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Topology in quantum matter is typically associated with gapped phases. For example, in symmetry protected
topological (SPT) phases, the bulk energy gap localizes edge modes near the boundary. In this work we identify
a new mechanism that leads to topological phases which are not only gapless but where the absence of a gap
is essential. These “intrinsically gapless SPT phases” have no gapped counterpart and are hence also distinct
from recently discovered examples of gapless SPT phases. The essential ingredient of these phases is that on-
site symmetries act in an anomalous fashion at low energies. Intrinsically gapless SPT phases are found to
display several unique properties including (i) protected edge modes that are impossible to realize in a gapped
system with the same symmetries, (ii) string order parameters that are likewise forbidden in gapped phases, and
(iii) constraints on the phase diagram obtained upon perturbing the phase. We verify predictions of the general
theory in a specific realization protected by Z4 symmetry, the one dimensional Ising-Hubbard chain, using both
numerical simulations and effective field theory. We also discuss extensions to higher dimensions and possible
experimental realizations.
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I. INTRODUCTION

Topology appears in various fascinating guises in many-
body quantum physics. For instance, symmetry-protected
topological (SPT) phases generalize the notion of topologi-
cal insulators and superconductors [1] to include interactions
and to other symmetry classes [2,3]. Such systems are well
understood when there is a gapped symmetric bulk protecting
the edge modes.

Previous work has also established the remarkable stability
of gapped SPT physics upon closing the bulk gap [4–34].
Here we will instead be interested in a different question—can
fundamentally new topological phenomena occur in gapless
systems? In this paper, we show that gapless topological
phases considerably expand our notion of what is possible:
there exist gapless SPT phases which in a precise sense have
no gapped counterpart. For concreteness, in this work, we will
focus on such examples in 1+1D, although we briefly discuss
how the physics can be generalized to higher dimensions.

These intrinsically gapless SPT phases share certain
properties with gapped SPT phases. They have an on-site
symmetry action and their topology can be diagnosed—
at least in 1+1D—by studying the charges residing at the
ends of string order parameters. Furthermore, the nontrivial
string charges imply the existence of exponentially localized
zero-energy edge modes. However, while in a gapped phase
such charges are constrained to take certain values associ-
ated with projective representations of the symmetry group
[35–38], in these gapless phases, there is no such restriction.
In fact, we will see the charge assignments for intrinsi-
cally gapless SPT string order parameters are forbidden in
gapped phases.

As an illustrative example, we show that charge doping an
Ising chain restores spin flip symmetry in the bulk but leaves it
broken on the boundary, leading to edge modes. This is similar
to an SPT phase but differs in at least three respects. First, the
bulk contains a Luttinger liquid of gapless charge fluctuations.
Second, any small perturbation which opens a gap will restore
antiferromagnetic order, so that the topological edge modes
only occur in the gapless region. Third, the system has a long-
range ordered string operator whose charge is forbidden in
any gapped phase. Earlier studies of related gapless models
observed such string order and its relation to edge degeneracy
[4,9,16,17,25,39], but a general mechanism and the definite
break from gapped SPT physics were lacking.

We propose such a general mechanism to understand these
nontrivial string order parameters, the protected edge modes,
and the curious nearby phase diagrams in terms of emer-
gent anomalies. Anomalies yield powerful constraints on the
ground states of systems. Indeed, they play a key role in
determining the gapless/symmetry breaking behavior of our
1+1D model. However, anomalies are usually associated with
the edge of a topological bulk, for example the 1+1D edge
of a 2+1D nontrivial SPT which must exhibit either gapless
behavior or broken symmetry [40–44]. How can anomalies be
relevant for a genuine 1+1D system? There are two ways.
The first is if the symmetry action cannot be characterized
as “on-site.” This arises, for example, in the spin 1/2 chain,
where translation symmetry, which is clearly not an on-site
symmetry, leads to an anomaly and there are associated Lieb-
Schultz-Mattis theorems which constrain the phases of this
system [45–50]. The Fermi-arc surface states [51] of Weyl
semimetals can similarly be interpreted as “impossible” sur-
face states arising from an anomalous 3+1 D bulk. However
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in that case as well, translation symmetry is invoked. The
second way—explored in this work since our symmetries are
on-site—is that of an emergent anomaly.

An emergent anomaly can occur whenever the (nonanoma-
lous) microscopic symmetry is not faithfully represented on
the gapless modes, due to fundamental charges being gapped
[48]. In the doped Ising chain example that we shall discuss,
electrons are gapped, so fermion parity symmetry acts trivially
on all gapless modes. The effective low-energy symmetry is
the quotient of the full symmetry group by the part that only
acts on gapped modes. The emergent anomaly of the low-
energy symmetry can be diagnosed from the charges of the
string order parameters, which is nontrivial whenever these
are inconsistent with any gapped SPT.

A fundamentally new feature of emergent anomalies arises
when the microscopic symmetry is on-site, since one can
then consider boundaries for which the symmetry is well-
defined. Usually, since anomalies live on the edge of a
higher-dimensional system, this is tantamount to considering
the “boundary of a boundary,” which goes beyond the scope of
the conventional theory of anomalies. We argue that emergent
anomalies of such on-site symmetries lead to nontrivial edge
modes protected by symmetry and gaplessness.

The remainder of this paper is structured as follows. In
Sec. II, we introduce the Ising-Hubbard chain which gives a
simple realization of an intrinsically gapless SPT phase whose
edge modes and unusual string order are protected by Z4

symmetry. The emergent anomaly of this topological phase
is more readily apparent in the field theoretic perspective
explored in Sec. III. The key ingredients are summarized
and generalized in Sec. IV, applicable to any dimension and
symmetry group G.

II. AN EXOTIC GAPLESS TOPOLOGICAL PHASE

Let us describe a simple model which illustrates this phe-
nomenon, namely the doped Ising model, or equivalently,
the Ising-Hubbard model. This describes a chain of spinful
fermions c†

s with Hamiltonian H = HIsing + HHub, where

HIsing =
∑

n

(
JzS

z
nSz

n+1 + hxSx
)
, (1)

HHub = −t
∑

j,s

(c†
j+1,sc j,s + H.c.) + U

∑
j

n j,↑n j,↓ − μN

(2)

with n j,s = c†
j,sc j,s and Sα

j = 1
2 c†

j,sσ
α
s,s′c j,s′ . The spin rotation is

broken by the Jz and hx terms to the π -rotation Rx around
the x axis. Note that this is a Z4 symmetry since R2

x =
(−1)F = P. At half-filling, the Hubbard interaction U drives
the model into a Mott phase (i.e., 〈nj〉 = 1), such that we
obtain an effective spin-1/2 chain, which is either in an Ising
phase (spontaneously breaking Rx down to its Z2 subgroup
of fermion parity) or a symmetry-preserving paramagnet, de-
pending on the value of hx. However, if we dope the system
using a chemical potential (i.e., 〈nj〉 �= 1), a gapless Luttinger
liquid appears, while spins remain gapped. The numerical
phase diagram for t = Jz = 1 and U = 5 is shown in Fig. 1(a),
which was obtained using the density matrix renormalization
group (DMRG) [52,53].

FIG. 1. Intrinsically gapless SPT phase in the Ising-Hubbard
chain. (a) Phase diagram for the model in Eqs. (1) and (2)
for t = Jz = 1 and U = 5. The chemical potential is relative
to the particle-hole-symmetric value μPH = U/2. The trivial and
symmetry-breaking phases for small chemical potential are in the
Mott limit. Eventually, these make way for a trivial and topological
Luttinger liquid (LL), respectively. The topology of the latter is pro-
tected by Z4; if one additionally imposes translation symmetry, this
is a stable gapless phase. (b) The topological order (or hidden sym-
metry breaking) in the topological LL can be detected by the string
order parameter (plotted for |μ − μPH| = 2 and hx = 0). (c) Whilst
the topological LL has a unique ground state for periodic boundary
conditions (b.c.), it has a twofold degeneracy for open b.c. whose
exponentially small splitting is determined by the spin correlation
length.

The key point is that doping the Ising antiferromagnet
means that we lose long-range order in Sz since an arbi-
trary number of holes (or doublons) can appear between
any two antiferromagnetically aligned spins. However, as
sketched in Fig. 1(a), the resulting Luttinger liquid retains a
hidden symmetry-breaking pattern where the “squeezed state”
with the holes (or doublons) removed retains antiferromag-
netic correlations [39,54]. This can be probed by measuring
the Sz-correlation function, while keeping track of all the
holes, which is done by inserting a string of fermionic par-
ity: 〈Sz

m(
∏

m<k<n Pk )Sz
n〉. Figure 1(b) shows that this indeed

has long-range order in the Luttinger liquid adjacent to the
Ising phase, while the local Ising order parameter decays
algebraically.

While this string order parameter was pointed out before
[39,54,55], it was not appreciated how this implies that the
ground state is topologically nontrivial with respect to Z4. As
we now discuss, (i) this implies the presence of edge modes
and (ii) a gapped SPT phase can never host this particular
string order—hence this constitutes an intrinsically gapless
topological state.
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The Rx symmetry is fractionalized on this order parameter
in the sense that its endpoints, which carry an Sz insertion,
are charged. This is a hallmark feature of symmetry-protected
topological (SPT) phases [36], harking back to the seminal
work by den Nijs and Rommelse [56]. Usually, SPT phases
are gapped, yet here we have long-range order in a string order
parameter despite the system being gapless. Such gapless
topological phases have been studied before [4,8,10–12,14–
17,19,20,23,24,26–33]. However, what is entirely novel is that
in our example, the topological phase is protected by Z4 alone;
indeed, the charge of the above string operator1 is well-defined
as long as we preserve Rx. This is the first example that goes
beyond the gapped classification [since H2(Z4,U (1)) = 0],2

giving an intrinsically gapless SPT phase. Indeed, this string
order cannot have long-range order in a gapped phase.3

To avoid confusion, let us note that we call a system topo-
logical (with respect to a symmetry group G) if its topological
phenomena can only be destroyed by (i) explicitly breaking
the protecting symmetry or (ii) changing the bulk universal-
ity class [either by (iia) tuning off criticality, or (iib) tuning
through a multicritical point]. In this sense, the above model
is a (gapless) topological phase with respect to Z4. However,
if one also wants the gaplessness itself to be a robust property,
we might call it a stable gapless (topological) phase. For
example, the above topological Luttinger liquid is stable if we
preserve translation symmetry in addition to Z4; this can be
inferred from measuring its Luttinger liquid parameter to be
smaller than 1/2, as discussed in Appendix A.

The topology of this gapless phase appears in the form
of edge modes. Unlike in the Ising phase, long-range order
in this string operator does not lead to a bulk symme-
try breaking degeneracy. Instead, it leads to degeneracy
on an interval with open boundaries. To see this, note
that the string will still have long-range order even as its
endpoints approach the boundaries. Applying the global
symmetry transformation P, the correlator then becomes a
correlation function for a pair of local charged operators lo-
calized at each boundary. By locality, this means that each
boundary has a spontaneous expectation value for 〈Sz

n〉 �=
0. Summarizing this schematically: 0 �= 〈Sz

1P2 · · · PN−1Sz
N 〉 =

±〈P1Sz
1PN Sz

N 〉 implies 〈P1Sz
1〉 �= 0 by clustering. This leads to

an exponentially split ground state degeneracy, with correla-
tion length set by the spin gap. The energy splitting of the bulk
spectrum is much larger at ∼1/L, so this degeneracy can be
detected in the finite size spectrum as sketched in Fig. 1(c).

The special properties of this phase can be described in
terms of an emergent anomaly. Indeed, since fermions are
gapped, the parity subgroup Z2 ⊂ Z4 only acts on gapped
degrees of freedom, such that Rx acts as a Z4/Z2

∼= Z2 sym-
metry on the low-energy theory. In fact, we will see that its
action is incompatible with an on-site microscopic Z2 sym-
metry, which is the essence of the anomaly. In our model Rx is

1We automatically have P since it is an unbreakable fermionic
symmetry. Alternatively, R2

x = P—hence the same physics occurs in
purely bosonic system with Z4 symmetry, see Appendix E.

