must break spon-
taneously at least one of the symmetries responsible for the
noninteracting spectrum being gapless.

A. One-dimensional space with the symmetry group ZT
2 × ZF

2

for an even number of local Majorana flavors

The lattice is 	 = {1, . . . , N} with N = 2M an even inte-
ger and the global fermionic Fock space F	 is of dimension
2n M with n the number of local Majorana flavors. By choos-
ing the cardinality |	| = 2M to be even, we make sure that
the lattice is bipartite. This allows to treat the two values
of the index μ := n mod 2 in parallel. The symmetry group
G f := ZT

2 × ZF
2 is a split group. The group G := ZT

2 = {e, t}
corresponds to reversal of time.

The local antiunitary representation û j (t ) of reversal of
time generates a projective representation of the group ZT

2 .
The local unitary representation û j (p) of the fermion parity p
generates a projective representation of the group ZF

2 . Accord-
ing to Appendix A 3, all cohomologically distinct projective
representations of ZT

2 × ZF
2 are determined by the indepen-

dent indices [ν] = 0, 1 and [ρ] = 0, 1 through the relations8

û j (t ) û j (t ) = (−1)[ν] û j (e), (6.6a)

û j (t ) û j (p) = (−1)[ρ] û j (p) û j (t ), (6.6b)

This gives the four distinct group cohomology classes

([ν], [ρ], 0) ∈ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)}.
(6.6c)

All but the group cohomology class ([ν], [ρ], 0) =
(1, 0, 0) can be realized using n = 2 local Majorana flavors.
The group cohomology class ([ν], [ρ], 0) = (1, 0, 0) requires
at least n = 4 local Majorana flavors for it to be realized. We
will start with the nontrivial projective representation in the
group cohomology class ([ν], [ρ], 0) = (1, 1, 0) that we shall
represent using two local Majorana flavors. We will then con-
struct successively the projective representations in the group
cohomology classes ([ν], [ρ], 0) = (1, 0, 0), ([ν], [ρ], 0) =
(0, 1, 0), and ([ν], [ρ], 0) = (0, 0, 0) by using the graded ten-
sor product, i.e., by considering 4, 6, and 8 flavors of local
Majoranas, respectively. This will allow us to verify explicitly
the stacking rules of Sec. III C according to which Eq. (3.35)

8We have chosen the convention of always representing the gener-
ator p of ZF

2 by a Hermitian operator according to Eq. (3.10e).

simplifies to the rule

([ν], [ρ], 0) = ([ν1] + [ν2] + [ρ1][ρ2], [ρ1] + [ρ2], 0) (6.7)

when G f = ZT
2 × ZF

2 . The indices (6.6c) will thus be shown
to form the cyclic group Z4 with respect to the stacking rule
(6.7).

1. Group cohomology class ([ν], [ρ], μ) = (1, 1, 0)

The local fermionic Fock space F j of dimension D = 2 is
generated by the doublet of Majorana operators

χ̂ j ≡
(

χ̂ j,1

χ̂ j,2

)
, j = 1, . . . , 2M. (6.8)

One verifies that

û j (t ) := −iχ̂ j,2 K, (6.9a)

û j (p) := iχ̂ j,1 χ̂ j,2, (6.9b)

realizes the projective algebra (6.6) with

[ν] = 1, [ρ] = 1. (6.9c)

One verifies that the Majorana doublet (6.8) is odd under
conjugation by both û j (t ) and û j (p). Time-reversal symmetry
forbids any Hermitian quadratic form for the doublet (6.8).

The only Hamiltonian of the form (5.5) that is of quartic
order and of range r = 1 is

Ĥpbc = λ

2M∑
j=1

χ̂ j,1 χ̂ j,2 χ̂ j+1,1 χ̂ j+1,2, λ ∈ R. (6.10)

This Hamiltonian is nothing but the sum

Ĥpbc =
2M∑
j=1

ĥ j (6.11a)

over commuting operators

ĥ j := −4λ
(
n̂ j − 1

2

)(
n̂ j+1 − 1

2

)
(6.11b)

when expressed in terms of the fermion-number operator

n̂ j = ĉ†
j ĉ j, n̂ j ĉ†

j′ |0〉 = δ j, j′ n j′ ĉ†
j′ |0〉,

n j = 0, 1, j, j′ ∈ 	. (6.11c)

It is thus diagonalized in the fermion-number basis

F	 = span{|n1, . . . , n2M〉} (6.12a)

in which it is represented by the classical Ising Hamiltonian

Ĥ (I)
pbc := −λ

2M∑
j=1

σ j σ j+1, σ j := 2 n j − 1. (6.12b)

The subspace Fgs in the global Fock space F	 = F0 ⊕ F1
that is spanned by the linearly independent ground states is
twofold degenerate. It is spanned by either the ferromagnetic
states

Fgs = span{|0, 0, . . . , 0, 0〉, |1, 1, . . . , 1, 1〉} ⊂ F0 (6.13a)
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when λ > 0 or the antiferromagnetic states

Fgs = span{|1, 0, . . . , 1, 0〉, |0, 1, . . . , 0, 1〉} ⊂ FM mod 2

(6.13b)

when λ < 0. Because we made sure that the lattice is bipartite
(|	| = N = 2M), Fgs is homogeneous.9 All ground states are
separated from all excited states by the gap |2λ|. The action
of “time reversal” in the fermion representation is that of
a “particle-hole” transformation under which n̂ j �→ (1 − n̂ j )
and σ j �→ −σ j . The action of parity is trivial (the identity) in
the fermion representation. Reversal of time is broken spon-
taneously at zero temperature and in the thermodynamic limit
in the sense that applying either a uniform or staggered mag-
netic field that couples to the Ising spins through a Zeeman
coupling, taking the thermodynamic limit, and switching off
the Zeeman coupling selects one of the two degenerate ground
states when λ > 0 and λ < 0, respectively.

The complexity of the Hamiltonian of the form (5.5) that
is of quartic order and of range r = 2 increases dramatically.
For any cluster made of the three repeat unit cells j − 1, j,
and j + 1, one can construct three groups of five monomials.
The first group is made of

X̂ j;12|12|00 := χ̂ j−1,1 χ̂ j−1,2 χ̂ j,1 χ̂ j,2, (6.14a)

X̂ j;12|10|10 := χ̂ j−1,1 χ̂ j−1,2 χ̂ j,1 χ̂ j+1,1, (6.14b)

X̂ j;12|10|02 := χ̂ j−1,1 χ̂ j−1,2 χ̂ j,1 χ̂ j+1,2, (6.14c)

X̂ j;12|02|10 := χ̂ j−1,1 χ̂ j−1,2 χ̂ j,2 χ̂ j+1,1, (6.14d)

X̂ j;12|02|02 := χ̂ j−1,1 χ̂ j−1,2 χ̂ j,2 χ̂ j+1,2. (6.14e)

The second group is made of X̂ j;12|00|12, X̂ j;10|10|12, X̂ j;10|02|12,

X̂ j;02|10|12, and X̂ j;02|02|12. The third group is made of X̂ j;00|12|12,

X̂ j;10|12|10, X̂ j;10|12|02, X̂ j;02|12|10, and X̂ j;02|12|02. Because of
translation invariance, only one of the two monomials
X̂ j;00|12|12 and X̂ j;12|12|00 needs to be accounted for. We are left
with the generic cluster Hamiltonian

ĥ j = λ1 χ̂ j−1,1χ̂ j−1,2χ̂ j,1χ̂ j,2

+ λ2 χ̂ j−1,1χ̂ j−1,2χ̂ j+1,1χ̂ j+1,2

+ λ3 χ̂ j−1,1χ̂ j−1,2χ̂ j,1χ̂ j+1,1

. . .

+ λ14 χ̂ j−1,2 χ̂ j,1 χ̂ j,2 χ̂ j+1,2 (6.15)

with fourteen real-valued couplings. If we set the twelve cou-
plings λ3 = · · · λ14 = 0 to zero, we obtain the classical Ising
model

Ĥ I′
pbc := −

2M∑
j=1

(λ1 σ j σ j+1 + λ2 σ j σ j+2) (6.16)

in the same fermion-number basis of the Fock space that
delivered the classical Ising Hamiltonian (6.12b). Any per-
turbation with one of the couplings λ3, . . . , λ14 breaks the

9This is not so when |	| = N = 2M + 1 is odd.

fermion-number conservation down to the conservation of
the fermion-parity number. Any gapped phase in the 14-
dimensional coupling space is predicted by Theorem 1 to
be either degenerate or break spontaneously time-reversal or
translation symmetry. This prediction can be verified explic-
itly for the classical Ising model (6.16) with nearest- and
next-nearest-neighbor interactions.

2. Group cohomology class ([ν], [ρ], μ) = (1, 0, 0)

The local fermionic Fock space F j of dimension D = 4 is
generated by the quartet of Majorana operators10

χ̂ j ≡ (χ̂ j,1 · · · χ̂ j,4)T, j = 1, . . . , 2M. (6.17)

One verifies that

û j (t ) := −iχ̂ j,2 χ̂ j,4 K, (6.18a)

û j (p) := χ̂ j,1 χ̂ j,2 χ̂ j,3 χ̂ j,4, (6.18b)

realizes the projective algebra (6.6) with

[ν] = 1, [ρ] = 0. (6.18c)

One verifies that the Majorana quartet (6.17) is even under
conjugation by û j (t ) and odd under conjugation by û j (p).
Time-reversal symmetry forbids any Hermitian quadratic
form for the quartet (6.17).

The only Hamiltonian of the form (5.5) that is of quartic
order and of range r = 0 is

Ĥpbc = λ

2M∑
j=1

χ̂ j,1 χ̂ j,2 χ̂ j,3 χ̂ j,4, λ ∈ R. (6.19)

This Hamiltonian is nothing but the sum

Ĥpbc =
2M∑
j=1

ĥ j (6.20a)

over commuting operators

ĥ j := −4λ
(
n̂ j,1 − 1

2

)(
n̂ j,3 − 1

2

)
(6.20b)

when expressed in terms of the fermion-number operator

n̂ j,2b−1 := ĉ†
j,2b−1 ĉ j,2b−1,

n̂ j,2b−1 ĉ†
j′,2b′−1|0〉 = δ j, j′ δb,b′ n j′,2b′−1 ĉ†

j′,2b′−1|0〉,
n j,2b−1 = 0, 1, j, j′ ∈ 	, b, b′ = 1, 2.

(6.20c)

It is thus diagonalized in the fermion-number basis

F	 = span

{∣∣∣∣(n1,1
n1,3

)
, · · · ,

(
n2M,1
n2M,3

)〉}
(6.21a)

in which it is represented by two Ising chains (labeled 1 and
3) coupled through their rungs only (but not along the chains),

Ĥ (Irung)
pbc := −λ

2M∑
j=1

σ j,1 σ j,3,

σ j,2b−1 := 2 n j,2b−1 − 1, b = 1, 2. (6.21b)

10It is not possible to represent the group cohomology class
([ν], [ρ], μ) = (1, 0, 0) with a doublet of Majorana operators.
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The subspace Fgs in the global Fock space F	 = F0 ⊕ F1
that is spanned by the linearly independent ground states is
22M-fold degenerate. It is spanned by either

Fgs = span

{∣∣∣∣(0
0

)
, . . . ,

(
0
0

)〉
, . . . ,

∣∣∣∣(1
1

)
, . . . ,

(
1
1

)〉}
⊂ F0

(6.22a)

when λ > 0 or the antiferromagnetic states

Fgs = span

{∣∣∣∣(0
1

)
, . . . ,

(
0
1

)〉
, . . . ,

∣∣∣∣(1
0

)
, . . . ,

(
1
0

)〉}
⊂ F0

(6.22b)
when λ < 0. All ground states are separated from all excited
states by the gap |2λ|. The action of “time reversal” in the
fermion representation is that of a “particle-hole” transfor-
mation under which n̂ j,2b−1 �→ (1 − n̂ j,2b−1) and σ j,2b−1 �→
−σ j,2b−1. The action of parity is trivial (the identity) in the
fermion representation.

The complexity of the Hamiltonian of the form (5.5) that
is of quartic order and of range r = 1 increases dramatically.
For any cluster made of the two repeat unit cells j and j + 1,
the generic cluster Hamiltonian ĥ j that is summed over in
Hamiltonian (5.5) is the sum over 70 (choose 4 out of 8)
monomials of the form

χ̂ j,a χ̂ j,b χ̂ j+1,c χ̂ j+1,d , 1 � a < b � 4, 1 � c < d � 4,

(6.23)
each one weighted by a real-valued coupling. Of these 70
couplings, 69 are independent by translation symmetry. Three
of the 69 monomials are compatible with fermion-number
conservation. All other monomials break the fermion-number
conservation down to the conservation of the fermion-parity
number. If these 66 couplings are set to zero and the remaining
three couplings are set to λ, we obtain the classical Ising
ladder

Ĥ (Iladder)
pbc := − λ

2M∑
j=1

(
σ j,1 σ j,3 +

∑
b=1,2

σ j,2b−1 σ j,2b−1

)
(6.24)

in the same fermion-number basis of the Fock space that
delivered Hamiltonian (6.21b). Any gapped phase in the 66-
dimensional coupling space is predicted by Theorem 1 to
be either degenerate or break spontaneously time-reversal or
translation symmetry. This prediction can be verified explic-
itly for the classical Ising ladder (6.24) for which the subspace
Fgs in the global Fock space F	 = F0 ⊕ F1 that is spanned by
the linearly independent ground states is twofold degenerate.
It is spanned by either

Fgs = span

{∣∣∣∣(0
0

)
, . . . ,

(
0
0

)〉
,

∣∣∣∣(1
1

)
, . . . ,

(
1
1

)〉}
⊂ F0

(6.25a)

when λ > 0 or the antiferromagnetic states

Fgs = span

{∣∣∣∣(0
1

)
, . . . ,

(
0
1

)〉
,

∣∣∣∣(1
0

)
, . . . ,

(
1
0

)〉}
⊂ F0

(6.25b)
when λ < 0. Reversal of time is broken spontaneously at zero
temperature and in the thermodynamic limit in the sense that
applying either a uniform or staggered (within the repeat unit

cell) magnetic field that couples to the Ising spins through
a Zeeman coupling, taking the thermodynamic limit, and
switching off the Zeeman coupling selects one of the two
degenerate ground states when λ > 0 and λ < 0, respectively.

3. Group cohomology class ([ν], [ρ], μ) = (0, 1, 0)

The local fermionic Fock space F j of dimension D = 8 is
generated by the sextet of Majorana operators

χ̂ j ≡ (χ̂ j,1 · · · χ̂ j,6)T, j = 1, . . . , 2M. (6.26)

One verifies that

û j (t ) := −iχ̂ j,2 χ̂ j,4 χ̂ j,6 K, (6.27a)

û j (p) := iχ̂ j,1 χ̂ j,2 χ̂ j,3 χ̂ j,4 χ̂ j,5 χ̂ j,6, (6.27b)

realizes the projective algebra (6.6) with

[ν] = 0, [ρ] = 1. (6.27c)

One verifies that the Majorana sextet (6.26) is odd under
conjugation by both û j (t ) and û j (p). Time-reversal symmetry
forbids any Hermitian quadratic form for the quartet (6.26).

The generic Hamiltonian of the form (5.5) that is of quartic
order and of range r = 0 is

Ĥpbc :=
2M∑
j=1

∑
1�a1<a2<a3<a4�6

λa1 a2 a3 a4

4∏
i=1

χ̂ j,ai
(6.28)

with λa1 a2 a3 a4
a real-valued coupling. Each monomial

X̂ j|a1 a2 a3 a4
:=

4∏
i=1

χ̂ j,ai
, 1 � a1 < a2 < a3 < a4 � 6,

(6.29)
is a Hermitian operator with the eigenvalues ±1 as it squares
to the identity. Any two such monomials on the right-hand
side of Eq. (6.29) either commute or anticommute. In the
fermion-number basis (6.2), the three monomials

X̂ j|1 2 3 4 := −4
(
n̂ j,1 − 1

2

)(
n̂ j,3 − 1

2

)
, (6.30a)

X̂ j|1 2 5 6 := −4
(
n̂ j,1 − 1

2

)(
n̂ j,5 − 1

2

)
, (6.30b)

X̂ j|3 4 5 6 := −4
(
n̂ j,3 − 1

2

)(
n̂ j,5 − 1

2

)
, (6.30c)

are the only ones that are compatible with conservation of
the fermion-number. All remaining 12 monomials break the
conservation of the fermion-number in the basis (6.2) down to
that of the fermion-parity number. Any gapped phase in the
15-dimensional coupling space is predicted by Theorem 1 to
be either degenerate or break spontaneously time-reversal or
translation symmetry. This prediction can be verified explic-
itly by summing with the same weight the three monomials
defined in Eq. (6.30). One obtains three Ising chains coupled
through their rungs only. The ground state is then 22M-fold
degenerate. This macroscopic degeneracy becomes twofold
by increasing the range from r = 0 to r = 1 and considering
the three Ising chains (labeled 1, 3, 5) with the Hamiltonian
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[in the fermion-number basis (6.2)]

Ĥ (I3chains)
pbc := − λ

3∑
b=1

2M∑
j=1

σ j,2b−1 σ j+1,2b−1

− λ

2M∑
j=1

(σ j,1 σ j,3 + σ j,3 σ j,5) (6.31)

with λ ∈ R, say. The subspace Fgs in the global Fock space
F	 = F0 ⊕ F1 that is spanned by the linearly independent
ground states is either

Fgs = span

⎧⎨⎩
∣∣∣∣∣∣
⎛⎝0

0
0

⎞⎠, . . . ,

⎛⎝0
0
0

⎞⎠〉
,

∣∣∣∣∣∣
⎛⎝1

1
1

⎞⎠, . . . ,

⎛⎝1
1
1

⎞⎠〉⎫⎬⎭ ⊂ F0

(6.32a)

when λ > 0 or the antiferromagnetic states

Fgs = span

⎧⎨⎩
∣∣∣∣∣∣
⎛⎝0

1
0

⎞⎠, . . . ,

⎛⎝0
1
0

⎞⎠〉
,

∣∣∣∣∣∣
⎛⎝1

0
1

⎞⎠, . . . ,

⎛⎝1
0
1

⎞⎠〉⎫⎬⎭ ⊂ F0

(6.32b)
when λ < 0. Reversal of time is broken spontaneously at zero
temperature and in the thermodynamic limit in the sense that
applying either a uniform or staggered (within the repeat unit
cell) magnetic field that couples to the Ising spins through
a Zeeman coupling, taking the thermodynamic limit, and
switching off the Zeeman coupling selects one of the two
degenerate ground states when λ > 0 and λ < 0, respectively.

