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Tensor network methods have progressed from variational techniques based on matrix-product states able to
compute properties of one-dimensional condensed-matter lattice models into methods rooted in more elaborate
states, such as projected entangled pair states aimed at simulating the physics of two-dimensional models. In
this work, we advocate the paradigm that for two-dimensional fermionic models, matrix-product states are
still applicable to significantly higher accuracy levels than direct embeddings into one-dimensional systems
allow for. To do so, we exploit schemes of fermionic mode transformations and overcome the prejudice that
one-dimensional embeddings need to be local. This approach takes the insight seriously that the suitable
exploitation of both the manifold of matrix-product states and the unitary manifold of mode transformations
can more accurately capture the natural correlation structure. By demonstrating the residual low levels of
entanglement in emerging modes, we show that matrix-product states can describe ground states strikingly well.
The power of the approach is exemplified by investigating a phase transition of spinless fermions for lattice sizes
up to 10 × 10.
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I. INTRODUCTION

Recent years have enjoyed a flourishing development of
tensor network methods, entanglement-based methods that
allow to describe strongly correlated quantum many-body
systems [1–5]. They originate from the powerful density-
matrix renormalization group (DMRG) [6–8], a variational
method building on matrix-product states (MPS) [9–11] that
captures the physics of one-dimensional local Hamiltonian
systems provably well [2,12–14]. It has been applied to count-
less physical systems (see the reviews in Refs. [8,15] and
the comprehensive web page in Ref. [16]) and extended to
time-evolving systems [17–19], open systems [20,21], and the
study of excited states [22]. Generalizing the variational set
of matrix-product states to projected entangled pair states in
two spatial dimensions, new avenues for the study of strongly
correlated systems with tensor networks followed [1,2,23],
including studies of fermionic models [24–29].

Interestingly, even if the DMRG approach has originally
been devised to capture one-dimensional systems only: There
are regimes in which it interestingly still performs competi-
tively well [30,31] even in situations that at first seem alien
to that type of approach and in which area laws for entan-
glement entropies are violated [5]. Two-dimensional strongly
correlated systems can be naturally embedded in highly non-
local Hamiltonian models on a line. The high degree of
entanglement that renders a variational approach based on
matrix-product states challenging are partially compensated

by the facts that contraction is efficient, and that very large
bond dimensions are accessible. DMRG produces relevant
data for strongly correlated matter even in two spatial dimen-
sions, and for systems with fermionic degrees of freedom [32].
The significance of this insight is even strengthened by the
fact that DMRG is strictly variational, so that all ground-state
energies generated are precisely upper bounds. And yet, given
that the entanglement structure is not fully captured by matrix-
product states, there are strong limitations of direct DMRG
approaches.

In this work, we bring the idea of tackling two-dimensional
strongly correlated matter with one-dimensional matrix-
product states to a new level. We show that the potential
of using one-dimensional tensor network states for classi-
cally simulating higher dimensional quantum systems—in
what we refer to as an effective dimension reduction in the
description—is significantly more powerful than anticipated.
We do so by systematically exploiting a degree of freedom
that has not sufficiently been appreciated in the study of
strongly correlated condensed-matter systems: This is the
degree of freedom to adaptively define suitable modes in a
strongly correlated fermionic system. Its significance is al-
ready manifest when solving problems in either real or in
momentum space [33–40]. For n fermionic modes, however,
there is an entire U (n) freedom that can be made use of
and exploited when devising variational principles. In fact,
a manifold structure emerges that originates from the tensor
network and mode transformation degrees of freedom. Only
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the joint optimization fully exploits the potential of matrix-
product state approaches in the study of strongly correlated
fermionic condensed-matter system. It is this serious gap in
the literature that is closed in this work: We overcome the
prejudice that a one-dimensional embedding necessarily has
to be an embedding in real space. We come to this conclu-
sion not only based at hand of the evidence of substantially
improved energies. We also find that the mode-optimized
quantum states give rise to drastically reduces values of en-
tanglement entropies over cuts when considering the system
as an effectively one-dimensional quantum ssystem, with an
area-law like saturation in the bond dimension.

