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Polaron formation in a spin chain by measurement-induced imaginary Zeeman field
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We present a high-rate projective measurement-based approach for controlling nonunitary evolution of a
quantum chain of interacting spins. In this approach, we demonstrate that local measurement of a single external
spin coupled to the chain can produce a spin polaron, which remains stable after the end of the measurement.
This stability results from the fact that the Hilbert space of the chain contains a subspace of nondecaying states,
stable during the nonunitary evolution. These states determine the resulting final state of the chain and long-term
shape of the polaron. In addition to formation of the spin polarons, the presented measurement protocol can be
used for distillation of nondecaying states from an initial superposition or mixture.
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I. INTRODUCTION

Control of evolution of single-particle and many-body
quantum systems is an important branch of modern physics
[1–3] and applied mathematics [4,5] One of the most inter-
esting realizations of such control is given by the quantum
Zeno effect [6], where evolution of a quantum system un-
dergoing high-rate repeated measurements slows down as a
result of the feedback of the measurement on the measured
system. The Zeno effect can provide efficient protocols for
controlling spin 1/2 in various kinds of measurements and in-
teractions, including direct coupling to the environment (e.g.,
Refs. [[7–11]]) for electrons and spin-orbit coupling [12] for
cold atoms. In addition, the Zeno effect can lead to slow driven
spin dynamics in quantum dots [13] and edge magnetization
in graphene [14]. The Zeno effect plays an important role for
electrons coupled to the nuclear bath [15–17]. In these sys-
tems, the finite rate measurements can be used for producing
highly polarized states of arrays of nuclear spins [18]. Re-
cently, the Zeno effect has been studied in the quantum cavity
structures considered as a prospective element for quantum
technologies utilizing light-solid interfaces [19].

Since interacting quantum spin systems demonstrate a
rich variety of phenomena, the understanding of their
measurement-based control can provide protocols useful both
for handling quantum information and for understanding fun-
damental aspects of their physics [20–23]. Here, we study the
physics of repeated projective measurements on a probe in
a system of interacting quantum spins, termed the Zeno-like
effect in Refs. [24,25]. We consider a single spin coupled to
this chain as the probe and show that the selective projective
measurements on the probe can be used as an instrument for
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producing special, almost stationary, states of the entire quan-
tum system. These states correspond to spin polarons, systems
of broad interest for understanding the physical properties in
various quantum materials [26–30]. The effect of these fre-
quent measurements on the probe amounts to evolution of the
spin chain described by a non-Hermitian Hamiltonian with a
local imaginary Zeeman field. The Hilbert space of the system
thus consists of two subspaces, corresponding to the states,
decaying and nondecaying, when undergoing the dynamics
of the non-Hermitian Hamiltonian. These nondecaying states
form a variety of spin polarons that remain stable after the
termination of the measurement.

This paper is organized as follows. In Sec. II we describe
the measured system and the measurement protocol, derive
the corresponding non-Hermitian Hamiltonian, and find the
properties and dimensionalities of the decaying and nonde-
caying subspaces. In Sec. III we present numerical results of
the system evolution during the measurement and demonstrate
the resulting spin polaron formation. In addition, in Sec. III we
demonstrate that the repeated-measurement protocol can be
used for distillation of the states in the Hilbert space of inter-
est. Discussions of the results and conclusions are presented
in Sec. IV.

II. NONUNITARY EVOLUTION OF A SPIN CHAIN

A. Total Hamiltonian and selective measurements of a probe

We consider an antiferromagnetic chain with N spins 1/2
described by the Hamiltonian

Hch =
N∑

n=1

(XnXn+1 + YnYn+1), (1)

where the coupling strength is set as 1 and Xn,Yn are the
Pauli matrices for the nth spin. We use the periodic boundary
conditions with XN+n = Xn and YN+n = Yn.
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FIG. 1. Schematic picture of a spin chain with locally connected
probe (dark blue circle) being under frequent selective measure-
ments. The measurements are performed at times t = kτ, where k
is an integer. Red arrows correspond to the in-plane components
of the spins, and the sizes of the blue circles correspond to their Z
components.

Now we locally couple an additional probe spin to one of
the spins (n = 1) in the chain, as shown in Fig. 1, such that the
total Hamiltonian of the chain + probe reads

H = Hch + g(XX1 + YY1), (2)

where X,Y without indices refer to the probe and g is a
coupling constant.