4. Group cohomology class ([ν], [ρ], μ) = (0, 0, 0)

The local fermionic Fock space F j of dimension D = 16
is generated by the octuplet of Majorana operators

χ̂ j ≡ (χ̂ j,1 · · · χ̂ j,8)T, j = 1, . . . , 2M. (6.33)

One verifies that

û j (t ) := −iχ̂ j,2 χ̂ j,4 χ̂ j,6 χ̂ j,8 K, (6.34a)

û j (p) := χ̂ j,1 χ̂ j,2 χ̂ j,3 χ̂ j,4 χ̂ j,5 χ̂ j,6 χ̂ j,7 χ̂ j,8, (6.34b)

realizes the projective algebra (6.6) with

[ν] = 0, [ρ] = 0. (6.34c)

One verifies that the Majorana octuplet (6.33) is even under
conjugation by û j (t ) and odd under conjugation by û j (p).
Time-reversal symmetry forbids any Hermitian quadratic
form for the quartet (6.33).

Theorem 1 is inoperative. It is possible to find examples of
both nondegenerate and degenerate gapped Hamiltonians that
are translation invariant and G f invariant.

To prove this claim, it suffices to consider a generic Hamil-
tonian of the form (5.5) that is of quartic order and of range
r = 0. It is given by

Ĥpbc :=
2M∑
j=1

∑
1�a1<a2<a3<a4�8

λa1 a2 a3 a4

4∏
i=1

χ̂ j,ai
(6.35)

with λa1 a2 a3 a4
a real-valued coupling. Each monomial

X̂ j|a1 a2 a3 a4
:=

4∏
i=1

χ̂ j,ai
, 1 � a1 < a2 < a3 < a4 � 8,

(6.36)
is a Hermitian operator with the eigenvalues ±1 as it squares
to the identity. Its two degenerate eigenspaces are therefore
eight-dimensional. Any two monomials of the form (6.36)
either commute or anticommute. There are 70 (choose 4 out
of 8) such monomials. The six monomials

X̂ j|1 2 3 4 := −4
(
n̂ j,1 − 1

2

)(
n̂ j,3 − 1

2

)
, (6.37a)

X̂ j|1 2 5 6 := −4
(
n̂ j,1 − 1

2

)(
n̂ j,5 − 1

2

)
, (6.37b)

X̂ j|1 2 7 8 := −4
(
n̂ j,1 − 1

2

)(
n̂ j,7 − 1

2

)
, (6.37c)

X̂ j|3 4 5 6 := −4
(
n̂ j,3 − 1

2

)(
n̂ j,5 − 1

2

)
, (6.37d)

X̂ j|3 4 7 8 := −4
(
n̂ j,3 − 1

2

)(
n̂ j,7 − 1

2

)
, (6.37e)

X̂ j|5 6 7 8 := −4
(
n̂ j,5 − 1

2

)(
n̂ j,7 − 1

2

)
, (6.37f)

are the only ones that are compatible with conservation
of the fermion-number in the fermion-number basis (6.2).
All remaining 64 monomials break the conservation of this
fermion-number down to conservation of the fermion-parity
number. Among these, the 16 monomials generated by ex-
panding

(χ̂ j,1 + χ̂ j,2)(χ̂ j,3 + χ̂ j,4)(χ̂ j,5 + χ̂ j,6)(χ̂ j,7 + χ̂ j,8) (6.38)

are special because they form the basis to represent all 16
terms of the form

Â j|0000 := ĉ†
j,1 ĉ†

j,3 ĉ†
j,5 ĉ†

j,7,

Â j|0001 := ĉ†
j,1 ĉ†

j,3 ĉ†
j,5 ĉ j,7, · · · , Â j|1000 := ĉ j,1 ĉ†

j,3 ĉ†
j,5 ĉ†

j,7,

...

Â j|1110 := ĉ j,1 ĉ j,3 ĉ j,5 ĉ†
j,7, · · · , Â j|0111 := ĉ†

j,1 ĉ j,3 ĉ j,5 ĉ j,7,

Â j|1111 := ĉ j,1 ĉ j,3 ĉ j,5 ĉ j,7,

(6.39)

in the fermion-number basis (6.2). In the 70-dimensional
coupling space of Hamiltonian (6.36), there is room to find
gapped Hamiltonians with either a degenerate or a nondegen-
erate ground state.

On the one hand, the local Hamiltonian

ĥ(I4rungs)
j := λ(X̂ j|1 2 3 4 + X̂ j|3 4 5 6 + X̂ j|5 6 7 8)

= − λ(σ j,1 σ j,3 + σ j,3 σ j,5 + σ j,5 σ j,7) (6.40)

in the fermion-number basis (6.2) is none but the classical
nearest-neighbor Ising Hamiltonian for a rung of four Ising
spins ordered from bottom to top as 1, 3, 5, 7. As such, the
subspace F j gs in the local Fock space F j = F j 0 ⊕ F j 1 that is

spanned by the linearly independent ground states of ĥ(I4rungs)
j

is either

F j gs = span

⎧⎪⎨⎪⎩
∣∣∣∣∣∣∣
⎛⎜⎝0

0
0
0

⎞⎟⎠〉
,

∣∣∣∣∣∣∣
⎛⎜⎝1

1
1
1

⎞⎟⎠〉⎫⎪⎬⎪⎭ ⊂ F j 0 (6.41a)
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when λ > 0 or

F j gs = span

⎧⎪⎨⎪⎩
∣∣∣∣∣∣∣
⎛⎜⎝0

1
0
1

⎞⎟⎠〉
,

∣∣∣∣∣∣∣
⎛⎜⎝1

0
1
0

⎞⎟⎠〉⎫⎪⎬⎪⎭ ⊂ F j 0 (6.41b)

when λ < 0 in the fermion-number basis (6.2).
On the other hand, the local Hamiltonian

ĥ j := λ(X̂ j|1 2 3 4 + X̂ j|3 4 5 6 + X̂ j|5 6 7 8 + X̂ j|1 3 5 7) (6.42)

has a nondegenerate ground state. This is so because the
monomial X̂ j|1 3 5 7 is the sum over all 16 operators (6.39) with
equal weight. Hence, its action on either the basis (6.41a) or
the basis (6.41b) is to exchange the two basis states, thereby
lifting their degeneracies.

The counterpart to this mechanism to lift the twofold de-
generacy of a 2-rung Ising Hamiltonian is not available in
Sec. (VI A 3) because of fermion-parity conservation (to
exchange the ferromagnetic ground states, one would need
the odd-parity perturbation ĉ†

j,1 ĉ†
j,3 ĉ†

j,5 + H.c.). The same is
true in Sec. (VI A 2). Lifting the twofold degeneracy of a
1-rung Ising Hamiltonian with the help of the perturbation
ĉ†

j,1 ĉ†
j,3 + H.c. is not possible because time-reversal symme-

try prohibits any local quadratic term.
By identifying the set

([ν], [ρ], 0) ∈ {(1, 1, 0), (1, 0, 0), (0, 1, 0), (0, 0, 0)}
(6.43a)

with the four distinct group cohomology classes (6.6) and by
defining a group operation using the stacking rules (6.7), we
have justified the identification

g → (1, 1, 0), g2 → (1, 0, 0),

g3 → (0, 1, 0), g4 → (0, 0, 0),
(6.43b)

where g is the generator of the cyclic group

Z4 := {g, g2, g3, g4 ≡ e}. (6.43c)

The fact that the stacking rules (6.7) obeyed by the indices
([ρ], [ν], μ = 0) realize the cyclic group Z4 is reminiscent
of the fact that the topological index (the integer number of
Majorana boundary zero modes) of noninteracting fermions
belonging to the symmetry class BDI in one-dimensional
space is to be replaced by one belonging to the cyclic group
Z8 if interactions compatible with the symmetry class BDI are
allowed [55,67]. The difference between the cyclic group Z4
for LSM-type constraints and the cyclic group Z8 in Ref. [55]
arises because we must set μ = 0 when defining locally the
Fock space, whereas there is no such constraint at the bound-
ary of an SPT phase.

B. One-dimensional space with the symmetry group
Z2 × Z2 × ZF

2 for an even number of local Majorana flavors

The lattice is 	 = {1, . . . , N} with N = 2M an even inte-
ger and the global fermionic Fock space F	 is of dimension
2n M with n the number of local Majorana flavors. By choosing
the cardinality |	| = 2M to be even, we make sure that the
lattice is bipartite. This allows to treat the two values of the
index μ := n mod 2 in parallel. The symmetry group G f :=

G × ZF
2 is a split group. As usual, ZF

2 is generated by p. We
choose G := Z2 × Z2. The Abelian group G has hence two
generators g1 and g2 that commute pairwise, while each of
them squares to the identity. We shall only consider the case
when the local number of Majorana flavors n = 2m is an even
positive integer. The index μ then takes the value μ = 0.

Any local projective representation of G f can be labeled by

the pair of indices [ν] ∈ H2(G, U(1)c) and [ρ] = ([ρ]1, [ρ]2)
with [ρ]1, [ρ]2 ∈ H1(G,Z2) through the relations11

û(g1) û(g2) = (−1)[ν] û(g2) û(g1), [ν] = 0, 1, (6.44a)

û(gi ) û(p) = (−1)[ρ]i û(p) û(gi ), [ρ]i = 0, 1. (6.44b)

This gives the eight distinct group cohomology classes

([ν], [ρ], 0) = {(0, (0, 0), 0), (1, (0, 0), 0),

(0, (0, 1), 0), (1, (0, 1), 0),

(0, (1, 0), 0), (1, (1, 0), 0),

(0, (1, 1), 0), (1, (1, 1), 0)}. (6.45)

Here, the group cohomology class (0, (0, 0), 0) is interpreted
as the trivial representation. Theorem 1 is predictive for any
of the remaining seven group cohomology classes. It is shown
in Appendix A 4 that these eight distinct group cohomology
classes form the (stacking) group Z2 × Z2 × Z2, whereby the
group composition is defined by the stacking rule (A39e). This
(stacking) group is generated by the three group cohomology
classes (1, (1, 0), 0), (1, (0, 1), 0), and (1, (0, 0), 0), as we are
going to verify explicitly.

1. Group cohomology class ([ν], [ρ], 0) = (1, (1, 0), 0)

The local fermionic Fock space F j of dimension D = 4 is
generated by the quartet of Majorana operators12

χ̂ j ≡ (χ̂ j,1 · · · χ̂ j,4)T, j = 1, . . . , 2M. (6.46)

One verifies that

û j (g1) := χ̂ j,1, (6.47a)

û j (g2) := χ̂ j,1 χ̂ j,3, (6.47b)

û j (p) := χ̂ j,1 χ̂ j,2 χ̂ j,3 χ̂ j,4, (6.47c)

realizes the projective representation (6.44) with
([ν], [ρ], μ) = (1, (1, 0), 0).

An example of a translation- and G f -invariant Hamiltonian
of the form (5.5), order 2, and range r = 1 is

Ĥpbc :=
2M∑
j=1

4∑
a=1

λa iχ̂ j,a χ̂ j+1,a

+
2M∑
j=1

λ2,4 iχ̂ j,2 χ̂ j,4, λa, λ2,4 ∈ R. (6.48)

11We have chosen the convention of always representing the gener-
ator p of ZF

2 by a Hermitian operator according to Eq. (3.10e).
12It is not possible to represent the cohomology class

([ν], [ρ], μ) = (1, (1, 0), 0) with a doublet of Majorana operators.
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This Hamiltonian does not conserve the fermion-number in
the fermion-number basis (6.2). It can be thought of as four
Kitaev chains each of which has an effective index μ =
1. When λ24 = 0, all Kitaev chains decouple and are fine-
tuned to their quantum critical point (4.34) between their
symmetry-protected and topologically inequivalent gapped
phases. Kitaev chains 2 and 4 are coupled by the on-site term
iχ̂ j,2 χ̂ j,4. The on-site term iχ̂ j,2 χ̂ j,4 gaps chains 2 and 4. The
low-energy sector of the theory is that of two decoupled quan-
tum critical Kitaev chains labeled 1 and 3. The quadratic term
iχ̂ j,1 χ̂ j,3 that would gap chains 1 and 3, thereby delivering a
nondegenerate gapped ground state, is odd under conjugation
by û j (g1) and thus forbidden by symmetry. The stability of
this gapless phase to on-site quadratic perturbations can thus
be thought of as a consequence of Theorem 1. Theorem 1 also
predicts that any G f -symmetric interaction of the form (5.5)
that opens a spectral gap in the noninteracting spectrum must
break spontaneously at least one of the symmetries responsi-
ble for the noninteracting spectrum being gapless.

When two copies of this (1, (1, 0), 0) representation are
stacked, the local fermionic Fock space F j of dimen-
sion D = 16 is generated by the octuplet of Majorana
operators

χ̂ j ≡ (
χ̂ j,1 · · · χ̂ j,8

)T
, j = 1, . . . , 2M. (6.49)

One verifies that

û j (g1) := χ̂ j,1 χ̂ j,5, (6.50a)

û j (g2) := χ̂ j,1 χ̂ j,3 χ̂ j,5 χ̂ j,7, (6.50b)

û j (p) := χ̂ j,1 χ̂ j,2 χ̂ j,3 χ̂ j,4 χ̂ j,5 χ̂ j,6 χ̂ j,7 χ̂ j,8, (6.50c)

realizes the projective representation (6.44) with
([ν], [ρ], μ) = (0, (0, 0), 0), i.e., the trivial projective
representation. In this trivial representation, any flavor
a = 1, . . . , 8 has an image a′ = (a + 4) mod 8 such that χ̂ j,a

and χ̂ j,a′ transform identically under G f . All on-site terms
iχ̂ j,a χ̂ j,a+4 with a = 1, . . . , 4 are then G f symmetric. The
ground-state degeneracy of any translation- and G f -invariant
Hamiltonian of the form (5.5) can be lifted by including
the four on-site terms iχ̂ j,a χ̂ j,a+4 with a = 1, . . . , 4, i.e.,
Theorem 1 is not predictive.

2. Group cohomology class ([ν], [ρ], μ) = (1, (0, 1), 0)

The local fermionic Fock space F j of dimension D = 4 is
generated by the quartet of Majorana operators (6.46).13 One
verifies that

û j (g1) := χ̂ j,1 χ̂ j,3, (6.51a)

û j (g2) := χ̂ j,1, (6.51b)

û j (p) := χ̂ j,1 χ̂ j,2 χ̂ j,3 χ̂ j,4, (6.51c)

realizes the projective representation (6.44) with
([ν], [ρ], μ) = (1, (0, 1), 0).

Equation (6.51) differs from Eq. (6.47) by interchanging g1
and g2. This difference does not affect the reasoning leading

13It is not possible to represent the cohomology class
([ν], [ρ], μ) = (1, (0, 1), 0) with a doublet of Majorana operators.

to to the conclusion that the gapless Hamiltonian (6.48) is the
most general translation-invariant, G f -invariant, order 2, and
range r = 1 Hamiltonian of the form (5.5) whose hopping is
diagonal with respect to the flavor index. This difference also
implies that stacking two copies of the (1, (0, 1), 0) repre-
sentation (6.51) delivers the trivial projective representation
(0, (0, 0), 0) encoded by Eqs. (6.49) and (6.50), for which
Theorem 1 is not predictive anymore.

3. Group cohomology class ([ν], [ρ], μ) = (1, (0, 0), 0)

The local fermionic Fock space F j of dimension D = 4 is
generated by the quartet of Majorana operators (6.46).14 One
verifies that

û j (g1) := χ̂ j,2 χ̂ j,3, (6.52a)

û j (g2) := χ̂ j,1 χ̂ j,3, (6.52b)

û j (p) := χ̂ j,1 χ̂ j,2 χ̂ j,3 χ̂ j,4, (6.52c)

realizes the projective representation (6.44) with
([ν], [ρ], μ) = (1, (0, 0), 0).