II. SETTING

The Hilbert space of interacting fermions in n modes is
the fermionic Fock space Fn originating from the basis con-
stituted by all Slater determinants {|α1, . . . , αn〉} with α j ∈
{0, 1}. We denote with c j the fermionic annihilation operator
of mode j satisfying the canonical anti-commutation relations
{ci, c j} = 0 and {c†

i , c j} = δi, j . MPS vectors then take the
form

|ψ〉 =
d∑

α1,...,αn=1

Aα1
[1] . . . Aαn

[n]|α1 . . . αn〉. (1)

We build upon ideas of adaptive fermionic mode transforma-
tions [41–43], here brought to the level of applicability to
condensed-matter lattice models in two spatial dimensions.
To be specific, and to exemplify the power of our approach,
the example of the spinless interacting fermionic (spinless
Fermi-Hubbard) model,

H =
∑
〈i, j〉

c†
i c j +

∑
〈i, j〉

V nin j, (2)

will be the focus of attention, where V is the interac-
tion strength, the hopping amplitude is set to 1, n j =
c†

j c j , and 〈i, j〉 denotes nearest neighbors i, j ∈ [n] on a
two-dimensional cubic N × N lattice with n = N2. Periodic
boundary condition will be imposed along both spatial di-
mensions, which has been considered as a major bottleneck
for MPS-based approaches. This example will show-cast that
state-of-the-art energies can be reached. Having said that, in
the mindset of this work would be any translationally invariant
Hamiltonian of the form

H =
n∑

i, j=1

ti, jc
†
i c j +

n∑
i, j,k,l=1

vi, j,k,l c
†
i c†

j cl ck, (3)

including local spin degrees of freedom. That is to say, the
Hamiltonian is treated as a long-ranged fermionic model on a
one-dimensional line equipped with a given ordering.

III. METHODS

We optimize the single-particle basis in conjunction with
the MPS tensors withing multiple successive mode transfor-
mation iterations. We refer to this procedure leading to a
state-of-the-art variational ground-state approximation with
one-dimensional tensor networks as an effective dimension
reduction in the description of a higher-dimensional fermionic

system. In our implementation, a single mode transformation
iteration consists of a full forward and backward DMRG
sweep without basis rotations using the dynamically extended
active space (DEAS) procedure [4,35], which is followed
by some number of additional sweeps with local mode
transformations that adapt the single-particle basis (compare
Refs. [41,42]) that also rotate the couplings in the Hamil-
tonian to general couplings t ′

i, j and v′
i, j,k,l . At the end of

the last sweep, for the symmetric super-block configuration,
we have calculated the site entropies si, the two-site mutual
information

Ii, j := si + s j − si, j, (4)

the one-particle reduced density matrix, ρ (1), and the occupa-
tion number distribution 〈ni〉 with i ∈ {1, . . . , n}. Here,

sA = −Tr(ρA ln ρA) (5)

for A ⊂ [n] is the von-Neumann entropy of the reduced state
obtained from a partial trace of the full quantum state. The
eigenvalues of ρ

(1)
i, j = 〈c†

i c j〉 define the natural occupation
(NO) numbers, λi, and its eigenvectors the NO-basis. Based
on Ii, j we have calculated an optimized ordering using the
Fiedler-vector approach [44], from {si} a new complete active
space vector for the DEAS procedure [35] and from 〈ni〉
a new Hartree-Fock configuration. These together with the
final rotated interaction matrices are all used as inputs for the
subsequent mode transformation iteration.