2Strictly speaking, for fermions these phases are classified by spin
cobordism. The group is still zero, however [57].

3See Appendix B 1 for a direct proof.

on-site, but the loophole is that R2
x = (−1)F , so the anomaly

is only an emergent property of the low-energy degrees of
freedom.

The anomaly is illustrated by Rx string correlators of the
form 〈Om(

∏
m<k<n Rx )On〉, where O is a local operator. This

correlation function tends to zero either algebraically or ex-
ponentially quickly. As we will see, it turns out that we are
in the algebraic case if and only if O has odd fermion parity.
Since such operators have a nontrivial charge under R2

x , from
the point of view of the gapless degrees of freedom, these
Rx strings, associated with an effective Z2 symmetry, have
fractional charge. This fractional charge is a hallmark of the
anomaly, as we describe in more detail in Appendix B. We
will derive the anomaly from the low-energy field theory in
Sec. III and argue that emergent anomalies are always associ-
ated with edge modes in Sec. IV.

III. EFFECTIVE FIELD THEORY

In this section, we present a field theory of the intrinsically
gapless SPT phase above. To focus on the essential features,
we present a stripped-down version, where we start from
free spinful fermions (U = Jz = hx = 0 above) and consider a
single perturbation that drives us into one of two topologically
distinct Luttinger liquids, with one of the two having pro-
tected edge modes and an emergent anomaly. The free spinful
fermion thus plays the role of a phase transition where the
fermion becomes gapless and the emergent anomaly jumps.

We represent the fermion in Abelian bosonization as a pair
of 2π -periodic compact boson fields (ϕ↑, θ↑), (ϕ↓, θ↓) satisfy-
ing [∂xϕs(y), θs′ (x)] = 2π iδss′δ(x − y), in which the fermions
may be expressed as ψ

†
s,± = Use±iϕs/2+iθs . Here ± denote the

left and right-movers and U1,2 the Klein factors, necessary to
make these two operators anticommute [58]. In this theory,
φs 
→ φs + 2π , θs 
→ θs + π are gauge symmetries for each
spin species, see Appendix F. Our Z4 symmetry of interest
acts as ψ

†
s,± 
→ iψ†

−s,± from which we infer the action on the
compact boson fields:

Rx :

⎧⎨⎩ϕs 
→ ϕ−s

θ↑ 
→ θ↓ + π/2
θ↓ 
→ θ↑ − π/2

,

{
U↑ 
→ U↓
U↓ 
→ −U↑

, (3)

i.e., rotation about the x axis exchanges the opposite spin
fermions and they acquire a phase so that this satisfies R2

x =
(−1)F .

The operator which tunes us into the two topologically
distinct Luttinger liquids is Ozz = cos(ϕ↑ − ϕ↓). This pins4

the spin field �1 = ϕ↑ − ϕ↓, and hence all states of odd
fermion parity are gapped. The remaining low-energy degrees
of freedom can be described as a Luttinger liquid of spinless
Cooper pairs

ψ
†
↑,+ψ

†
↓,− ∼ exp (i(θ↑ + θ↓ − ϕ↑/2 + ϕ↓/2)). (4)

4This operator is marginal at the free-fermion point, but it can
be made relevant by tuning exactly marginal parameters. See
Appendix A or D for more details.
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We can express this in terms of the conjugate compact bo-
son fields5 �2 = ϕ↓ and �2 = θ↑ + θ↓ − ϕ↑/2 + ϕ↓/2. See
Appendix E for more details.

To determine the symmetry action on these fields, we use
(3) and replace �1 by its vev wherever it appears. We see that
Rx acts as a Z2 symmetry in the effective low-energy theory:

Rx :

{
�2 
→ �2 + 〈�1〉
�2 
→ �2 + 〈�1〉

, (5)

where 〈�1〉 = 0 or π depending on the sign of the cos �1 per-
turbation. If we take the sign to be positive, then 〈�1〉 = π and
in this case the action of Rx matches the anomalous action at
the boundary of the CZX/Levin-Gu Z2-SPT phase (compare
to Eq. (53) of Ref. [41] and also [59]). This field theory thus
describes an intrinsically gapless SPT phase which is equiv-
alent to the one identified in Sec. II. Indeed, it describes the
same CFT, and Rx acts as the unique anomalous Z2 symmetry.
If we perturb with the negative sign of Ozz on the other hand,
we find a trivial Luttinger liquid phase with 〈�1〉 = 0 and
trivial Rx action. In the lattice model in Sec. II, the trivial phase
is obtained by driving a different parameter and we cannot
capture this alternative transition in this field theory. We have
also confirmed the above prediction in a lattice model that
closely realizes this field theory; see Appendix A.

The string order for fermion parity in this theory may
be derived from the above two-component Luttinger liquid
as follows. By the canonical commutation relations, we see
the generator of fermion parity θ1,2 
→ θ1,2 + π is given by
exp(i

∫
dx(∂xϕ↑/2 + ∂xϕ↓/2)). To obtain the string operator,

we first truncate the integral so it goes from −∞ to x,
which reduces it to a boundary term. In the new variables,
it becomes exp(i�1(x)/2 + i�2(x)). Note that in either c = 1
phase, where �1 is gapped and has a v.e.v., this operator is
mutually local with the low-energy operators. Indeed fermion
parity is a gapped symmetry. However, because of the ei�2(x),
its correlation function has algebraic decay, so we must take
the endpoint operator O(x) = e−i�2(x) to cancel this factor and
obtain a string with long-range order. This end point operator
is charged under Rx in the topological phase [cf. (5)], just as
we observed in Sec. II.

We can see the edge modes by studying a spatial inter-
face from the topological to trivial Luttinger liquid where we
tune the coefficient of the Ozz = cos �1 perturbation from
a positive to a negative value, adapting an argument from
Ref. [16]. There is an edge mode associated with the path �1

takes from 0 to π across the interface. Any continuous path
that minimizes the energy across this interface comes with a
degenerate partner by exchanging Rx : �1 → −�1. One way
to see this is to observe that because �1 is pinned to its vev far
from the interface, 〈Sz〉 = 1

2 〈∫ ∞
−∞

d�1
2π

〉 = ± 1
4 , from which we

see that the edge mode is a spin-1/2 qubit. Together with the
gapless charges in the bulk, this implies that at the boundary,
fermions become gapless, as we anticipated in Sec. II.

This field theory has appeared in Refs. [16,17,25] although
the protecting symmetry group there was U(1) � T instead of

5We are grateful to Max Metlitski for a discussion about these
variables.

our Z4. In the former case, the gapped Z2 subgroup of U(1)
has a string order whose charge is incompatible with any U(1)-
symmetric gapped SPT. However, if one explicitly breaks the
U(1) symmetry down to its Z2 subgroup, one obtains a gapped
ZT

4 SPT phase. In this sense, the Z4 example in this work gives
a conceptually cleaner instance of an intrinsically gapless SPT
phase, as there is not even any subgroup that protects a gapped
SPT phase. See also Table I and Appendix E. To the best of our
knowledge, the emergent anomaly viewpoint which is central
to our discussion of these models, has not appeared in earlier
works.

IV. GENERAL FRAMEWORK

To recap, the key ingredients of an intrinsically gapless
phase of the sort explored above is (i) a system with an
on-site symmetry (e.g., Rx), (ii) a gapless phase where part
of the symmetry [e.g., (−1)F ] acts only on gapped degrees of
freedom and (iii) the action of the remaining symmetry on the
gapless degrees of freedom is anomalous, i.e., an emergent
anomaly. In 1+1D, one can detect the emergent anomaly
by measuring the charges of string order parameters—note
that unbroken symmetries that act purely on gapped de-
grees of freedom always admit a string order parameter (see
Appendix B). The nontrivial charges of the latter also imply
edge modes, which seems analogous to an SPT phase, but the
charges themselves are incompatible with any gapped phase.

Let us now describe a general picture of this phenomenon,
which applies to a general symmetry group and any dimen-
sion. Let G be the microscopic on-site symmetry, Ggap be the
(normal) subgroup of G which acts trivially on the gapless de-
grees of freedom, Glow = G/Ggap be the effective symmetry of
the low-energy theory, with π : G → Glow being the quotient
map.

We consider the partition function Z (X, A) on a spacetime
X coupled to background G gauge field A.6 If the gapped
sector is trivial, meaning that it preserves all symmetries and
it is not topologically ordered, at leading order it contributes
at most a phase to this partition function, so we may write

Z (X, A) = Zlow(X, Alow)e2π i
∫

X α(A) + · · · , (6)

where Zlow(X, Alow) is the partition function of the gapless
degrees of freedom coupled to background Glow gauge field
derived from A by Alow = π (A), α(A) is a topological term
obtained after integrating out the gapped degrees of freedom,
and · · · are terms exponentially small in the gap. For the
partition functions we are interested in, since the system is
gapless, Zlow(X, A) is order one (see also Appendix C 7), so
we discard these extra terms.

In the case that there is no emergent anomaly, Zlow(X, Alow)
and α(A) are both gauge invariant, and α(A) describes a G-
SPT phase in the gapped sector. When there is an emergent

6Our discrete gauge fields can be interpreted as simplicial cochains,
where d is the simplicial differential, and products are cup products.
Thus they generalize the familiar U(1) gauge potentials with the extra
provision that for, e.g., G = ZN they are valued in integers mod N , so
that the bosonic Chern-Simons term 1

2π
A ∧ dA becomes 2π

N2 A ∪ dA.
See Appendix G for more details.
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TABLE I. Emergent anomalies in intrinsically gapless SPT phases (protected by G in d spatial dimensions). These examples can occur in
fermionic systems where all odd-parity states are gapped (or alternatively in a bosonic system with Ggap = Z2). The details of these calculations
can be found in Appendix C 2. The case G = Z4 was discussed in Secs. II and III above. Meanwhile, G = U(1) × Z2 captures the phenomena
of the gapless Haldane phase in Ref. [4] or the charge-conserving topological superconductors in Refs. [8,11,14,15,24,26] and G = Pin−(2),
generated by U(1) charge and T 2 = (−1)F , that of Refs. [16,17,25]. We describe the field theory for these examples in Appendix E. Unlike
G = Z4, the robustness of the edge modes in these models can be understood by considering a subgroup of G, namely Z2 × Z2 and ZT

4 ,
respectively. In the latter case, the 1st Stiefel-Whitney class w1 (of the tangent bundle of X ) appears in both ω and α, which plays the role of a
time-reversal gauge field [60,61]. The anomaly of the deconfined quantum critical point (DQCP) [48,62–64] can also be cured by embedding
the system into a fermionic Hilbert space with rotation and charge conservation [i.e., Spinc(3) or even Spin(5) symmetry] realized as on-site
symmetries [65–67]. In this case, there are several possible solutions to the anomaly vanishing equation, indicated by · · · in α, which essentially
contain Spinc(3) Chern-Simons terms. In the anomaly, w4 is obtained by restriction of the fourth Stiefel-Whitney class by the block-diagonal
embedding SO(3) × U(1) ⊂ SO(5).

d G Glow Comment ω α SPTd subgroup

1 Z4 Z2 Levin-Gu/CZX anomaly 1
4 AlowdAlow

1
2 AgapAlow none

1 U(1) × Z2 U(1) × Z2 bosonic QSH anomaly 1
4π

AZ2
lowdAU (1)

low
1
2 AgapAZ2

low Z2 × Z2

1 Pin−(2) U(1) � ZT
2 bosonic TI anomaly 1

4π
w1dAU (1)

low
1
2 w1Agap ZT

4

2 Spinc(3) SO(3) × U(1) Neel-VBS DQCP 1
2 w4(Alow) 1

4π
AgapdAU (1)

low + · · · U(1) or SU(2)

anomaly, on the other hand, Zlow(X, Alow) and α(A) are not
separately gauge invariant, and instead transform in such a
way that only their combination Z (X, A) is gauge invariant.
We cannot interpret α as an SPT class in this case. Instead, in-
voking the bulk-boundary correspondence, we can express the
emergent anomaly in terms of a topological term ω(Alow) for
a Glow SPT in one higher dimension [42,68]. This means that
for ∂X = 0, Zlow(X, Alow) exp(2π i

∫
X×R�0

ω(Alow)) is gauge
invariant. By standard arguments, gauge invariance of (6) on
closed spacetime manifolds is then equivalent to the anomaly
vanishing equation dα = ω (see Appendix G).