The most general translation- and G f -invariant Hamilto-
nian of the form (5.5) of order 2, range r = 1, and whose
hopping is diagonal with respect to the flavor index is then

Ĥpbc =
N∑

j=1

4∑
a=1

λa iχ̂ j,a χ̂ j+1,a, λa ∈ R, (6.53)

i.e., four decoupled Kitaev chains that are fine-tuned to
their quantum critical point (4.34) between their symmetry-
protected and topologically inequivalent gapped phases. No
on-site quadratic term is allowed by the symmetries. The
stability of this gapless phase to on-site quadratic perturba-
tions can thus be thought of as a consequence of Theorem 1.
Theorem 1 also predicts that any G f -symmetric interaction
of the form (5.5) that opens a spectral gap in the noninter-
acting spectrum must break spontaneously at least one of the
symmetries responsible for the noninteracting spectrum being
gapless.

When two copies of this (1, (0, 0), 0) representation are
stacked, the local fermionic Fock space F j of dimension
D = 16 is generated by the octuplet of Majorana operators
(6.49) with the projective representation

û j (g1) := χ̂ j,2 χ̂ j,3 χ̂ j,6 χ̂ j,7, (6.54a)

û j (g2) := χ̂ j,1 χ̂ j,3 χ̂ j,5 χ̂ j,7, (6.54b)

û j (p) := χ̂ j,1 χ̂ j,2 χ̂ j,3 χ̂ j,4 χ̂ j,5 χ̂ j,6 χ̂ j,7 χ̂ j,8, (6.54c)

that realizes the group cohomology class ([ν], [ρ], μ) =
(0, (0, 0), 0), i.e., the trivial group cohomology class. In this
trivial representation, any flavor a = 1, . . . , 8 has an image
a′ = (a + 4) mod 8 such that χ̂ j,a and χ̂ j,a′ transform iden-
tically under G f . All on-site terms iχ̂ j,a χ̂ j,a+4 with a =
1, . . . , 4 are then G f symmetric. The ground-state degeneracy
of any translation- and G f -invariant Hamiltonian of the form

14It is not possible to represent the cohomology class
([ν], [ρ], μ) = (1, (0, 0), 0) with a doublet of Majorana operators.
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(5.5) can be lifted by including the 4 on-site terms iχ̂ j,a χ̂ j,a+4

with a = 1, . . . , 4, i.e., Theorem 1 is not predictive.

4. Group cohomology class ([ν], [ρ], μ) = (1, (1, 1), 0)

When representations (6.47) and (6.51) are stacked, the
local fermionic Fock space F j of dimension D = 16 is gener-
ated by the octuplet of Majorana operators (6.49). One verifies
that

û j (g1) := χ̂ j,1 χ̂ j,5 χ̂ j,7, (6.55a)

û j (g2) := χ̂ j,1 χ̂ j,3 χ̂ j,5, (6.55b)

û j (p) := χ̂ j,1 χ̂ j,2 χ̂ j,3 χ̂ j,4 χ̂ j,5 χ̂ j,6 χ̂ j,7 χ̂ j,8, (6.55c)

realizes the projective representation (6.44) with
([ν], [ρ], μ) = (1, (1, 1), 0).

An example of a translation- and G f -invariant Hamiltonian
of the form (5.5), order 2, and range r = 1 is

Ĥpbc :=
N∑

j=1

[
8∑

a=1

λa iχ̂ j,a χ̂ j+1,a + λ1,5 iχ̂ j,1 χ̂ j,5

+ λ2,4 iχ̂ j,2 χ̂ j,4 + λ6,8 iχ̂ j,6 χ̂ j,8

]
(6.56)

with λa, λa,b ∈ R for a, b = 1, . . . , 8. By construction, this
Hamiltonian is gapless since the quantum critical Kitaev
chains 3 and 7 are decoupled from all other Kitaev chains.
This gapless phase is stable to any on-site quadratic pertur-
bation since the only on-site quadratic terms iχ̂ j,3 χ̂ j,a and
iχ̂ j,7 χ̂ j,a that could gap the quantum critical Kitaev chains 3
and 7 are odd under G for any a �= 3, 7. The stability of this
gapless phase to on-site quadratic perturbations can thus be
thought of as a consequence of Theorem 1. Theorem 1 also
predicts that any G f -symmetric interaction of the form (5.5)
that opens a spectral gap in the noninteracting spectrum must
break spontaneously at least one of the symmetries responsi-
ble for the noninteracting spectrum being gapless.

When two copies of this (1, (1, 1), 0) representation are
stacked, the local fermionic Fock space F j of dimension
D = 256 is generated by 16 Majorana operators. One verifies
that

û j (g1) := χ̂ j,1 χ̂ j,5 χ̂ j,7 χ̂ j,9 χ̂ j,13 χ̂ j,15, (6.57a)

û j (g2) := χ̂ j,1 χ̂ j,3 χ̂ j,5 χ̂ j,9 χ̂ j,11 χ̂ j,13, (6.57b)

û j (p) :=
16∏

a=1

χ̂ j,a, (6.57c)

realizes the group cohomology class ([ν], [ρ], μ) =
(0, (0, 0), 0), i.e., the trivial group cohomology class. There
exists a bijective map a �→ a′ := (a + 8) mod 16 such that
all on-site terms iχ̂ j,a χ̂ j,a′ with a = 1, . . . , 8 can be shown
to be G f symmetric. The ground-state degeneracy of any
translation- and G f -invariant Hamiltonian of the form (5.5)
can be lifted by including the 8 on-site terms iχ̂ j,a χ̂ j,a+8 with
a = 1, . . . , 8, i.e., Theorem 1 is not predictive.

5. Group cohomology class ([ν], [ρ], μ) = (0, (1, 0), 0)

When representations (6.52) and (6.47) are stacked, the
local fermionic Fock space F j of dimension D = 16 is gener-
ated by the octuplet of Majorana operators (6.49). One verifies
that

û j (g1) := χ̂ j,2 χ̂ j,3 χ̂ j,5, (6.58a)

û j (g2) := χ̂ j,1 χ̂ j,3 χ̂ j,5 χ̂ j,7, (6.58b)

û j (p) := χ̂ j,1 χ̂ j,2 χ̂ j,3 χ̂ j,4 χ̂ j,5 χ̂ j,6 χ̂ j,7 χ̂ j,8, (6.58c)

realizes the projective representation (6.44) with
([ν], [ρ], μ) = (0, (1, 0), 0).

An example of a translation- and G f -invariant Hamiltonian
of the form (5.5), order 2, and range r = 1 is

Ĥpbc :=
N∑

j=1

[
8∑

a=1

λa iχ̂ j,a χ̂ j+1,a + λ1,7 χ̂ j,1 χ̂ j,7

+ λ4,8 χ̂ j,4 χ̂ j,8 + λ3,5 χ̂ j,3 χ̂ j,5

]
(6.59)

with λa, λa,b ∈ R for a, b = 1, . . . , 8. By construction, this
Hamiltonian is gapless since the quantum critical Kitaev
chains 2 and 6 are decoupled from all other Kitaev chains.
This gapless phase is stable to any on-site and quadratic per-
turbation since the only on-site quadratic terms iχ̂ j,2 χ̂ j,a and
iχ̂ j,6 χ̂ j,a that could gap the quantum critical Kitaev chains 2
and 6 are odd under G for any a �= 2, 6. The stability of this
gapless phase to on-site quadratic perturbations can thus be
thought of as a consequence of Theorem 1. Theorem 1 also
predicts that any G f -symmetric interaction of the form (5.5)
that opens a spectral gap in the noninteracting spectrum must
break spontaneously at least one of the symmetries responsi-
ble for the noninteracting spectrum being gapless.

When two copies of this (0, (1, 0), 0) representation are
stacked, the local fermionic Fock space F j of dimension
D = 256 is generated by 16 Majorana operators. One verifies
that

û j (g1) := χ̂ j,2 χ̂ j,3 χ̂ j,5 χ̂ j,10 χ̂ j,11 χ̂ j,13, (6.60a)

û j (g2) := χ̂ j,1 χ̂ j,3 χ̂ j,5 χ̂ j,7 χ̂ j,9 χ̂ j,11 χ̂ j,13 χ̂ j,15, (6.60b)

û j (p) :=
16∏

a=1

χ̂ j,a, (6.60c)

realizes the group cohomology class ([ν], [ρ], μ) =
(0, (0, 0), 0), i.e., the trivial group cohomology class. There
exists a bijective map a �→ a′ := (a + 16) mod 16 such that
all on-site terms iχ̂ j,a χ̂ j,a′ with a = 1, . . . , 8 can be shown
to be G f symmetric. The ground-state degeneracy of any
translation- and G f -invariant Hamiltonian of the form (5.5)
can be lifted by including the eight on-site terms iχ̂ j,a χ̂ j,a+8

with a = 1, . . . , 8, i.e., Theorem 1 is not predictive.

6. Group cohomology class ([ν], [ρ], μ) = (0, (0, 1), 0)

When representations (6.52) and (6.51) are stacked, the
local fermionic Fock space F j of dimension D = 16 is gener-
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ated by the octuplet of Majorana operators (6.49). One verifies
that

û j (g1) := χ̂ j,1 χ̂ j,3 χ̂ j,5 χ̂ j,7, (6.61a)

û j (g2) := χ̂ j,2 χ̂ j,3 χ̂ j,5, (6.61b)

û j (p) := χ̂ j,1 χ̂ j,2 χ̂ j,3 χ̂ j,4 χ̂ j,5 χ̂ j,6 χ̂ j,7 χ̂ j,8, (6.61c)

realizes the projective representation (6.44) with
([ν], [ρ], μ) = (0, (0, 1), 0).

Equation (6.61) differs from Eq. (6.58) by interchanging g1
and g2. This difference does not affect the reasoning leading
to to the conclusion that the gapless Hamiltonian (6.59) is the
most general translation-invariant, G f -invariant, order 2, and
range r = 1 Hamiltonian of the form (5.5) whose hopping
is diagonal with respect to the flavor index. This difference
also implies that stacking two copies of the (1, (0, 1), 0) rep-
resentation (6.61) delivers the trivial projective representation
(0, (0, 0), 0) encoded by Eqs. (6.60), for which Theorem 1 is
not predictive anymore.

7. Group cohomology class ([ν], [ρ], μ) = (0, (1, 1), 0)

When representations (6.52) and (6.55) are stacked, the
local fermionic Fock space F j of dimension D = 64 is gener-
ated by 12 Majorana operators. One verifies that

û j (g1) := i χ̂ j,2 χ̂ j,3 χ̂ j,5 χ̂ j,9 χ̂ j,11, (6.62a)

û j (g2) := i χ̂ j,1 χ̂ j,3 χ̂ j,5 χ̂ j,7 χ̂ j,9, (6.62b)

û j (p) :=
12∏

a=1

χ̂ j,a, (6.62c)

realizes the projective representation (6.44) with
([ν], [ρ], μ) = (0, (1, 1), 0).

An example of a translation- and G f -invariant Hamiltonian
of the form (5.5), order 2, and range r = 1 is

Ĥpbc :=
N∑

j=1

[
12∑

a=1

λa iχ̂ j,a χ̂ j+1,a + λ1,7 iχ̂ j,1 χ̂ j,7

+ λ3,5 iχ̂ j,3 χ̂ j,5 + λ2,11 iχ̂ j,2 χ̂ j,11

+ λ4,6 iχ̂ j,4 χ̂ j,6 + λ8,10 iχ̂ j,8 χ̂ j,10

]
(6.63)

with λa, λa,b ∈ R for a, b = 1, . . . , 12. By construction, this
Hamiltonian is gapless since the quantum critical Kitaev
chains 9 and 12 are decoupled from all other Kitaev chains.
This gapless phase is stable to any quadratic on-site pertur-
bation since the only on-site quadratic terms iχ̂ j,9 χ̂ j,a and
iχ̂ j,12 χ̂ j,a that could gap the quantum critical Kitaev chains
9 and 12 are odd under G for any a �= 9, 12. The stability of
this gapless phase to on-site quadratic perturbations can thus
be thought of as a consequence of Theorem 1. Theorem 1 also
predicts that any G f -symmetric interaction of the form (5.5)
that opens a spectral gap in the noninteracting spectrum must
break spontaneously at least one of the symmetries responsi-
ble for the noninteracting spectrum being gapless.

When two copies of this (0, (1, 1), 0) representation are
stacked, the local fermionic Fock space F j of dimension D =
212 is generated by 24 Majorana operators. The Z2-graded

tensor product of the projective representation (6.62) with
itself realizes the group cohomology class ([ν], [ρ], μ) =
(0, (0, 0), 0), i.e., the trivial group cohomology class. There
exists a bijective map a �→ a′ := (a + 12) mod 24 such that
all on-site terms iχ̂ j,a χ̂ j,a′ with a = 1, . . . , 12 can be shown
to be G f symmetric. The ground-state degeneracy of any
translation- and G f -invariant Hamiltonian of the form (5.5)
can be lifted by including the 12 on-site terms iχ̂ j,a χ̂ j,a+12

with a = 1, . . . , 12, i.e., Theorem 1 is not predictive.

C. One-dimensional space with the symmetry group ZFT
4

for an even number of local Majorana flavors

The lattice is 	 = {1, . . . , N} with N = 2M an even inte-
ger and the global fermionic Fock space F	 is of dimension
2n M with n the number of local Majorana flavors. By choosing
the cardinality |	| = 2M to be even, we make sure that the
lattice is bipartite. This allows to treat the two values of the
index μ := n mod 2 in parallel. We shall only consider the
case when n = 2m with m a positive integer and μ = 0. The
symmetry group G f := ZFT

4 := {t, t2, t3, t4} is the nontrivial
central extension of G ≡ ZT

2 = {t, t2} by ZF
2 ≡ {p, p2}, where

the identification t2 = p is made. The upper index T for the
cyclic group G ≡ ZT

2 ≡ {e, t} refers to the interpretation of t
as reversal of time (see Appendix A 5). As usual, p denotes
fermion parity. The symmetry group G f is thus generated by
reversal of time t , whereby reversal of time squares to the
fermion parity p.

The local antiunitary representation û j (t ) of reversal of
time generates a projective representation of the group ZFT

4 .
According to Appendix A 5, all cohomologically distinct pro-
jective representations of ZFT

4 are determined by the indices
[(ν, ρ)], with (ν, ρ) ∈ C2(G, U(1)) × C1(G,Z2), through the
relations15

[(ν, ρ)] = (ρ(t ), ρ(t )),

û j (t ) û j (p) = (−1)ρ(t ) û j (p) û j (t ),
(6.64a)

where

û2
j (t ) = eiφ(t,t ) û j (p) (6.64b)

and φ is the 2-cocycle defined in Eq. (3.11). This gives two
distinct group cohomology classes

([(ν, ρ)], 0) ∈ {(0, 0, 0), (1, 1, 0)}. (6.64c)

We will start with the nontrivial projective representation
in the cohomology class ([ν], [ρ], 0) = (1, 1, 0) that we shall
represent using two local Majorana flavors. We will then con-
struct a projective representation in the group cohomology
classes ([ν], [ρ], 0) = (0, 0, 0) by using the graded tensor
product, i.e., by considering 4 local Majorana flavors. This
will allow us to verify explicitly the stacking rules of Sec. III C
according to which Eq. (3.35) simplifies to the rule (see Ap-
pendix A 5)

([(ν, ρ)], 0) = (ρ(t ), ρ(t ), 0),

ρ(t ) = ρ1(t ) + ρ2(t ) mod 2,
(6.65)

15We have chosen the convention of always representing the gener-
ator p of ZF

2 by a Hermitian operator according to Eq. (3.10e).
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when G f = ZFT
4 . The indices defined in Eqs. (6.64) thus form

the cyclic group Z2 with respect to the stacking rule (6.65).

1. Group cohomology classes ([(ν, ρ)], μ) = (1, 1, 0)
and ([(ν, ρ)], μ) = (0, 0, 0)

The local fermionic Fock space F j of dimension D = 2 is
generated by the doublet of Majorana operators

χ̂ j ≡
(

χ̂ j,1
χ̂ j,2

)
, j = 1, . . . , 2M. (6.66)

One verifies that

û j (t ) := 1√
2

(χ̂ j,1 − χ̂ j,2)K, (6.67a)

û j (p) := iχ̂ j,1 χ̂ j,2, (6.67b)

realizes the projective representation (6.64) with
([(ν, ρ)], μ) = (1, 0, 0). With the help of

[û j (t )]−1 = 1√
2

(χ̂ j,1 + χ̂ j,2)K, (6.68)

one also verifies that

û j (t )

(
χ̂ j,1

χ̂ j,2

)
[û j (t )]−1 =

(−χ̂ j,2

+χ̂ j,1

)
. (6.69)

It follows from Eq. (6.69) that the only on-site Hermitian
quadratic form iχ̂ j,1 χ̂ j,2 is odd under reversal of time. Conse-
quently,

Ĥpbc :=
2M∑
j=1

λ(i χ̂ j,1 χ̂ j+1,1 − i χ̂ j,2 χ̂ j+1,2) (6.70)

with λ ∈ R is the most general translation- and G f -invariant
Hamiltonian of the form (5.5) of order 2, range r = 1, and
whose hopping is diagonal with respect to the flavor index.
This Hamiltonian describes two Kitaev chains that have been
fine-tuned to their quantum critical point (4.34) between their
symmetry-protected and topologically inequivalent gapped
phases. The stability of this gapless phase to on-site quadratic
perturbations can thus be thought of as a consequence of
Theorem 1. Theorem 1 also predicts that any G f -symmetric
interaction of the form (5.5) that opens a spectral gap in the
noninteracting spectrum must break spontaneously at least
one of the symmetries responsible for the noninteracting spec-
trum being gapless.