The basis optimization has been carried out with fixed
low bond dimension Dopt � 64 and 256 or with a systematic
increase of Dopt as will be discussed below. After convergence
is reached large-scale DMRG calculations are performed with
increasing bond dimension or using the dynamic block state
selection (DBSS) approach with fixed truncation error thresh-
old [45,46]. We denote these data as (Dopt, D) or (Dopt, εtr ),
respectively. In addition, a given quantity obtained from a
calculation in the optimized basis will be indicated with a
tilde. In the Appendix, further results with Dopt up to 1024
are also discussed.

IV. NUMERICAL RESULTS

Our systematic error and convergence analysis will be
given for the 6 × 6 two-dimensional lattice, since highly ac-
curate reference data with the real-space basis can also be
generated. For larger system sizes, namely for 8 × 8 and
10 × 10, only final results will be discussed (further numerical
aspects, data and figures are presented in the Appendix).

In the left panel of Fig. 1, we show the ground-state en-
ergy Ẽ (Dopt ) for V = 1 as a function of mode transformation
iterations using fixed bond dimensions Dopt = 64 and 256.
Reference energies E (D) obtained in the real-space basis are
indicated with dashed lines for various bond dimensions up to
D = 8192. It is obvious indeed that exploiting mode transfor-
mations, Ẽ (64) gets significantly below E (512) even after the
fourth iteration step and Ẽ (256) is below E (2048). For further
numerical results emphasizing how faithfully information be-
yond the ground-state energy can be reproduced and predicted
in the optimized basis, we refer to Fig. 3 in the Appendix. In
the inset of the left panel of Fig. 1, we depict the ground-state
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FIG. 1. (Left panel) convergence of the ground-state energy for
the half-filled 6 × 6 spinless fermion model for V = 1 as a func-
tion of mode transformation iterations for fixed bond dimension of
Dopt = 64 and 256 is shown by red and black curves, respectively.
In the inset, the scaling of the ground-state energy with inverse
bond dimension obtained in the real-space basis and in the opti-
mized basis for Dopt = 64 and 256 are shown, respectively. (Right
panel) Charge density wave order parameter for the N × N half-filled
spinless fermion model as a function of V for various values of D
obtained in the real-space basis. Black crosses indicate extrapolated
data to the N → ∞ limit obtained in the optimized basis and using
finite-size scaling data shown for various interaction strengths in the
inset (curves correspond from bottom to top to V = 0.25, 0.5, 1, 2,
4, and 8). The solid black line is a spline fit to the extrapolated data.
The error in the extrapolated data is indicated by the symbol sizes.

energy as an inverse of the bond dimension for the real-space
basis and for the optimized basis with Dopt = 64 and 256.

In the latter case, Ẽ (Dopt, D) lie on the top of each other, in-
dicating that the optimal basis has been found with Dopt = 64
already (red dots in black circles). To keep the discussion
transparent and focus on the performance of the algorithm
making use of mode transformations, we focus on the scaling
in the bond dimension D and less so on a finite-size scaling
in the system size. For larger system sizes, the improvements
are even more remarkable as is shown in Fig. 4 in the Ap-
pendix for the 8 × 8 lattice for different values of Dopt and
for V = 1 and 8. Here, Ẽ (256) is already lower than E (8192).
In addition, reliable extrapolation with 1/D to the D → ∞
truncation free limit would require even significantly larger
bond dimensions for the real-space basis. In contrast to this,
in case of the optimized basis, this is no longer an issue
since Ẽ (256, D) is basically a flat curve. Our very accurate
results have been obtained for a torus geometry. This reduces
finite-size effects significantly and much smaller systems sizes
could lead to a reliable extrapolation to the thermodynamic
limit (see Table I).

The remarkable superiority of the optimized basis over
the real-space basis is due to the dramatic reduction of the
entanglement. As an indication of this, we depict the block en-
tropy s[l], l ∈ {1, . . . , n} in the left panel of Fig. 2 for various
selected mode transformation iterations. Here, the maximum

TABLE I. Convergence of the bond energy, E/N2, with system
size for various V values. DMRG results were obtained using the
optimized basis and the DBSS procedure with Mmin = 1024 and
εtr = 10−6.