We see that for this equation to be solvable, α(A) has
to depend on the Ggap part of A, since otherwise ω would
describe a trivial Glow SPT. This means that when we per-
form a Ggap gauge transformation, α(A) will shift by an exact
but nonzero form, meaning α(A + dg) = α(A) + dλ(A, g) for
some λ, while Z (X, Alow) will remain unchanged. When we
study the partition function on a spacetime X with boundary,
this will lead to a boundary term e2π i

∫
∂X λ(A,g), indicating that

there must be an extra boundary contribution which makes the
combination (6) gauge invariant again. This extra boundary
contribution must come from some kind of edge mode.

Let us illustrate the above for our G = Z4 example, where
Ggap = Z2 and Glow = Z2. The Z2 anomaly has the Chern-
Simons form ω(Alow) = 1

4 AlowdAlow [68]. We can write the
Z4-valued A as a combination of Z2 gauge fields Alow and
Agap according to A = 2Agap + Alow, with the extension to
Z4 encoded into the equation dA = 0 mod 4 ⇔ 2dAgap =
dAlow mod 4. This equation says that a 2π flux of Alow

equals a π flux of Agap, which captures the relation R2
x =

(−1)F . We find the only topological term which satisfies the
anomaly vanishing equation is α(A) = 1

2 AgapAlow. Under a
gauge transformation Agap 
→ Agap + dg, there is a boundary
term 1

2 g Alow, as claimed. This implies the existence of an edge
mode to restore gauge invariance.

This argument can be related to the 1d argument for edge
modes based on string operators. Indeed, one may observe
that α(A) = 1

2 AgapAlow in the example above means that the
fermion parity string has an endpoint operator charged under

Rx, as we have observed in Secs. II and III. This is because
the fermion parity string corresponds to the ground state in
the parity twisted sector, which has

∫
space Agap = 1 mod 2. The

topological term α thus contributes 1 to the total Alow charge.
Likewise we find that every state in the Rx-twisted sector of
the low-energy theory has odd fermion parity, as we claimed
in Sec. II. See Appendix C for more details and examples,
summarized in Table I.

This approach also tells us that up to stacking with a G-SPT,
the partition function of the gapless SPT is classified by the
low-energy theory and its emergent anomaly (we do not know
if two theories with the same Z (X, A) can be deformed into
one another, although it is a standard assumption in gapped
classifications [60,69]). Indeed, in general there may be dif-
ferent α that solve the anomaly vanishing equation. If α and
α′ are two solutions, then d (α − α′) = 0 so α − α′ describes
a G-SPT which can be interpreted as relating the two topolog-
ical phases by stacking.7

Another viewpoint on our work emerges by thinking
about “failed” 2+1D bosonic SPT phases, i.e., those that
can be trivialized by embedding them into a bigger Hilbert
space—a natural instance being the addition of fermions
[70–77]—meaning that the edge theory is no longer abso-
lutely protected. The present work shows that there is still a
well-defined emergent anomaly at the edge, and moreover it
can therefore be realized in its own dimension as an intrinsi-
cally gapless topological phase.

7Therefore, if there is one solution to the anomaly vanishing
equation, then there are as many as there are G-SPTs in the same
dimension. It may be that not all of these describe distinct phases
however, since often the gapless system can “absorb” an SPT involv-
ing only the gapless symmetries [33]. For instance, if Ggap = 1, so
there is no anomaly and all symmetries are gapless, it can happen
that even if α �= 0, there are no protected edge modes. See Appendix
C 7. This illustrates the importance of using the Ggap gauge transfor-
mations in the argument above.
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Thus far, we have studied various examples of intrinsically
gapless topological phases, but how do we systematically
construct them? This question is answered in Appendix C 4
where we discuss the construction of intrinsically gapless SPT
on the lattice, beginning from an anomalous theory (i.e., a
gapless edge of an SPT lattice model) and a solution to the
anomaly vanishing equation, i.e. a prescription to augment
the degrees of freedom to “cure” the anomaly. Moreover,
adapting the results of Refs. [78–80] (who studied the problem
of constructing gapped symmetric boundaries of SPTs and
encountered the same equation dα = ω), for any theory with
a bosonic global Glow anomaly, there is some Ggap which
realizes it as an intrinsically gapless phase where the anomaly
is completely emergent.

V. OUTLOOK

Anomalies are a key nonperturbative phenomenon in high-
energy and condensed matter physics [44,81–84]. However,
they can be difficult to realize, either living on the boundary
of a higher-dimensional system or requiring a noninternal
symmetry action. In this work, we have shown how they
can arise from on-site symmetries in the same dimension
and how—in one dimension—they can be diagnosed using
unusual string order. This paves the way for experimental
realization of anomalies. In fact, most of the machinery is
already in place. Doped spin-1/2 Heisenberg chains [85] have
been realized and their string order has been measured—
although the latter decayed algebraically due to spin-rotation
symmetry. If one can engineer an Ising anisotropy, then the
lattice model in Sec. II is realized, which should endow the
string order parameter with long-range order. As discussed,
the latter implies edge modes with Sz = ± 1

4 , whose frac-
tional value should be measurable by considering statistical
ensembles.

The framework introduced in this work provides guidance
to constructing interesting new models, not just in 1+1D but
also in higher dimensions. A paradigmatic example of an
anomaly in 2+1D is at a deconfined quantum critical point,
which has been proposed to describe a transition between a
Heisenberg antiferromagnet and a valence bond solid [62].
Here, SO(3) spin rotation and an effective U(1) symmetry
arise, despite the anomaly, by utilizing spatial symmetries
to implement (a discrete subgroup of) the latter symmetry.
Alternatively, the U(1) can be identified with an internal sym-
metry related to charge conservation. In this case the anomaly
of the deconfined critical point can be lifted by embedding
it into a fermionic Hilbert space [65–67]; see Table I. Our
theory predicts that with on-site SO(3) and U(1) symmetries,
implemented at the expense of including gapped fermions, an
exotic 1+1D edge theory will appear at the gapless deconfined
critical point. This direction demands further study.

Finally, although we have highlighted one mechanism for
intrinsically gapless topological phases, we do not know if it
is the only mechanism. In particular, because the emergent
anomaly relies on there being a gapped symmetry, one can ask
if there are also intrinsically gapless SPTs for which the whole
symmetry group is gapless, or in models with no gapped
sector at all.

ACKNOWLEDGMENTS

We thank Dave Aasen, Immanuel Bloch, Nick G. Jones,
Max Metlitski, Dan Parker, Nat Tantivasadakarn, and Yifan
Wang for useful discussions, and especially Dan, Max, Nick,
and Yifan for a careful reading of the manuscript. RV is in-
debted to Pablo Sala for a very fruitful discussion that gave the
inspiration for this work when we realized that the t-Jz chain
discussed in Ref. [55] might have an unusual symmetry pro-
tection. The MPS-based DMRG simulations were performed
using the TENSOR NETWORK PYTHON (TeNPy) package de-
veloped by Hauschild and Pollmann [53]. This work was
supported by the Harvard Quantum Initiative Postdoctoral
Fellowship in Science and Engineering (RV) and a grant from
the Simons Foundation (#376207) (AV, RV).

APPENDIX A: MORE NUMERICAL RESULTS

1. The Ising-Hubbard chain

a. Confirming criticality and topology

To confirm that we indeed have a Luttinger liquid, we
extract the central charge c = 1 using entanglement scaling
[86,87], plotted in Fig. 2(a). We have already numerically con-
firmed that the system does not spontaneously break the Ising
symmetry; see the algebraically decaying spin correlations in
Fig. 1(b). However, with open boundaries, the edge-to-edge
spin correlation function has long-range order [Fig. 2(b)],
indicating that the boundaries spontaneously break Rx sym-
metry. The resulting degeneracy has an exponentially small
finite-size splitting for finite systems, shown by the red dots
in Fig. 2(c). This is significantly smaller than the bulk ∼1/L
energy scale. The scaling of the latter [blue dots in Fig. 2(c)]
is significantly affected by Friedel oscillations.

b. Lattice-continuum correspondence and Luttinger
liquid parameter

Here we build a correspondence between the lattice model
of Sec. II and the field theory discussed in Sec. III. This
will also allow us to numerically extract the Luttinger liquid
parameter of the topological phase, which in turn carries in-
formation about the stability of the phase.

Let us first consider the Ising order parameter Sz
j . We have

already seen in Fig. 1(b) that this decays algebraically. To
determine which CFT operator it generates, we write (sup-
pressing momentum-dependent prefactors):

Sz
j ∼ ∂ (ϕ↑ − ϕ↓) + (eiϕ↑ − eiϕ↓ ) + · · ·

= ∂�1 + ei�2 (ei�1 − 1) + · · · . (A1)

Hence, in the trivial phase, where �1 = 0, we obtain that Sz
j ∼

0. Indeed, this must happen at all orders, since Sz
j is odd under

Rx, whereas in Sec. III, we have seen that the low-energy fields
of the trivial Luttinger liquid are all even under Rx. We have
numerically confirmed that in the trivial phase, 〈Sz

i Sz
j〉 decays

exponentially fast.
In the topological phase, we have �1 = π , such that Sz ∼

cos �2. We can thus read off the effective Luttinger liquid pa-
rameter Keff from 〈Sz

i Sz
j〉 ∼ 1/|i − j|2Keff . Since �2 = ϕ↓, this

will carry momentum 〈n〉π , where 〈n〉 is the particle filling.
Fixing t = Jz = 1, μ = 1

2 and U = 5 (and hx = 0)—i.e., the
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FIG. 2. The Ising-Hubbard chain for μ = 0, hx = 0.1, Jz = 1 = t , and U = 20. (a) The entanglement scaling indicates a conformal field
theory with central charge cfit ≈ 1.02. (b) The boundaries are spontaneously magnetized, confirmed by the long-range order in the boundary-
boundary correlator. (c) The finite-size splitting is exponentially small in system size (red). The blue dots are the gap to the next excited state;
the blue dotted line is ∼1/L as a guide to the eye.

same parameters as in Fig. 1(b)—we measure 〈n〉 ≈ 0.7935.
Dividing out this oscillatory phase factor, we obtain a straight
line in the log-log plot of Fig. 3, from which we extract
Keff ≈ 0.326.

We are thus in a strongly repulsive regime. In particular,
all symmetry-allowed U(1)-breaking terms [i.e., cos(2n�2)
and sin(2n�2) since Rx shifts � by π ; see Eq. (5)]
are RG-irrelevant. The relevant symmetry-allowed operators
are cos(2�2) and sin(2�2), with dimensions 4Keff . Since
these carry incommensurate momentum, the gapless phase is
stable if we preserve translation symmetry—in addition to the
Rx symmetry. For a discussion of the nearby phases generated
by the above operators, see Appendix D.

To obtain a lattice operator that generates cos(�2), it is
natural to consider Eq. (4), which we reproduce here for
convenience:

ψ
†
↑,+ψ

†
↓,− ∼ exp (i(θ↑ + θ↓ − ϕ↑/2 + ϕ↓/2)) = ei�2 . (A2)

One could wonder whether the lattice operator c†
↑,ic

†
↓,i gen-

erates this field. However, it cannot: this lattice operator is
manifestly Rx-symmetric, whereas ei�2 is odd under Rx (at
least in the topological phase). Indeed, instead one finds that
it has contributions of the sort

ψ
†
↑,+ψ

†
↓,+ ∼ ei(

ϕ↑+ϕ↓
2 +θ↑+θ↓ ) ∼ ei�1 ei(�2+�2 ). (A3)

FIG. 3. Lattice operators in the Ising-Hubbard chain and the
corresponding low-energy CFT operators that they generate in
the topological Luttinger liquid. We use one of these to extract
the Luttinger liquid parameter Keff ; the other two then give strong
consistency checks. We have multiplied some of these correlation
functions by an overall constant prefactor to shift the curves up for
easier presentation.