When two copies of the projective representation (6.67) are
stacked, the local fermionic Fock space F j of dimension D =
4 is generated by four Majorana operators. The Z2-graded
tensor product of the projective representation (6.67) with
itself realizes the group cohomology class ([(ν, ρ)], μ) =
(0, 0, 0), i.e., the trivial group cohomology class. There ex-
ists a bijective map a �→ a′ := (a + 2) mod 4 such that all
on-site terms iχ̂ j,a χ̂ j,a′ − iχ̂ j,a+1 χ̂ j,(a+1)′ with a = 1, 2 can
be shown to be G f symmetric. The ground-state degeneracy
of any translation- and G f -invariant Hamiltonian of the form
(5.5) can be lifted by increasing the strength of iχ̂ j,a χ̂ j,a′ −
iχ̂ j,a+1 χ̂ j,(a+1)′ with a = 1, 2, i.e., Theorem 1 is not predic-
tive.

D. One-dimensional space with the symmetry group ZF
2

for an odd number of local Majorana flavors

The lattice is 	 = {1, . . . , N} with N = 2M an even inte-
ger and the global fermionic Fock space F	 is of dimension
2(2m+1) M with (2m + 1) the number of local Majorana flavors,
i.e., μ = 1. By choosing the cardinality |	| = 2M to be even,
we make sure that the lattice is bipartite. The symmetry group
is G f := {p, p2} ≡ ZF

2 , where p denotes fermion parity. If we
reinterpret G f = G × ZF

2 with G = {e} the group with one
element, we deduce that the indices [ν] and [ρ] are trivial,
i.e., [ν] = [ρ] = 0. The index associated with this group is
then (0,0,1), for which we illustrate how translation symmetry
prevents a nondegenerate gapped ground state in agreement
with Theorem 2.

We define the 2(2m+1)M -dimensional global Fock space F	

using the 2(2m + 1)M Majorana operators obeying the alge-
bra

χ̂
†
j,a = χ j,a, χ̂2

j,a = 1, {χ j,a, χ j,a′ } = 2δ j, j′ δa,a′ , (6.71)

for j, j′ = 1, . . . , 2M, a, a′ = 1, . . . , 2m + 1.
For simplicity, we first choose 2m + 1 = 1 local Majorana

flavors. Hamiltonian

Ĥpbc := λ

2M∑
j=1

i χ̂ j χ̂ j+1, λ ∈ R, (6.72)

is the most general translation- and G f -invariant Hamiltonian
of the form (5.5) of range r = 1. It is gapless as it describes
one Kitaev chain on M sites that has been fine-tuned to its
quantum critical point (4.34) between its symmetry-protected
and topologically inequivalent gapped phases.

If we now consider 2m + 1 > 1 local Majorana flavors
arranged into the (2m + 1)-multiplet χ̂ j , the most general
translation- and G f -invariant Hamiltonian of the form (5.5)
of order 2 and range r = 1 is

Ĥpbc :=
2M∑
j=1

i χ̂T
j M χ̂ j+1 (6.73)

where the (2m + 1) × (2m + 1)-dimensional matrix M is
real-valued and antisymmetric. As M has necessarily a zero
eigenvalue, the spectrum of Ĥpbc is gapless.

Theorem 2 predicts that any G f -symmetric interaction of
the form (5.5) that opens a spectral gap in the noninteracting
spectrum of Hamiltonian (6.73) must break spontaneously the
symmetries responsible for the noninteracting spectrum being
gapless.

After stacking two copies of the projective representation
(0,0,1), it is possible to define a local fermionic Fock space
with the gapless Hamiltonian

Ĥpbc :=
2M∑
j=1

2∑
a=1

i χ̂T
j,a Ma χ̂ j+1,a,

Ma = −MT
a ∈ Mat(2m + 1,R). (6.74)

The on-site mass term i χ̂T
j,1 χ̂ j,2 is compatible with parity

conservation. When added to the right-hand side so as to pre-
serve translation symmetry, it selects a nondegenerate gapped
ground state. There is no contradiction with Theorem 2 since
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the the projective representation under stacking rules is the
trivial one (0,0,0).

As was suggested just after Eq. (6.72), we can always do
the reinterpretation

Ĥpbc := λ

M∑
l=1

i(χ̂o,l χ̂e,l + χ̂o,l χ̂e,l+1), (6.75a)

χ̂o,l := χ̂2l−1, χ̂e,l := χ̂2l , (6.75b)

according to which the enlarged repeat unit cell is labeled by
the odd sites 	A of 	 and there are two flavors (even and odd)
of Majorana per enlarged repeat unit cell. It is then tempting
to ask if one could use Theorem 1 for some group G to
understand the spectrum of Eq. (6.75), in which case the need
for Theorem 2 would be superfluous at best or contradictory at
worst. However, there is no conflict between Theorem 2 and
Theorem 1, as Theorem 1 cannot be applied to understand
the spectrum of Eq. (6.75). To see this, we observe that the
translation by one original repeat unit cell that is presumed by
Theorem 2 is represented in Eq. (6.75) by

χ̂o,l �→ χ̂e,l , χ̂e,l �→ χ̂o,l+1, l = 1, . . . , M. (6.76)

As this transformation is not internal to the enlarged repeat
unit cell, it cannot be interpreted as the group G of on-site
symmetries needed to establish Theorem 1.

VII. SUMMARY

In this work, we have obtained two Lieb-Schultz-Mattis
type no-go constraints that forbid the existence of a nonde-
generate gapped ground state for translationally invariant local
lattice Hamiltonians of the form (5.5) in any dimension. The-
orem 1 is proved within the FMPS framework and presumes
that the repeat unit cell hosts a finite even number of Majorana
degrees of freedom that, in turn, realize a nontrivial projective
representation of a global symmetry group G f . We have ex-
tended Theorem 1 to any dimension d > 1 by using tilted and
twisted boundary conditions, albeit with some restrictions on
the global symmetry group G f . Theorem 2 presumes that the
repeat unit cell of any d-dimensional lattice hosts a finite odd
number of Majorana degrees of freedom (of course the lattice
must then host an even number of sites). Such Lieb-Schultz
Mattis-type theorems provide nonperturbative constraints on
the nature of the ground state which are expected to have
applications in fermionic models with broken U(1) number-
conservation symmetry, but with additional global symmetries
G f present. Notably, such LSM-type constraints dictate the
conditions under which a Fermi liquid can be unstable to a
low-temperature phase in which superconducting long-range
order coexists with the long-range order associated to the
spontaneous breaking of some symmetry group G f .
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APPENDIX A: GROUP COHOMOLOGY

We review some basic concepts in group cohomology in
Appendix A 1. We then calculate the relevant group coho-
mologies for the projective representations of the group G f
considered in Appendix A 3–A 5.

1. Some definitions

Given two groups G and M, an n-cochain is the map

φ : Gn → M,

(g1, g2, . . . , gn) �→ φ(g1, g2, . . . , gn),
(A1)

that maps an n-tuple (g1, g2, . . . , gn) to an element
φ(g1, g2, . . . , gn) ∈ M. The set of all n-cochains from Gn to
M is denoted by Cn(G, M ). We define an M-valued 0-cochain
to be an element of the group M itself, i.e., C0(G, M ) = M.
Henceforth, we will denote the group composition rule in G
by · and the group composition rule in M additively by + (−
denoting the inverse element).

Given the group homomorphism c : G → {−1, 1}, for any
g ∈ G, we define the group action

Cg : M →M,

(A2)
m �→ c(g) m.

The homomorphism c indicates whether and element g ∈ G
is represented unitarily [c(g) = +1] or antiunitarily [c(g) =
−1]. We define the map δn

c

δn
c : Cn(G, M ) → Cn+1(G, M ),

φ �→ (δn
cφ),

(A3a)

from n-cochains to (n + 1)-cochains such that

(δn
cφ)(g1, . . . , gn+1)

:= Cg1
(φ(g2, . . . , gn, gn+1))

+
n∑

i=1

(−1)iφ(g1, . . . , gi · gi+1, · · · , gn+1)

− (−1)n φ(g1, . . . , gn). (A3b)

The map δn
c is called a coboundary operator.

Example n = 2. The coboundary operator δ2
c is defined by(

δ2
cφ

)
(g1, g2, g3) = Cg1

(φ(g2, g3)) + (−1)1φ(g1 · g2, g3)

+ (−1)2φ(g1, g2 · g3) − (−1)2 φ(g1, g2)

= c(g1) φ(g2, g3) − φ(g1 · g2, g3)

+ φ(g1, g2 · g3) − φ(g1, g2). (A4)

We observe that(
δ2
cφ

)
(g1, g2, g3) = 0 ⇐⇒ φ(g1, g2) + φ(g1 · g2, g3)

= φ(g1, g2 · g3) + c(g1) φ(g2, g3) (A5)

is nothing but the 2-cocycle condition (3.12b) obeyed by φ.
Example n = 1. The coboundary operator δ1

c is defined by(
δ1
cφ

)
(g1, g2) =Cg1

(φ(g2)) + (−1)1φ(g1 · g2) − (−1)1φ(g1)

= c(g1) φ(g2) − φ(g1 · g2) + φ(g1). (A6)
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One verifies the important identity

�(g1, g2) := (
δ1
cφ

)
(g1, g2) ⇒ (δ2

c�)(g1, g2, g3) = 0.

(A7)
We observe that Eq. (3.15) implies that φ is the image of
ξ under the coboundary operator δ1

c . Using the coboundary
operator, we define two sets

Zn(G, Mc) := ker
(
δn
c

) = {
φ ∈ Cn(G, M )

∣∣ δn
cφ = 0

}
, (A8a)

and

Bn(G, Mc) := im
(
δn−1
c

)
= {

φ ∈ Cn(G, M )
∣∣ φ=δn−1

c φ′, φ′ ∈ Cn−1(G, M )
}
.

(A8b)

The cochains in Zn(G, Mc) are called n-cocycles. The
cochains in Bn(G, Mc) are called n-coboundaries. The action
of the boundary operator on the elements of the group M is
sensitive to the homomorphism c. For this reason, we label
M by c in Zn(G, Mc) and Bn(G, Mc). The importance of the
coboundaries is that the identity (A7) generalizes to

φ = δn−1
c φ′ ⇒ δn

cφ = 0. (A9)

The nth cohomology group is defined as the quotient of the
n-cocycles by the n-coboundaries, i.e.,

Hn(G, Mc) := Zn(G, Mc)/Bn(G, Mc). (A10)

From now on, we omit the labels n and c in δn
c for convenience.

It should be understood that the map δ acting on a cochain φ

maps it to a cochain of one higher degree. The nth cohomol-
ogy group Hn(G, Mc) is an additive Abelian group. We denote
its elements by [φ] ∈ Hn(G, Mc), i.e., the equivalence class of
the n-cocycle φ.

Finally, we define the following operation on the cochains.
Given two cochains φ ∈ Cn(G, N ) and θ ∈ Cm(G, M ), we
produce the cochain (φ ∪ θ ) ∈ Cn+m(G, N × M ) through

(φ ∪ θ )(g1, . . . , gn, gn+1, . . . , gm)

:= (
φ(g1, . . . , gn),Cg1·g2···gn

(θ (gn+1, . . . , gn+m))
)
.

(A11a)

If we compose operation (A.11) with the pairing map f : N ×
M → M ′ where M ′ is an Abelian group, we obtain the cup
product

(φ � θ )(g1, . . . , gn, gn+1, . . . , gm)

:= f

((
φ(g1, . . . , gn),Cg1·g2···gn

(θ (gn+1, . . . , gn+m))
))

.

(A11b)

Hence, (φ � θ ) ∈ Cn+m(G, M ′). For our purposes, both N
and M are subsets of the integer numbers, M ′ = Z2, while
the pairing map f is

f

((
φ(g1, . . . , gn),Cg1·g2···gn

(θ (gn+1, . . . , gn+m))
))

:= φ(g1, . . . , gn)Cg1·g2···gn
(θ (gn+1, . . . , gn+m)) mod 2

(A12)

where multiplication of cochains φ and θ is treated as multi-
plication of integers numbers modulo 2. For instance, for the
cup product of a 1-cochain α ∈ C1(G,Z2) and a 2-cochain
β ∈ C2(G,Z2), we write

(α � β )(g1, g2, g3) = α(g1)Cg1
(β(g2, g3))

= α(g1) β(g2, g3), (A13)

where the cup product takes values in Z2 = {0, 1} and
multiplication of α and β is the multiplication of inte-
gers. In reaching the last equality, we have used the fact
that the 2-cochain β(g2, g3) takes values in Z2 for which
Cg1

(β(g2, g3)) = β(g2, g3) for any g1. The cup product de-
fined in Eq. (A11b) satisfies

δ(φ � θ ) = (δφ � θ ) + (−1)n (φ � δθ ), (A14)

given two cochains φ ∈ Cn(G, N ) and θ ∈ Cm(G, M ). Hence,
the cup product of two cocycles is again a cocycle as the right-
hand side of Eq. (A14) vanishes. Having introduced the basics
of group cohomology, next we shall compute the cohomology
groups [φ] ∈ H2(G f , U(1)c) for some specific finite Abelian
groups G encountered in Sec. VI and whose projective repre-
sentations are defined by Eqs. (3.11) and (3.12).

2. Classification of projective representations of Gf

It was described in Sec. III A, how a global symmetry
group G f for a fermionic quantum system naturally contains
the fermion-number parity symmetry group ZF

2 in its cen-
ter, i.e., it is a central extension of a group G by ZF

2 . Such
group extension are classified by prescribing an element [γ ] ∈
H2(G,ZF

2 ), such that we may think of G f as the set of tuples
(g, h) ∈ G × ZF

2 with composition rule as in Eq. (3.3e). From
this perspective, there is an implicit choice of trivialization
τ : G f → ZF

2 and projection b : G f → G such that

τ
(
(g, h)

) = h, b
(
(g, h)

) = g. (A15)

Importantly, τ is related to the extension class γ that defines
the group extension via the relation

b�γ = δτ, (A16)

where b�γ ∈ H2(G f ,Z
F
2 ) is the pullback of γ via b.

As explained in Sec. III B 1, we shall trade the 2-
cocycle φ(g, h) ∈ Z2(G, U(1)c) with the tuple (ν, ρ) ∈
C2(G, U(1)) × C1(G,Z2) that satisfy certain cocycle and
coboundary conditions. To this end, it is convenient to define
the modified 2-coboundary operator

D2
γ (ν, ρ) := (δν − π ρ � γ , δρ), (A17)

acting on a tuple of cochains (ν, ρ) ∈ C2(G, U(1)) ×
C1(G,Z2) together with the modified 1-coboundary operator

D1
γ (α, β ) := (δα + πβ � γ , δβ ) (A18)

acting on a tuple of cochains (α, β ) ∈ C1(G, U(1)) ×
C0(G,Z2). Being a 0-cochain β does not take any arguments
and takes values in Z2, i.e., β ∈ Z2. Note that for the 0-
cochain β, the coboundary operator (A3b) acts as

(δ0
cβ )(g) = Cg(β ) − β, (A19)
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which in fact vanishes for any g ∈ G since β takes values in
Z2 and Cg(β ) = β. Using Eq. (A14) and the fact that γ is a
cocycle, i.e., δγ = 0, one verifies that

D2
γ D1

γ (α, β ) = (0, 0) (A20)

for any tuple (α, β ) ∈ C1(G, U(1)) × C0(G,Z2).
It was proved in Ref. [58] that one may assign to any

2-cocycle [φ] ∈ H2(G f , U(1)c) an equivalence class [(ν, ρ)]

of those tuples (ν, ρ) ∈ C2(G, U(1)) × C1(G,Z2) that satisfy
the cocycle condition under the modified 2-coboundary oper-
ator (A17) given by

D2
γ (ν, ρ) = (δν − π ρ � γ , δρ) = (0, 0). (A21)

Indeed, two tuples (ν, ρ) and (ν ′, ρ ′) that satisfy Eq. (3.6)
are said to be equivalent if there exists a tuple (α, β ) ∈
C1(G, U(1)) × C0(G,Z2) such that

(ν, ρ) = (ν ′, ρ ′) + D1
γ (α, β ) = (ν ′ + δα + π β � γ , δβ ).

(A22)

In other words, using this equivalence relation we define an
equivalence class [(ν, ρ)] of the tuple (ν, ρ) as an element of
the set

[(ν, ρ)] ∈ ker
(
D2

γ

)
im

(
D1

γ

) . (A23)

The proof of the one-to-one correspondence between [φ] and
[(ν, ρ)] then follows in three steps which we sketch out below.
We refer the reader to Ref. [58] for more details.

(1) First, given a cocycle φ ∈ Z2(G f , U(1)c), one can de-

fine ρ ∈ Z1(G,Z2) via Eq. (3.28). The fact that ρ is a cocycle
follows from that fact that φ is a cocycle.