We consider the case where the pure initial state of the
total system is |�0〉 = |↑〉pr ⊗ |ψ0〉. Here, |↑〉pr is the state
of probe, and |ψ0〉 is a state of the chain. The total system
evolution is governed by Hamiltonian (2). After time τ we
make a projective measurement on the system |↑〉pr 〈↑|pr ⊗
I[N], where I[N] is the identity operator acting in the Hilbert
space of the spin chain. If the measurement is successful, the
state of the system becomes |↑〉pr ⊗ |ψ1〉, where |ψ1〉 is the
evolution-produced state of the chain, and then the next step
of evolution and measurement can be made. In the opposite
case the evolution is discarded. After M repetitions the state
of the chain becomes [31]

|ψ0〉 → |ψM〉 = V M |ψ0〉√
〈ψ0|V †MV M |ψ0〉

, (3)

where effective nonunitary operator V acting in the Hilbert
space of the spin chain defined as V ≡ 〈↑|pr exp(−iHτ ) |↑〉pr
is obtained by taking the corresponding matrix element solely
in the probe-related subspace. The probability of the outcome
|↑〉pr of the measurement at a single step with the number
j > 0 is

p j = 〈ψ j−1|V †V |ψ j−1〉 . (4)

The survival probability of getting M successful sequential
probe measurements is

PM = p1 p2 · · · pM = 〈ψ0|V †MV M |ψ0〉 . (5)

We are interested in the high-rate measurement-produced
dynamics; thus further we assume τ → 0. The usual feature

of such a nonunitary process is a saturation dynamics [18,32],
which means that, on the one hand, pk → 1 for k → ∞ (or
Pk → const > 0) and, on the other hand, the mean value of
some operator or a fidelity related to a state of the chain
remains a constant after a large number of iterations. For
example, selective measurements of a coupled probe qubit can
cool a mechanical oscillator to its ground state [32].

B. Effective Hamiltonian of the spin chain

In order to qualitatively understand the dynamics of the
spin chain and characterize the properties of a quantum state
after applying an infinite number of iterations, we introduce
the effective measurement-induced Hamiltonian HM which
acts in the Hilbert space of the spin chain [33] such that the
nonunitary evolution has the form

V = e−iHMτ . (6)

Assuming τ → 0 (and gτ → 0), we write HM as a small-τ
expansion with HM(τ ) = A + τB, where operators A and B
are usually Hermitian and non-Hermitian, respectively. Such
a non-Hermiticity has been noticed in earlier publications, for
instance, Eq. (21) in Ref. [25]. In order to find HM in (6) by
matching it with the definition of V following (3), we write

〈↑|prI − iτH − τ 2

2
H2|↑〉

pr
+ O(τ 3) = e−iAτ−iBτ 2

, (7)

where I is the identity operator acting in the total chain-probe
Hilbert space. Then, by using the explicit equation (2) we
transform [with an accuracy of O(τ 3)] the left-hand side of
(7) into

I[N] − iτHch − τ 2

2
H2

ch − τ 2g2(I[N] − Z1 ⊗ I[N−1])

= e−iHchτ − τ 2g2(I[N] − Z1 ⊗ I[N−1])

= e−iHchτ e−g2(I[N]−Z1⊗I[N−1] )τ 2

= e−iHchτ−i[−ig2(I[N]−Z1⊗I[N−1] )]τ 2
,

(8)

where Zn is the Pauli operator σz acting on the nth spin in the
chain and I[N−1] is the identity operator for all the spins except
that with n = 1. By comparing (8) with the right-hand side
of (7) we found A = Hch and B = −ig2(I[N] − Z1 ⊗ I[N−1]).
Thus, finally, we have

HM = Hch + ig2τZ1 ⊗ I[N−1] − ig2τI[N]. (9)

The form of the second term (9) shows that our process can be
mimicked by introducing an imaginary Zeeman field [34–36].
Here, we should note the following: (i) Our setting produces
a local imaginary magnetic field instead of the uniform one
[37] simulated by atomic ensembles with real radiation decay,
and (ii) in the limit τ → 0 (and g2τ → 0) we come to the
bare spin chain Hamiltonian. The magnitude of this field is
proportional to the squared coupling constant between the
probe and the spin from the chain and linearly proportional to
the time interval between two measurements. The third term
in (9) ensures that the norm of a state vector after acting on
the evolution governed by (9) will not increase.
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To clarify the effect of the imaginary magnetic field, we
rewrite (9) in the following form:

HM = Hch − 2ig2τ�1, �1 = |↓〉1 〈↓|1 ⊗ I[N−1], (10)

with operator �1 acting as a projector |↓〉 〈↓| on spin number
1 and as a unity operator to other spins in the chain.