In conclusion, c†
↑,ic

†
↓,i + H.c. ∼ cos(�2 + �2), which has

scaling dimension Keff + 1
4Keff

. This prediction is confirmed in
Fig. 3.

To generate cos �2, we must thus consider a lattice op-
erator that is odd under Rx. A simple tweak of the above is
c†
↑,ic

†
↓,i+1 + (↑↔↓). We indeed confirm that this has dimen-

sion 1/(4Keff ), shown in Fig. 3. Note that this operator has no
momentum, in contrast to the �2 fields.

2. Coupled Luttinger liquids

Instead of the Ising-Hubbard chain in Eqs. (1) and (2), we
can also consider two decoupled interacting Luttinger liquids
(for each spin species) which are coupled by the Ising term:

H = H↑ + H↓ + Jz

∑
n

Sz
jS

z
j+1

where

Hs = −t
∑

n

(c†
j+1,sc j,s + H.c.) + V

∑
n

n j,sn j+1,s, (A4)

with Sz
j = 1

2 (n j,↑ − n j,↓). This setup is closest to the field
theory discussed in Sec. III. In particular, for V = Jz = 0, we
have our spinful free-fermion starting point. The Ising term
contains cos(ϕ↑ − ϕ↓), however, at the free-fermion point this
has dimension K↑ + K↓ = 2, i.e., it is is marginal. There-
fore we include the Luttinger interaction which tunes the
Rx-symmetric (∂ϕ↑)2 + (∂ϕ↓)2, such that for repulsive V > 0,
the Luttinger liquid parameter Ks < 1, making Jz cos(ϕ↑ −
ϕ↓) relevant. Hence, for such a fixed value of V > 0, the field
theory in Sec. III predicts that depending on the sign of Jz, we
get a topological or trivial Luttinger liquid with central charge
c = 1, separated by a c = 2 phase transition at Jz = 0.

This prediction is straightforwardly verified. Note that for
Jz = 0, the model is integrable, and using the exact solution
we can calculate the resulting Luttinger liquid parameter [88].
We fix V = 10, for which K↑ = K↓ ≈ 0.5266, such that the
Ising coupling is relevant with dimension ≈1.0532. As be-
fore, we numerically diagnosed criticality by observing c = 1
from entanglement scaling; the topological and trivial Lut-
tinger liquids were distinguished by measuring long-range
order of the topological string-order (· · · Pj−2Pj−1Sz

j) or the
trivial string-order (· · · Pj−2Pj−1Pj) parameters. We find that
the topological and trivial Luttinger liquids persist over a
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wide range of parameter space: the phases are observed for
0 < |Jz| < 4 (and slightly beyond), with Jz > 0 (Jz < 0) being
topolgical (trivial), consistent with the field theory.

APPENDIX B: ANOMALIES AND STRING ORDER
PARAMETERS

G anomalies of 1d systems are in correspondence with 2d
G-SPTs via the bulk-boundary correspondence [42,68]. The
latter have been classified by the topological terms which
are generated when the SPT is coupled to a background
gauge field [89]. These topological terms in turn determine the
anomalous behavior of string order parameters (also known
as symmetry fluxes) in the anomalous 1d theory. In this Ap-
pendix we describe these anomalous behaviors and how one
can use the topological terms to further learn about our gapless
phases with emergent anomaly.

1. String operators in gapped phases

Before diving into the anomalous case, let us discuss string
operators in 1d gapped phases [56,90–92]. We consider on-
site unitary symmetries, meaning

U =
∏

x

Ux, (B1)

where the product is over sites x and Ux is a unitary operator
acting only on the local Hilbert space of the site and satisfying
the group law. If we have a gapped symmetric ground state
|0〉, it is known that if we apply the symmetry to the ground
state in a finite region, it is equivalent applying exponentially
localized operators near the ends, meaning∏

j�x�k

Ux|0〉 = Uj,LUk,R|0〉, (B2)

where Uj,L and Uk,R are unitary operators with support expo-
nentially localized near j and k respectively. This is known as
symmetry fractionalization [93–95].

By conjugation with U , we can assume UL and UR have
some fixed charge qL, qR under U . Let us now show this
charge is trivial. We consider the product of two semi-infinite
strings (although the same argument can be carried out for
finite strings, just with more bookkeeping):(∏

x�n

U †
x

)(∏
y�m

Uy

)
|0〉 (B3)

with m � n. We have( ∏
x�n

U †
x

)( ∏
y�m

Uy

)
|0〉 =

∏
n�y�m

Uy|0〉 = Un,LUm,R|0〉 (B4)

as well as( ∏
x�n

U †
x

)( ∏
y�m

Uy

)
|0〉 =

(∏
x�n U †

x

)
Um,R|0〉

= U †
n,RUm,R|0〉, (B5)

so UL|0〉 = U †
R |0〉. We also have(∏

x�n

U †
x

)( ∏
y�m

Uy

)
|0〉 =

( ∏
y�m

Uy

)( ∏
x�n

U †
x

)
|0〉

=
( ∏

y�m

Uy

)
Un,L|0〉

= eiqLUn,L

( ∏
y�m

Uy

)
|0〉

= eiqLUn,LUm,R|0〉. (B6)

This proves the claim.
Rearranging (B2), we find

〈0|Uj,L

( ∏
j�x�k

Ux

)
Uk,R|0〉 = 1, (B7)

so symmetry fractionalization implies that the string operator
(
∏

x�k Ux )Uk,R has long-range order. Although UR cannot be
charged under U , if there are other global symmetries, then it
can be charged, which signals a nontrivial SPT phase. Note
that this charge is unique unless the other global symmetries
are broken, since otherwise with UR,xU ′

R,x′ two differently
charged end operators, we could consider UR, U ′

R inserted
at some large (relative to the correlation length) but fixed
distance |x − x′|, and this would be an order parameter for
a broken symmetry. As long as the gap remains open and
all symmetries are unbroken, these charges give topological
invariants for 1d gapped phases.

Another useful fact is that if U and V are commuting sym-
metries with UR having charge q under V and VR having charge
q′ under U , then q = −q′ (i.e., there is charge reciprocity). To
see this, consider ( ∏

y�m

Vy

)( ∏
x�n

Ux

)
|0〉 (B8)

with m � n. We have( ∏
y�m

Vy

)( ∏
x�n

Ux

)
|0〉 =

( ∏
y�m

Vy

)
U †

R,n|0〉

= e−iqU †
R,nVR,m|0〉 (B9)

On the other hand,( ∏
y�m

Vy

)( ∏
x�n

Ux

)
|0〉 =

(∏
x�n

Ux

)( ∏
y�m

Vy

)
|0〉

=
(∏

x�n

Ux

)
VR,m|0〉

= eiq′
VR,mU †

R,n|0〉. (B10)

The claim follows.
For Abelian discrete symmetries, the charges of these

string operators (subject to no self-charges and charge reci-
procity) are known to characterize all SPTs. For example with
ZU

2 × ZV
2 , there are two possibilities consistent with charge
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reciprocity: either both strings have trivial charges or the U
string is odd under V and even under U and vice versa. Thus
there is a Z2 classification. Meanwhile for Z4, the symmetry
class considered in Secs. II and III, there are no possible
nontrivial charges.

The existence of a charged string with long-range order
implies an exponentially localized edge mode. This is often
phrased in terms of projective symmetry representations. In-
deed, if we have a boundary, the symmetry will fractionalize
on it as before, and now the charges of the UR define the
commutation relations of a projective representation, which
we identify with the “anomalous” symmetry action at the
edge. A more concrete way to see the edge degeneracy is to
consider our system defined on an interval. The string operator
stretching across the whole system satisfies

0 �=
〈
O†

0

( ∏
0�x�N

Ux

)
ON

〉
= 〈O†

0ON 〉, (B11)

where we used the global symmetry. If the end point operator
is charged, it therefore acts as a symmetry breaking order
parameter at the boundary.

In gapless systems, we still have symmetry fractional-
ization for gapped symmetries (i.e., symmetries which act
nontrivially only on gapped degrees of freedom) and many
of the previous arguments apply. For gapless symmetries (i.e.,
symmetries which act nontrivially on the gapless degrees of
freedom) it does not hold. Nevertheless, one can still study
string operators (

∏
x<n Ux )On, which will always have alge-

braic decay for a gapless symmetry. In Ref. [33], it was argued
that the string operators with the slowest such decay define
topological invariants for gapless phases, and can lead to edge
modes, with either exponential or algebraic localization at
the edge. In that setting, the string operators can actually be
degenerate and have different charges, which complicates the
bulk-boundary correspondence. We will see that for systems
with an emergent anomaly, however, the charges are much
more regular, since they have to satisfy the anomaly. Indeed,
we will argue that we always have exponentially localized
edge modes.

2. String operators in anomalous theories

Let us first consider 1d bosonic anomalies for a cyclic
group G = Zn. It is a consequence of the classification of
anomalies that for any Abelian group, the anomaly can be
determined by its finite cyclic subgroups. For these, there is
a Zn classification. Let k ∈ Zn be the level of the anomaly.
In terms of the 2d SPT bulk, the gauge fluxes have fractional
statistics with topological spin θ = 2π ik/n2 [41]. This also
can be derived from the Chern-Simons form of the associated
topological term [68]

ω(A) = k

n2
A ∪ dA. (B12)

See Appendix G. Below we mention a direct connection be-
tween the U(1) chiral anomaly and the Zn anomaly.

This topological spin translates into a certain spin-selection
rule for the boundary [96,97]. One finds that in the g-twisted
sector, where g is the generator of Zn, all states have fractional

spin (i.e. momentum around the circle)

S ∈ k

n2
+ 1

n
Z. (B13)

Since the spin in the twisted sector is also the self-charge of
the string operator, we find all string operators have fractional
self-charge with fractional part k/n. This spin-selection rule
is both necessary and sufficient to diagnose the Zn anomaly.
We note a possible confusion which is that the Zn charge of
the bulk Zn flux (that is, in the 2d SPT) is 2k/n [98], which
differs by a factor of two from the charge of the boundary
string operator, see below.

We can see this spin-selection rule and fractional charge
from the field theory of Sec. III. The shift symmetry
�2 
→ �2 + π (respectively, �2 
→ �2 + π ) is generated by
exp i

2

∫
x ∂x�2 (respectively, exp i

2

∫
x ∂x�2). The string opera-

tors for these symmetries thus have the form

exp

(
i

2

∫ x

−∞
∂x�2

)
Ox = exp

( i

2
�2(x)

)
Ox, (B14)

exp

(
i

2

∫ x

−∞
∂x�2

)
O′

x = exp
( i

2
�2(x)

)
O′

x, (B15)

respectively, where Ox and O′
x are local operators. Observe

that these operators are not mutually local, but have a braid-
ing phase of ±i (the two shift symmetries have a mutual
anomaly). Thus their fusion products, which are the string
operators for the diagonal shift symmetry Rx, have spin ±1/4
mod 1, hence also fractional self-charge ±i.

This highlights several recurring features of anomalous
symmetries. First, unlike SPT phases where the charges of
the string operators are ordinary linear charges, the charges
of string operators in an anomalous theory are fractional or
projective. This allows us to quickly see that our phases are
not of the familiar SPT × gapless type.

Second, there is no nondegenerate, gapped symmetric
phase, since by modularity the spin is related to the conformal
dimension, which must thus be nonzero if the spin is nonzero.
(In a fermionic system, the constraints of modular invariance
are slightly relaxed, and allow for half-integer spins in a
gapped phase, but the anomaly fractional spins which occur
are always � 1/4.) For even n, the fractional charge leads to
degenerate string operators, which is impossible in a gapped
phase (without symmetry breaking) [36]. For example, if n =
2, then any string operator has charge ±i by the spin selection
rule. Taking its Hermitian conjugate we get a degenerate string
operator of charge ∓i.

