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We study a spin- 1
2 XXZ model with a four-spin interaction on a two-leg ladder. By means of effective field

theory and matrix product state calculations, we obtain rich ground-state phase diagrams that consist of eight
distinct gapped phases. Four of them exhibit spontaneous symmetry breaking with either a magnetic or valence-
bond-solid (VBS) long-range order. The other four are featureless, i.e., the bulk ground state is unique and does
not break any symmetry. The featureless phases include the rung singlet (RS) and Haldane phases as well as their
variants, the RS* and Haldane* phases, in which twisted singlet pairs (| ↑↓〉 + | ↓↑〉)/

√
2 are formed between

the two legs. We argue and demonstrate that Gaussian transitions with the central charge c = 1 occur between
the featureless phases and between the ordered phases while Ising transitions with c = 1/2 occur between the
featureless and ordered phases. The two types of transition lines cross at the SU(2)-symmetric point, where
the criticality is described by the SU(2)2 Wess-Zumino-Witten theory with c = 3/2. The RS-Haldane* and
RS*-Haldane transitions give examples of topological phase transitions. Interestingly, the RS* and Haldane*
phases, which have highly anisotropic nature, appear even in the vicinity of the isotropic case. We demonstrate
that all the four featureless phases are distinguished by topological indices in the presence of certain symmetries.
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I. INTRODUCTION

The concept of symmetry-protected topological (SPT)
phases has been proposed and fruitfully developed over the
last decade [1–6]. A SPT phase is a featureless gapped phase
that does not exhibit spontaneous symmetry breaking but is
distinguished from a trivial phase (i.e. a phase that includes
a site-factorized product state) as long as certain symmetries
are imposed. For example, Haldane phases [7–9] of odd-
integer-spin chains are distinguished from trivial phases in the
presence of the discrete spin rotation symmetry D2(= Z2 ×
Z2), time-reversal symmetry, or bond-centered inversion sym-
metry [1,10–13]. The Haldane phases with odd integer spins
have been characterized by a string order parameter [14],
hidden symmetry breaking [15,16], a twist operator [17,18],
degeneracy in the edge states [19] and the entanglement
spectrum [10], and topological indices [10,20–22]. Classifi-
cation of SPT phases of bosons has been achieved by using
the projective representations of the symmetry group in one
dimension [21–23] and group cohomology theory in higher
dimensions [24,25].

A simple extension of the spin-1 Haldane phase can be
found in a spin- 1

2 two-leg ladder. Consider a spin- 1
2 ladder

with Heisenberg interactions J and J⊥ along the legs and
rungs, respectively, where J is assumed to be antiferromag-
netic; see Fig. 1. Field-theoretical analyses indicate that the
presence of the rung interaction J⊥ �= 0 immediately leads
to gapped phases whose properties depend on the sign of
J⊥ [26–28] (see, e.g., Refs. [29,30] for related numerical

studies). In the gapped phase for ferromagnetic J⊥ < 0, effec-
tive spin-1 degrees of freedom emerge on the rungs and col-
lectively form the Haldane state. This state can equivalently be
viewed as a superposition of various singlet-covering states on
a ladder. In contrast, the gapped phase for antiferromagnetic
J⊥ > 0 can be understood from the limit J⊥ → ∞, where the
ground state is a product state of singlet pairs on the rungs,
known as the rung singlet (RS) state. The gapped phases
for J⊥ < 0 and J⊥ > 0 are thus called the Haldane and RS
phases, respectively. These phases are distinguished in terms
of two types of string order parameters [31–34] [shown in
Eq. (5) later].

Liu et al. [35] have conducted a detailed classification of
SPT phases in a spin- 1

2 two-leg ladder for the symmetry group
D2 × σ , where σ is the symmetry with respect to the inter-
change of the two legs. They have found three new SPT phases

FIG. 1. XXZ ladder with a four-spin interaction, which is de-
scribed by the Hamiltonian (1). The spin- 1

2 operator at the jth site
on the αth leg is denoted by Sα, j . We set J = 1 throughout the paper.
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FIG. 2. Schematic phase diagram of the model (1) for 0 <

J⊥, J4 
 1, obtained with the effective Hamiltonian (8). The value
of J⊥ is fixed. There are four phases and two phase transition lines.
Each phase is characterized by the locking positions of the bosonic
fields. The red solid line shows the Gaussian transition with the
central charge c = 1 while the blue solid line shows the Ising tran-
sition with c = 1/2. Two spins paired by a red oval form a singlet
(| ↑↓〉 − | ↓↑〉)/

√
2 while those paired by a blue oval form a twisted

singlet (| ↑↓〉 + | ↓↑〉)/
√

2. The Haldane* state is related with the
conventional Haldane state on a ladder (see Fig. 3) through the π

rotation of the spins on one of the chains about the z axis; a singlet
pair of spins on different chains turns into a twisted one by this
transformation.

termed tμ (μ = x, y, z), all of which have symmetry-protected
two-fold degenerate edge states on each end of an open ladder,
with unique responses to magnetic fields. For example, the
edge states in the tz phase are split by the magnetic field
along the z direction, but not by the fields in the x and y
directions. The tμ phase is related with the Haldane phase
(termed t0 in Ref. [35]) under the π rotation of spins about
the μ-axis on the first leg, U μ

1 (π ) := exp(iπ
∑

j Sμ
1, j ), which

provides some intuition on the ground state. Specifically, a
singlet pair between spins on different legs turns into a twisted
singlet |1, z〉 := (| ↑↓〉 + | ↓↑〉)/

√
2 under U z

1 (π ). It has also
been argued that the trivial phase (i.e., the phase that includes
rung-factorized states) is divided into four phases, termed
rung-|0, 0〉 and rung-|1, μ〉 (μ = x, y, z), if the translational
symmetry is further imposed. The rung-|0, 0〉 phase corre-
sponds to the conventional RS phase, and the rung-|1, μ〉
phase is obtained by operating the unitary transformation
U μ

1 (π ) on the rung-|0, 0〉 phase. A highly anisotropic XYZ
model on a ladder has been studied, which exhibits com-
petition among the t0, tz, rung-|0, 0〉, and rung-|1, z〉 phases
and a variety of magnetic phases (see also Ref. [36] and
Appendix A). Fuji has given a field-theoretical description of a
variety of SPT and symmetry-broken phases of a spin- 1

2 XXZ
ladder [37,38]. Following him, we henceforth use the terms,
the Haldane* and RS* phases, to refer to the tz and rung-|1, z〉

FIG. 3. Schematic phase diagram of the model (1) for J⊥, J4 < 0
with |J⊥|, |J4| 
 1, obtained with the effective Hamiltonian (8). The
value of J⊥ is fixed. There are four phases, each characterized by
the field locking positions. As in Fig. 2, the red and blue solid lines
show Gaussian and Ising transitions, respectively. Red and blue ovals
show a singlet and a twisted singlet, respectively. The Haldane state
is a superposition of various singlet-covering states, and the inset for
the Haldane phase is an example of such singlet covering.

phases, respectively, where a star indicates the operation of
U z

1 (π ) or equivalently the twist of singlet pairs between the
legs. As the study of these phases has so far been limited in
literature, it is worthwhile to further investigate when these
phases emerge and how they compete with other phases in
concrete spin models.

In this paper, we study a simple extension of the spin- 1
2

Heisenberg ladder that has XXZ anisotropy � and a four-
spin interaction J4 (Fig. 1). The Hamiltonian of our model is
given by

H = J
∑

α=1,2

∑
j

(Sα, j · Sα, j+1)� + J⊥
∑

j

(S1, j · S2, j )�

+ J4

∑
j

(S1, j · S1, j+1)(S2, j · S2, j+1), (1)

where

(Sα,i · Sβ, j )� := Sx
α,iS

x
β, j + Sy

α,iS
y
β, j + �Sz

α,iS
z
β, j . (2)

The four-spin interaction with J4 > 0 (J4 < 0) introduces
effective repulsion (attraction) between singlet pairs on the
upper and lower edges of each plaquette. Throughout this
paper, we take the leg interaction J = 1 as the unit of en-
ergy. In contrast to the highly anisotropic models studied in
Refs. [35–37], we investigate a regime around the isotropic
case � = 1. By means of effective field theory for |J⊥|, |J4| 

1, we obtain rich ground-state phase diagrams that consist
of eight distinct gapped phases, as schematically shown in
Figs. 2 and 3. We also perform numerical calculations based
on the variational uniform matrix product state (VUMPS)
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algorithm [39,40] for J⊥ = ±1 to demonstrate that essentially
the same phase structures continue for |J⊥|, |J4| = O(1), as
shown in Figs. 4 and 10 later. A notable feature as compared
to Refs. [35,36] is that the four featureless phases, i.e., the
RS, RS*, Haldane, and Haldane* phases compete not only
with magnetic phases but also with staggered dimer (SD) and
columnar dimer (CD) phases, which have valence bond solid
(VBS) long-range orders breaking the translational symmetry.
It is also remarkable that the RS* and Haldane* phases, which
have highly anisotropic wave functions involving twisted sin-
glet pairs, appear even in the vicinity of the isotropic case � =
1. Below we briefly review previous studies on the model (1)
and highlight our contributions.