0.25 0.5 1 2 4 8

4 × 4 −0.6636 −0.5845 −0.4518 −0.2878 −0.1591 −0.0823
6 × 6 −0.6847 −0.5992 −0.4583 −0.2911 −0.1601 −0.0825
8 × 8 −0.6947 −0.6059 −0.4606 −0.2912 −0.1601 −0.0825
10 × 10 −0.6994 −0.6086 −0.4607 −0.2912 −0.1601 −0.0825

of s[l] reduced by a full order of magnitude, as can be seen
by comparing the blue (real-space basis) and the black (op-
timized basis) curves. In addition, artifacts of the snake-like
mapping of the two-dimensional lattice in real space into the
one-dimensional MPS topology apparent in the blue curve
are completely diminished by the basis optimization resulting
in a smooth and highly symmetric profile (additional data
is available in the Appendix). The iterative error norm of
the block entropy measured between two subsequent mode
transformation iterations, ‖sk+1

[l] − sk
[l]‖ converges to 10−5–

10−4 which can also be used as a criterion when to terminate
the basis optimization. For larger V values, the reduction is
even more pronounced, leading to a state that is close to a
Slater determinant. In the right panel, the maximum of s[l]

for l ∈ {1, . . . , n}—which typically appears near the center of
the chain—is laid out for various D values for the real-space
basis and for the optimized one. While a strong D dependence
for V � 2 is clearly visible in the real-space basis, the curves
basically fall on top of each other for the optimized basis.
The small peak for 0 � V � 2 signals the residual entangle-

FIG. 2. (Left panel) block entropy for the 6 × 6 half-filled spin-
less fermion model for V = 1 for some selected mode transformation
iterations with Dopt = 256, i.e., for the 0th, 1st, 2nd, 3rd, 5th, 10th,
20th, and 40th iterations. (Right panel) maximum of the block en-
tropy as a function of V for various D values and for the real-space
basis (solid lines) and for the optimized basis (dashed lines). In
the inset, this is shown for various systems sizes obtained with the
optimized basis and DMRG with Dmin = 1024 and εtr = 10−6. Here,
a spline is fitted as guide for the eye trough the data points.
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ment that cannot be removed by basis optimization which
also controls the required bond dimension and thus the com-
putational complexity. As a benchmark we have performed
DMRG calculations using the DBSS approach with minimum
bond dimension Dmin = 1024 and a truncation error threshold
εtr = 10−7. An agreement up to four digits has been obtained
compared to the real-space energy reference data calculated
with D = 8192, but we have gained a speedup by a full order
of magnitude.

Strikingly, as we discuss in great detail in the Appendix,
while there are complexity theoretic obstructions against a
mapping of the given Hamiltonian to a local one-dimensional
gapped Hamiltonian, the mode-transformed states are nu-
merically found to feature an entanglement entropy that is
upper bounded by a constant in the bond dimension, so that
larger and larger bond dimensions still lead to entanglement
entropies upper bounded by constants. This provides further
strong evidence for the significance of the effective dimension
reduction in description (see Figs. 5 and 6 in the Appendix).

V. PHASE DIAGRAM

The power of our approach allows us to attack the physical
properties such as the phase diagram of the system as well.
In the limit of strong interactions, the model maps onto the
antiferromagnetic Ising model in two dimensions and a charge
density wave (CDW) phase develops. Since the hopping is
restricted to nearest neighbors only, the Fermi surface takes
the form of a square and perfect nesting together with Van
Hove singularities providing strong arguments for an Ising
transition into the CDW-ordered phase at Vc = 0 [47,48].
Furthermore, investigations within the Hartree-Fock approx-
imation lead to an exponentially small order parameter in the
weak coupling limit and the 1/d corrections starting from
the d = ∞ limit, where Hartree-Fock theory becomes exact,
provides only very small quantitative corrections in d = 3 and
even in d = 2 [49]. For d = 2 this indicates a transition at
Vc = 0 and that the charge density wave order parameter is an
exponential function of V in the weak coupling limit. Note,
however, that these simple arguments can break down as in
the case of spinless fermions in one spatial dimension, d = 1,
where the model reduces to the integrable Heisenberg model
and has a transition at finite Vc [49]. Reference [50] has shown
that there is a direct transition between the homogeneous and
the CDW phases governed by phase separation, and a finite
Vc � 0.5 is suggested based on their obtained phase diagram.
Their underlying arguments, however, have been derived for
finite doping, thus an exponentially closing phase boundary
between the CDW and phase separated phases together with
Vc = 0 cannot be ruled out.