This raises a third point, which is that all string operators
in the anomalous theory are charged. Indeed, one can consider
an anomaly to be an obstruction to gauging the symmetry
[68,99]. The fact that all string operators are charged means
that there are no gauge-invariant states in the twisted sector of
the gauge theory, which is a pathology. For edge modes, this
means that the energy splitting is always exponentially small,
with localization length set by the gap of the fundamental
charges. We return to these edge modes in Appendix C 6
below.

Several 1d anomalies can be understood in terms of the
familiar chiral anomaly [73]. For a U(1) symmetry, there is a
continuous family of twisted boundary conditions on a circle,
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which we think of as the magnetic flux of a U(1) gauge field
passing through it. As we vary the magnetic flux � there is a
spectral flow, where the energy levels of the system in the flux
background move continuously as a function of � [100].

The meaning of the chiral anomaly is that as � is taken
from 0 to 2π , the spin of all operators shifts by an integer k ∈
Z, which is the level of the anomaly (for fermionic systems k
can be a half integer [101]). In a conformal field theory, if we
begin with a neutral spin-zero state at � = 0, the spins of the
corresponding family of states along the spectral flow have the
universal form [97]

S = k�2

4π2
. (B16)

If � = 2π/n, we can identify the ground states in the flux
sector with the string operators for the Zn subgroup of U(1)
and we see the form of S above matches our spin selection
rule (B13) for the Zn anomaly.

The spectral flow above can be related to a bulk Hall
current. As we increase the flux adiabatically from 0 to 2π ,
we end up producing charge. In a bulk+boundary setup, this
charge is thought of as coming from the bulk (hence “anomaly
in-flow”). If we put our system on a cylinder with two circular
boundaries, and thread a flux through the middle, the amount
of charge pumped is identified with the bulk Hall current.
Thus one would like to identify the charge of the boundary
twisted states with the charge of the bulk flux, but the charges
of the former are half the charges of the latter. The way this
is resolved in the bulk+boundary quantum Hall setup is that
the bulk Chern-Simons term itself contributes to the boundary
current [102], and makes up for the missing half of the charge,
so the bulk Hall current corresponding to the above spectral
flow is 2k.

Another important case for us is U(1) × Z2, which can be
thought of as a subgroup of a mixed U(1) × U(1) anomaly
such as between the vector and axial symmetries of a 1d
compact boson. The mixed anomaly in this symmetry class
pumps a Z2 charge when we thread a 2π flux for the U(1).
Equivalently, we find that the Z2 string carries half-integer
charge under the U(1).

Meanwhile, for U(1) � ZT
2 , the anomaly may be detected

by the U(1) π -flux string operator. Indeed, only a 0 and π flux
have time reversal symmetry. The anomalous case is where the
π flux has a Kramers degeneracy [61].

APPENDIX C: EMERGENT ANOMALIES

1. Anomaly vanishing

In this Appendix, we describe the anomaly vanishing equa-
tion which must be satisfied by an emergent anomaly which
appears in a system with a microscopic on-site symmetry. We
will show how the equation is solved in our Z4 example as
well as other symmetry classes which have appeared in the
literature, namely U(1) × Z2 and U(1) � T . We also describe
how anomaly vanishing applies to systems with Lieb-Schultz-
Mattis constraints and the 2d deconfined quantum critical
point. We end with a discussion where we argue that any
global anomaly may be realized as an emergent anomaly in a
system with on-site symmetry action. Some details on discrete
gauge fields may be found in Appendix G.

Let G be the microscopic symmetry group, Glow be the
quotient of G which is realized on the low-energy degrees of
freedom, and Ggap the (normal) subgroup of G which acts only
on the gapped degrees of freedom. We have Glow = G/Ggap.
Let π : G → Glow be the quotient map. One considers the
anomaly as classified by an SPT phase in one higher dimen-
sion, which is in turn associated with an element [ω] in a
cohomology theory such as group cohomology [42] or spin
cobordism [60,103]. There is an associated map π∗ from the
group of Glow SPT phases to G SPT phases. Since in a system
with on-site microscopic symmetry, there is no anomaly, we
must have

π∗[ω] = 0, (C1)

which we refer to as the anomaly vanishing equation. See
Appendix G for a proof.

For the examples we study, it suffices to consider this
equation in group cohomology, where [ω] is represented by
some group cocycle ω(Alow), which can be thought of as the
effective action of the higher dimensional SPT controlling the
anomaly, coupled to a background Glow gauge field Alow [68].
The anomaly vanishing equation may be rewritten

∃α ω(Alow) = dα(Alow, Agap), (C2)

where α(Alow, Agap) can be thought of as a boundary coun-
terterm involving background gauge fields Alow for Glow and
Agap for Ggap. We will see that this counterterm has a physical
interpretation that allows us to reason about edge modes.
In a way, it is like the topological term for the background
gauge fields generated by integrating out the gapped degrees
of freedom. Indeed, if Z (Alow) is the partition function of the
gapless theory coupled to background Glow gauge field, then
although this is not gauge invariant, because of the anomaly,
the anomaly vanishing equation is equivalent to saying that

Zlow(Alow)e2π i
∫

α(Alow,Agap ) (C3)

is gauge invariant when (Alow, Agap) is interpreted as a G gauge
field. Up to terms exponentially small in the gap, this is the
partition function of the full theory.

The background gauge field Alow is a usual background
gauge field (see Appendix G for a review) and satisfies

dAlow = 0 (C4)

when Glow is discrete, but when the group extension

Ggap → G → Glow (C5)

is nontrivial, then Agap sees a flux background defined by Alow,
meaning

dAgap = c(Alow), (C6)

where c ∈ H2(BGlow, Z (Ggap)) is a 2-cocycle associated with
the group extension and Z (Ggap) is the center of Ggap (see
below) [104]. Note that if G is not a central extension, then
Glow acts on Ggap and this cohomology must be considered to
be twisted by this action. See Ref. [105] for an introduction.
Likewise, in expressions such as dAgap = c(Alow), dAgap must
be considered the Alow-twisted differential of Agap. Even when
c = 0, this can lead to solutions to the anomaly vanishing
equation [106]. However, in the case of central extensions,
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which includes all the examples in this work, if c = 0, then
there are no nontrivial solutions to the anomaly vanishing
equation for bosonic extensions (although see Appendix C 2 e
below).

To derive (C6), we write the G gauge field as

A = j(Agap) + s(Alow), (C7)

where j : Ggap → G is the inclusion map, and s : Glow → G
is a section (not necessarily a group homomorphism) of the
quotient π : G → Glow, meaning π ◦ s is the identity on Glow.
We have

dA = 0 ⇔ j(dAgap) + ds(Alow) = 0. (C8)

The extension cocycle is defined by

j(c(Alow)) = −ds(Alow). (C9)

It is independent of s up to gauge transformations. Thus,
we find (C6). Since a gauge field A on a manifold X can
be interpreted as an element in Z1(X, G), we see that c :
Z1(X, Glow) → Z2(X, Z (Ggap)). By the classification of such
maps discussed in Appendix G, we can identify c with an
element in H2(BGlow, Z (Ggap)), as claimed above.

Let us note that when the system is completely gapped, so
G = Ggap, then necessarily ω = 0, so the anomaly vanishing
equation is simply

dα = 0. (C10)

In this case, we identify α with the SPT cocycle which charac-
terizes this gapped phase. This illustrates that α is indeed part
of the physical data which defines the 1d phase. For a given
ω, solutions to the anomaly vanishing equation form a torsor
over the G SPT classes. Physically this means that different
solutions to the anomaly vanishing equation correspond with
stacking an SPT phase on top of our system.

2. Examples

Let us show (C1) holds for the symmetries and anomalies
we have considered.

a. G = Z4

In the case G = Z4, Ggap = Z2, Glow = Z2, working in
group cohomology, the anomaly can be written in the Chern-
Simons-like form [68]

ω = 1

2
Alow ∪ dAlow

2
. (C11)

Note that dAlow = 0 mod 2, so dAlow
2 is an integer class (it is

equivalent to the Bockstein of Alow). Meanwhile

c(Alow) = dAlow

2
, (C12)

so we can write

π∗ω = d

(
1

2
Alow ∪ Agap

)
, (C13)

which means (C1) is satisfied in cohomology. In-
deed, using the product rule, (C4), (C6), and (C12),

we have

d

(
1

2
Alow ∪ Agap

)
= 1

2
dAlow ∪ Agap + 1

2
Alow ∪ dAgap

= 1

2
Alow ∪ c(Alow)

= 1

2
Alow ∪ dAlow

2
. (C14)

See Ref. [77] for another perspective on the trivialization of
this 2d SPT class.

The meaning of the term in parentheses is that the Glow

string is charged under Ggap, indeed as it must be to match
the fractional charge. We return to this point in Appendix C 6
below.

b. G = Z2 × U(1)

The case with G = Z2 × U(1), Ggap = Z2 generated by
the order two element of U(1) is particularly common in the
literature, especially where the U(1) is particle number, so
Ggap is the fermion parity, meaning we are in a gapless phase
where the fermion is gapped. For such models, we write Alow

as a pair of a U(1) = U(1)/Z2 gauge field AU(1)
low and a Z2

gauge field AZ2
low. The extension class is the first Chern class

c(Alow) = dAU(1)
low

2π
. (C15)

The effective anomaly is

ω = 1

2
AZ2

low ∪ dAU(1)
low

2π
. (C16)

This anomaly is realized for instance via the 1d chiral
anomaly, where AU(1)

low couples to the vector current and AZ2
low

to the axial current. When we consider (C6) however, we find

π∗ω = d

(
1

2
AZ2

low ∪ Agap

)
. (C17)

When G is broken to Z2 × Z2, the term in parentheses is a
nontrivial SPT class, so the topology in such gapless phases is
essentially due to an SPT sector. Extending the parity symme-
try to U(1), however, requires a vanishing gap because of the
anomaly (C16). We note that if one considers the Z4 subgroup
generated by the generator of the U(1) times the generator of
the Z2, then such examples reduce to the calculation above,
and in this symmetry class the topological phase is intrinsi-
cally gapless.

c. G = U (1) � T

The case Ggap = Z2, Glow = U(1) � ZT
2 is also quite in-

teresting, although similar. Because of the time reversal
symmetry, we must work with the first Stiefel-Whitney class
w1 ∈ Z1(X,Z2), which plays the role of the time-reversal
gauge field [60]. We also must treat the U(1) background Alow

as a background U(1) gauge field with curvature Flow. The
formula for the emergent anomaly can be found in Ref. [61].
It is

ω = 1

2
w1 ∪ Flow

2π
. (C18)
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The physics of this term is that the π flux of U(1)low carries a
Kramers doublet under T .

Since both the low-energy U(1) and time reversal sym-
metries are extended by fermion parity (to a group called
Pin(2)−), the extension class may be written

c(Alow,w1) = w1 ∪ w1 + Flow

2π
. (C19)

We see

d

(
w1 ∪ 1

2
Agap

)
= 1

2
w1 ∪ w1 ∪ w1 + π∗ω. (C20)

The first term is actually exact by a Wu relation [80]. Thus we
find (C1) is satisfied.