The model (1) has been studied intensively in the isotropic
case � = 1 [41–47], which corresponds to the horizontal axes
of Figs. 2 and 3. The SD and CD phases can be interpreted
as a consequence of effective repulsion or attraction between
singlet pairs due to J4. These phases have twofold degenerate
ground states below an excitation gap and are characterized
by the order parameters

〈OSD( j)〉 = 1
4 〈S1, j−1 · S1, j − S2, j−1 · S2, j

− S1, j · S1, j+1 + S2, j · S2, j+1〉, (3a)

〈OCD( j)〉 = 1
4 〈S1, j−1 · S1, j + S2, j−1 · S2, j

− S1, j · S1, j+1 − S2, j · S2, j+1〉. (3b)

The translational symmetry as well as a Z2 symmetry
with respect to the rung-centered reflection (Sα, j �→ Sα,− j)
are spontaneously broken in these phases. Field-theoretical
analyses for weak interchain couplings (|J⊥|, |J4| 
 1)
[41,46–48] suggest that the RS-SD and Haldane-CD tran-
sitions are continuous and described by the SU(2)2 Wess-
Zumino-Witten (WZW) theory with the central charge c =
3/2, although a possibility of a first-order transition is
not excluded. In this approach, the transition points are
estimated to be J4 ≈ 2.05J⊥ for both signs of J⊥ for
|J⊥|, |J4| 
 1 [46]. More detailed phase diagrams on the
J⊥-J4 plane have been obtained numerically [44,45,47]. In
particular, the exact diagonalization result of Ref. [44] for
the RS-SD transition is consistent with the c = 3/2 criti-
cality for 0.5 � J⊥ � 1.5. We note that the model (1) in
the isotropic case � = 1 is closely related with a Heisen-
berg ladder with a ring exchange studied in Refs. [49–55]
and that a RS-SD transition has also been discussed in the
latter model.

We have started our study of the model (1) in the
anisotropic case � �= 1 in Ref. [56], and we extend it sub-
stantially in the present work. The obtained phase diagrams
in Figs. 2 and 3 look like mirror images of each other.1 The

1A useful way to relate the phases in Figs. 2 and 3 is to shift the
lower leg of the ladder by one lattice spacing. In the bosonization
formalism, this can be expressed as the shifts of 2

√
πφ2 and

√
πθ2

by −π and π , respectively, as seen in Eq. (7). This corresponds to
the shifts of 2

√
2πφ± and

√
2πθ− by ∓π and −π , respectively.

The reason for this qualitative relation between Figs. 2 and 3 is as
follows. In the bosonized expressions of spin and dimer operators in
Eq. (7), the staggered components play a leading role. Therefore, an

Haldane* and RS* phases, which are both featureless, ap-
pear for easy-plane anisotropy � < 1. The Néel and stripe
Néel (SN) phases, which have magnetic long-range orders
along the z axis, appear for easy-axis anisotropy � > 1. The
Néel and SN phases have twofold degenerate ground states
below an excitation gap and are characterized by the order
parameters

〈ONéel( j)〉 = 1
4

〈
Sz

1, j − Sz
2, j − Sz

1, j+1 + Sz
2, j+1

〉
, (4a)

〈OSN( j)〉 = 1
4

〈
Sz

1, j + Sz
2, j − Sz

1, j+1 − Sz
2, j+1

〉
. (4b)

A Z2 symmetry with respect to the global π rotation of spins
about the x axis (Sy

α, j �→ −Sy
α, j and Sz

α, j �→ −Sz
α, j) is sponta-

neously broken in these phases.
Our previous work [56] has focused on the nature of

the phase transitions in the case of J⊥, J4 > 0 and easy-axis
anisotropy � > 1, which corresponds to the upper half of
Fig. 2. The Néel-SD transition is especially intriguing as it
is between two ordered phases breaking different symme-
tries and may be viewed as a one-dimensional (1D) variant
of deconfined quantum critical point [57–60]. We have pre-
sented evidence that this transition belongs to the Gaussian
universality class with c = 1. We have also demonstrated that
the RS-Néel transition belongs to the Ising universality class
with c = 1/2.

Our extended analysis in the present work demonstrates
that the Gaussian and Ising transition lines found in Ref. [56]
cross at the SU(2)-symmetric point � = 1 and further con-
tinue to the easy-plane regime � < 1, as shown in Fig. 2. We
also analyze the case of J⊥, J4 < 0, and find similar crossing
of the Gaussian and Ising transition lines, as shown in Fig. 3.
In both the cases, the Gaussian transitions occur between
featureless phases in the easy-plane regime � < 1, giving
examples of topological phase transitions.

It is interesting to ask in what way the four featureless
phases are distinguished. The following two types of string
order parameters have been used to characterize the Haldane
and RS phases [31–34]:

Oz
odd(r) := −

〈(
Sz

1,0 + Sz
2,0

)
exp

[
iπ

r−1∑
j=1

(
Sz

1, j + Sz
2, j

)]

× (
Sz

1,r + Sz
2,r

)〉
, (5a)

Oz
even(r) := −

〈(
Sz

1,0 + Sz
2,1

)
exp

[
iπ

r−1∑
j=1

(
Sz

1, j + Sz
2, j+1

)]

× (
Sz

1,r + Sz
2,r+1

)〉
. (5b)

Physically, these string order parameters detect the par-
ity of the number Q of valence bonds cut by a ver-
tical line between two adjacent rungs [34]. We obtain

antiferromagnetic interaction on a rung, J⊥(S1, j · S2, j )� with J⊥ > 0,
is qualitatively similar to a ferromagnetic interaction in a diagonal
direction, −J⊥(S1, j · S2, j−1)�, which is then transformed to a ferro-
magnetic interaction on a rung after the shift of the lower leg. A
similar transformation can also be performed for J4.
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limr→∞ Oz
odd/even(r) �= 0 if Q is odd/even. Therefore, the

Haldane and RS phases are characterized by nonvanishing of
Oz

odd(r) and Oz
even(r) for r → ∞, respectively. As these order

parameters remain unchanged under the operation of U z
1 (π ),

the Haldane* and RS* phases are characterized similarly.
However, these string order parameters do not distinguish
between the Haldane and Haldane* phases or between the
RS and RS* phases. We therefore calculate topological in-
dices [10,20–22] associated with D2 × σ and the translational
symmetry, and demonstrate that these indices can distinguish
all the four featureless phases.

The rest of this paper is organized as follows. In Sec. II,
we present a field-theoretical analysis for weak interchain
couplings, and derive the phase diagrams in Figs. 2 and 3.
In Secs. III and IV, we present numerical results for J⊥ = 1
and J⊥ = −1, respectively. In Sec. V, we analyze topological
indices that distinguish the four featureless phases. In Sec. VI,
we present a summary and an outlook for future studies. In
Appendix A, we apply the field-theoretical formulation in
Sec. II to an XYZ ladder studied by Liu et al. [35], and
provide a qualitative description of their numerical results. In
Appendices B and C, we provide some supplemental
numerical results.

II. EFFECTIVE FIELD THEORY

For weak interchain couplings with |J⊥|, |J4| 
 1, the
ground-state phase diagram of the model (1) can be studied by
means of effective field theory based on bosonization [61,62].
In our recent work [56], we have applied this formalism to
study the case of J⊥ > 0 and � � 1, i.e., the upper half of
Fig. 2. Here we present a more detailed analysis that reveals

the rich phase diagrams in Figs. 2 and 3. Our formulation is
an extension of those in Refs. [26–28,41,46–48], and we take
similar notations as those in Refs. [46,56].