(2) Next, one can always find a representative φ in every
cohomology class [φ] ∈ H2(G f , U(1)c) that satisfies the rela-
tion φ = ν + πρ � τ .

(3) Finally, the fact that δφ = 0 implies that δν = πρ �

γ .
We note that when the [γ ] = 0, i.e., the group G f splits

as G f = G × ZF
2 , the modified coboundary operators (A17)

and (A18) reduce to the coboundary operator (A3b) with
n = 2 and n = 1, respectively. If so the cochains ν and ρ

are both cocycles, i.e., (ν, ρ) ∈ Z2(G, U(1)c) × Z1(G,Z2).
The equivalence classes [(ν, ρ)] of the tuple (ν, ρ) is then
equal to the equivalence cohomology classes of each of its
components, i.e.,

[(ν, ρ)] = ([ν], [ρ]) ∈ H2(G, U(1)c) × H1(G,Z2). (A24)

We use the notation ([ν], [ρ]) for the two indices whenever
the group G f splits ([γ ] = 0). The notation [(ν, ρ)] applies
whenever the group G f does not split ([γ ] �= 0).

3. The split group ZT
2 × ZF

2

The group ZT
2 × ZF

2 , where the upper index T for the
cyclic group ZT

2 ≡ {e, t} refers to the interpretation of t as
time, is a split group. Since the group splits ([γ ] = 0) upon
using Eq. (A21) one finds that [φ] ∈ H2(G f , U(1)c) separates
into the pair of independent indices [ν] ∈ H2(ZT

2 , U(1)c) and

[ρ] ∈ H1(ZT
2 ,Z2). Since [ν] = 0, 1 and [ρ] = 0, 1,

H2(ZT
2 × ZF

2 , U(1)c
)

= {([ν], [ρ]) | [ν] = 0, 1, [ρ] = 0, 1}. (A25)

Below we describe how to “measure” these indices as well as
the product or monoidal structure that these indices satisfy.

Claim 1: [ν] = 0, 1.
Proof. Any cochain ν belonging to the equivalence class

[ν] is defined by the substitution G = ZT
2 in Eq. (3.11) and

must satisfy the cocycle and coboundary conditions in (3.12b)
and (3.14), respectively. If one chooses g = h = f = t in
Eq. (3.12b), where t ∈ ZT

2 is the generator of time-reversal
which is represented antiunitarily [c(t ) = −1]. One finds

ν(t, t ) + ν(e, t )=ν(t, e) − ν(t, t ) mod 2π ⇒ ν(t, t ) = 0, π.

(A26)

Equation (A26) is nothing but the statement that the represen-
tation of time reversal should square to either the identity or
minus the identity. These two possibilities are not connected
by a coboundary. Hence, they correspond to different second
cohomology classes. To see this, assume they were connected
by a coboundary, i.e., they satisfy the equivalence condition
(3.14). On the one hand, choosing g = t and h = t in Eq.
(3.14) implies that

ν(t, t ) − ν ′(t, t )=ϕ(t ) − ϕ(t ) − ϕ(e) = −ϕ(e) ⇒ ϕ(e) = π

(A27)

if ν ′(t, t ) = π and ν(t, t ) = 0. However, on the other hand,
choosing g = t and h = e in Eq. (3.14) implies that

ν(t, e) − ν ′(t, e) = ϕ(t ) − ϕ(e) − ϕ(t )

= −ϕ(e) ⇒ ϕ(e) = 0, (A28)

since ν(g, e) = ν(e, g) = 0 for all g. Equations (A27) and
(A28) contradict each other. This contradiction implies that
one cannot consistently define a gauge transformation ϕ that
interpolates between ν such that ν(t, t ) = π to ν ′ such that
ν(t, t ) = 0. We denote the cases ν(t, t ) = π, 0 with the equiv-
alence classes [ν] = 1, 0, respectively. �

Claim 2: [ρ] = 0, 1.
Proof. For the second index [ρ] ∈ H1(ZT

2 ,Z2), two 1-
cochains ρ and ρ ′ are equivalent if and only if they are
1-cocycles that differ by a coboundary of a 0-cochain. But, by
definition, a Z2-valued 0-cochain has a vanishing coboundary.
Hence, the coset H1(ZT

2 ,Z2) is just the set of all distinct
1-cocycles. By definition, a 1-cocycle ρ must obey [recall
Eq. (A6)]

ρ(g) + c(g)ρ(h) − ρ(gh) = 0. (A29a)

Choosing g = t and h = p delivers

ρ(t ) = ρ(p) + ρ(t · p) = ρ(t · p), (A29b)

where we used the fact that ρ(p) = 0 by the definition (3.28).
The value of ρ(t ) in Z2 indicates whether the projective repre-
sentation of reversal of time commutes or anticommutes with
the projective representation of the fermion parity operator p.
Equation (A29b) states that fermion parity of the quantum rep-
resentation of t is equal to the fermion parity of the quantum
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representation of t · p. We assign the indices [ρ] = 0, 1 to the
values ρ(t ) = 0, 1, respectively. �

Given two local projective representations û1 and û2 of the
group G f = ZT

2 × ZF
2 acting on the Fock spaces F1 and F2,

respectively, we now derive the indices associated with the
local projective representation û acting on the graded tensor
product F = F1 ⊗g F2 of the Fock spaces F1 and F2. The
definition (3.34a) implies

û(t ) := v̂1(t ) v̂2(t ) K, û(p) := v̂1(p) v̂2(p), (A30)

for the representations of elements t ∈ ZT
2 and p ∈ ZF

2 . In
turn, using the relation (3.34c) and the definition (3.28), we
find (for g, h ∈ G f )

φ(g, h) = φ1(g, h) + φ2(g, h) + π ρ1(h) ρ2(g) mod 2π,

(A31a)

ν(t, t ) = ν1(t, t ) + ν2(t, t ) + π ρ1(t ) ρ2(t ) mod 2π,

(A31b)

ρ(t ) = φ(t, p) − φ(p, t )

π
mod 2

= 1

π
[φ1(t, p) + φ2(t, p) + π ρ1(p) ρ2(t ) − φ1(p, t )

−φ2(p, t ) − π ρ1(t ) ρ2(p)] mod 2

= φ1(t, p) − φ1(p, t )

π
+ φ2(t, p) − φ2(p, t )

π
mod 2

= ρ1(t ) + ρ2(t ) mod 2, (A31c)

for the 2-cocycle ν and 1-cocycle ρ associated with the rep-
resentation û. In reaching the last line of Eq. (A31c), we have
used the fact that by definition ρ1(p) = ρ2(p) = 0. Here, ν1
and ν2 are the 2-cocycles, and ρ1 and ρ2 are the 1-cocycles
associated with the representations û1 and û2, respectively.
Assignments of indices [ν] and [ρ] to the local projective
representations of the group ZT

2 × ZF
2 (as shown above) and

the identity (A31) imply that the indices of the tensor product
representation are related to the indices of the constituent
representations via

[ν] = [ν1] + [ν2] + [ρ1][ρ2] mod 2,

[ρ] = [ρ1] + [ρ2] mod 2, (A32a)

We note that for the group ZT
2 × ZF

2 the cup product
[πρ1 � ρ2] in Eq. (3.35) simplifies to

[πρ1 � ρ2] ≡ [ρ1] [ρ2], (A32b)

One thus finds that different local projective representations
of the group ZT

2 × ZF
2 form the cyclic group Z4 under the

stacking rule (A32a).

4. The split group Z2 × Z2 × ZF
2

As in Appendix A 3, the group Z2 × Z2 × ZF
2 is a split

group. We denote the two generators of Z2 × Z2 by g1 and g2,
both of which are represented by unitary operators. Because
of the Cartesian products, [φ] ∈ H2(G f , U(1)c) separates into
the pair of independent indices [ν] ∈ H2(Z2 × Z2, U(1)c)
and [ρ] ∈ H1(Z2 × Z2,Z2) according to Eq. (3.30). Since

the group representation is unitary (and hence linear as op-
posed to antilinear), there is no negative sign that appears
on the right-hand side of the equality in Eq. (A26). It is
not possible to constrain the possible values of ν(g1, g1) or
ν(g2, g2) as was done in Eq. (A26). Cocycle conditions that
are akin to Eq. (A26) are trivially satisfied. On the other hand,
examining the algebra between projective representations of
g1 and g2 provides useful information. Since each symmetry
transformation must have a fixed fermion parity, the projective
representations of g1 and g2 must either commute or anticom-
mute with each other, i.e.,

ν(g1, g2) − ν(g2, g1) = 0, π. (A33)

These two possible values constitute the two inequivalent co-
homology classes for the index [ν]. To show this, we consider
two cochains ν and ν ′ that are connected by the coboundary
condition (3.14). One finds

ν(g1, g2) − ν ′(g1, g2) = ϕ(g1) + ϕ(g2) − ϕ(g1 · g2),

(A34a)

ν(g2, g1) − ν ′(g2, g1) = ϕ(g2) + ϕ(g1) − ϕ(g2 · g1).

(A34b)

Because G ≡ Z2 × Z2 is Abelian, this pair of equations im-
plies that

ν(g1, g2) − ν(g2, g1) = ν ′(g1, g2) − ν ′(g2, g1). (A34c)

Therefore the projective representations of g1 ∈ G and g2 ∈ G
that either commute pairwise or anticommute pairwise must
belong to distinct second cohomology classes. We assign
the values [ν] = 0, 1 to ν(g1, g2) − ν(g2, g1) = 0, π , respec-
tively.

The index [ρ] characterizes whether the representations of
g1 ∈ G and g2 ∈ G commute or anticommute with the fermion
parity. Note that the parity of the element g1 · g2 is determined
by the parities of g1 and g2. Therefore [ρ] retains the Z2 × Z2
structure. We assign a pair of indices

[ρ] = (
[ρ]1, [ρ]2

)
, [ρ]1 = 0, 1, [ρ]2 = 0, 1, (A35)

to indicate the parities of the projective representations of of
g1 ∈ G and g2 ∈ G, respectively. We may then write

H2
(
Z2 × Z2 × ZF

2 , U(1)c
) = {([ν], [ρ]) | [ν] = 0, 1,

[ρ] = ([ρ]1, [ρ]2), [ρ]1, [ρ]2 = 0, 1}. (A36)

Given two local projective representations û1 and û2 of the
group G f = Z2 × Z2 × ZF

2 acting on two Fock spaces F1
and F2, respectively, we shall derive the indices associated
with the local projective representation û acting on the graded
tensor product F = F1 ⊗g F2 of Fock spaces F1 and F2. The
definition (3.34a) implies

û(g1) = v̂1(g1) v̂2(g1), û(g2) = v̂1(g2) v̂2(g2),

û(p) = v̂1(p) v̂2(p), (A37)

for the representations of elements g1, g2 ∈ Z2 × Z2 and p ∈
ZF

2 . In turn, using the relation (3.34c) and the definition
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(3.28), we find

ν(g1, g2) − ν(g2, g1) = ν1(g1, g2) + ν2(g1, g2) + π ρ1(g2) ρ2(g1) − ν1(g2, g1) − ν2(g2, g1) − π ρ1(g1) ρ2(g2) mod 2π

= ν1(g1, g2) − ν1(g2, g1) + ν2(g1, g2) − ν2(g2, g1) + π [ρ1(g2) ρ2(g1) − ρ1(g1) ρ2(g2)] mod 2π,

(A38a)

ρ(gi ) = φ(gi, p) − φ(p, gi )

π
mod 2

= 1

π
[φ1(gi, p) + φ2(gi, p) + π ρ1(p) ρ2(gi ) − φ1(p, gi ) − φ2(p, gi ) − π ρ1(gi ) ρ2(p)] mod 2

= φ1(gi, p) − φ1(p, gi )

π
+ φ2(gi, p) − φ2(p, gi )

π
mod 2 [where we made use of ρ1 (p) = ρ2 (p) = 0]

= ρ1(gi ) + ρ2(gi ) mod 2, i = 1, 2, (A38b)

for the 2-cocycle ν and 1-cocycle ρ associated with the representation û. Here, ν1 and ν2 are the 2-cocycles, and ρ1 and ρ2 are the
1-cocycles associated with the representations û1 and û2, respectively. Assignments of indices [ν] and [ρ] to the local projective
representations of the group Z2 × Z2 × ZF

2 (as shown above) and the identity (A38) imply that the indices of the tensor product
representation are related to the indices of the constituent representations via

[ν] = [ν1] + [ν2] + [ρ1]2 [ρ2]1 − [ρ1]1 [ρ2]2 mod 2, (A39a)

[ρ]i = [ρ1]i + [ρ2]i mod 2, i = 1, 2, (A39b)

where we have denoted by [ρ1], [ρ2] ∈ H1(Z2 × Z2,Z2) the first cohomology classes associated to the local projective
representations û1 and û2, and we used the notation

[ρ1] ≡ (
[ρ1]1, [ρ1]2

)
, [ρ2] ≡ (

[ρ2]1, [ρ2]2

)
. (A39c)

We note that for the group Z2 × Z2 × ZF
2 the cup product [πρ1 � ρ2] in Eq. (3.35) simplifies to

[πρ1 � ρ2] ≡ [ρ1]2 [ρ2]1 − [ρ1]1 [ρ2]2, (A39d)

and the stacking rule (3.35) becomes(
[ν], [ρ], 0

) ≡
(

[ν],
(
[ρ]1, [ρ]2

)
, 0

)
=

(
[ν1] + [ν2] + [ρ1]2 [ρ2]1 − [ρ1]1 [ρ2]2, ([ρ1]1 + [ρ2]1, [ρ1]2 + [ρ2]2), 0

)
. (A39e)

One thus finds that different local projective representa-
tions of the group Z2 × Z2 × ZF

2 form the group Z2 × Z2 ×
Z2 under the stacking rule (A39e).

5. The nonsplit group ZFT
4

The group ZFT
4 is the nontrivial central extension of G ≡

ZT
2 by ZF

2 ≡ {p, p2}, where the upper index T for the cyclic
group ZT

2 ≡ {t, t2} refers to the interpretation of t as reversal
of time. This central extension of time reversal by fermion
parity is specified by the map γ obeying the nonsplit condi-
tion (3.31) because of γ (t, t ) = p (which implies the group
composition rule t · t = p). If so, ν is not a cocycle but
a cochain with nonvanishing coboundary according to Eq.
(3.32) and (A21). On the other hand, ρ is a 1-cocycle. We
thus observe that two tuples (ν, ρ) and (ν ′, ρ ′) are not in the
same equivalence class if ρ(t ) �= ρ ′(t ). Since ρ(t ) can take
two values, 0 or 1, there exist at least two distinct equivalence
classes of the tuple (ν, ρ), labeled by ρ(t ). Given this value
of ρ(t ), we shall construct the distinct equivalence classes of
(ν, ρ) corresponding to different values of ν ∈ C2(G, U(1)).
Choosing g = h = f = t in Eq. (3.32) delivers

ν(t, e) − ν(t, t ) − ν(t, t ) − ν(e, t ) = π ρ(t ) γ (t, t ) mod 2π.

(A40)

With the help of Eq. (3.12c) and with the choice of the con-
vention γ (t, t ) = p ≡ 1 for the nonsplit group ZFT

4 , we we
find the pair of solutions to Eq. (A40) given by

ν(t, t ) = −π

2
ρ(t ), ν(t, t ) = −π

2
ρ(t ) + π. (A41)

The multiplicative factor π appears on the right-hand sides
since ν takes values in U(1) and is thus defined modulo
2π . Now, the two solutions (A41) are equivalent under the
equivalence relation (A22) as can be seen by choosing α = 0
and β = p ≡ 1 in Eq. (A22). Indeed, the term πβ � γ = π

then cancels the factor π between the two solutions (A41).
Thus, for each value of ρ(t ) = 0, 1, there exists a single
distinct equivalence class [(ν, ρ)]. From now on, we choose
the solution (−π ρ(t )/2, ρ(t )) as the representative of the
equivalence class [(ν, ρ)]. We assign [(ν, ρ)] = (1, 1) to
the case (ν(t, t ), ρ(t )) = (−π/2, 1) and [(ν, ρ)] = (0, 0) to
the case (ν(t, t ), ρ(t )) = (0, 0) and write

H2
(
ZFT

4 , U(1)c
) = {[(ν, ρ)] | [(ν, ρ)] = (0, 0), (1, 1)}.