The meaning of the term in parentheses is that the π flux
of U(1)low carries odd fermion parity, indeed as it must be
to match the Kramers degeneracy. We return to this point in
Appendix C 6 below.

d. 2+1D deconfined quantum critical point

These calculations also apply to higher dimensions, as we
demonstrate in the example of the SO(3) × U(1) anomaly of
the CP 1 model, associated to various deconfined quantum
critical points (DQCPs). The anomaly is [48,63,64]

ω = 1

2
w2

(
ASO(3)

low

) ∪ dAU(1)
low

2π
, (C21)

where ASO(3)
low is the background SO(3) gauge field, w2 is its

2nd Stiefel-Whitney class, which obstructs lifting it to an
SU(2) gauge field, and AU (1)

low is the background U(1) gauge
field. If fundamental fermions are gapped where the SO(3) is
spin rotation and the U(1) is particle number, then both groups
get extended by Ggap = Z2 according to

c
(
ASO(3)

low , AU (1)
low

) = w2
(
ASO(3)

low

) + dAU (1)
low

2π
. (C22)

We find

d

(
1

2
Agap ∪ dAU (1)

low

2π
+ 1

4π
AU (1)

low ∧ dAU (1)
low

2π

)
= π∗ω. (C23)

We note the second term on the left-hand side is a half-
quantized U(1)low Chern-Simons term (since the low-energy
theory is bosonic).

Another way we can cure the anomaly is by considering

d

(
1

2
Agap ∪ w2

(
ASO(3)

low

) + 1

2
CS

(
ASO(3)

low

)) = π∗ω, (C24)

where CS(ASO(3)
low ) is the SO(3) Chern-Simons term of smallest

level [it looks like level 4 for SU(2)], which satisfies∫
dCS

(
ASO(3)

low

) =
∫

w2
(
ASO(3)

low

) ∪ w2
(
ASO(3)

low

)
mod 2.

(C25)

We see the two solutions to the anomaly vanishing equa-
tion differ by a Chern-Simons term for the full group G =
Spinc(3).

A similar result holds for the largest possible unitary
symmetry SO(5) of the DQCP. In this case the emergent

anomaly is

ω = 1
2w4

(
ASO(5)

low

)
, (C26)

where w4 is the fourth Stiefel-Whitney class. The group ex-
tension by fermion parity Ggap = Z2 is

Z2 → Spin(5) → SO(4), (C27)

again classified by the second Stiefel-Whitney class. The in-
teger cohomology of BSpin(5) is torsion-free (for instance,
using the isomorphism Spin(5) = Sp(2)), so since ω is as-
sociated with a 2-torsion class, π∗ω = 0 in cohomology.
This cancellation underlies the fermionic model for DQCP
with on-site Spin(5) symmetry in Ref. [66]. By naturality of
the pullback, the anomaly is therefore microscopically trivial
(admitting an on-site representation) for any subgroup G ⊂
Spin(5).

e. Fermionic trivializations

In the case of fermionic systems, because fermionic SPTs
are classified by spin cobordism, occasionally the group co-
homology incarnation of the anomaly vanishing equation we
used above is insufficient. This can lead to some new mecha-
nisms for anomaly vanishing which work even when the group
extension is trivial, so c = 0.

For instance, on spin manifolds, the second Stiefel-
Whitney class of the tangent bundle is exact: w2 = dη. In
some sense η can be thought of as the spin structure [105,107].
Some bosonic anomalies have an ω which is “proportional” to
w2 and in this case we can write

ω(Alow) = dα(Alow, η). (C28)

For example, there is time-reversal-protected 2+1D
anomaly/3+1D SPT with

ω = 1
2w4

1 = 1
2w2w

2
1 (C29)

(known as eT mT in the notation of Ref. [108]), where we have
used the Wu formula. This becomes trivial with the addition
of T 2 = 1 fermions because

ω = d
(

1
2ηw2

1

)
. (C30)

This anomaly is not cancellable with T 2 = (−1)F fermions
however since in that case dη = w2 + w2

1 [109].
An example which does not involve time reversal is that of

a Z2 1-form symmetry anomaly in 2+1D/SPT in 3+1D with

ω = 1
2 B2 = 1

2 Bw2, (C31)

where B is a background Z2 2-form gauge field. This anomaly
is again canceled by adding fermions:

ω = d
(

1
2 Bη

)
. (C32)

This particular anomaly vanishing actually underlies
bosonization in 2+1D [109,110].

3. Solvability of the anomaly vanishing equation

Let us discuss when the anomaly vanishing equation (C1)
can be solved in group cohomology. For a given Glow and ω,
there is usually a G and π , where ω is in Ker(π∗). For group
cohomology SPTs, this is always the case. In Refs. [78,79],
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the authors considered a technique for constructing gapped
boundaries of SPTs, where Ggap plays the role of a gauge
symmetry, and Glow that of the microscopic symmetry, where
the same mathematical problem appears.8 They showed that
for any finite Glow, there is a corresponding extension G for
which the SPT may be disentangled in this way.

Applied to our setting, these results imply that any system
with finite anomalous Glow symmetry is realized in a system
with some on-site G, of which Glow is a quotient. Using
the results of Ref. [80] (where one of us studied gapped
boundaries for SPTs protected by Lie groups), we can extend
this to the case of global anomalies of continuous symmetry
groups, meaning we have to exclude anomalies such as the
chiral anomaly, which can be diagnosed by local correlation
functions, for which no gapped charges can cure the anomaly.

For fermion SPTs/anomalies beyond group cohomology,
the conditions are more subtle. For example, a unitary sym-
metry Z2 × ZF

2 protects a Z8 classification of fermion SPTs
in 2d, or equivalently anomalies in 1d. The generators of this
group cannot be trivialized by any extension of the Z2 symme-
try (fermion parity cannot be extended). Indeed, when Z2 is
extended to Z, a Z2 classification remains, where the domain
wall carries a Kitaev wire. Another example is the Z16 classifi-
cation of T 2 = (−1)F fermion SPT phases in 3d. Again under
symmetry extension at most we can reduce Z16 → Z2, since
the domain wall on the boundary will always carry a chiral
mode of c− = 1/2.

4. Construction of instrinsically gapless SPTs

Let us discuss how to construct intrinsically gapless SPT
phases. From the point of view of field theory, the topological
term α we get from solving the anomaly vanishing equation is
enough to give an effective action for this phase, but what if
we want a lattice model?

Suppose we begin with a d-space-dimensional lattice
model for the anomalous Glow theory as a boundary of a
d + 1-dimensional Glow SPT, so that Glow acts on-site in the
whole system. Since we want to construct a d-dimensional
system, we suppose that the bulk SPT has only some fi-
nite width L, forming a slab geometry Yd × [0, L], with our
anomalous theory localized to Yd × 0. See Fig. 4.

On the other boundary Yd × L, we place microscopic de-
grees of freedom transforming in an on-site representation
of G. Because of the nontrivial extension, these degrees of
freedom look projective from the point of view of Glow. The
anomaly vanishing equation tells us that we can create a fea-
tureless edge along Yd × L without breaking the G symmetry
(which acts through its quotient G → Glow in the bulk and
along Yd × 0) (compare Refs. [78,79]). Different featureless
edges will correspond to different solutions of the anomaly
vanishing equation by layering d-dimensional G SPTs along
Yd × L. See Appendix C 5 for a general construction for
finite G.

8Our constructions can be used to create anomalous theories with
microscopic Glow symmetry by gauging Ggap, but of course they will
not be gapped.

FIG. 4. The “slab construction” of intrinsically gapless SPT
phases. The G symmetry acts on-site everywhere, but inside the SPT
bulk and along the anomalous edge it acts by the quotient G → Glow.
In terms of the partition function (6), the bottom edge contributes
Zlow(X, Alow) and the top edge contributes e2π i

∫
X α(A). To define the

purely d-dimensional system, we keep the width of the slab L fixed
and take the horizontal directions to be infinite.

Once we have “trivialized” the Yd × L edge we may be
worried that we have gapped out the anomalous Yd × 0 edge.
However, this coupling can at most introduce local Glow-
symmetric perturbations of the low-energy modes, and these
can be canceled by tuning parameters along the Yd × 0 edge.
These perturbations can be controlled by taking L much larger
than the bulk correlation length.

In the end, we produce a system on the slab Yd × [0, L]
with global on-site G symmetry, and low-energy theory
described by our starting Glow-anomalous theory. Since L
remains fixed, this is a d-dimensional system (although one
which has a very large local Hilbert space). It shows that to
any system with Glow anomaly and a solution to the anomaly
vanishing equation, so long as we can construct a lattice model
for this anomalous system, we can construct a lattice model
for the associated intrinsically gapless SPT.

5. Trivialization of the SPT boundary in a fixed point model

To show how a solution to the anomaly vanishing equation
ω(Alow) = dα(A) allows us to define a trivial G-symmetric
edge of the Glow SPT classified by ω, we can adapt a con-
struction of Ref. [42] for finite G. First let us recall that
construction. We will take our local Hilbert space to be as-
sociated with the vertices of a triangulated spatial manifold Y ,
with the local Hilbert space at a single vertex spanned by basis
vectors labeled by elements of Glow. Glow acts on these vectors
in the so-called regular representation, i.e., by multiplication
(and later G will act by its quotient G → Glow). Thus the
whole Hilbert space is spanned by states |φ〉 associated to
Glow-valued 0-cochains φ ∈ C0(Y, Glow) (see Appendix G for
notation and concepts used below).

We define the operator Zg
y near a vertex y that multiplies

the Glow label at y by g and also produces the following phase
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factor:

eiβ(φ,y,g) = exp

(
2π i

∫
Y ×[0,1]

ω(A(φ, y, g))

)
, (C33)

where A(φ, y, g) is a gauge field on the “spacetime” Y ×
[0, 1], which restricts to 1φ on Y × 0 and 1φ′

, where φ′ is
the new φ′ on Y × 1. Thus, along the “vertical” edge con-
necting y × 0 to y × 1, A has label g, while on other “vertical
edges” (i.e., those connecting Y × 0 and Y × 1) it has the
identity label. Thus the phase factor β(φ, y, g) although we
have expressed it as an integral over all of Y × [0, 1], only
receives nontrivial contributions from simplices touching y,
so Zg

y so defined is a local operator. Writing it as an integral
over all of Y × [0, 1] however makes it clear that since ω is
gauge invariant (by virtue of dω = 0), the Zg

y ’s satisfy the
group algebra at y and commute at separated points. Thus the
Hamiltonian

H = −
∑

y

(
1

|Glow|
∑

g

Zg
y

)
(C34)

is a commuting projector Hamiltonian. Its unique ground state
on a closed Y may be written

|ω〉 =
∑

φ

e2π i
∫

Y ν(φ)|φ〉, (C35)

where

dν(φ) = ω(1φ ). (C36)

This reproduces the SPT ground state in Ref. [42] which
corresponds to ω.

Now suppose we have a solution to the anomaly vanishing
equation ω(Alow) = dα(A). We define a Hilbert space on a
spatial manifold Y with boundary in much the same way as
above, but now vertices along ∂Y have Hilbert spaces spanned
by elements of the bigger group G. We can write this as a com-
bination of a Glow-valued 0-cochain φlow ∈ C0(Y, Glow) and a
G-valued 0-cochain φ ∈ C0(∂Y, G), satisfying the condition
φlow|∂Y = π (φ), where π : G → Glow is the quotient map.

We define Zg
y to be associated with a group element g ∈ G.

On general vertices of Y , it acts by multiplication on φlow by
the image of g in Glow, while on boundary vertices it also acts
by multiplication in G on φ. We see it preserves the boundary
condition φlow|∂Y = π (φ). The associated phase factor is now

eiβ(φ,y,g) = exp

(
2π i

∫
Y ×[0,1]

ω(Alow(φlow, y, g)) − 2π i

×
∫

∂Y ×[0,1]
α(A(φ, y, g))

)
, (C37)

where Alow(φlow, y, g) is a Glow gauge field on Y × [0, 1] de-
fined as above to restrict to 1φlow on Y × 0 and 1φ′

low on Y × 1,
where φ′

low is the transformed φ′
low. Likewise, A(φ, y, g) is a G

gauge field on ∂Y × [0, 1], which restricts to 1φ on ∂Y × 0
and to 1φ′

on ∂Y × 1. This phase factor reduces to local
contributions from simplices touching y and by the anomaly
vanishing equation, which implies gauge invariance of this
integral so long as φlow and φ are fixed along Y × 0 and Y × 1,
the Zg

y so defined satisfy the group algebra at y and commute at
separated points. Thus we can define the commuting projector

Hamiltonian

H = −
∑

y

(
1

|G|
∑

g

Zg
y

)
, (C38)

which has a unique G-symmetric ground state.
We expect a similar construction for supercohomology

phases can be adapted from Refs. [111,112]. It would be very
interesting to understand such constructions for continuous
symmetry groups.