A. Bosonization

Here we briefly describe the bosonization formulation to
obtain the low-energy effective Hamiltonian of the model (1)
for |J⊥|, |J4| 
 1. While this formulation has also been de-
scribed in our previous paper [56], we summarize it for the
purposes of self-containedness and fixing our notations.

We start from the two decoupled XXZ chains obtained
for J⊥ = J4 = 0. Each chain labeled by α = 1, 2 is described
effectively by the quantum sine-Gordon Hamiltonian

H eff
α =

∫
dx

v

2
[K−1(∂xφα )2 + K (∂xθα )2]

− vλ

2π
cos(4

√
πφα ), (6)

where φα (x) and θα (x) are a dual pair of bosonic fields. The
Gaussian part of Eq. (6) is known as the Tomonaga-Luttinger
liquid (TLL) theory and characterized by the spin velocity
v and the TLL parameter K . The TLL parameter K mono-
tonically decreases as a function of �, reaching K = 1/2 at
� = 1. When � exceeds unity, the λ term with the scaling
dimension 4K becomes relevant (i.e., 4K < 2) in the renor-
malization group (RG) sense, and induces the Néel order
in the z direction in each isolated chain. However, once the
interchain couplings J⊥ and J4 are introduced, these couplings
have much more significant impact on the low-energy physics
than the λ term as we discuss later.

The spin and dimer operators on each chain are related to
the bosonic fields as

Sz
α, j = a√

π
∂xφα + (−1) ja1 cos(2

√
πφα ) + · · · , (7a)

S+
α, j = ei

√
πθα [b0(−1) j + b1 cos(2

√
πφα ) + · · · ], (7b)

Sz
α, jS

z
α, j+1 = (−1) jdz sin(2

√
πφα ) + · · · , (7c)

Sx
α, jS

x
α, j+1 + Sy

α, jS
y
α, j+1 = (−1) jdxy sin(2

√
πφα ) + · · · , (7d)

where S±
α, j := Sx

α, j ± iSy
α, j , a is the lattice constant, and a1, b0, b1, dz, and dxy are nonuniversal coefficients [46,63–65]. At � = 1,

these coefficients satisfy a1 = b0 =: ā and dz = dxy/2 =: d̄ because of the SU(2) symmetry.
Treating J⊥ and J4 perturbatively and expressing them using Eq. (7), we obtain the low-energy effective Hamiltonian of the

model (1) as

H eff =
∫

dx
∑
q=±

vq

2

[
K−1

q (∂xφq)2 + Kq(∂xθq)2] + g+ cos(2
√

2πφ+) + g− cos(2
√

2πφ−) + g̃− cos(
√

2πθ−) + · · · , (8)

where φ± := (φ1 ± φ2)/
√

2 and θ± := (θ1 ± θ2)/
√

2 are
symmetric and antisymmetric combinations of the bosonic
fields and

g± = 1

a

(
J⊥�

a2
1

2
∓ J4

(3d )2

2

)
, g̃− = 1

a
J⊥b2

0, (9)

with 3d := dxy + dz. The velocities v± and the TLL param-
eters K± in the symmetric and antisymmetric channels are
in general modified from v and K in the decoupled XXZ

chains by the effects of the interchain couplings. In Eq. (8),
we focused on the most important terms around the isotropic
case � = 1. Indeed, the g± and g̃− terms have the scaling di-
mensions 2K± and 1/(2K−), respectively, which are all equal
to unity in the limit of the decoupled Heisenberg chains. These
terms are much more relevant than the λ term with the scaling
dimension 2K+ + 2K− in Eq. (6). Therefore the λ term can
be ignored unless the anisotropy � − 1 is significantly larger
than J⊥ and J4.
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B. Expected phase diagrams

The symmetric and antisymmetric channels are separated
in the effective Hamiltonian (8). The symmetric channel is
described by the sine-Gordon model, in which the strongly
relevant g+ term locks φ+ at distinct positions depending on
the sign of g+. A Gaussian transition with the central charge
c = 1 is expected at g+ = 0. The antisymmetric channel is
described by the dual-field double sine-Gordon model, in
which the strongly relevant g− and g̃− terms compete. When
K− = 1/2, in particular, both the terms have the same scaling
dimensions of unity, and the long-distance physics can be
determined by examining which of |g−| and |g̃−| is larger (in
this case, the model is known as the self-dual sine-Gordon
model [66]). Namely, |g−| > |g̃−| (|g−| < |g̃−|) leads to the
locking of φ− (θ−). Based on a mapping to Majorana fields,
an Ising transition with the central charge c = 1/2 has been
shown to occur at |g−| = |g̃−| [28,66]. When K− deviates
slightly from 1/2, a similar picture is still expected to hold
as the change in K− is a marginal perturbation.

Based on this argument and the coupling constants in
Eq. (9), we obtain the schematic phase diagrams around the
isotropic case � = 1 as shown in Figs. 2 and 3. Each phase
is characterized by the locking positions of the bosonic fields.
Remarkably, all the eight possible types of field locking in
the effective Hamiltonian (8) occur in the two diagrams. In
both the diagrams, a Gaussian transition in the symmetric
channel occurs at J4 = �(a1/3d )2J⊥ (red line) while an Ising
transition in the antisymmetric channel occurs at J4 ≈ [(2b2

0 −
�a2

1)/(3d )2]J⊥ (blue line). The two transition lines cross at
J4 = (ā/3d̄ )2J⊥ in the isotropic case � = 1, where the central
charge is expected to be c = 3/2 [41,44–48,67]; this point
was estimated to be J4,c = 2.05J⊥ [46]. Below we discuss the
phases appearing in these diagrams.

There are four ordered phases, the Néel, SN, SD, and CD
phases. Using Eq. (7), we can express the order operators in
Eqs. (3) and (4) in terms of the bosonic fields as

ONéel( j) = −(−1) ja1 sin(
√

2πφ+) sin(
√

2πφ−), (10a)

OSN( j) = (−1) ja1 cos(
√

2πφ+) cos(
√

2πφ−), (10b)

OSD( j) = −(−1) j (3d ) cos(
√

2πφ+) sin(
√

2πφ−), (10c)

OCD( j) = −(−1) j (3d ) sin(
√

2πφ+) cos(
√

2πφ−). (10d)

We can easily see that these operators acquire finite expec-
tation values in the corresponding phases. For example, in
the CD phase with 2

√
2π (φ+, φ−) = (−π, π ∓ π ) in Fig. 3,

we have 〈OCD( j)〉 = ±(−1) jcCD, where cCD is a constant
independent of j.

There are also four featureless phases, the RS, RS*,
Haldane, and Haldane* phases. In these phases, the expec-
tation values of all the operators in Eq. (10) vanish as φ−
fluctuates entirely owing to the locking of θ−. These phases
are instead characterized by the two types of string cor-
relations in Eq. (5), which have the following bosonized
expressions [68]:

Oz
odd(r) ∼ 〈cos(

√
2πφ+(0)) cos(

√
2πφ+(ra))〉, (11a)

Oz
even(r) ∼

〈
sin

(√
2πφ+

(a

2

))
sin

(√
2πφ+

(
ra + a

2

))〉
.

(11b)

We note that only the field in the symmetric channel is
involved in these correlations. The Haldane and Haldane*
phases with the field locking around 2

√
2πφ+ = 0 exhibit

nonvanishing values of Oz
odd(r) for r → ∞. Similarly, the RS

and RS* phases with the field locking around 2
√

2πφ+ = π2

exhibit nonvanishing Oz
even(r) for r → ∞.

The difference between the Haldane and Haldane* phases
or between the RS and RS* phases resides in the locking
positions of

√
2πθ−, which cannot be detected by the string

correlations (11). In fact, this difference can be used to show
that the two phases are related by the unitary transformation
U z

1 (π ) = exp(iπ
∑

j Sz
1, j ) [37]. Indeed, under this transfor-

mation, the field
√

πθ1 is shifted by π as seen in Eq. (7b),
and then the field

√
2πθ− = √

π (θ1 − θ2) is also shifted by
π . Identification of the Haldane* and RS* phases in the
bosonization approach is based on this observation.