(A42)

Given two local projective representations û1 and û2 of the
group G f = ZFT

4 acting on two Fock spaces F1 and F2, re-
spectively, we shall derive the indices associated with the local
projective representation û acting on the graded tensor product
F = F1 ⊗g F2 of Fock spaces F1 and F2. The definition
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(3.34a) implies

û(t ) = v̂1(t ) v̂2(t ) K, û(p) = v̂1(p) v̂2(p), (A43)

for the representations of elements t, p ∈ ZFT
4 . In turn, using

the relation (3.34c) and the definition (3.28), we find that if
ν1 and ν2 are 2-cochains, and ρ1 and ρ2 are two 1-cocycles
associated with the representations û1 and û2, respectively,
then the 2-cochain ν and 1-cocycle ρ associated with the
representation û are given by

ν(t, t ) = ν1(t, t ) + ν2(t, t ) + π ρ1(t ) ρ2(t ) mod 2π, (A44a)

ρ(t ) = ρ1(t ) + ρ2(t ) mod 2, (A44b)

respectively. Although this pair of relations are identical to
their counterparts in Eq. (A31), the nonsplit nature of the
group ZFT

4 carries over to the stacked projective representa-
tion. Indeed, inserting twice (A41) on the right-hand side of
(A44a) gives

ν(t, t ) = −π

2
ρ1(t ) − π

2
ρ2(t ) + π ρ1(t ) ρ2(t ) mod 2π,

(A45a)

ρ(t ) = ρ1(t ) + ρ2(t ) mod 2. (A45b)

There are four cases to consider. When (ρ1(t ), ρ2(t )) =
(0, 0), ρ(t ) = 0 and ν(t, t ) = 0. When (ρ1(t ), ρ2(t )) = (0, 1),
ρ(t ) = 1 and ν(t, t ) = −π/2. When (ρ1(t ), ρ2(t )) = (1, 0),
ρ(t ) = 1 and ν(t, t ) = −π/2. When (ρ1(t ), ρ2(t )) = (1, 1),
ρ(t ) = 0 and ν(t, t ) = 0. Hence, ν(t, t ) and ρ(t ) on the left-
hand sides of Eqs. (A44a) and (A44b), respectively, obey
Eq. (A41). The stacked representation can then be labeled
by the indices [(ρ, ρ)] where ρ = ρ1 + ρ2 mod 2. At last, the
stacking rule (3.35) takes the form

([(ν, ρ)], 0) = ([(ρ1 + ρ2 mod 2, ρ1 + ρ2 mod 2)], 0).
(A46)

One thus finds that different local projective representations
of the group ZFT

4 form the cyclic group Z2 under the stacking
rule (A46).

APPENDIX B: CONSTRUCTION OF FERMIONIC
MATRIX PRODUCT STATES (FMPS)

We review the construction of fermionic matrix product
states (FMPS). We refer the reader to Refs. [56,57] and ref-
erences therein on the topic of matrix product states (MPS).
As in bosonic matrix product states (BMPS), FMPS can be
expressed as a contraction of objects belonging to a graded
tensor product of vector spaces. The need for graded tensor
product of vector spaces stems from the underlying fermionic
algebra.

1. Z2-graded vector spaces and their Z2-graded tensor products

Any fermionic Fock space F can be seen, in the basis
that diagonalizes the total fermionic number operator, to be
the direct sum over a subspace F0 with even total fermionic
number and a subspace F1 with odd total fermionic number.
This property endows fermionic Fock space with a natural Z2
grading.

A Z2-graded vector space V admits the direct sum decom-
position

V = V0 ⊕ V1. (B1)

We shall identify the subscripts 0 and 1 as the elements of
the additive group Z2. We say that V0 (V1) has parity 0 (1).
Any vector space is Z2-graded since the choice V0 = V and
V1 = ∅ is always possible. Any subspace of V0 shares its parity
0. Any subspace of V1 shares its parity 1. A vector |v〉 ∈ V is
called homogeneous if it entirely resides in either one of the
subspaces V0 and V1. The parity |v| of the homogeneous state
|v〉 is either 0 if |v〉 ∈ V0 or 1 if |v〉 ∈ V1. These observation on
the Z2-grading of a vector space V only become useful when
one demands that any operation acting on V preserves the Z2
grading.

For example, certain operations need to be defined care-
fully between two Z2-graded vector space V and W that
preserve their Z2 structure. One such operation is the Z2-
graded tensor product. Let V = V0 ⊕ V1 and W = W0 ⊕ W1 be
two Z2-graded vector spaces. We define their graded tensor
product as the map

⊗g : V × W → V ⊗ W, (B2a)

such that

Vi ⊗g Wj ⊆ (V ⊗ W )(i+ j) mod 2, i, j = 0, 1. (B2b)

By design, the operation ⊗g carries the Z2-grading of V
and W to their Z2-graded tensor product. In particular, for
any homogeneous vectors |v〉 ∈ V with parity |v| = 0, 1 and
|w〉 ∈ W with parity |w| = 0, 1, the graded tensor product
|v〉 ⊗g |w〉 of two homogeneous vectors has the parity

||v〉 ⊗g |w〉| := (|v| + |w|) mod 2. (B2c)

The connection between the Z2-graded vector space V =
V0 ⊕ V1 and fermionic Fock spaces F = F0 ⊕ F1, is estab-
lished through the identifications F0 → V0 and F1 → V1.
However, a fermionic Fock space has more structure than a
mere Z2-graded vector space. Wave functions in a fermionic
Fock space are fully antisymmetric under the permutation
of two fermions. This requirement can be implemented as
follows on a Z2-graded vector space. The exchange of two
fermions can be represented by the isomorphism

R : V ⊗g W → W ⊗g V, (B3a)

by which the graded tensor product of the homogeneous vec-
tors |v〉 ∈ V and |w〉 ∈ W obeys

|v〉 ⊗g |w〉 �→ (−1)|v| |w| |w〉 ⊗g |v〉. (B3b)

The map R is called the reordering operation. It is invert-
ible with itself as inverse since R2 is the identity map.

For every Z2-graded vector space V , we define the dual
Z2-graded vector space V ∗. We denote an element of the dual
Z2-graded vector space V ∗ by 〈v|, the dual to the vector |v〉 ∈
V . The dual Z2-graded vector space V ∗ inherits a Z2 grading
from assigning the parity |v| to the vector 〈v| ∈ V ∗ if |v〉 ∈ V
is homogeneous with parity |v|. The contraction C is the map

C : V ∗ ⊗g V →C,

〈ψ | ⊗g |φ〉 �→ 〈ψ |φ〉, (B4a)
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where 〈ψ |φ〉 denotes the scalar product between the pair
|ψ〉, |φ〉 ∈ V . Hence,

C(〈i| ⊗g | j〉) = δi j (B4b)

holds for any pair of orthonormal and homogeneous basis
vectors |i〉, | j〉 ∈ V . The contraction C∗ is the map C∗ : V ⊗g

V ∗ → C defined by its action

C∗(|i〉 ⊗g 〈 j|) := C(R(|i〉 ⊗g 〈 j|)) = C((−1)|i|| j|〈 j| ⊗g |i〉)

= (−1)|i|| j|〈 j|i〉 = (−1)|i|| j|δi j (B4c)

for any pair of orthonormal basis vectors |i〉, | j〉 ∈ V . It is
common practice to use the same symbol C for both C and
C∗. Any linear operator

M : V → V (B5a)

can be represented in the orthonormal and homogeneous basis
{|i〉} of V by the matrix

Mi j = (−1)|i|| j| Mji (B5b)

through the expansion

M :=
∑
i, j

Mi j |i〉 ⊗g 〈 j| ∈ V ⊗g V ∗. (B5c)

The linear operator M has a well defined parity if and only if
each term |i〉 ⊗g 〈 j| in the summation has the same parity, in
which case

|M| := (|i| + | j|) mod 2. (B5d)

More generally, if we define

T :=
∑

ii,...,in

Tii,...,in
|i1〉 ⊗g · · · ⊗g |in〉 ∈ Vi1

⊗g · · · ⊗g Vin

(B6a)

we can assign the parity

|T | := (|i1| + · · · + |in|) mod 2 (B6b)

when all |i1〉 ⊗g · · · ⊗g |in〉 share the same parity.

2. Fermionic matrix product state (FMPS)

We attach to each integer j = 1, . . . , N three Z2-graded
vector spaces

Vj := span{|α) | α = 1, . . . ,Dv, j},
F j := span{|ψσ 〉 | σ = 1, . . . ,D j},
V ∗

j := span{(β| | β = 1, . . . ,Dv, j}. (B7a)

The basis states |α) and (β| of the dual pair Vj and V ∗
j of

Z2-graded vector spaces are virtual (auxiliary) states. They
are denoted by rounded kets and bras and are introduced
for convenience. Each auxiliary basis state has a well de-
fined parity by assumption. The basis states {|ψσ 〉} span the
physical fermionic Fock space F j . Each physical basis state
|ψσ 〉 has a well defined parity by assumption, as follows
from working in the fermion-number basis of F j say. The
auxiliary Z2-graded vector space Vj has the dimension Dv, j .

The physical fermionic Fock space F j has dimension D j . A
fermionic matrix product state (FMPS) takes the form

|�〉 := Cv(Q(b)Y A[1] ⊗g A[2] ⊗g · · · ⊗g A[N]) (B7b)

and has a well defined parity provided the objects Q(b), Y ,
A[1], A[2], · · · , A[N] are defined as follows. For any j =
1, . . . , N , element A[ j] ∈ Vj ⊗g F j ⊗g V ∗

j+1 is defined by

A[ j] :=
Dv, j∑
α j=1

D j∑
σ j=1

Dv, j+1∑
β j=1

(
Aσ j

)
α j β j

|α j ) ⊗g

∣∣ψσ j

〉 ⊗g (β j |

(B7c)

once the matrices Aσ j
, labeled as they are by the basis elements

of the local Fock space F j and with the matrix elements
(Aσ j

)α j β j
, have been chosen. The contraction Cv labeled by

the lower index v is understood to be over all virtual indices
belonging to the dual pair (V ∗

j ,Vj ) of auxiliary Z2-graded
vector spaces, thereby producing the tensor proportional to

Tα1···αN |β1···βN
:= δβ1 α2

δβ2 α3
· · · δβN−1 αN

δβN α1
(B7d)

if Q(b) ∈ V1 ⊗g V ∗
1 and Y ∈ V1 ⊗g V ∗

1 were chosen to be the
identity

Q(b) ≡ Y ≡
∑

α

|α) ⊗g (α|. (B7e)

The integer b = 0, 1 labels the boundary conditions selected
by Q(b) ∈ V1 ⊗g V ∗

1 . The element Y ∈ V1 ⊗g V ∗
1 is needed

to fix the fermion parity of |�〉. More precisely, we demand
that the parity (B5d) of Q(b) ∈ V1 ⊗g V ∗

1 and the parity (D6b)
of A[ j] ∈ Vj ⊗g F j ⊗g V ∗

j+1 are both even, while the parity
(B5d) of Y ∈ V1 ⊗g V ∗

1 is either even or odd. Consequently,
the parity of |�〉 is determined by the parity of Y since

|�| =
(

|Q(b)| + |Y | +
N∑

j=1

|A[ j]|
)

mod 2 = |Y |. (B7f)

A prerequisite to imposing translation symmetry on any
FMPS is that all dimensions Dv, j and D j are independent of
j = 1, . . . , N . Hence, we assume from now on that

Dv, j ≡ Dv, D j ≡ D , j = 1, . . . , N. (B7g)

3. Even-parity fermionic matrix product sate (FMPS)

The FMPS

|�〉b
0 := Cv(Q(b)Y A[1] ⊗g · · · ⊗g A[N]) (B8a)

is an even-parity FMPS obeying periodic (b = 0) or antiperi-
odic (b = 1) boundary conditions if, for any j = 1, . . . , N ,

A[ j] :=
Dv∑

α j=1

D∑
σ j=1

Dv∑
β j=1

(
A(0)

σ j

)
α j β j

|α j ) ⊗g

∣∣ψσ j

〉 ⊗g (β j |,

(B8b)

|A[ j]| = (|α j | + |σ j | + |β j |
)

mod 2 = 0, (B8c)

Y :=
Dv∑
α=1

|α) ⊗g (α|, (B8d)
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Q(b = 0) :=
Dv∑
α=1

|α) ⊗g (α|, (B8e)

Q(b = 1) :=
Dv∑
α=1

(−1)|α| |α) ⊗g (α|. (B8f)

By construction, both Q(b) and Y are of even par-
ity. Moreover, (|α j | + |σ j | + |β j |) mod 2 = 1 implies that
(A(0)

σ j
)α j β j

= 0.
We are going to give an alternative representation of this

even-parity FMPS under the assumption that the virtual di-
mension Dv obeys the partition Dv = Me + Mo where Me ≡
M and Mo ≡ M are the numbers of even- and odd-parity
virtual basis vectors, respectively. Parity evenness of A[ j]
implies that the Dv × Dv dimensional matrices A(0)

σ j
with the

matrix elements (A(0)
σ j

)α j β j
is either block diagonal

A(0)
σ j

=
(

Bσ j
0

0 Cσ j

)
, if |σ j | = 0, (B9a)

when the physical state is of even parity [as follows from
Eq. (B8c)] or block off diagonal

A(0)
σ j

=
(

0 Dσ j

Fσ j
0

)
, if |σ j | = 1, (B9b)

when the physical state is of odd parity [as follows from
Eq. (B8c)]. All the blocks are here M × M-dimensional. Par-
ity evenness of Q(b) with matrix elements (Q(b))α1 β1

and Y
with matrix elements Yα1 β1

implies that

Y = Q(b = 0) =
(
1M 0

0 1M

)
,

Q(b = 1) =
(
1M 0

0 −1M

)
=: P. (B9c)

Hereby, we introduced the parity matrix P that satisfies

P A(0)
σ j

P = (−1)|σ j | A(0)
σ j

. (B9d)

Inserting these explicit representations of Q(b) and Y in
Eq. (B8a) delivers

|�〉b
0 ≡ ∣∣{A(0)

σ j

}
; b

〉
:=

∑
σ

tr
[
Pb+1 A(0)

σ1
A(0)

σ2
· · · A(0)

σN

]|�σ〉,
(B10a)

where we used the shorthand notation |�σ〉 := |ψσ1
〉 ⊗g

|ψσ2
〉 ⊗g · · · ⊗g |ψσN

〉. The appearance of the matrix P when
b = 0 is counterintuitive. It is needed to eliminate from the
sum over all physical basis states {|�σ〉} those physical basis
states of odd parity. The state |{A(0)

σ j
}; b〉 has even parity since(

N∑
j=1

|σ j |
)

mod 2 =
[

N∑
j=1

(|α j | + |β j |)
]

mod 2

=
(

N∑
j=1

2|α j |
)

mod 2 = 0, (B10b)

where we used condition (B8c) to establish the first equality
and the condition |β j | = |α j+1| that is imposed by the con-
tractions of virtual indices to establish the second equality.

4. Odd-parity fermionic matrix product sate (FMPS)

The FMPS

|�〉b
1 := Cv

(
Q(b)Y A[1] ⊗g · · · ⊗g A[N]

)
, (B11a)

is an odd-parity FMPS obeying periodic (b = 0) or antiperi-
odic (b = 1) boundary conditions if, for any j = 1, . . . , N ,

A[ j] :=
Dv∑

α j=1

D∑
σ j=1

Dv∑
β j=1

(
A(1)

σ j

)
α j β j

|α j ) ⊗g

∣∣ψσ j

〉 ⊗g (β j |,

(B11b)

|A[ j]| = (|σ j | + |α j | + |β j |
)

mod 2 = 0, (B11c)

Y :=
Dv∑

α,β=1

Yα β |α) ⊗g (β|,

Yα β = 0 if (|α| + |β|) mod 2 = 0, (B11d)

Q(b = 0) :=
Dv∑
α=1

|α) ⊗g (α|, (B11e)

Q(b = 1) :=
Dv∑
α=1

(−1)|α| |α) ⊗g (α|. (B11f)

By construction, Q(b) is of even parity while Y is of odd
parity. Moreover, (|α j | + |σ j | + |β j |) mod 2 = 1 implies that
(A(0)

σ j
)α j β j

= 0.
We note that the only difference between definitions (B8)

and (B11) is the choice for Y . In the former case its parity is
even, in the latter case its parity is odd. Analogously to the
even FMPS case, we define 2M × 2M dimensional matrices
A(1)

σ j
and Y with the matrix elements (A(1)

σ j
)α j β j

and Yα1 β1
. The

parity |Y | = 1 implies that

Y =
(

0 Y1

Y2 0

)
, (B12a)

where Y1 and Y2 are M × M and dimensional matrices, respec-
tively. Imposing translation symmetry requires that

Y A(1)
σ j

= A(1)
σ j

Y. (B12b)

We choose

Y :=
(

0 1M
−1M 0

)
, P Y P = −Y, (B12c)

which implies

A(1)
σ j

=
(

Gσ j
0

0 Gσ j

)
, if |σ j | = 0, (B12d)

A(1)
σ j

=
(

0 Gσ j

−Gσ j
0

)
, if |σ j | = 1, (B12e)

where Gσ j
are M × M dimensional matrices. Inserting these

explicit representations of Q(b) and Y in Eq. (B11a)
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delivers

|�〉b
1 ≡ ∣∣{A(1)

σ j

}
; b

〉
:=

∑
σ

tr
[
Pb Y A(1)

σ1
A(1)

σ2
· · · A(1)

σN

]|�σ〉,

|�σ〉 := ∣∣ψσ1

〉 ⊗g

∣∣ψσ2

〉 ⊗g · · · ⊗g

∣∣ψσN

〉
. (B13a)

The state |{A(1)
σ j

}; b〉 has odd parity since(
N∑

j=1

|σ j |
)

mod 2 =
[

N∑
j=1

(|α j | + |β j |)
]

mod 2 =
(

|α| + |β| +
N−1∑
j=2

2|α j |
)

mod 2 = 1, (B13b)

where we used condition (B11c) to establish the first equality. For the second equality we used the conditions |α| = |βN | and
|β| = |α1| where |α|, |β| are the parities of the virtual indices corresponding to matrix elements Yα β , and |β j | = |α j+1| for
j = 2, . . . , N − 1 that is imposed by the contractions of virtual indices to establish the second equality.