C. Decaying and nondecaying subspaces

Dynamical evolution of the initial state |ψ0〉 governed by
non-Hermitian HM can be described as (see Ref. [38])

|ψ (t )〉 =
2N∑
j=1

〈β j |ψ0〉 e−iλ j t |α j〉 , (11)

where

HM |α j〉 = λ j |α j〉 , H†
M |β j〉 = λ∗

j |β j〉 . (12)

The operator �1 in Hamiltonian (10) is positive semidefi-
nite, and thus we have Imλ j � 0, which leads to exponential
suppression of all eigenstates of HM with Imλ j < 0. In con-
trast, the states with Imλ j = 0 will not decay.

The Hilbert space H of the chain can be divided into two
subspaces: decaying HD and nondecaying HND, with H =
HD ⊕ HND. As a result, any initial state of the chain can be
decomposed into a superposition of two orthogonal vectors
belonging to these subspaces: |ψ0〉 = a |D〉 + b |ND〉, where
|D〉 (|ND〉) belongs to the decaying (nondecaying) subspace.
The survival probability P∞ of the infinite process is given
by P∞ = |b|2. The average survival probability for a random
pure initial state as well as for a thermal mixed state with
infinite temperature [but not for pure uniform superposition
of eigenstates (1)] is

P∞ = dim HND

dim H . (13)

Here, we define the average survival probability as P∞ =
2−N

∑2N

m=1 P∞(m), where P∞(m) is the survival probability of
the infinite process with an initial state equal to the mth vector
of some fixed basis in H.

Let us define basis {|φ j〉} with j = 1 · · · K in H, where |φ j〉
are the eigenstates of Hch that satisfy

�1 |φ j〉 = 0. (14)

Note that in the case of degeneracy of Hch we have the free-
dom to choose {|φ j〉} to satisfy (14), and thus we can define

dim HND = max(K ). (15)

Thus from (14) and (15) we conclude that dim HND does not
depend on the value of g2τ in (10). We find numerically the
following expression for nondecaying subspace dimension:

dim HND =
{

2(N−1)/2, odd N
3 × 2(N−4)/2, even N.

(16)

As follows from (13) and (16) we have exponential decay
of P∞ with increasing spin chain size N : P∞ ∝ 2−N/2. In
Fig. 2(a) we show the numerical results for log2 P∞ as a
function of N .

FIG. 2. (a) Numerically estimated survival probability P∞ as a
function of spin number N . (b) Dimension of nondecaying subspace
vs the number of spin which probe coupled with for an open chain
with N = 7.

It is interesting to note the following. On the one hand,
dim HND is equal to the number of real eigenvalues of (10),
and on the other hand, we can make random unitary trans-
formations of Hamiltonian (10) to obtain a set of random
non-Hermitian matrices. It is known [39] that the expected
number RL of real eigenvalues of an L × L random non-
Hermitian matrix for L → ∞ is RL ≈ √

2L/π ∝ L1/2. In our
case the dimension of random matrices is L = 2N ; thus RL ∝
2N/2 ∝ dim HND, which coincides with (16).

For completeness, we mention that for a spin chain with
open boundary conditions, our expression (10) is the same,
except that the value of dim HND depends on the position of
the spin connected to the probe. Our numerical estimation
shows that dim HND = 1 for any position of the probe for
chains with even N , and dim HND has the maximum value for
the probe connected to the central spin for chains with odd N
[see Fig. 2(b) for an example]. As can be seen from (10) and
(14) the general form of the state vector which is the result of
the process after a large number of iterations can be written as

|ψM〉 ≈ e−iHMMτ ≈ |↑〉1 ⊗ |ψ̄M〉 , M → ∞, (17)

where |ψ̄M〉 is the state of all spins in the chain except the first
one. Expression (17) can be seen as a highly localized spin
polaron [26–30]. Note that all states in HND have the form
(17). Moreover, the state |↑〉pr ⊗ |ND〉 is an eigenstate of the
total Hamiltonian (2), and this is why it remains stable during
the process with the survival probability of each step being
equal to 1. In other words, the probe remains disentangled
from the chain being in the |ND〉 state under the evolution
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FIG. 3. Survival probability P as a function of time for the first
four eigenstates as initial states of the spin chain with N = 6, τ =
0.03, and g = 4.

governed by (2). This situation may be comparable to the
chain state being in the decoherence-free subspace [40].