We have so far neglected possible perturbations to the ef-
fective Hamiltonian (8) which have larger scaling dimensions
than the g± and g̃ terms. If such perturbations also become
relevant, they can potentially change the nature of the phase
transitions. In Ref. [56], we have addressed this issue for
the case of the Néel-SD transition. Since the antisymmetric
channel remains gapped at this transition, we can focus on
the symmetric channel. As a possible perturbation, we can
consider, for example, a higher-frequency cosine potential
cos(4

√
2πφ+) with the scaling dimension 8K+, which may

lead to a first-order phase transition [69]. We have numerically
demonstrated that K+ stays around 0.6 along the Néel-SD
transition line in the parameter range investigated, and thus
the above higher-frequency cosine term is likely to remain
sufficiently irrelevant. As we have K+ = 1/2 in the limit of
decoupled Heisenberg chains, we can expect that our picture
based on the leading terms in the effective Hamiltonian (8)
would hold at least for weak interchain couplings.

C. Correlation functions around the Gaussian transitions

We have argued that Gaussian transitions occur between
the ordered phases and between the featureless phases. We
discuss the behavior of correlation functions around the pre-
sumed Gaussian transitions. As the case of the Néel-SD
transition has been discussed previously [56], we focus on the
other cases.

The SN-CD transition can be studied in a similar manner as
the Néel-SD transition. We consider the following correlation
functions:

CSN(r) := (−1)r〈OSN(r)OSN(0)〉, (12a)

CCD(r) := (−1)r〈OCD(r)OCD(0)〉. (12b)

Each of these correlation functions would show a long-range
order (i.e., convergence to a nonvanishing value for r → ∞)
in the concerned phase and an exponential decay in the other

2While the RS and RS* phases have the field locking around
2
√

2πφ+ = π and −π , respectively, in Figs. 2 and 3, these locking
positions are equivalent. This is because the field φα on each leg
α(= 1, 2) is compactified as 2

√
πφα ≡ 2

√
πφα + 2π .
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phase. At the Gaussian transition, both of these functions
would show a critical power-law decay. This can be shown
in the following way. As seen in the bosonized expressions
in Eq. (10), the operators OSN( j) and OCD( j) involve both
the fields φ±. As the symmetric channel is described by
the Gaussian theory at the transition point, the symmetric
component cos(

√
2πφ+) or sin(

√
2πφ+) shows a critical cor-

relation with the decay exponent K+. In contrast, as
√

2πφ−
remains locked around (π ∓ π )/2, the antisymmetric com-
ponent cos(

√
2πφ−) shows a correlation that converges to a

nonvanishing constant above the length scale proportional to
the inverse of the excitation gap. Therefore, above this scale,
the correlation functions in total exhibit the power-law behav-
ior CSN/CD(r) ∼ r−K+ . In numerical calculations, the transition
can be identified by plotting the two correlation functions in
logarithmic scales and finding the point at which they both
become linear and parallel to each other. We conduct this
analysis in Sec. IV B.

Next we consider the RS-Haldane* and RS*-Haldane
transitions. We consider the two types of string correlation
functions (5). Based on the bosonized expressions (11) and
field locking positions in Figs. 2 and 3, we find that Oz

odd(r)
changes from an exponential decay to a long-range order
across these transitions while Oz

even(r) changes in the opposite
way. At the transition point, where the symmetric channel
is described by the Gaussian theory, we have Oz

odd/even(r) ∼
r−K+ . Again, in numerical calculations, the transition point
can be identified by linear and parallel behavior of the two
correlation functions plotted in logarithmic scales. We con-
duct this analysis in Secs. III A and IV A.

III. NUMERICAL RESULTS FOR J⊥ = 1

We have performed numerical calculations directly for the
infinite system by applying the VUMPS algorithm [39,40]. In
this algorithm, a variational state is prepared in the form
of a uniform matrix product state (MPS), and the ground
state is obtained by iteratively optimizing constituent tensors
to lower the variational energy. This algorithm thus shares
some ideas with the infinite-size density matrix renormal-
ization group [70–72] and the infinite time-evolving block
decimation [73,74]. In applying VUMPS to the present ladder
system, we regard two sites on each rung as a single effective
site with the local Hilbert space dimension of four. In this
section and the next, we adopt the two-site unit cell imple-
mentation in Ref. [39] as all the phases discussed in Sec. II
have the unit cell consisting of at most two effective sites
(i.e., two rungs). To ensure the sufficient convergence, we only
used the data points that have the gradient norm ‖B‖ < 10−10,
where B is the gradient of energy per site with respect to the
elementary tensor in VUMPS. The same method was employed
in our previous work [56].

In this section, we fix J = J⊥ = 1 and study the ground-
state phase diagram in the J4-� plane. The obtained phase
diagram is shown in Fig. 4, which is qualitatively consistent
with the field-theoretical prediction in Fig. 2. As the case of
� � 1 has been analyzed previously [44,56], we focus on
the easy-plane regime � < 1 throughout this section. Below
we explain how the RS-Haldane*-SD phase boundaries are

FIG. 4. Phase diagram of the model (1) on the J4-� plane with
J = J⊥ = 1. Circles indicate transition points obtained numerically,
and dotted lines connecting them are our assumption of the phase
boundaries. The transition points in the easy-plane regime � < 1 are
obtained in the present work while those in the easy-axis regime
� > 1 are taken from our previous work [56]. We will focus on
the RS-Haldane* transition along the red solid line with � = 0.7
(Sec. III A), and the Haldane*-SD transition along the blue dashed
line with � = 0.9 (Sec. III B). The transition point J4 � 1.19 in the
isotropic case � = 1 is estimated in Appendix C, and is consistent
with the previous works [44,56].

obtained and how the critical properties at these transitions
are characterized in our numerical analysis.

A. RS-Haldane* transition

Here we focus on the RS-Haldane* transition along the red
solid line with � = 0.7 in Fig. 4. In our VUMPS calculations,
the ground state is obtained in the form of a period-2 MPS
with the finite bond dimension χ . We can extract the correla-
tion length ξ from it in the following way. Let A(k)s j ∈ Rχ×χ

be the matrix for the state s j at the j-th effective site. Using
the matrices at the two neighboring sites j = 1 and 2, we
construct the combined matrix As := A(1)s1 A(2)s2 ∈ Rχ×χ

for the combined state s = (s1, s2). The correlation length
is then calculated as ξ (χ ) = −2/ ln |ε2(χ )|, where ε2(χ ) is
the second largest absolute eigenvalue of the transfer matrix
T := ∑

s A
s† ⊗ As. The obtained correlation length ξ (χ ) is

plotted for different bond dimensions χ in Fig. 5. It shows
a peak that grows consistently with an increase in χ , and
the peak value exceeds 200 lattice spacings for χ = 192.
However, the peaks in Fig. 5 are not as sharp as those found
for the Néel-SD transition in Ref. [56]. Therefore, while Fig. 5
suggests the occurrence of a phase transition, it does not allow
a precise determination of the RS-Haldane* transition point.
We note that the nonsharpness of peaks has also been found
for the RS-SD transition in the isotropic case � = 1 [56], and
is likely to be due to nontrivial effects of finite χ on transitions
between valence bond phases. The transition point can instead
be determined with reasonable accuracy through the analysis
of the string correlations, which is done next.

Figure 6 shows the numerical results on the two types of
string correlation functions in Eq. (5). We find a qualitative
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FIG. 5. Correlation length ξ as a function of J4 around the
RS-Haldane* transition for � = 0.7 (see the red solid line in Fig. 4).
The correlation length shows a peak that grows consistently with
an increase in χ . However, the nonsharpness of the peaks does not
allow a precise determination of the transition point. The transition
point is estimated to be JRS-H∗

4,c = 0.690(5) in the analysis of the string
correlations in Fig. 6.

difference between the ranges of J4 � 0.69 and J4 � 0.69. For
J4 � 0.69, Oz

even(r) is nondecaying at long distances while
Oz

odd(r) shows a rapid decay. For J4 � 0.69, Oz
odd(r) is non-

decaying while Oz
even(r) shows a rapid decay. These results

are consistent with the occurrence of the RS-Haldane* tran-
sition. However, we note that (non)decaying behavior of the
two correlations only reflects the locking position of the field
φ+ [see Eq. (11)], and that more detailed characterization of
the phases requires the use of topological indices, which is
done in Sec. V.