To investigate the transition, we first analyze the block
entropy profiles for larger system sizes using the optimized
basis and find that the peak for V � 1 remains and its height
increases with system size as is shown in the inset of the
right panel of Fig. 2. The center of the peak extracted from
the spline fits (V = 0.83, 0.65, 0.36 for N = 6, 8, 10) tends to
shift to V = 0 with 1/N2 which indicates a quantum phase
transition [51] at Vc = 0. We also compute the CDW order

parameter [52] as expectation value of

Ccdw = 1

N4

∑
i, j

ηi, j (ni − 1/2)(nj − 1/2) (6)

directly, where ni = c†
i ci in the real-space basis and ηi, j is

a phase matrix with elements ±1 in a checker-board ar-
rangement on the two-dimensional lattice. The real-space
simulations show that for large values of V , 〈Ccdw〉 takes
a finite value while for V = 0 it has to vanish as can
be seen in the right panel of Fig. 1. The apparent finite
size and D dependencies do not allow us to conclusively
decide upon the behavior of 〈Ccdw〉 for V � 1. Alternatively,
the density-density correlation function can also be taken from
the elements of the one- and two-particle reduced density
matrices. The latter one has entries

ρ
(2)
i, j,k,l = 〈c†

i c†
j ckcl〉, (7)

which can also be calculated efficiently by the DMRG method
[53]. Measuring these in the optimized basis and back-rotating
to the real-space basis, we have found an agreement up to four
digits between 〈C̃cdw〉 and the real-space reference for N = 4
and 6. For N = 8 and V � 1 the two data sets, however, began
to deviate and 〈C̃cdw〉 possesses a much weaker D dependence.
Finite-size scaling of the large-scale DMRG data obtained
with Mmin = 1024 and εtr = 10−6 is shown in the inset of
Fig. 1 right panel for various V values. For large V the curves
scale to finite values in the thermodynamic limit, while for
V � 1 they show a slight downward curvature. After a rough
extrapolation with 1/N and a spline fit on the extrapolated data
(black crosses in the figure) an exponential opening of 〈C̃cdw〉
at Vc = 0 has been obtained. This functional form agrees to
the one reported in Ref. [49] after some rescaling and it is
shown by a black curve in the right panel of Fig. 1. Our
approach hence pushes forward the capacity of the MPS based
approaches to capture two-dimensional strongly correlated
systems significantly. Our results are in close agreement with
analytic expectations (while some details remain open).

VI. CONCLUSION

In this work, we have demonstrated that MPS approaches,
extending known DMRG methods, are surprisingly powerful
for the simulation of two-dimensional quantum many body
systems even imposing periodic boundary condition along
both spatial dimensions. This is possible if only the key insight
is acknowledged that one is not forced to do a local basis
representation. Algorithmically, this is achieved by adaptively
finding the optimal basis via fermionic mode transformation,
optimizing over a larger manifold than that of MPS, which
leads to a dramatic reduction of the correlations and entan-
glement in the system. A strongly interacting model in the
real-space basis thus can be converted to a weakly correlated
problem in the optimized basis. Due to the torus geometry,
finite-size dependence is significantly reduced and intermedi-
ate system sizes make it possible to carry out more reliably
extrapolations to the thermodynamic limit.