APPENDIX C: PROOF OF THEOREM 1

We will prove Theorem 1 for one dimensional systems within the FMPS framework. Our proof follows closely that for the
bosonic case16 introduced in Ref. [32]. We will show that a parity-even or parity-odd injective FMPS necessarily requires the
local projective representation û j of the symmetry group G f to have trivial second cohomology class [φ] ∈ H2(G f , U(1)c). In
other words, when this cohomology class is nontrivial there is no compatible injective FMPS with even or odd parity. The general
forms (B10a) and (B13a) as well as the injectivity conditions (1) and (2) are distinct for even and odd parity FMPS. The proofs
for the even- and the odd-parity cases are thus treated successively. For conciseness, we are going to suppress the symbol ⊗g

when working with the orthonormal and homogeneous basis{|�σ〉 ≡ ∣∣ψσ1

〉 ⊗g

∣∣ψσ2

〉 ⊗g · · · ⊗g

∣∣ψσN

〉}
(C1a)

of the Fock space

F	 ≡ F1 ⊗g F2 ⊗g · · · ⊗g FN . (C1b)

1. Even-parity FMPS

Let [see Eq. (B9)] ∣∣{A(0)
σ j

}
; b

〉 ≡
∑

σ

tr
(
Pb+1A(0)

σ1
A(0)

σ2
· · · A(0)

σN

)∣∣ψσ1

〉 ∣∣ψσ2

〉 · · · ∣∣ψσN

〉
(C2)

be a translation-invariant, G f -symmetric, even-parity, and injective FMPS obeying periodic boundary conditions when b = 0

or antiperiodic boundary conditions when b = 1. For any g ∈ G f , the global representation Û (g) of g is defined in Eq. (3.19).
Hence, for any g ∈ G f , there exists a phase η(g; b) ∈ [0, 2π ) such that

Û (g)
∣∣{A(0)

σ j

}
; b

〉 = eiη(g;b))
∣∣{A(0)

σ j

}
; b

〉
. (C3)

The action of the transformation Û (g) on the right-hand side of Eq. (C2) gives

Û (g)
∣∣{A(0)

σ j

}
; b

〉 =
∑

σ

{
Kg tr

(
Pb+1 A(0)

σ1
A(0)

σ2
· · · A(0)

σN

)}
v̂1(g)

∣∣ψσ1

〉
v̂2(g)

∣∣ψσ2

〉 · · · v̂N (g)
∣∣ψσN

〉
=

∑
σ

{∑
σ ′

tr
[
Pb+1 Kg

(
A(0)

σ ′
1

A(0)
σ ′

2
· · · A(0)

σ ′
N

)] N∏
j=1

〈
ψσ j

∣∣v̂ j (g)
∣∣ψσ ′

j

〉}∣∣ψσ1

〉 ∣∣ψσ2

〉 · · · ∣∣ψσN

〉
(C4)

after using N times the resolution of the identity, one for each local Fock space F j . The right-hand side can be written more
elegantly with the definition of the g-dependent 2M × 2M matrix

A(0)
σ j

(g) :=
∑
σ ′

j

〈
ψσ j

∣∣ v̂ j (g)
∣∣ψσ ′

j

〉
Kg

[
A(0)

σ ′
j

] ≡
∑
σ ′

j

[U (g)]σ j σ ′
j
Kg

[
A(0)

σ ′
j

]
, σ j = 1, . . . ,D, j = 1, . . . , N, (C5a)

16Bosonic matrix products states presume that the local Fock space F j has no more than the trivial Z2 grading, i.e., F j ≡ F j 0 ⊕ F j 1 with
F j 0 ≡ F j and F j 1 ≡ ∅.
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where the D × D matrix U (g), whose matrix elements are the complex-valued coefficients weighting the sum over the 2M × 2M
matrices Kg[A(0)

σ ′
j
], acts on the local Fock space F j and we have defined

Kg

[
A(0)

σ j

]
:=

{
A(0)

σ j
, if c(g) = 0,

K A(0)
σ j

K, if c(g) = 1.
(C5b)

As usual, K denotes complex conjugation. Equation (C4) becomes

Û (g)
∣∣{A(0)

σ j

}
; b

〉 =
∑

σ

tr
[
Pb+1 A(0)

σ1
(g) A(0)

σ2
(g) · · · A(0)

σN
(g)

]∣∣ψσ1

〉 ∣∣ψσ2

〉 · · · ∣∣ψσN

〉
, (C5c)

which is nothing but the FMPS (C2) with A(0)
σ j

substituted for A(0)
σ j

(g). Equating the right-hand sides of Eqs. (4.5) and (4.9) implies

tr
[
Pb+1 A(0)

σ1
(g) A(0)

σ2
(g) · · · A(0)

σN
(g)

] = eiη(g;b) tr
[
Pb+1 A(0)

σ1
A(0)

σ2
· · · A(0)

σN

]
. (C6a)

This equation is satisfied by the ansatz

A(0)
σ j

(g) = eiθ (g) U −1(g) A(0)
σ j

U (g), P U (g) P = (−1)κ (g) U (g), θ (g) := 1

N
[η(g; b) − π (b + 1) κ (g)], (C6b)

where κ (g) = 0, 1 dictates if the 2M × 2M unitary matrix U(g) commutes or anticommutes with the 2M × 2M parity matrix P
defined in Eq. (B9c), since

tr
[
Pb+1 A(0)

σ1
(g) A(0)

σ2
(g) · · · A(0)

σN
(g)

] = eiθ (g)N tr
[
Pb+1U −1(g) A(0)

σ1
A(0)

σ2
· · · A(0)

σN
U (g)

]
cyclicity of the trace = eiθ (g)N tr

[
U (g) Pb+1U −1(g) A(0)

σ1
A(0)

σ2
· · · A(0)

σN

]
Eq. (C6b) = eiθ (g)N (−1)(b+1)κ (g) tr

[
Pb+1A(0)

σ1
A(0)

σ2
· · · A(0)

σN

]
= eiθ (g)N+iπ (b+1)κ (g) tr

[
Pb+1A(0)

σ1
A(0)

σ2
· · · A(0)

σN

]
≡ eiη(g;b) tr

[
Pb+1A(0)

σ1
A(0)

σ2
· · · A(0)

σN

]
. (C6c)

The existence of the 2M × 2M invertible matrix U(g) is guaranteed because of the injectivity of the FMPS. In an injective even-
parity FMPS, the matrices A(0)

σ1
, · · · , A(0)

σ�
span the simple algebra of all 2M × 2M matrices for any � > �� for some nonvanishing

integer ��. Hence, provided N is sufficiently large, the family of matrices {A(0)
σ1

(g), . . . , A(0)
σN

(g)} is related to the family of matrices

{eiη(g;b)/N A(0)
σ1

, . . . , eiη(g;b)/N A(0)
σN

} that give the same FMPS (C2) by the similarity transformation [see Eqs. (4.20) and (4.25)]

A(0)
σ j

(g) = eiϕ(b)
U (g) U −1(g)

[
eiη(g;b)/N A(0)

σ j

]
U (g), (C7a)

for some phase ϕ
(b)
U (g) = [0, 2π ) and some invertible 2M × 2M matrix U(g) that must also obey

U (p) = P, P U (g) P = (−1)κ (g) U (g). (C7b)

Here, the map κ : G f → {0, 1} specifies the algebra between the similarity transformation U(g) corresponding to element g ∈ G f

and the fermion parity P. The effect of the factor (−1)κ (g) is nothing but the phase

ϕ
(b)
U (g) = − 1

N
π (b + 1)κ (g), (C8)

as follows from Eq. (C6b).
Equating the right-hand sides of Eqs. (C7a) and (C5a) implies

eiθ (g) U −1(g) A(0)
σ j

U (g) =
∑
σ ′

j

[U (g)]σ j σ ′
j
Kg

[
A(0)

σ ′
j

]
, σ j = 1, . . . ,D, j = 1, . . . , N. (C9)
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We would like to isolate Kg[A(0)
σ ′

j
] on the right-hand side. To this end, we do the manipulations

eiθ (g)
∑
σ j

[U†(g)]σ ′′
j σ jU

−1(g) A(0)
σ j

U (g) =
∑
σ j

∑
σ ′

j

[U†(g)]σ ′′
j σ j [U (g)]σ j σ ′

j
Kg

[
A(0)

σ ′
j

]=∑
σ j

∑
σ ′

j

〈
ψσ ′′

j

∣∣v̂†
j (g)

∣∣ψσ j

〉 〈
ψσ j

∣∣v̂ j (g)
∣∣ψσ ′

j

〉
Kg

[
A(0)

σ ′
j

]
=

∑
σ ′

j

〈
ψσ ′′

j

∣∣v̂†
j (g) v̂ j (g)

∣∣ψσ ′
j

〉
Kg

[
A(0)

σ ′
j

] =
∑
σ ′

j

〈
ψσ ′′

j

∣∣ψσ ′
j

〉
Kg

[
A(0)

σ ′
j

] =
∑
σ ′

j

δσ ′′
j ,σ ′

j
Kg

[
A(0)

σ ′
j

]
= Kg

[
A(0)

σ ′′
j

]
, σ ′′

j = 1, . . . ,D, j = 1, . . . , N. (C10)

By applying Kg to both sides of this equation, we obtain the self-consistency condition

A(0)
σ j

= Kg

⎡⎣eiθ (g)
∑
σ ′

j

[
U†(g)

]
σ jσ

′
j
U −1(g) A(0)

σ ′
j

U (g)

⎤⎦
= eic(g) θ (g)

∑
σ ′

j

〈ψσ j
|(û†

j (g)|ψσ ′
j
〉)V −1(g) A(0)

σ ′
j

V (g), σ j = 1, . . . ,D, j = 1, . . . , N, (C11a)

with û j (g) defined in Eq. (3.19), V (g) = U (g) if c(g) = 0 and V (g) = U (g) K if c(g) = 1. We use the notation (û†
j (g)|ψ

σ ′
j
〉) to

indicate that the operator û†
j (g) acts on the right, an important fact to keep track of when û†

j (g) is an antiunitary operator. Had we
chosen the elements h ∈ G f and gh ∈ G f , Eq. (C11a) would give the self-consistency conditions

A(0)
σ ′′

j
= eic(h) θ (h)

∑
σ j

〈
ψσ ′′

j

∣∣(û†
j (h)

∣∣ψσ j

〉)
V −1(h) A(0)

σ j
V (h), σ ′′

j = 1, . . . ,D, j = 1, . . . , N, (C11b)

and

A(0)
σ j

= eic(gh) θ (gh)
∑
σ ′

j

〈
ψσ j

∣∣(û†
j (gh)

∣∣ψσ ′
j

〉)
V −1(gh) A(0)

σ ′
j

V (gh), σ j = 1, . . . ,D, j = 1, . . . , N, (C11c)

respectively.
Inserting the self-consistency condition (C11a) into the self-consistency condition (C11b) gives

A(0)
σ ′′

j
= eic(h) θ (h)

∑
σ j

〈
ψσ ′′

j

∣∣(û†
j (h)

∣∣ψσ j

〉)
V −1(h)

⎛⎝eic(g) θ (g)
∑
σ ′

j

〈
ψσ j

∣∣ (û†
j (g)

∣∣ψσ ′
j

〉)
V −1(g) A(0)

σ ′
j

V (g)

⎞⎠V (h)

= eic(h) θ (h)+ic(h) c(g) θ (g)
∑
σ j ,σ

′
j

〈
ψσ ′′

j

∣∣ (û†
j (h)

∣∣ψσ j

〉
) Kh[〈ψσ j

| (û†
j (g)

∣∣ψσ ′
j

〉
)]V −1(h)V −1(g) A(0)

σ ′
j

V (g)V (h)

= eic(h) θ (h)+ic(h) c(g) θ (g)
∑
σ ′

j

〈
ψσ ′′

j

∣∣û†
j (h) (û†

j (g)
∣∣ψσ ′

j

〉
)V −1(h)V −1(g) A(0)

σ ′
j

V (g)V (h)

= eic(h) θ (h)+ic(h) c(g) θ (g)−ic(gh)φ(g,h)
∑
σ ′

j

〈
ψσ ′′

j

∣∣(û†
j (gh)

∣∣ψσ ′
j

〉
)V −1(h)V −1(g) A(0)

σ ′
j

V (g)V (h). (C12)

In reaching the penultimate and last equalities, we used two identities. First,∑
σ j

〈
ψσ ′′

j

∣∣ (û†
j (h)

∣∣ψσ j

〉
) Kh[〈ψσ j

| (û†
j (g)

∣∣ψσ ′
j

〉
)] = 〈

ψσ ′′
j

∣∣ (û†
j (h) û†

j (g)
∣∣ψσ ′

j

〉
) (C13)

is obviously true when c(h) = 1 since
∑

σ j
|ψσ j

〉 〈ψσ j
| is the resolution of the identity on F j . When c(h) = −1, û†

j (h) is
antiunitary so that∑

σ j

〈
ψσ ′′

j

∣∣ (û†
j (h)

∣∣ψσ j

〉
) Kh[〈ψσ j

|(û†
j (g)

∣∣ψσ ′
j

〉
)]

=
∑
σ j

〈
ψσ ′′

j

∣∣(û†
j (h)

∣∣ψσ j

〉
)[〈ψσ j

|(û†
j (g)

∣∣ψσ ′
j

〉
)]∗ =

∑
σ j

[(
〈
ψσ ′′

j

∣∣û j (h))
∣∣ψσ j

〉
]∗ [〈ψσ j

|(û†
j (g)

∣∣ψσ ′
j

〉
)]∗

=
⎡⎣∑

σ j

(
〈
ψσ ′′

j

∣∣ û j (h))
∣∣ψσ j

〉〈ψσ j
|(û†

j (g)
∣∣ψσ ′

j

〉
)

⎤⎦∗

= [(〈
ψσ ′′

j

∣∣û j (h)
)(

û†
j (g)

∣∣ψσ ′
j

〉)]∗ = 〈
ψσ ′′

j

∣∣ (û†
j (h) û†

j (g)
∣∣ψσ ′

j

〉)
. (C14)
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Second, we used the projective representation (3.11) to obtain

û†
j (h) û†

j (g) = [û j (g) û j (h)]† = [e+iφ(g,h) û j (gh)]† = û†
j (gh) e−iφ(g,h) = e−ic(gh) φ(g,h) û†

j (gh). (C15)

Equating the right-hand sides of Eqs. (C12) and (C11c) gives the condition

eic(h) θ (h)+ic(h) c(g) θ (g)−ic(gh)φ(g,h)V −1(h)V −1(g) A(0)
σ ′

j
V (g)V (h) = eic(gh) θ (gh) V −1(gh) A(0)

σ ′
j

V (gh). (C16)

Upon using the fact that c is a homomorphism so that c(gh) = c(g) c(h) holds, we arrive at

W −1(g, h) A(0)
σ j

W (g, h) = e−iδ(g,h;b) A(0)
σ j

, σ j = 1, . . . ,D, j = 1, . . . , N, (C17a)

where

W (g, h) := V (g)V (h)V −1(gh), δ(g, h; b) := c(g) θ (h) + θ (g) − φ(g, h) − θ (gh). (C17b)

A forteriori

W −1(g, h) A(0)
σ1

A(0)
σ2

· · · A(0)
σ�

W (g, h) = e−i� δ(g,h;b) A(0)
σ1

A(0)
σ2

· · · A(0)
σ�

(C18)

holds for any positive integer �.
Injectivity of a FMPS implies that for some integer �� > 1 and any � � �� all the products of the form A(0)

σ1
A(0)

σ2
· · · A(0)

σ�
span

the space of all 2M × 2M matrices. Therefore Eq. (C18) combined with injectivity implies that the 2M × 2M matrix W (g, h) is
an element from the center of the algebra defined by the vector space of all 2M × 2M matrices, i.e., {12M}. Condition (C18) thus
simplifies to

A(0)
σ1

A(0)
σ2

· · · A(0)
σ�

= e−i� δ(g,h;b) A(0)
σ1

A(0)
σ2

· · · A(0)
σ�

(C19)

for any � � ��. Choosing a linear combination of A(0)
σ1

A(0)
σ2

· · · A(0)
σ

�
equating the identity matrix 12M , delivers the constraint

� δ(g, h; b) = 0, ∀� > �� ⇒ δ(g, h; b) = 0. (C20a)

Inserting the value of δ(g, h; b) given in Eq. (C17) implies the final constraint

φ(g, h) = c(g)θ (h) + θ (g) − θ (gh). (C20b)

This is the coboundary condition (3.14) when φ′ = 0. In other words, the local representation û j is equivalent to the trivial
projective representation.