As discussed in Sec. II C, the two string correlation func-
tions show a power-law decay with the same exponent K+ at
the transition if it belongs to the Gaussian universality class.
Therefore, the transition point can be identified by linear and
parallel behavior of the two correlations plotted in logarithmic
scales. As seen in Fig. 6(c), this should occur between J4 =
0.685 and J4 = 0.695, giving the estimate JRS-H∗

4,c = 0.690(5)
of the transition point. Here, the analysis is based on the data
for r � 100, where the dependence on the bond dimension is
minimal; this range is also below the scale of the correlation
length ξ � 245 for χ = 192 in Fig. 5.

Critical points of a large class of 1D quantum systems are
described by the conformal field theory (CFT). To investigate
the underlying CFT, we calculate the entanglement entropy S
for a bipartition of the infinite 1D system into two half-infinite
chains. According to the CFT, the entanglement entropy S and
the correlation length ξ obey the scaling

S = c

6
ln ξ + S0, (13)

where c is the central charge and S0 is a constant [75,76]. The
numerical results in Fig. 7 show a good agreement with this
scaling with c = 1. Our results in Figs. 6(c) and 7 thus support
the scenario in Sec. II that the RS-Haldane* transition belongs
to the Gaussian universality class with c = 1.

FIG. 6. Two types of string correlation functions (5) around the
RS-Haldane* transition for � = 0.7 in Fig. 4. Logarithmic scales
are used for both axes. Large open and small filled symbols show
the data for the bond dimensions χ = 96 and 192, respectively. We
focus on the range of r where the dependence on χ is not signifi-
cant. (a) Oz

even(r) is nondecaying at long distances in the RS phase
with J4 � 0.69. (b) Oz

odd(r) is nondecaying in the Haldane* phase
with J4 � 0.69. (c) The two correlation functions show a power-law
decay with the same exponent K+ at the transition if the transition
belongs to the Gaussian universality class. As analyzed in this panel,
this should occur between J4 = 0.685 and 0.695, and the exponent
is estimated to be K+ = 0.76(3). Two parallel gray solid lines are
guides to the eye and their slope is −0.76.

B. Haldane*-SD transition

Here we focus on the Haldane*-SD transition along the
blue dashed line with � = 0.9 in Fig. 4. Figure 8(a) shows
the SD order parameter |〈OSD〉|, which indicates the onset
of the SD order at a certain transition point JH∗-SD

4,c . Accord-
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FIG. 7. Entanglement entropy S(χ ) vs the correlation length
ξ (χ ) for the bond dimensions χ = 96, 128, 160, and 192. These
are calculated at J4 = 0.685, 0.690, and 0.695, around which the
RS-Haldane* transition is expected to occur (see Fig. 6). A loga-
rithmic scale is used for the horizontal axis. The gray straight line
is a guide to the eye and its slope is 1/6, which corresponds to the
central charge c = 1 [see Eq. (13)].

ing to the effective field theory, the Haldane*-SD transition
belongs to the Ising universality class with c = 1/2. In this
universality class, the critical exponent for the spontaneous
order parameter is given by β = 1/8. Therefore it is expected
that the order parameter to the eighth power becomes linear
around the transition point and its intersect with the horizontal
axis gives the estimate of the transition point. This analysis is
performed in Fig. 8(b). We indeed find a good agreement with
linear behavior in the range where the dependence on χ is
sufficiently converged. The transition point is estimated to be
JH∗-SD

4,c � 1.80.
Figure 9 shows the relation between the entanglement en-

tropy S(χ ) and the correlation length ξ (χ ) at three points near
the estimated critical point. We can confirm the consistency
with the CFT scaling (13) with the central charge c = 1/2.

IV. NUMERICAL RESULTS FOR J⊥ = −1

In this section, we fix J = 1 and J⊥ = −1. The obtained
phase diagram in Fig. 10 is qualitatively consistent with the
field-theoretical prediction in Fig. 3. Below we explain how
the phase boundaries are obtained and how the critical prop-
erties are characterized in our numerical analysis.

A. RS*-Haldane transition

The RS*-Haldane transition can be analyzed in a similar
manner as the RS-Haldane* transition discussed in Sec. III A.
Figure 11 shows the string correlation functions around
the RS*-Haldane transition for � = 0.8. For J4 � −0.23,
Oz

even(r) is nondecaying at long distances while Oz
odd(r) shows

a rapid decay. For J4 � −0.23, Oz
odd(r) is nondecaying while

Oz
even(r) shows a rapid decay. These results are consistent

with the occurrence of the RS*-Haldane transition. More de-
tailed characterization of these phases is given in terms of
topological indices in Sec. V. Assuming the Gaussian uni-
versality class, the transition point JRS∗-H

4,c can be identified

FIG. 8. (a) SD order parameter |〈OSD〉| [defined in Eq. (3a)] as
a function of J4 around the Haldane*-SD transition for � = 0.9 (see
the blue dashed line in Fig. 4). (b) |〈OSD〉|8 as a function of J4. The
black solid line shows the linear fitting of the χ = 224 data in the
range 1.81 � J4 � 1.83, where the dependence on χ is sufficiently
converged. Its intersect with the horizontal axis gives the estimate
JH∗-SD

4,c � 1.80 of the transition point.

FIG. 9. Entanglement entropy S(χ ) vs the correlation length
ξ (χ ) for the bond dimensions χ = 96, 128, 160, and 192. These
are calculated at J4 = 1.8001, 1.8004, and 1.8007, around which
the Haldane*-SD transition is expected to occur (see Fig. 8). A
logarithmic scale is used for the horizontal axis. The gray straight
line is a guide to the eye and its slope is 1/12, which corresponds to
the central charge c = 1/2.
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FIG. 10. Phase diagram of the model (1) on the J4-� plane
with J = 1 and J⊥ = −1. Circles indicate transition points obtained
numerically, and dotted lines are our assumption of the phase bound-
aries. We will focus on the transitions along the red solid lines with
� = 0.8 (Sec. IV A) and 1.05 (Sec. IV B) and those along the blue
dashed lines with J4 = −0.5 (Sec. IV C) and −1.5 (Sec. IV D). The
transition point J4,c = −0.87(5) in the isotropic case � = 1 (a circle
with an error bar) is estimated in Appendix C; see Ref. [45] for an
estimate by exact diagonalization.

by linear and parallel behavior of the two correlation func-
tions plotted in logarithmic scales. This should occur between
the two points examined in Fig. 11(c), giving the estimate
JRS∗-H

4,c = −0.230(5). We have also confirmed the consistency
with the central charge c = 1 in a similar manner as in Fig. 7
(not shown).

B. CD-SN transition

Figure 12 shows the CD and SN correlation functions (12)
around the CD-SN transition for � = 1.05 in Fig. 10. The
data show the tendency of the CD and SN long-range orders
for J4 � −1.35 and J4 � −1.35, respectively. As discussed in
Sec. II C, the two correlation functions show a power-law de-
cay with the same exponent K+ at the transition point JCD-SN

4,c if
the transition belongs to the Gaussian universality class. This
should occur between the two points examined in Fig. 12(c),
giving the estimate JCD-SN

4,c = −1.35(2).

C. Haldane-SN transition

The Haldane-SN transition can be analyzed in a similar
manner as the Haldane*-SD transition discussed in Sec. III B.
Here, we fix J4 = −0.5 and vary �. Figure 13 shows our
result on the SN order parameter |〈OSN〉|. In the Ising uni-
versality class, |〈OSN〉|8 is expected to be linear around the
transition point �H-SN

c . By performing the linear fitting of
the data of |〈OSN〉|8 versus � and finding the intersect with
the horizontal axis, we obtain the estimate �H-SN

c � 1.022.
We also confirmed the consistency with the central charge
c = 1/2 in a similar manner as in Fig. 9 (not shown).

FIG. 11. Two types of string correlation functions (5) around the
RS*-Haldane transition for � = 0.8 in Fig. 10. Large open and small
filled symbols are for χ = 96 and 192, respectively. (a) Oz

even(r) is
nondecaying at long distances in the RS* phase with J4 � −0.23.
(b) Oz

odd(r) is nondecaying in the Haldane phase with J4 � −0.23.
(c) The two correlation functions show a power-law decay with the
same exponent K+ at the transition in the Gaussian universality class.
As analyzed in this panel, this should occur between J4 = −0.235
and −0.225 with the exponent K+ = 0.68(2). Two parallel gray solid
lines are guides to the eye and their slope is −0.68.