In fact, for the two-dimensional translationally invariant
spinless fermion model, our results strongly suggest the pres-
ence of a quantum phase transition at Vc � 0, but the very
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small values of the charge density order parameter obtained
numerically in the weak coupling limit leaves an uncertainty
in our conclusion. The inclusion of a hopping between next
nearest neighbors, however, would distort the square Fermi-
surface and perfect nesting over an extended region of the
momentum space will be destroyed. This is expected to have
a have major effect, and divergencies in the susceptibilities
might be removed and a finite Vc is even more likely. This
behavior also shares features with the phase diagram of spin-
less fermions on the honeycomb lattice [54]. Then, physical
properties of the transformed basis are of key importance. In
general, the ground-state energy cannot be written as a sum
of energies of quasiparticle states except for special cases.
The V = 0 and large V limits belong to the latter case (the
ground state is a product state), but the residual block entropy
for 0 < V � 2 reflects the general scenario.

Our basis optimization is very robust, it can be carried out
with low bond dimension, and calculations using the opti-
mized basis can easily lead to an order of magnitude speedup
in computational time. In addition, our method is stable for
weakly and strongly interacting systems, in general, while
standard approaches, like basis transformation based on natu-
ral orbitals, that have been attempted earlier [55] have major
limitations and drawbacks (for numerical data see Fig. 4 of
the Appendix). Remarkably, the optimized basis for the spin-
full Hubbard model does not resemble the characteristics of
natural orbitals which reflects the existence of much stronger
residual correlations in the system (as forthcoming work will
explore). Conceptually most importantly, our work overcomes
the deep misconception that lower-dimensional embeddings
necessarily have to capture some kind of locality.

Once this prejudice is overcome, acknowledging that
fermionic mode transformations are not restricted to one-
dimensional embeddings, mode transformations, and effective
dimension reductions in description can be brought to a new
level. This is even more interesting and surprising given that a
full mapping on the level of Hamiltonians and their accompa-
nying ground states to polynomial accuracy is in general not
possible (as we elaborate on in more detail in the Appendix).
Due to the polynomial scaling of the non-local DMRG [56]
effort as O(D3n3) + O(D2n4), a reduction of D by one or two
orders of magnitude will render DMRG competitive for simu-
lating higher-dimensional and complex problems as well. Our
approach has the potential to become a standard protocol for
tensor network methods, in particular in that it can augment
and strengthen existing approaches.
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APPENDIX

In this Appendix, we present additional numerical data
complementing the findings of the main text together with
further scaling properties obtained for larger system sizes as
well as further conceptual considerations.

1. Error analysis of the one particle reduced density matrix

To investigate how faithfully information beyond the
ground-state energy can be reproduced and predicted in the
optimized basis, we depict in Fig. 3 the operator norm of
the difference of the one particle reduced density matrix
ρ̃ (1)(Dopt ) over the mode transformation iterations and the
real-space reference data ρ (1)(8192). Using the optimized ba-
sis, we also show the result for ρ̃ (1)(Dopt, D) with increasing
bond dimension D, using different symbols. These latter data
sets are basically the same for Dopt = 64 and 256, thus the
optimal basis has already been obtained with the lower Dopt

value (see Fig. 3). The error norms obtained with the real-
space basis are again much larger as indicated by the dashed
lines. The error norm is less meaningful for very large bond

075137-5



KRUMNOW, VEIS, EISERT, AND LEGEZA PHYSICAL REVIEW B 104, 075137 (2021)

FIG. 4. Convergence of the ground-state energy for the half-
filled 8 × 8 spinless fermion model as a function of mode transfor-
mation iterations for fixed bond dimension of Dopt = 64, 256, and
512 is shown by blue, red and black curves, respectively, for V = 1
(left panel) and for V = 8 (right panel). Reference data obtained in
the real-space basis for D up to 8192 are shown with dashed lines. In
the inset, the scaling of E (D) and Ẽ (256, D) with the inverse bond
dimension is shown.

dimensions since Ẽ (256, 4096) is below E (8192) rendering
ρ̃ (1)(256, 4096) potentially more accurate than ρ (1)(8192).