6. Bulk-boundary correspondence

We have seen in the above examples that in 1d the emergent
anomaly is often associated with a fractional charge or pro-
jective symmetry representation of a string operator for Glow.
From the perspective of the full microscopic symmetry G,
however, these fractional charges or projective representations
are actually integral or linear. This necessitates that certain
Glow string operators are charged under Ggap. We will argue
this and show it leads to edge modes.

Let g ∈ G be a gapless symmetry. Observe that all g alge-
braic string operators must have the same Ggap charge (which
thus must be Abelian). Otherwise, by fusion of these string
operators, we would obtain a local algebraic operator with
nontrivial Ggap charge, contradicting the definition of Ggap.

We will show that if h ∈ Ggap acts nontrivially in any of
these twisted sectors, that the unique h-string with long-range
order has nontrivial G charge. In a certain sense, we will
discuss, at any symmetric boundary condition this string op-
erator has a vev. Since it defines a local order parameter at the
boundary, there must be spontaneous symmetry breaking at
the edge.

Let us be more precise. Suppose algebraic g strings have
charge χg : Ggap → U(1). This charge is multiplicative in g,
so it defines a bicharacter (a homomorphism) χ : G × Ggap →
U(1). We will argue that for h ∈ Ggap, the h string with long-
range order has G charge χ (−, h) : G → U(1). This charge is
uniquely defined because G is unbroken.

The g ∈ G charge of the h ∈ Ggap string operator with
longest range order is captured by the leading term of the
partition function on a rectangular torus of aspect ratio β,
with a g twist in the time direction and an h twist in the space
direction, in the “low temperature” limit β → ∞. We denote
this partition function

Z (h/g, β ) = TrHh ge−βH , (C39)

where Hh is the Hilbert space in the h-twisted sector and H
is the Hamiltonian. In a conformal invariant IR limit, if we
perform a modular S transformation, we will find

Z (h/g, β ) = Z (g/h, 1/β ) = TrHghe−H/β . (C40)

Because all g-twisted states of the CFT limit have the same
Ggap charge, in this case χ (g, h), this partition function is

eiχ (g,h)Zlow(1/β, g/1), (C41)

where Zlow(1/β, g/1) is positive for all β (however, if there is
spontaneous symmetry breaking, it can be exponentially small
see Appendix C 7 below). Thus, the phase of the leading term
in the limit β → ∞ of Z (h/g, β ) is eiχ (g,h), proving the claim
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FIG. 5. A gapped string operator straddling an interface between
the topological phase and the trivial phase has a nonzero vev. It plays
the role of a symmetry breaking order parameter at the boundary,
signaling the presence of edge modes.

of reciprocity, at least in the CFT case. We believe this claim
holds in full generality.

Thus, in a system with an emergent anomaly, there will be
a long-range ordered string of a gapped symmetry with non-
trivial charge. If we consider symmetry fractionalization at the
interface between our system and a trivial phase, we then see
that something must happen at the boundary. Indeed, a string
which crosses the interface, with one end in the topological
phase and the other in the trivial phase, will have some vev, yet
carry a global charge since it has different end point in each
phase. This signals a kind of spontaneous symmetry breaking
at the boundary. See Fig. 5.

For a finite G, one can construct such boundaries as fol-
lows. First we break the Glow symmetry by a generic boundary
perturbation to define a “fixed” boundary condition. G will
permute these boundary conditions through the action of its
quotient Glow. We can thus restore the symmetry by taking a
direct sum of each of these |Glow|-many boundary conditions.

In more familiar situations, such a “spontaneously fixed”
boundary condition would be unstable since one can add
boundary-condition-changing (bcc) operators to the Hamilto-
nian and induce a flow to a “free” boundary condition. These
bcc operators are not local bulk operators but instead are
associated with the Glow twisted sectors. As we have seen
however, in the presence of an emergent anomaly, at least
some of these bcc operators will be charged under Ggap, so
we cannot perturb by them. Some symmetry will thus remain
broken at the boundary.

The sense in which the symmetries are broken is that if we
consider an interval with the spontaneously fixed boundary
condition on either end, the edges will polarize eachother
but there will be an overall degeneracy equal to the number
of broken symmetry generators. In the case of a nontrivial
anomaly then, there will be a nontrivial degeneracy, which we
associate to edge modes. A similar analysis was presented in
Ref. [33].

Let us relate this argument to the one given in Sec. IV. We
would like to interpret the counterterm α on the RHS (C2) [see
also (C13), (C17), and (C20)] as defining the string charges χ .
Indeed, consider the partition function (C3):

Zlow(Alow)e2π i
∫

α(Alow,Agap ). (C42)

We have argued that the topological term α is necessary for
gauge invariance. When we compute torus partition functions
in the twisted sector, as we did above to measure the charges
of string operators, this term contributes to the phase of the
partition function, and therefore helps to encode this informa-

tion. In particular, since Zlow(Alow) is independent of Agap, α

completely encodes the Ggap charges of the different twisted
sectors.

To encode such a charge, α contains a term schematically
like qAgapAlow. This term has a reciprocal interpretation that
says the Ggap string also carries charge. This charge is what is
picked up in the boundary variation when we do a Ggap gauge
transformation Agap 
→ Agap + dg, δα � d (qgAlow). To cancel
this gauge variation, we can restrict Alow at the boundary so
that qAlow ∼ 0. This amounts to the symmetry breaking we
argued above.

For instance, with G = U (1) × Z2 with the anomaly as in
Appendix C 2 b, in light of (C17) the nontrivial Ggap charges
are in the Z2 twisted sector, so we expect there is a stable
boundary condition which is “free” from the perspective of
the U(1) but spontaneously fixed for the Z2, associated with a
twofold degeneracy on an interval. The same applies to G =
U (1) � T of Appendix C 2 c with T spontaneously broken on
an interval.

7. Partition function vanishing, symmetry breaking,
and topological order

Analysis based on the factorized partition function

Z (X, A) = Zlow(X, A)e2π i
∫

X α(A) + · · · (C43)

is only valid as long as Zlow(X, A) is nonvanishing. Other-
wise, the partition function is dominated by exponentially
small subleading corrections hidden in · · · , which are con-
tributions purely from the gapped sector, which we expect
are nonuniversal. In particular, the topological data in the
counterterm e2π i

∫
X α(A) can only be extracted for backgrounds

with Zlow(X, A) �= 0.
This is a regular occurrence at SPT transitions. For in-

stance, take Ggap = 1 so dα = ω = 0 is an arbitrary SPT class
in the same dimension as our system. Suppose we study a
theory which is a phase transition between the trivial SPT and
the SPT classified by α. As we tune through the transition, the
phase of Z (X, A) jumps from 1 to e2π i

∫
X α(A), so for any back-

ground with e2π i
∫

X α(A) �= 1, Z (X, A) vanishes at the transition.
This phenomenon is crucial to understand the fact that some
gapless systems can “absorb” stacked SPTs [33]. However, if
there is a Ggap, this can only happen for α which only depend
on Glow.

The partition functions we are most interested in are those
of the form Y × S1 where A has Glow holonomy around the
spatial slice Y and Ggap holonomy around the temporal S1,
since this computes the Ggap charge of a Glow symmetry de-
fect. For these partition functions, as long as the symmetry
in unbroken and there is no topological order, Zlow(X, A)
will be nonzero, since the magnitude of such partition func-
tions computes the spectrum of the low-energy theory in
these backgrounds, which is manifestly positive (compare
Appendix C 6).

In the presence of symmetry breaking or topological or-
der, it can happen that even with just spatial components of
A nonzero, Z (X, A) may be exponentially small, and thus
we will not be able to extract a universal part of (C43). In
the case of spontaneous symmetry breaking, this is because
the domain walls are tensionful (or massive in 1+1D). In
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the case of topological order, it can happen because symmetry
fractionalization may bind nontrivial anyons to the symmetry
defects, and these anyons are massive [98,113,114].

In these cases, one must be more clear what is meant
by emergent anomaly. With SSB, we can simply restrict our
attention to the unbroken subgroup. With topological order
however, it is less obvious how to proceed, and we mostly
leave this case to future work. Let us just comment that in a
purely gapped system with topological order, there is no sense
of an emergent anomaly. One might like to say perhaps that G
acts on the anyons and that there is some quotient G“low′′ for
which this action may be considered projective. That would
be wrong though, since the anyons, being defined only up to
multiplication by local operators, do not carry well-defined G
representations (although G may permute the superselection
sectors).

APPENDIX D: NEARBY PHASE DIAGRAM OF THE
TOPOLOGICAL PHASE

In this Appendix, we discuss the nearby phase diagram of
our topological gapless phase protected by Z4 symmetry Rx.
We use the field theory approach of Sec. III.

To examine the nearby phase diagram, we must first study
the marginal parameters. The c = 2 mother theory has several
such parameters. It is convenient to think of the bosonized
c = 2 theory as a sigma model with 2-torus target and these
parameters as the shape of this torus (see Appendix A of
Ref. [117] for a review). There are actually two dual tori
we can think about, depending on whether we look at the
coordinates (ϕ↑, ϕ↓) or (θ↑, θ↓). At the free fermion point,
the torus is rectangular in (ϕ↑, ϕ↓) coordinates with radii R↑
and R↓ along the ϕ↑ and ϕ↓ directions, respectively. For our
models, these radii must be equal: R↑ = R↓ = R = 1/

√
K to

have Rx or T symmetry. These radii can be tuned together by
the symmetric marginal perturbation

(∂xϕ↑)2 + (∂xϕ↓)2, (D1)

which represents a separate Luttinger interaction in each spin
channel, but of the same strength. There is one more symmet-
ric marginal perturbation:

∂xϕ↑∂xϕ↓, (D2)

which can be tuned by the Hubbard interaction. This corre-
sponds to squashing the torus in the diagonal direction. We
therefore write the (constant) metric as

g =
[

R2 S
S R2

]
. (D3)

The Hamiltonian term corresponding to this metric is

∂x �ϕT g∂x �ϕ. (D4)

The dimension of the ϕ vertex operator ein↑ϕ↑+in↓ϕ↓ is

��n = �nT g−1�n, (D5)

where �n = (n↑, n↓)T . Thus Ozz = cos(ϕ↑ − ϕ↓), which corre-
sponds to a lattice vector (1,−1) has dimension 2/(R2 − S).
For it to be relevant, we need R2 − S > 1.

To determine the effective radius Reff (or effective Lut-
tinger parameter Keff ) of the topological gapless phase in

FIG. 6. The gapless Z4-SPT phase has two symmetric relevant
operators, cos 2�2 and sin 2�2 in the region of the marginal param-
eter 1/8 < Keff < 1/2, which describe a 2-parameter nearby phase
diagram where the gapless phase is an isolated point (open blue cir-
cle) in a sea of a gapped phase where Z4 is broken to its Z2 subgroup.
It is a diabolical point in the sense of [115], protected by a non-
trivial vacuum crossing [116]: as one adiabatically traverses a loop
encompassing the gapless point, the two SSB vacua are exchanged.
A cartoon of how the mean field potential looks is illustrated at the
black circles in the figure. The emergent anomaly further protects
this point from deformation into an island of the trivial phase.

terms of R and S, we must simply see the length of the circle of
minima of the potential Ozz = cos(ϕ↑ − ϕ↓). This has minima
along the circle ϕ↑ = ϕ↓ + π embedded in the 2-torus. The
length of this circle is Reff = √

2R2 + 2S or

Keff = 1/(2R2 + 2S), (D6)

which for the free fermion R = 1 and S = 0 is the SU(2) point
Keff = 1/2. At this free point, the key perturbation Ozz [with
dimension 2/(R2 − S)] is marginal. To make it relevant, we
can either decrease S, which results in Keff > 1/2, or we can
increase R (i.e., turn on a repulsive Luttinger interaction as
in Appendix A 2), which results in Keff < 1/2. These repre-
sent two phenomenologically distinct regimes of the c = 1
topological phase. Below we will mainly focus on the region
Keff < 1/2, which is realized by the Ising-Hubbard chain in
Sec. II as observed in Appendix A.