D. RS*-CD transition

The RS*-CD transition can also be analyzed similarly.
Here we fix J4 = −1.5, and plot the CD order parameter to
the eighth power, |〈OCD〉|8, as a function of � in Fig. 14.
The numerical data show a rather significant dependence
on the bond dimension χ . This behavior is specific to the
RS*-CD transition, and is likely to be caused by its proximity
to the CD-SN transition. We therefore perform the linear fit-
ting individually for each bond dimension χ , find its intersect
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FIG. 12. Correlation functions (12) around the CD-SN transition
for � = 1.05 in Fig. 10. Large open and small filled symbols are
for χ = 96 and 192, respectively. (a) The CD correlation function
CCD(r) plotted in logarithmic scales is convex for J4 � −1.35, sig-
nifying the CD long-range order. (b) The SN correlation function
CSN(r) plotted in logarithmic scales is convex for J4 � −1.35, sig-
nifying the SN long-range order. (c) The two correlation functions
show a power-law decay with the same exponent K+ at the transition
in the Gaussian universality class. As analyzed in this panel, this
should occur between J4 = −1.37 and −1.33 with the exponent
K+ = 0.62(8). Two parallel gray solid lines are guides to the eye
and their slope is −0.62.

with the horizontal axis, and obtain the χ -dependent pseudo-
critical point �RS∗-CD

c (χ ).
We extrapolate the pseudo-critical point to infinite χ by

using the finite-bond-dimensional scaling. Finite-size scaling
predicts that the true critical point �c,true and the pseudo-

FIG. 13. (a) SN order parameter |〈OSN〉| [defined in Eq. (4b)]
as a function of � around the SN-Haldane transition for J4 = −0.5
in Fig. 10. (b) |〈OSN〉|8 as a function of �. The black solid line
shows the linear fitting of the χ = 224 data in the range 1.025 <

� < 1.035. Its intersect with the horizontal axis gives the estimate
�H-SN

c � 1.022 of the transition point.

critical point �c(L) satisfy

�c,true − �c(L) ∼ L− 1
ν . (14)

FIG. 14. CD order parameter (3b) to the eighth power, |〈OCD〉|8,
as a function of � around the RS*-CD transition for J4 = −1.5 in
Fig. 10. By performing the linear extrapolation individually for each
bond dimension χ , we estimate the pseudo-critical point �c(χ ). As
shown in the inset, we estimate the critical point �c(χ → ∞) �
0.979 by using the bond-dimensional scaling in Eq. (15) with ν = 1.
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FIG. 15. Entanglement entropy S(χ ) vs the correlation length
ξ (χ ) for the bond dimensions χ = 96, 128, 160, and 192. These
are calculated at � = 0.978, 0.979, and 0.980, around which the
RS*-CD transition is expected to occur. A logarithmic scale is used
for the horizontal axis. The gray straight line is a guide to the eye and
its slope is 1/12, which corresponds to the central charge c = 1/2.

We assume that Eq. (14) holds by replacing the system size L
with the correlation length ξ :

�c,true − �c(χ ) ∼ ξ (χ )−
1
ν . (15)

We also assume the Ising universality class with ν = 1. Using
this scaling, we obtain the critical point �RS∗-CD

c � 0.979 as
shown in the inset in Fig. 14.3Around the estimated critical
point, we have confirmed the consistency with c = 1/2 by
examining the entanglement entropy versus the correlation
length as shown in Fig. 15.

V. TOPOLOGICAL DISTINCTION AMONG THE FOUR
FEATURELESS PHASES

In the preceding sections, we have used two types of
string correlations (5) in analyzing the RS-Haldane* and
RS*-Haldane transitions. However, these correlations cannot
be used to distinguish between the RS and RS* phases or
between the Haldane and Haldane* phases. In this section,
we demonstrate that topological indices [10,20–22] associated
with the D2 × σ symmetry and the translational symmetry can
distinguish all the four featureless phases. Below we briefly
review the basic formalism for classifying 1D SPT phases and
calculating topological indices (especially, those of Pollmann
and Turner [20]), and then apply it to the present ladder
system. While the full classification of SPT phases in a spin- 1

2
ladder with the D2 × σ symmetry has been achieved by Liu
et al. [35], our results illustrate how those phases are identified
unambiguously in numerical calculations.

3In the inset of Fig. 14, the pseudo-critical point tends to in-
crease with an increase in χ . Therefore, even if we do not rely
on the extrapolation, we can expect that the true transition point
�c,true is above �c(χ = 192) = 0.976. The range between this lower
bound and the extrapolated critical point �c(χ → ∞) = 0.979 is
rather narrow, and smaller than the symbol size in the phase
diagram in Fig. 10.

Classification of 1D SPT phases can conveniently be
discussed using the MPS representation [10,11,21–23]. As-
suming the translational invariance, we represent the (nor-
malized) ground state of the infinite system in the form of a
canonical MPS as

|�〉 =
∑

...,l,m,n,...

[. . . ��l��m��n . . . ]|. . . l, m, n, . . . 〉. (16)

Here, �m is a χ -by-χ matrix with m being the spin state at
a site, and � = diag(λ1, . . . , λχ ) is a diagonal matrix com-
prised of the Schmidt values associated with a bipartition
of the system into half-infinite chains. In our application
to the spin- 1

2 ladder, m runs over the four spin states on a
rung. Suppose that |�〉 is invariant under an on-site unitary
transformation, which is represented in the spin basis as a
unitary matrix �mm′ acting on every site. Namely, we have
|〈�|�̃〉| = 1, where |�̃〉 is the state after the transformation.
Then the �m matrices can be shown to satisfy [77]∑

m′
�mm′�m′ = eiθ�U †

��mU�, (17)

where eiθ� is a phase factor and U� is a χ -by-χ unitary matrix
which commutes with �. The phase factors {eiθ� } form a
1D representation of the symmetry group. The matrices {U�}
form a χ -dimensional projective representation of the symme-
try group. Namely, it may differ from the linear representation
by phase factors:

U�1U�2 = eiρ(�1,�2 )U�1�2 . (18)

The phases ρ(�1, �2), called the factor set of the representa-
tion, can be used to classify different phases. Specifically, if
these phases cannot be gauged away by redefining the phases
of U� , the state {|�〉} belongs to a nontrivial SPT phase. When
the translational symmetry is further imposed, eiθ� can also be
used to classify phases [22].

To obtain the matrix U� and the phase factor eiθ� numeri-
cally, we introduce a generalized transfer matrix

T �
αα′;ββ ′ :=

∑
m

(∑
m′

�mm′�m′,αβ

)
(�m,α′β ′ )∗λβλβ ′ . (19)

Let X be the right eigenvector with the largest absolute
eigenvalue ε�

1 :

T �
αβ;α′β ′Xββ ′ = ε�

1 Xββ ′ , (20)

where X is normalized such that XX † = I . Since we as-
sumed |〈�|�̃〉| = 1, ε�

1 must have unit modulus. Conversely,
if |ε�

1 | < 1, we have |〈�|�̃〉| = 0. We now regard the vector
X with χ2 elements as a χ -by-χ matrix. One can show that
if |ε�

1 | = 1, X and ε�
1 are equal to U † and eiθ� , respectively,

specifically, Uββ ′ = X ∗
β ′β [20,77].

We now focus on the case of a spin- 1
2 ladder with the

D2 × σ symmetry studied by Liu et al. [35]. The symmetry
transformations acting on each rung are given by the spin ro-
tations �x := exp[iπ (Sx

1 + Sx
2 )] and �z := exp[iπ (Sz

1 + Sz
2)]

and the interchain exchange �σ := ∑
α,β=↑,↓ |αβ〉〈βα|. For

these transformations, we can introduce the unitary matrices
Ux := U�x , Uz := U�z , and Uσ := U�σ and the corresponding
indices εx

1, εz
1, and εσ

1 as explained above. While �x, �z, and
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�σ commute with one another, the commutation relations
among Ux, Uz, and Uσ may involve nontrivial phase factors.
Such phase factors can be used as fingerprints of different
phases. They can conveniently be detected by introducing
traced commutators [20]

Oxz :=
{

0 if |εx
1 | < 1 or |εz

1| < 1;
1
χ

tr(UxUzU †
x U †

z ) if |εx
1 | = |εz

1| = 1,
(21)

and

Oxσ :=
{

0 if |εx| < 1 or |εσ
1 | < 1;

1
χ

tr(UxUσU †
x U †

σ ) if |εx
1 | = |εσ

1 | = 1.
(22)

As explained above, we have |ε�
1 | < 1 if the state is not

invariant under the transformation �; in this case, O��′ is zero
by definition.