2. Further numerical results for the ground-state energy
of the half-filled N × N spinless fermion model

In Fig. 4, we present further numerical results for the
ground-state energy of the half-filled 8 × 8 spinless fermion
model, and obtained bond energies are summarized up to
lattice sizes 10 × 10 in Table I.

3. Complexity theoretic insights into dimensional
reduction in description

The main point of this work is to provide evidence for the
observation that an effective dimension reduction in descrip-
tion can lead to a substantially improved classical simulation
of strongly correlated quantum systems: A one-dimensional
tensor network ansatz can capture two-dimensional strongly
correlated models well, if the prejudice is overcome that the
mapping to one spatial dimension has to be spatially local. The
main text shows that such an effective dimension reduction on
the level of description is possible, leading to substantially
improved descriptions over standard one-dimensional em-
beddings. In the subsequent subsections, we provide further
evidence for this at hand of discussing entanglement entropies
and energies.

Having said that, we insist on an effective dimension re-
duction in description, that is, on the level of the variational
ansatz capturing the strongly correlated quantum system at
hand. On the level of Hamiltonians and concomitant ground
states to polynomial accuracy, a full efficient reduction to a
one-dimensional system is in general infeasible, as obstruc-
tions of computational complexity are in the way. In the light

FIG. 5. Half chain block entropy obtained for the 6 × 6 spinless
fermion model as a function of inverse bond dimension for various
interaction strengths, including a fit to the data. The solid line is a fit
defined by Eq. (A2).

of this observation, it is even more interesting that the effective
dimension reduction in description provides so convincing
results. In the following, we elaborate more on this conceptual
obstruction.

Consider as input to the problem a family of general
strongly correlated fermionic systems with Hamiltonian

H =
n∑

i, j=1

ti, jc
†
i c j +

n∑
i, j,k,l=1

vi, j,k,l c
†
i c†

j cl ck (A1)

as above. Under a mode transformation defined by a U ∈
U (n) such a Hamiltonian transforms to a new local (quartic)
Hamiltonian of the same form, albeit no longer necessarily a
geometrically local one even if the original Hamiltonian has
been geometrically local. It has been shown in Ref. [57] that to
approximate the ground-state energy of such a model to poly-
nomial accuracy is QMA-hard (“quantum Merlin-Arthur”), in a
complexity-theoretic language [58]. This implies in particular
that it is NP-hard, so no polynomial time algorithm exists
unless NP = P. If one could find a mode transformation U ∈
U (n) in polynomial time that transforms the ground state to a
quantum state that is approximated by a matrix-product-state
up to an error in trace norm that scales suitably polynomially
in n, then one could find a polynomial time algorithm that
provides an efficient classical solution to a QMA-hard problem,
which leads to a contradiction unless QMA = P. Therefore, on
the level of Hamiltonians and accompanying exact ground
states, a full dimension reduction to one-dimensional prob-
lems is in general implausible.

4. Further numerical results for the ground-state block entropy
profiles of the half-filled 8 × 8 spinless fermion model

In this section, we elaborate in more detail on the entropy
reduction by means of mode transformations as discussed in
the main text, to further corroborate our main claims. Figure 5
shows the (von Neumann) entanglement entropy of a half
chain for an N × N lattice for N = 6, so n = N2 fermionic
modes, as a function of the inverse bond dimension D, for
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FIG. 6. Similar to Fig. 5, but for the 8 × 8 spinless fermion model.

several values of the interaction U . Depicted are the raw data,
as well as a fit to the function x �→ y(x) defined as

y = a + b
1

x2
+ c

1

x4
, (A2)

for suitable real a, b, c, signifying the interesting regime for
large bond dimension D. The striking insight is that not only
is the entanglement entropy is drastically reduced, compared
to the values without mode transformation. But in fact, the
values for the entanglement entropy saturate for large bond
dimensions D, instead of being divergent. This is a convincing
illustration of the power of mode transformations to reduce the
entanglement entropy in this dimension reduction in descrip-
tion. Figure 6 shows the same plot for N = 8, with compatible
findings.