III. NUMERICAL EVIDENCE FOR SPIN
POLARON FORMATION

To numerically illustrate the above statements on the
decaying and nondecaying subspaces and demonstrate the
evolution of the measured system, we use an N = 6 spin
chain, with coupling to probe with strength g = 4, and in-
tervals between measurements are τ = 0.03. We numerically
found that for the chosen spin chain, the first eigenstates are
lying in the HD subspace. In Fig. 3 we show how survival
probability decreases with time for initial states from the HD

subspace.
As an example of dynamical spin polaron formation we

use initial state |ψ0〉 = ∑16
l=0 |l〉 /

√
17, which is the one of

possible uniform superposition of eigenstates of the first four
energy levels of the chain with N = 6, g = 4, and τ = 0.03. In
this setting the ground state is nondegenerate, the first excited
level has degeneracy 2, the second level has degeneracy 6,
and the third one has degeneracy 8. In Fig. 4(a) we show
magnetization 〈ψk|Zn|ψk〉 of each spin in the chain, where k
is the number of the step. For convenience we use time t = kτ

instead of number k in the plot. Interaction and measurements
with the probe are switched off at t = 12 (corresponding
to M = 400 steps), and after this, spin chain evolution is
governed by the Hamiltonian (1). The survival probability of
such a process (for our choosing of eigenstates in degenerate
subspaces) is P400 ≈ 0.02. For comparison, in Fig. 4(b) we
let g = 0.5, and the nonunitary process is not interrupted.
The survival probability of this process P∞ ≈ 0.017, which
coincides with the squared amplitude of the initial state in the
HND. Note that, as expected, HND is the same for both g = 4
and g = 0.5. Figure 4 shows that the process ends up with the
formation of a localized spin polaron at spin 1 of the chain.
As can be seen, the total magnetization of the chain increases
during the nonunitary process and, after switching off the
probe, remains constant due to the fact that [

∑
n Zn, Hch] = 0.

To study averaged dynamics, we use 100 randomly chosen
initial states |ψ0〉 of the chain and plot the average magnetiza-
tion for this ensemble in Fig. 5. In this simulation we apply
M = 300 evolution-measurement cycles; that is, after time
T = 300τ = 9 (vertical line in Fig. 5) the evolution of the
spin chain is governed by the Hamiltonian (1), and the probe

FIG. 4. Example of magnetization dynamics for the spin chain
with N = 6, τ = 0.03. (a) g = 4, and the probe spin is disconnected
at t = 12 (vertical line). (b) g = 0.5, and the probe is not discon-
nected. Numeration of spins corresponds to Fig. 1.

is disconnected from the chain. As can be seen in Fig. 5, the
quantum state of each chain in the ensemble approximately
satisfies (17) as a result of the nonunitary process. Relation
(17) also holds after switching off the probe. This is due to
our special choice of couplings between the chain and probe:
The first term on the right-hand side of (10) coincides with
the bare spin chain Hamiltonian (1). Calculations including
the ZZ coupling to the probe-chain interaction show that in

FIG. 5. Averaged local magnetization from the ensemble of 100
random initial states. The probe spin disconnected at t = 9 (verti-
cal line), and after this time, spin chain evolution is governed by
Hamiltonian (1).
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FIG. 6. Averaged local magnetization from the ensemble of 100
random initial states in the form |ψ0〉 = |↑〉1 ⊗ |Random state〉.

this case the polaron becomes unstable after switching off
the probe. This results from the fact that the Hermitian part
of the Hamiltonian in Eq. (10) does not coincide with Hch

anymore. On the other hand, adding a ZZ-coupling term to the
chain Hamiltonian without changing the probe-chain interac-
tion does not change our results dramatically producing only
a difference in the values of dim HND. For example, at N = 6
one obtains dim HND = 6 for the XY spin chain Hamiltonian
(1), while one obtains dim HND = 3 for the XXX coupling
[41]. Also we can see that for our choice of τ and g, the result
from a direct simulation of our discrete algorithm coincides
with the result obtained from continuous evolution governed
by non-Hermitian Hamiltonian (10). The average survival
probability of the whole process is P300 ≈ 0.097, which is
little higher than the 6/64 ≈ 0.94 predicted by expression (13)
with dim HND = 6 and dim H = 64 due to P∞ < P300.