The commutation relations among Ux, Uz, and Uσ can be
read off from Table I in Ref. [35], in which possible projective
representations of D2 × σ and the corresponding SPT phases
are summarized. If we do not impose the translational symme-
try, the RS and RS* phases (termed rung-|0, 0〉 and rung-|1, z〉
in Ref. [35]) fall into the trivial phase as they both include
rung-factorized product states. In this trivial phase, Ux, Uz, and
Uσ commute with one another, indicating Oxz = Oxσ = 1. In
contrast, the Haldane and Haldane* phases (termed t0 and
tz in Ref. [35]) show the nontrivial relation UxUz = −UzUx,
indicating Oxz = −1. Furthermore, the Haldane* phase shows
UxUσ = −UσUx, indicating Oxσ = −1. If we further impose
the translational symmetry, the RS and RS* phases can be
distinguished by the index εσ

1 . Indeed, by multiplying �σ to
a singlet |0, 0〉 := (| ↑↓〉 − | ↓↑〉)/

√
2 and a twisted singlet

|1, z〉 := (| ↑↓〉 + | ↓↑〉)/
√

2 on a rung, we find εσ
1 = −1 and

εσ
1 = 1 in the RS and RS* phases, respectively. Therefore we

can distinguish the four featureless phases by using the indices
Oxz, Oxσ , and εσ

1 .
We have numerically calculated these topological indices

in our model. Here, we have implemented the VUMPS al-
gorithm not for multi-site unit cells as used in the previous
sections but for single-site unit cells. With this imple-
mentation, transitions between featureless phases can be
investigated more accurately; furthermore, the translational
invariance is explicitly imposed, which is useful in applying
the formalism described above. The procedure goes as fol-
lows. First, we calculate the ground state |�〉 represented in
a mixed canonical form. Second, we recast the state into a
canonical form. Third, we construct the generalized transfer
matrix (19), and obtain the largest eigenvalue ε�

1 and the
corresponding right eigenvector X , where the latter is equal to
U † if |ε�

1 | = 1. Finally, we calculate the traced commutators
in Eqs. (21) and (22). Additionally, we have calculated the
entanglement spectrum {−2 ln λα}, which exhibits nontrivial
degeneracy when some of U�’s are noncommutative [10].
For example, when UxUz = −UzUx as in the Haldane and
Haldane* phases, the entire spectrum shows double degener-
acy as � commutes with Ux and Uz.

Numerical results obtained around the RS-Haldane* and
Haldane*-RS transitions are shown in Figs. 16 and 17, re-
spectively. The numerical values of the indices Oxz, Oxσ ,
and εσ

1 shown in the upper panels are in perfect agreement

FIG. 16. (a) Topological indices and (b) entanglement spectra
{−2 ln λα} around the RS-Haldane* transition at J⊥ = 1 and � =
0.7; see the red solid line in Fig. 4.

with the expected values in the four phases. The entanglement
spectra shown in the lower panels show the expected double
degeneracy in the Haldane and Haldane* phases. Physically,
the double degeneracy arises if an odd number of (twisted)
valence bonds are cut when the ladder is bipartitioned (see
Appendix B for entanglement spectra in the ordered phases).
In this sense, the degeneracy in the entanglement spectrum has
similar information as the string correlation Oz

odd; it cannot
distinguish between the Haldane and Haldane* phases. Yet,
more detailed information provided by the topological indices
can distinguish all the four featureless phases.

FIG. 17. (a) Topological indices and (b) entanglement spectra
{−2 ln λα} around the Haldane*-RS transition at J⊥ = −1 and � =
0.8; see the red solid line in Fig. 10.
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VI. SUMMARY AND OUTLOOK

In this paper, we have studied the spin- 1
2 XXZ model with

a four-spin interaction on a two-leg ladder in Eq. (1). By
means of effective field theory and VUMPS calculations, we
have obtained rich ground-state phase diagrams that consist
of eight distinct gapped phases, as shown in Figs. 2, 3, 4,
and 10. Notably, there are four featureless phases, i.e., the
RS, RS*, Haldane, and Haldane* phases, which have a unique
bulk ground state and do not break any symmetry. While the
RS* and Haldane* phases have highly anisotropic nature, they
are found to appear even in the vicinity of the isotropic case
� = 1. In the obtained phase diagrams, the four featureless
phases compete not only with magnetic phases but also with
dimer phases that break the translational symmetry. We have
argued and demonstrated that Gaussian transitions with the
central charge c = 1 occur between the featureless phases
and between the ordered phases while Ising transitions with
c = 1/2 occur between the featureless and ordered phases.
The two types of transition lines cross at the SU(2)-symmetric
point, where the criticality is described by the SU(2)2 WZW
theory with c = 3/2 [41,44–48]. As argued by Liu et al. [35],
the four featureless phases are distinguished in the presence
of the spin rotational dihedral symmetry D2, the interleg ex-
change symmetry σ , and the translational symmetry. We have
demonstrated that these phases are indeed distinguished by
topological indices associated with these symmetries.

An implication from the present work is that a rich phase
structure can emerge by introducing anisotropy around the
c = 3/2 critical point described by the SU(2)2 WZW theory.
Such a structure has also been found in the spin-1 chain with
bilinear and biquadratic interactions around the c = 3/2 crit-
ical point known as the Takhtajan-Babujian model [78–80]:
in the presence of uniaxial anisotropy D, the Haldane, dimer,
Néel, and large-D phases compete around this point [81].
While the universality classes of the transitions among them
have yet to be investigated, the phase structure is similar
to Fig. 3. It would be interesting to extend this idea to
other systems such as a generalized Hubbard ladder [67] and
spin chains with higher symmetry [80]. Research along this
direction may provide opportunities to explore further exam-
ples of SPT phases and to investigate their competition with
ordered phases.
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APPENDIX A: EFFECTIVE FIELD THEORY FOR A SPIN- 1
2

XYZ LADDER

In this Appendix, we apply the field-theoretical formula-
tion in Sec. II to a highly anisotropic XYZ model on a ladder

FIG. 18. Schematic phase diagram of the model (A1) with Jx
⊥ =

Jy
⊥ =: Jxy

⊥ and |Jxy
⊥ |, |Jz

⊥| 
 1. We assume that � is close to unity. A
Gaussian transition in the symmetric channel is expected on the red
solid line with Jz

⊥ = 0. Ising transitions in the antisymmetric channel
are expected on the blue solid lines with Jz

⊥ � ±(2b2
0/a2

1 )Jxy
⊥ . The

Néelμ and SNμ phases (μ = x, y, z) are phases with magnetic orders
along the μ axis; for μ = z, they correspond to the Néel and SN
phases in Figs. 2 and 3. The phase structure is left-right symmetric
as the sign of Jxy

⊥ can be flipped under the unitary transformation
U z

1 (π ) := exp(iπ
∑

j Sz
1, j ).

described by the Hamiltonian

H = J
∑

α=1,2

∑
j

(Sα, j · Sα, j+1)� +
∑

μ=x,y,z

Jμ

⊥
∑

j

Sμ
1, jS

μ
2, j .

(A1)

This model is equivalent to the model studied by
Liu et al. [35], and our analysis gives a qualitative description
of their numerical results, as we explain in the following.

We set J = 1 and assume |Jμ

⊥| 
 1 (μ = x, y, z). Treat-
ing Jμ

⊥’s perturbatively, we obtain the low-energy effective
Hamiltonian similar to Eq. (8) but with the additional term
g̃+ cos(

√
2πθ+). The coupling constants in this effective

Hamiltonian are given by

g± = a2
1

2a
Jz
⊥, g̃± = b2

0

2a
(Jx

⊥ ∓ Jy
⊥). (A2)

Assuming that � is close to unity, we can determine the
ground-state phase diagram in a similar manner as in Sec. II B.