5. Further computational aspects

The reference real-space DMRG data has been generated
by fixing the bond dimension D from the very beginning
of the DMRG calculations, the residual error threshold in
the Lanczos and Davidson diagonalization steps has been
set to be 10−9 and we have used some 13–15 sweeps. The
maximum value of the truncation error has been in the
range of 10−6–10−7. The half-chain (von Neumann) entan-
glement entropy data via mode optimization up to D = 1024
is shown in Figs. 3 and 4, and it has been obtained with
similar settings, but using 7–9 sweeps and 60 iterations of
mode transformations. On the practical side, the effective
Hamiltonian in the DMRG treatment gets more dense, i.e.,
additional terms are generated during the curse of mode
optimization which require substantial more computational
efforts. However, the tremendous reduction in the block en-
tropy and the bond dimension largely overcompensate this.
In addition, the extra terms that are generated can be ap-
plied independently during the diagonalization step. Thus,
the idea of effective dimension reduction by means of mode
transformation constitutes an ideal candidate for GPU based
massive parallelization [59].

FIG. 7. Convergence of the ground-state energy for the half-
filled 8 × 8 spinless fermion model as a function of mode
transformation iterations with fixed bond dimension of Dopt = 256
for various V values if we rotate to the natural orbitals after the
seventh sweep of each iteration instead of using the local updates
and perform another seven sweeps to obtain a converged ground
state in the current rotated basis to determine the optimal ordering
for the next iteration. Therefore, each iteration based on natural
orbitals corresponds to every second iteration based on fermionic
mode transformation.

6. Mode transformation analysis using rotations based on
natural orbitals for the half-filled 8 × 8 spinless fermion model

Through the course of basis optimization, the residual
quantum correlations that have to be captured by the tensor
network ansatz are significantly reduced (see Figs. 7 and 8).
As a further proxy for this behavior, one may investigate
the sum of the single mode von Neumann entropies Itot =∑

i si that is reduced drastically, while pair-wise correlations
reflected by Ii, j get very much localized (for additional nu-
merical data see Fig. 8). In addition, the investigation of the
one-particle reduced density matrix shows that the optimized
basis converges to the natural orbital basis as λi and 〈ni〉 tend
to lie on the top of each other (Fig. 8). Therefore, here the
final basis is the natural orbital basis, but the underlying basis
has been systematically rotated by each mode transformation
iterations.

Since the final basis is the natural orbital basis (see Fig. 8),
one might think that a natural step is to aim at identifying a
globally optimal single-particle basis could be more directly
based on natural orbitals, i.e., by instead of using the local up-
dates to the single-particle basis one could rotate to the natural
orbitals at the end of each mode transformation iteration. Such
an approach has already been tested for quantum chemical
applications [55], but a very unstable performance has been
reported. In fact, we have also found that in the small-V limit
such an approach works acceptably, but for larger V values
it breaks down (see Fig. 7). The reason is that for small V
the optimal orbitals are Hartree-Fock like orbitals, while for
large V values localized orbitals seem to be more optimal.
Our novel method based on fermionic mode transformation
is, however, stable for all V values. Importantly, it can also be
used in general for interacting quantum many body systems.
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FIG. 8. Site entropy profiles {si}, sorted values of the natural orbital occupation numbers {λi}, occupation numbers {〈ni〉} and mutual
informations {Ii, j} for the real-space basis (first row), and for the 2nd and 40th mode transformation iterations for the half-filled 8 × 8 spinless
fermion model for V = 1 and Dopt = 256. The ground-state energy, the sum of the site entropy Itot , and the entanglement distance Idist =∑

i, j Ii, j |i − j|2, are printed below the corresponding panels.
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