The relation (17) is necessary but not sufficient for a state
|ψ〉 to belong to HND. To illustrate this circumstance, we show
in Fig. 6 the averaged result of 100 processes with initial state

|ψ0〉 = |↑〉1 ⊗ |Random state〉 . (18)

As can be seen in Fig. 6, such a choice of initial state can
be treated as an unstable polaron, which, in turn, can be
transformed into a stable one via a nonunitary process. The
average survival probability for such a special initial state in
our simulation is P300 ≈ 0.19, which is approximately a factor
of 2 larger than that for totally random initial states (13) in
the previous example. This is because when we choose the
initial state in the form (18) we effectively truncate dim H in
expression (13) twice and do not change dim HND.

Exponential sensitivity to initial states is a characteristic
feature [42,43] of nonunitary processes in quantum mechan-
ics. The algorithm described can be used to extract states in the
HND from the initial superposition even for cases of a small
amplitude of such states. The “price” for this possibility is a
proportionally small survival probability P∞. As can be easily
found the ground state |GS〉 of a spin chain (1) with N = 6
is a decaying state, while the state |⇑〉 = |↑↑ · · · ↑〉 with all
spins being up is a nondecaying one.

Let us take an initial state in the form |ψ0〉 = (|GS〉 +
a |⇑〉)(1 + |a|2)−1/2 and simulate the process with g = 4 and

FIG. 7. Distillation of a nondecaying state |⇑〉 from initial super-
position |ψ0〉 = (|GS〉 + a |⇑〉)(1 + |a|2)−1/2.

τ = 0.03 for a = 1 and a = 0.05 (see Fig. 7). As expected, the
survival probability is P∞ = |a|2/(1 + |a|2), and as a result
we have a chain in the state |⇑〉. Note that in this example
we achieve not a polaron but a uniform magnetization of
a chain by using local control. Exponential amplification of
such small perturbations in the initial states also can be seen
as a “butterfly effect.”

Note that if the initial state of the spin chain is a mixture of
the form

ρ0 = p |ND〉 〈ND| + (1 − p) |D〉 〈D| , (19)

our algorithm transforms it into a pure state |ND〉 with sur-
vival probability P∞ = p. Thus our proposal can distill one
many-body state from another via only local [44,45] control.

As mentioned in the above, the proposed process can
also be used for quantum state discrimination [46]. For in-
stance, if we have an a priori known set of states {|ψ1〉 =
|ND〉 , |ψ2〉 = a |ND〉 + b |D〉} and the initial state of the
chain is one of them, we can distinguish these two possibil-
ities via running our nonunitary process and check whether
outcome |↓〉pr happens. In the general case, | 〈ψ1|ψ2〉 | � 0,
and we need only one copy of a quantum state.

IV. DISCUSSION AND CONCLUSION

We have shown that the effect of high-rate projective mea-
surements of a single spin coupled to an antiferromagnetic
quantum spin-1/2 chain can be mimicked by the evolution
of the chain caused by a non-Hermitian Hamiltonian. This
Hamiltonian includes an imaginary Zeeman field determined
by a short time interval between the measurements and cou-
pling between the measured spin and the chain. The physical
origin of this non-Hermiticity, not based on the decay of the
states involved in the spin dynamics and measurement, is
therefore qualitatively different from that presented in Ref.
[37]. We obtained this non-Hermitian operator and identi-
fied the sets of states and corresponding Hilbert subspaces
decaying and surviving under the action of this measurement-
produced Hamiltonian. Thus the measurement process results
in the distillation of the corresponding states. The surviving
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states produce a stable ferromagnetic (with nonzero total spin)
polaron with the expectation values of the spins oscillating
around some stationary values after the end of the measure-
ment. Since the produced polarons depend on the initial state
of the quantum chain and the measurement protocol, these
results can be applied to formation of quantum spin states on
demand as well.
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