We first consider the case of Jx
⊥ = Jy

⊥ =: Jxy
⊥ . In this case,

the model (A1) has the U (1) spin-rotational symmetry. Re-
flecting this symmetry, the g̃+ term vanishes and a magnetic
order is allowed only along the z axis. The obtained phase
diagram in Fig. 18 exhibits competition among four feature-
less phases and two phases with magnetic orders along the
z axis. This diagram agrees qualitatively with Fig. 5 in
Ref. [35], which is for � = 1. In the latter figure, however, the
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FIG. 19. Schematic phase diagram of the model (A1) with Jy
⊥ =

Jz
⊥ =: Jyz

⊥ and |Jx
⊥|, |Jyz

⊥ | 
 1. We assume that � is close to but
less than unity. With this assumption, we have a1 > b0; for ex-
ample, a2

1/b2
0 � 1.4 for � = 0.9 [63,64]. Ising transitions in the

symmetric channel are expected on the green solid lines with Jx
⊥ �

(1 ± a2
1/b2

0 )Jyz
⊥ . Ising transitions in the antisymmetric channel are

expected on the blue solid lines with Jx
⊥ � (−1 ± a2

1/b2
0 )Jyz

⊥ . The
phase structure is left-right symmetric as the sign of Jyz

⊥ can be flipped
under U x

1 (π ). Under this transformation, the RS and Haldane phases
are mapped onto the rung-|1, x〉 and tx phases, respectively. Our
identification of the latter two phases are based on this observation.

RS-Haldane* and RS*-Haldane phase boundaries are largely
bent downward with increasing |Jxy

⊥ |; this behavior is be-
yond the scope of the present analysis for weak interchain
couplings. We refer the reader to Ref. [82] for a related
bosonization analysis on a 1D anisotropic Kondo lattice.

We next consider the case of Jy
⊥ = Jz

⊥ =: Jyz
⊥ and � < 1.

In this case, the model (A1) does not have the U (1) spin-
rotational symmetry. The obtained phase diagram in Fig. 19
exhibits competition among four featureless phases and four
phases with magnetic orders along the x or z axis. In the limit
� → 1, where a1 = b0, the Néelz and SNz phases disappear,
and Fig. 19 should become equivalent to Fig. 18 although
the roles of the x and z directions are interchanged. Fig-
ure 19 agrees qualitatively with Fig. 1 in Ref. [35], which
is for � = 0.9, if we interchange the x and z directions.
However, the latter figure indicates that the rung-|0, 0〉 and
rung-|1, x〉 phases are much broader and the t0 and tx phases
are much narrower than in Fig. 19. We note that our conditions
|g±| � |g̃±| for finding Ising transitions in the dual-field dou-
ble sine-Gordon model are only approximate ones for K± �=
1/2 and can become inaccurate even in the regime of weak
interchain couplings as � deviates from unity.

Finally, we note that although the coupling constants in
Eq. (A2) are subject to the constraint g+ = g−, this constraint
can be released by adding the four-spin interaction J4, as seen

FIG. 20. Entanglement spectra {−2 ln λα} at representative
points (J⊥, J4, �) = (1, 1, 1.2), (−1,−1, 1.05), (1,1.5,1), and
(−1, −1, 1) in the Néel, SN, SD, and CD phases, respectively, where
{λα} are Schmidt values and the bond dimension is set to χ = 96. In
the CD phase, the entanglement spectra are calculated for two types
of cuts as explained in the text.

in Eq. (9). By varying Jμ

⊥ (μ = x, y, z) and J4 in the regime of
weak interchain couplings, one can fully control the signs and
the relative magnitudes of g± and g̃±. This huge space allows
one to obtain 16 possible phases: the rung-|0, 0〉, rung-|1, μ〉,
t0, tμ, Néelμ, SNμ (μ = x, y, z), SD, and CD phases.

APPENDIX B: ENTANGLEMENT SPECTRA IN THE
ORDERED PHASES

In Sec. V, we have calculated the entanglement spectra in
the four featureless phases, as shown in Figs. 16 and 17. In
this Appendix, we discuss the entanglement spectra in the four
ordered phases.

All the ordered phases discussed in the paper have the
unit cell consisting of two effective sites (i.e., two rungs). We
have therefore adopted the two-site unit cell implementation
of the VUMPS algorithm as explained in Sec. III. Numerical
results on the entanglement spectra are shown in Fig. 20. It
is expected that the entire spectrum shows at least double
degeneracy if an odd number of valence bonds are cut when
bipartitioning the system [10]. The spectrum in the SD phase
indeed shows the expected double degeneracy. In the CD
phase, the spectra depend on where the system is cut. Specif-
ically, we have obtained the CD state with 〈OCD(0)〉 > 0
[see Eq. (3b) for the definition of the order parameter]. The
spectrum labeled “CD1” is for the case when the cut is placed
between the (−1)st and 0th rungs. The spectrum labeled
“CD2” is for the case when the cut is placed between the 0th
and 1st rungs. The entanglement entropy is larger in the latter
case. In an ideal CD state as shown in the inset in Fig. 3, two
valence bonds are cut in the “CD2” case, leading to fourfold
degeneracy in the entanglement spectrum. However, this de-
generacy is split in a generic CD state. Therefore there is no
symmetry-protected degeneracy in the entanglement spectrum
in the CD phase. The Néel and SN phases do not exhibit any
symmetry-protected degeneracy in the entanglement spectra,
either, as they include site-factorized product states with no
entanglement.
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FIG. 21. Two string correlation functions (5) around the RS-SD
transition at J⊥ = 1 and � = 1.0; see Fig. 4. Logarithmic scales are
used for both axes. Large open and small filled symbols are for χ =
96 and 192, respectively. The two correlation functions are expected
to show a power-law decay with the same exponent K+ = 1/2 at the
transition if the criticality is described by the SU(2)2 WZW theory.
Two parallel gray solid lines are guides to the eye and their slope
is −0.5. The present figure indicates that the transition should occur
between J4 = 1.19 and 1.20.

APPENDIX C: PHASE TRANSITIONS IN THE
ISOTROPIC CASE

In this Appendix, we estimate the RS-SD and
Haldane-CD transition points in the isotropic case � = 1.
Field-theoretical analyses for weak interchain couplings
(|J⊥|, |J4| 
 1) [41,46–48] suggest that these transitions
are continuous and described by the SU(2)2 WZW theory
with the central charge c = 3/2, although a possibility of
a first-order transition is not excluded. The SU(2)2 WZW
theory is equivalent to the combination of the Gaussian theory
with K+ = 1/2 in the symmetric channel and the Ising CFT in
the antisymmetric channel. In estimating the transition points,
we use the two types of string correlation functions (5) as
they can selectively probe the information in the symmetric
channel as seen in Eq. (11). Specifically, these correlation
functions are expected to show power-law decay with the
same exponent K+ = 1/2 at the transition if the scenario of
the SU(2)2 WZW theory is true.

Figure 21 shows the numerical result around the RS-SD
transition at J⊥ = 1. The result indicates that a power-law

FIG. 22. Two string correlation functions (5) around the CD-
Haldane transition at J⊥ = −1 and � = 1.0; see Fig. 10. As in the
case of Fig. 21, large open and small filled symbols are for χ = 96
and 192, respectively. Two parallel gray solid lines are guides to the
eye and their slope is −0.5. The present figure indicates that the
transition should occur between J4 = −0.92 and −0.82.

decay of the two correlation functions with the same exponent
K+ = 1/2 is likely to occur between J4 = 1.19 and 1.20.
This result is consistent with the previous estimate J4,c �
1.19 of the transition point by exact diagonalization [44]. At
this point, we have obtained the central charge c � 1.55 by
examining the data of the entanglement entropy versus the
correlation length in our previous work [56]. Our results are
thus consistent with the scenario of the SU(2)2 WZW theory.

Figure 22 shows the numerical result around the
CD-Haldane transition at J⊥ = −1 . The result indicates that
power-law decay with the same exponent K+ = 1/2 can occur
between J4 = −0.92 and −0.82. We thus obtain the estimate
J4,c = −0.87(5) of the transition point, which still has a rel-
atively large error range. However, we have found that if we
try to reduce the range of J4 further, one of the two correlation
functions becomes inconsistent with the K+ = 1/2 behavior.
This is likely to be due to insufficient convergence of the
numerical data as a function of χ although the breakdown of
the scenario of the SU(2)2 WZW theory is not excluded. Our
estimate of the transition point could be compared with the
exact diagonalization result of Hijii and Sakai [45] (in partic-
ular, Figs. 5 and 6 therein). However, because of a relatively
large dependence on the system size in Ref. [45], a detailed
consistency check is not possible.
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