2. Odd-parity FMPS

Let [see Eq. (B12)] ∣∣{A(1)
σ j

}
; b

〉 =
∑

σ

tr
[
Pb Y A(1)

σ1
A(1)

σ2
· · · A(1)

σN

]∣∣ψσ1

〉 ∣∣ψσ2

〉 · · · ∣∣ψσN

〉
(C21)

be a translation-invariant, G f -symmetric, odd-parity (each matrix A(1)
σ j

commutes with the matrix Y ), and injective FMPS
obeying periodic boundary conditions when b = 0 or antiperiodic boundary conditions when b = 1. For any g ∈ G f , the global

representation Û (g) of g is defined in Eq. (3.19). Hence, for any g ∈ G f , there exists a phase η(g; b) ∈ [0, 2π ) such that

Û (g)
∣∣{A(1)

σ j

}
; b

〉 = eiη(g;b))
∣∣{A(1)

σ j

}
; b

〉
. (C22)

The counterpart to Eq. (C5) is

Û (g)
∣∣{A(1)

σ j

}
; b

〉 =
∑

σ

tr
[
Pb Y A(1)

σ1
(g) A(1)

σ2
(g) · · · A(1)

σN
(g)

]∣∣ψσ1

〉 ∣∣ψσ2

〉 · · · ∣∣ψσN

〉
, (C23a)

A(1)
σ j

(g) :=
∑
σ ′

j

〈ψσ j
| v̂ j (g)

∣∣ψσ ′
j

〉
Kg

[
A(1)

σ ′
j

] =
∑
σ ′

j

U (g)σ j ,σ
′
j
A(1)

σ ′
j
, (C23b)

Kg

[
A(1)

σ j

]
:=

{
A(1)

σ j
, if c(g) = 0,

K A(1)
σ j

K, if c(g) = 1.
(C23c)

Odd-parity injective FMPS differ from the even ones in one crucial way. There exists a positive integer �� � 1 such that for
any � � �� the products of the form A(1)

σ1
A(1)

σ2
· · · A(1)

σ
�

span the Z2-graded algebra of 2M × 2M matrices with the center {12M,Y }.
Consequently, there exists a 2M × 2M invertible matrix U(g) and a phase θ (g) ∈ [0, 2π ) such that [recall Eq. (4.20)]

U (g) = P U (g) P, U (g) = (−1)ζ (g) Y U (g)Y, ζ (g) = 0, 1, (C24a)
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with ζ : G f → {−1,+1} a group homomorphism and

A(1)
σ j

(g) = eiθ (g) U −1(g) A(1)
σ j

U (g) σ j = 1, . . . ,D, j = 1, . . . , N. (C24b)

The same steps that lead to Eq. (C6) then give

tr
[
Pb Y A(1)

σ1
(g) A(1)

σ2
(g) · · · A(1)

σN
(g)

] = eiη(g;b) tr
[
Pb Y A(1)

σ1
A(1)

σ2
· · · A(1)

σN

]
(C25a)

with the solution

A(1)
σ j

(g) = eiθ (g) U −1(g) A(1)
σ j

U (g), Y U (g)Y = (−1)ζ (g) U (g), θ (g) := 1

N
[η(g; b) − π ζ (g)]. (C25b)

All the steps leading to Eq. (C17) deliver

W −1(g, h) A(1)
σ j

W (g, h) = e−iδ(g,h;b) A(1)
σ j

, σ j = 1, . . . ,D, j = 1, . . . , N, (C26a)

where

W (g, h) := V (g)V (h)V −1(gh), δ(g, h; b) := c(g) θ (h) + θ (g) − φ(g, h) − θ (gh), (C26b)

and V (g) = U (g) if c(g) = 0 and V (g) = U (g) K if c(g) = 1. Because U(g) commutes with P so does W (g, h). Because all
possible products of the form A(1)

σ1
A(1)

σ2
· · · A(1)

σ
�

span the Z2-graded algebra of 2M × 2M matrices with the center {12M,Y }, W (g, h)
is, up to a phase factor, proportional to 12M . The counterpart to the even-parity coboundary condition (C20) then follows, thereby
completing the proof of Theorem 1 for the parity-odd FMPS.

APPENDIX D: PROOF OF THEOREM 1 WITH TWISTED BOUNDARY CONDITIONS FOR ANY
ABELIAN GROUP Gf WHOSE PROJECTIVE REPRESENTATIONS ARE ALL UNITARY

The lattice is 	 = {1, . . . , N} ≡ ZN with N an integer. The global fermionic Fock space F	 is of dimension 2mN with n = 2m
an even number of local Majorana flavors. The local F j and global F	 Fock spaces are generated by the Hermitian Majorana
operators χ̂ j,a obeying the Clifford algebra

{χ̂ j,a, χ̂ j′,a′ } = 2 δ j, j′ δa,a′ , j, j′ = 1, . . . , N, a, a′ = 1, . . . , n = 2m. (D1)

The local and global fermion parity operators are

p̂ j :=
m∏

a=1

iχ̂ j,2a−1 χ̂ j,2a, P̂	 :=
N∏

j=1

p̂ j, (D2)

respectively. Any polynomial ĥ j in the Majorana operators that is of finite order, of finite range r (the integer r is the maximum

separation between the space labels of the Majorana operators entering ĥ j) of even parity (P̂	 ĥ j P̂	 = ĥ j), and Hermitian (ĥ†
j =

ĥ j) is a local Hamiltonian. We define the unitary operator T̂
1̂

by its action

T̂1̂ χ̂ j,a T̂ −1
1̂

=
{
χ̂ j+1,a, if j = 1, . . . , N − 1 and a = 1, . . . , n = 2m,
χ̂1,a, if j = N and a = 1, . . . , n = 2m.

(D3)

It follows that

T̂ N
1̂ = 1̂2mN , (D4)

i.e., T̂
1̂

is a unitary representation of the generator of the cyclic group ZN . For any Abelian central extension G f of G by ZF
2 and

for any g ∈ G f , we assume the projective representation (3.11) with

û j (g) = v̂ j (g) [as c(g) = +1 always hold by hypothesis] (D5)

a polynomial in χ̂ j,a with a = 1, . . . , n = 2m. We make the identifications

v̂ j (e) ≡ 1̂2m , v̂ j (p) ≡ p̂ j, p̂ j v̂ j (g) p̂ j = (−1)ρ(g) v̂ j (g), j = 1, . . . , N,

Û (e) ≡ 1̂2mN , Û (p) ≡ P̂	, Û (g) :=
N∏

j=1

v̂ j (g), ∀g ∈ G f .
(D6)

We assume that the Hamiltonian ĥ j is G f -invariant (symmetric), i.e.,

ĥ j = Û (g) ĥ j Û −1(g), ∀g ∈ G f . (D7)
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By construction, the Hamiltonian defined by [recall Eq. (5.5)]

Ĥpbc :=
N∑

n=1

(
T̂

1̂

)n
ĥ j

(
T̂ †

1̂

)n
, Û (g) ĥ j Û −1(g), ∀g ∈ G f , (D8a)

is translation-invariant (symmetric),

T̂1̂ Ĥpbc T̂ −1
1̂

= Ĥpbc, (D8b)

and G f -invariant (symmetric),

Û (g) Ĥpbc Û −1(g) = Ĥpbc, ∀g ∈ G f . (D8c)

We define the family of twisted translation operators

T̂1̂(g) := v̂1(g) T̂1̂, g ∈ G f , c(g) = +1. (D9)

Their action on the Majorana spinor

χ̂ j := (χ̂ j,1 · · · χ̂ j,n)T (D10a)

differ from that in Eq. (4.5),

T̂1̂(g) χ̂ j T̂ −1
1̂

(g) =
{

(−1)ρ(g) χ̂ j+1, if j �= N ,

v̂1(g) χ̂1 v̂−1
1 (g), if j = N .

(D10b)

We have the identity

[T̂1̂(g)]N = [v̂1(g) T̂1̂][v̂1(g) T̂1̂] · · · [v̂1(g) T̂1̂][v̂1(g) T̂1̂]

= v̂1(g)[T̂1̂ v̂1(g) T̂1̂] · · · v̂1(g)[T̂1̂ v̂1(g) T̂1̂]

= v̂1(g)[T̂1̂ v̂1(g) T̂1̂] · · · v̂1(g)[T̂1̂ v̂1(g) T̂ −1
1̂

]T̂ 2
1̂

Eq. (D3) = v̂1(g)[T̂1̂ v̂1(g) T̂1̂] · · · v̂1(g) v̂2(g) T̂ 2
1̂ = Û (g) T̂ N

1̂

Eq. (D4) = Û (g). (D11)

Finally, we define the family of twisted Hamiltonians

Ĥ tilt
twis(g) :=

N∑
j=1

[T̂1̂(g)] j ĥtilt
1

[
T̂ −1

1̂
(g)

] j
, ĥtilt

1 = Û (h) ĥtilt
1 Û −1(h), ∀h ∈ G f . (D12)

By design,

T̂1̂(g) Ĥ tilt
twis(g) T̂ −1

1̂
(g) =

N−1∑
j=1

[
T̂1̂(g)

] j+1
ĥtilt

1

[
T̂ −1

1̂
(g)

] j+1 + [
T̂1̂(g)

]N+1
ĥtilt

1

[
T̂ −1

1̂
(g)

]N+1

Eq. (D11) =
N−1∑
j=1

[
T̂1̂(g)

] j+1
ĥtilt

1

[
T̂ −1

1̂
(g)

] j+1 + T̂1̂(g)
[
Û (g) ĥtilt

1 Û −1(g)
]
T̂ −1

1̂
(g)

G f symmetry =
N−1∑
j=1

[
T̂1̂(g)

] j+1
ĥtilt

1

[
T̂ −1

1̂
(g)

] j+1 + T̂1̂(g) ĥtilt
1 T̂ −1

1̂
(g) = Ĥ tilt

twis(g). (D13)

We are going to derive the important identity

Û (h) T̂1̂(g) Û −1(h) = eiχ (g,h) T̂1̂(g), ∀g, h ∈ G f , (D14a)

with the phase

χ (g, h) := φ(h, g) − φ(g, h) + π ρ(h) [ρ(g) + 1] (N − 1), ∀g, h ∈ G f . (D14b)

We shall then specify the conditions under which the algebra defined by Eqs. (D13) and (D14) guarantees that the spectrum
of the twisted Hamiltonian is degenerate.

Proof. We begin with the proof of Eq. (D14). We choose two elements g, h ∈ G f with the local representations v̂1(g) and
v̂1(h), respectively, both of which are unitary.
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Step 1. We observe that

Û (h) v̂1(g) = v̂1(h) v̂2(h) · · · v̂N (h) v̂1(g). (D15)

We can then interchange the local operator v̂ j (h) and v̂ j′ (g) pairwise at the cost of the fermionic phase (−1)ρ(h) ρ(g) for any
j, j′ = 1, . . . , N . This is done (N − 1) times

Û (h) v̂1(g) = (−1)ρ(g) ρ(h)(N−1)v̂1(h) v̂1(g) v̂2(h) · · · v̂N (h). (D16)

We conclude with

Û (h) v̂1(g) = (−1)ρ(g) ρ(h)(N−1)v̂1(h) v̂1(g) v̂2(h) · · · v̂N (h). (D17)

Step 2. We begin with

T̂1̂ Û −1(h) = T̂1̂ v̂−1
N (h) v̂−1

N−1(h) · · · v̂−1
1 (h) = [

T̂1̂ v̂−1
N (h) T̂ −1

1̂

][
T̂1̂ v̂−1

N−1(h)T̂ −1
1̂

] · · · [T̂1̂ v̂−1
1 (h)T̂ −1

1̂

]
T̂1̂

Eq. (5.4a) = v̂−1
1 (h) v̂−1

N (h) · · · v̂−1
2 (h) T̂1̂. (D18)

Hence,

T̂1̂ Û −1(h) = (−1)ρ(h)(N−1)v̂−1
N (h) v̂−1

N−1(h) · · · v̂−1
1 (h) T̂1̂, (D19)

where we have reordered the factors v̂−1
j (h) and, in doing so, obtained the coefficient (−1)ρ(h)(N−1) that encodes the fermionic

algebra.
Step 3. We combine Eqs. (D17) and (D19) into

Û (h) T̂1̂(g) Û −1(h) = (−1)ρ(h) [ρ(g)+1](N−1)v̂1(h) v̂1(g) v̂2(h) · · · v̂N (h) v̂−1
N (h) · · · v̂−1

1 (h) T̂1̂

= (−1)ρ(h) [ρ(g)+1](N−1)v̂1(h) v̂1(g) v̂−1
1 (h) T̂1̂. (D20)

Step 4. We need to massage v̂1(h) v̂1(g) v̂−1
1 (h). To this end, we use the fact that the group G f is Abelian to obtain

v̂1(h) v̂1(g) v̂−1
1 (h) = eiφ(h,g) v̂1(h g) v̂−1

1 (h) = eiφ(h,g) v̂1(gh) v̂−1
1 (h)

= eiφ(h,g)
[
e−iφ(g,h) v̂1(g) v̂1(h)

]
v̂−1

1 (h) = eiφ(h,g)−iφ(g,h) v̂1(g). (D21)

Insertion into the right-hand side of Eq. (D20) delivers the result

Û (h) T̂1̂(g) Û −1(h) = (−1)ρ(h) [ρ(g)+1] (N−1)eiφ(h,g)−iφ(g,h) v̂1(g) T̂1̂ ≡ eiχ (g,h) T̂1̂(g), (D22a)

with the definition

χ (g, h) = φ(h, g) − φ(g, h) + π ρ(h) [ρ(g) + 1] (N − 1). (D22b)

�
Step 5. It is instructive to derive the transformation law of the phase (D22b) under the global U(1) gauge transformation

generated by

v̂ j (g) =: eiξ (g) v̂′
j (g), j = 1, . . . , N, ∀g ∈ G f . (D23)

Under this transformation,

φ′(g, h) = φ(g, h) − ξ (g) − ξ (h) + ξ (gh), ∀g, h ∈ G f , (D24)

is the phase entering the projective algebra obeyed by the operators {v̂′
j (g) | g ∈ G f } according to Eq. (3.14b). Hence, if we

define

χ ′(g, h) := φ′(h, g) − φ′(g, h) + π ρ ′(h) [ρ ′(g) + 1] (N − 1), ∀g, h ∈ G f , (D25)

we then have the relation

χ (g, h) = φ(h, g) − φ(g, h) + π ρ(h) [ρ(g) + 1] (N − 1)

= χ ′(g, h) + ξ (h) + ξ (g) − ξ (h g) − ξ (g) − ξ (h) + ξ (gh)

= χ ′(g, h), ∀g, h ∈ G f . (D26)

Hence, χ (g, h) is gauge invariant under the U(1) gauge trans-
formation (D23). The pair of cocycles φ′ and φ are equivalent
if and only if they have the same second cohomology class

[φ] = [φ′] ∈ H2(G f , U(1)c), i.e., if and only if they are re-
lated by the U(1) gauge transformation (D24). The gauge
invariance of χ implies that it is independent of the choice
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made of φ within the equivalence class [φ] ∈ H2(G f , U(1)c).
For example, χ (g, h) = 0 holds for all g, h ∈ G f for any φ

belonging to the trivial second cohomology class [φ] = 0
since the function φ = 0 belongs to [φ] = 0. Hence, the triv-
ial second cohomology class [φ] = 0 implies that χ (g, h) =
0. Conversely, if we assume that χ (g, h) = 0, we find
that

φ(g, h) = φ(h, g) + π ρ(h) [ρ(g) + 1] (N − 1) (D27a)

for any g, h ∈ G f . We distinguish two cases. First, if the num-
ber of sites N is odd, then the last term is an integer multiple
of 2π . As such it can be dropped and we find that

φ(g, h) = φ(h, g) (D27b)

for any g, h ∈ G f . For an Abelian group G f (that is unitarily
represented), Eq. (D27b) implies that the representations of
any two elements g, h ∈ G f commute pairwise and therefore
[φ] = 0. In other words, both φ(g, h) and φ(h, g) can be made
to vanish by an appropriate gauge transformation. Second, if
the number of sites N is even, choosing h to be the fermion

parity h = p in Eq. (D27b) implies

πρ(g) = φ(g, p) − φ(p, g)=π ρ(p) [ρ(g)+1] (N − 1) = 0,

(D27c)

where we used the definition (3.28) and the fact that ρ(p) = 0
on the right-hand side of the second equality. Since ρ(g) = 0
for any g ∈ G f , we can again drop the last term on the right-
hand side of Eq. (D27a). We arrive at Eq. (D27b). Thus we
have proven that [φ] = 0 if and only if χ (g, h) = 0 for any
g, h ∈ G f . As a corollary, there exists a pair g, h ∈ G f for
which χ (g, h) is nonvanishing if and only if [φ] �= 0.

Step 6. The twisted Hamiltonian Ĥ tilt
twis(g) is constructed so

as to commute with the generator T̂
1̂
(g) of twisted transla-

tions and with the representation Û (h) of any group element
h ∈ G f , whereby passing Û (h) from the left through T̂

1̂
(g)

produces the phase exp(iχ (g, h)). If it is possible to find a
pair (g, h) such that χ (g, h) is not 0 modulo 2π , then the
spectrum of Ĥ tilt

twis(g) must be degenerate. Indeed, any simulta-
neous eigenstate |E (g), exp(iK (g))〉 of Ĥ tilt

twis(g) and T̂
1̂
(g) must

be orthogonal to the state Û (h) |E (g), exp(iK (g))〉, which is
also an eigenstate of Ĥ tilt

twis(g) with the energy E (g) but has the
eigenvalue exp(i[K (g) + χ (g, h)]) �= exp(iK (g)) with respect
to T̂

1̂
(g).
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