Recall in the new variables �2 = ϕ↓, �2 = θ↑ + θ↓ −
ϕ↑/2 + ϕ↓/2, we have the symmetry action

Rx :

{
�2 
→ �2 + 〈�1〉
�2 
→ �2 + 〈�1〉 , (D7)

where in the topological phase we have 〈�1〉 = π . In this
case, the most relevant symmetric operators are cos 2�2,
sin 2�2, cos 2�2, sin 2�2 (there are also cos �2 cos �2, etc.
but these operators cannot open a gap). The first two are
relevant for Keff > 1/2 and the second two for Keff < 1/2. As
long as Keff is within the window (1/8, 2), these are no other
symmetric relevant operators. For any combination of each
pair, the system flows to an SSB state where Z4 is broken to
ZF

2 . The nearby phase diagram for 1/8 < Keff < 1/2 is drawn
in Fig. 6.
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In the region Keff < 1/2, at generic filling, translation sym-
metry stabilizes the gapless phase. In the region Keff > 1/2, it
is stabilized by particle number U(1) symmetry. In this latter
case, the Z2 symmetry generated by the product of an order
four element of U(1) and Rx forms an SPT phase with ZF

2 . To
have a stable gapless phase but still be in a symmetry class
with no gapped SPTs, we can take our symmetry group to be
Z12 = Z4 × Z3 generated by Rx and the Z6 subgroup of U(1).

APPENDIX E: FIELD THEORY FOR OTHER
SYMMETRY CLASSES

In Sec. III, we studied an intrinsically gapless Z4-SPT
phase in proximity to a free spinful fermion. In this Appendix,
we will show that the same field theory captures topological
phases in the symmetry classes U(1) × Z2 and U(1) � T as
well.

1. Other fermionic classes

a. Symmetries

Besides our Z4 symmetry Rx, we are also interested in time
reversal and particle number conservation. These act on the
bosonic variables as follows:

Rx :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕs 
→ ϕ−s

θ↑ 
→ θ↓ + π/2
θ↓ 
→ θ↑ − π/2
U↑ 
→ U↓
U↓ 
→ −U↑

, T :

⎧⎪⎨⎪⎩
ϕs 
→ ϕ−s

θs 
→ −θ−s

U↑ 
→ U↓
U↓ 
→ −U↑,

,

U(1) :

⎧⎨⎩ϕs 
→ ϕs

θs 
→ θs + α

Us 
→ Us.

. (E1)

We have T 2 = (−1)F and fermion parity (−1)F is a U(1)
rotation with α = π . For convenience, we also collect

eiαSz :

⎧⎪⎨⎪⎩
ϕs 
→ ϕs

θ↑ 
→ θ↑ + α/2
θ↓ 
→ θ↓ − α/2
Us 
→ Us

,

Trans :

⎧⎨⎩ϕs 
→ ϕs + kR − kL

θs 
→ θs + kR/2 + kL/2
Us 
→ Us

. (E2)

We see the operator Ozz = cos(ϕ↑ − ϕ↓) which tunes between
the trivial and topological gapless phases remains symmetric
under U(1), T , and translation.

b. The topological phase

The variables of Sec. III can be derived by first performing
the following SL(2,Z) change of variables on the bosonic
variables:

�1 = ϕ↑ − ϕ↓, �1 = θ↑,

�2 = ϕ↓, �′
2 = θ↑ + θ↓, (E3)

and then defining the gauge-invariant �2 = �′
2 + �1/2,

which is conjugate to �2. After turning on the perturbation

Ozz, we find the effective symmetry action

T :

{
�2 
→ �2 + 〈�1〉
�2 
→ −�2

,

U(1) : �2 
→ �2 + 2α,

Rx :

{
�2 
→ �2 + 〈�1〉
�2 
→ �2 + 〈�1〉 ,

Trans :

{
�2 
→ �2 + kR − kL

�2 
→ �2 + kR + kL
. (E4)

We see in the topological phase with 〈�1〉 = π , the effective
U(1) � T symmetry has an emergent anomaly that matches
the edge of a 2d bosonic topological insulator [73] (cf.
Appendix C 2 c). In this symmetry class, the topological phase
has no symmetric relevant operators, and defines a stable
gapless phase.

With just T symmetry, and 1/2 < Keff < 2 (see
Appendix D) there are two symmetric relevant operators,
cos �2 and cos 2�2. From the perspective of the low-energy
theory, as we tune cos �2, the gapless topological phase looks
like a codimension 2 critical point between a trivial phase and
the bosonic T SPT. However, since the microscopic symmetry
has T 2 = (−1)F , these phases are actually equivalent (and
actually realize a different nontrivial SPT, see below). Thus,
from this point of view, our topological phase is reminiscent
of an “unnecessary” (multi)critical point in the language of
[118]. See Figs. 7 and 8.

We note that the T symmetry class is enough to project the
edge modes of the topological phase. The trick is to realize
that if we include the gapped sector, then the full T 2 = (−1)F

symmetry is in an SPT phase (such phases are classified by a
Z2 invariant). This follows from our calculation in Appendix
C 2 c as well as the form of the string operator from Sec. II,
namely Sz

m(
∏

m<k<n Pk )Sz
n, since Sz is odd under T .

We can also define a Z2 symmetry Q by Rx times the U(1)
rotation with α = π/2. The effective U(1) × ZQ

2 symmetry
of the topological gapless phase has the emergent anomaly of
Appendix C 2 b, where Q : �2 
→ �2 + π and U(1) : �2 
→
�2 + 2α. In the symmetry class, we see there no symmetric
relevant operators, and therefore our topological gapless phase
is stable.

As in the case of T symmetry, if we break the U(1) down
to fermion parity, the edge mode of the topological phase is
protected by a Z2 × Z2 SPT phase between Q and (−1)F , the
latter of which acts only in the gapped sector. This follows
from our calculation in Appendix C 2 b as well as the form of
the string operator Sz

m(
∏

m<k<n Pk )Sz
n, since Sz is Q-odd.

2. A field theory for bosons

This field theory can be easily adapted to describe intrin-
sically gapless phases of bosons as well. For symmetries, we
take

U :

{
ϕ1,2 
→ ϕ2,1

θ1,2 
→ θ2,1 + π/2 , T :

⎧⎨⎩ϕ1,2 
→ ϕ2,1

θ↑ 
→ −θ↓ + π/2
θ↓ 
→ −θ↑ − π/2

,

U(1) :

{
ϕ1,2 
→ ϕ1,2

θ1,2 
→ θ1,2 + α
. (E5)
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FIG. 7. The phase diagram near the topological gapless phase
(blue circle) in the symmetry class T 2 = (−1)F , for which there
is no emergent anomaly, in a region of parameter space with ef-
fective marginal parameter 1/2 < Keff < 2. In the SSB phase, T is
broken to fermion parity, while in the nondegenerate gapped phase,
which is the SPT phase for T , there is a spurious first order line,
explained that in the effective T 2 = 1 symmetry of the gapless phase
(where fermions are gapped), the two nearby gapped phases look
like distinct SPTs. We expect this first order line to end in an Ising
critical point where the fermion gap closes. One way to account
for the topological nontriviality of this critical point is to note that
it has no nearby trivial phase. See Ref. [34] for a discussion of
this philosophy and how it results in edge modes. The black lines
are (SPT-twisted) Ising phase transitions controlling the spontaneous
symmetry breaking of T , and are also expected to have edge modes
[33]. The edge mode at the multicritical point where the two lines
meet can be considered the continuation of the edge modes from
either side. Rx acts by reflecting this phase diagram over the first
order line, i.e., cos �2 
→ − cos �2, and is spontaneously broken
along it. In the symmetry class ZRx

4 × ZRxT
2 generated by Rx and T

therefore this critical point is like a deconfined quantum critical point
between two different ordered phases with an emergent anomaly for
ZRx

2 × ZT
2 .

SPT

SPT

SSB

FIG. 8. The phase diagram near the topological gapless phase
(blue circle) in the symmetry class T 2 = (−1)F again, but this time
in a region of parameter space with effective marginal parameter
1/8 < Keff < 1/2. In the SSB phase, T is broken to fermion parity,
and both SPT phases are the unique ZT

4 SPT phase. Along the orange
circle, we have vacuum crossing as in Fig. 6, which is reproduced
along the plane where we turn off the cos �2 perturbation, which is
odd under Rx .

Our perturbation into the topological phase is cos(ϕ↑ − ϕ↓),
which we analyze by passing to the variables

�1 = ϕ↑ − ϕ↓, �1 = θ↑,

�2 = ϕ↓, �2 = θ↑ + θ↓.
(E6)

The effective symmetry action is

T :

{
�2 
→ �2 + 〈�1〉
�2 
→ −�2

,

U(1) : �2 
→ �2 + 2α,

U :

{
�2 
→ �2 + 〈�1〉
�2 
→ �2 + π

. (E7)

We recognize the ZU
2 action as the Levin-Gu/CXZ anomaly.

U(1) � T matches the edge of a 2d bosonic topological in-
sulator [73], and ZU

2 × U(1) a kind of bosonic quantum spin
Hall SPT.

APPENDIX F: NOTE ON BOSONIZATION

Bosonization takes many forms. Perhaps the most famil-
iar is the Jordan-Wigner transformation, which abstractly
describes a fermionic theory as a bosonic theory (“the
bosonization”) with a Z2 global symmetry. The fermionic
theory is reconstructed by gauging this global symmetry in the
presence of a modified Gauss law, such that we project out Z2

charged local operators, but keep Z2 charged string operators
(these become the local fermions) and project out Z2 neutral
strings. See for instance [119,120]. This fermionization trans-
formation can also be thought of as gauging the Z2 symmetry
in the presence of a special discrete torsion which couples the
gauge field to the spin structure [109,110]. It can be confusing
but it is useful to be clear about such issues when questions of
global topological properties are important. An advantage of
JW bosonization is that all fermion operators anticommute by
virtue of being charged endpoints of the same string.

The bosonization used in Sec. III is a little bit different
from the familiar Jordan-Wigner transformation. Instead, the
fermionization transformation involves gauging a Z2 × Z2

global symmetry. For the c = 2 theory, these symmetries are

UB : θ↑ 
→ θ↑ + π, UC : θ↓ 
→ θ↓ + π. (F1)

We project out all local operators which are charged under
them, but we keep certain charged twist operators. From the
three twisted sectors, corresponding to UA, UB, and UAUB,
respectively, the operators we keep are those of the form

eiϕ↑/2+iθ↑O, eiϕ↓/2+iθ↓O′, eiϕ↑/2+iθ↑eiϕ↓/2+iθ↓O′′, (F2)

where O etc are gauge invariant local operators. The operators
eiϕ j/2+iθ j are the two fermions. This rule may be stated that
an operator in the U m

A U n
B twisted sector is local iff it has UA

charge (−1)m and UB charge (−1)n.
Fermion parity in this theory is the diagonal magnetic sym-

metry ϕ j 
→ ϕ j + 2π , which is equivalent to θ j 
→ θ j + π

by the selection rules. The selection rules mean that certain
innocent-looking operators such as cos(θ↑ + θ↓), which ap-
pear to be even under fermion parity, are actually not local
because they do not obey the gauge constraints. The bosonic
operator cos(ϕ↑/2 + ϕ↓/2) cos(θ↑ + θ↓) however, is local.
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In the language of Refs. [109,121], we are gauging
the Z2 × Z2 global symmetry of the product of the two
bosonized theories, in the presence of the discrete torsion
(−1)Qη (B)+Qη (C), where B and C are Z2 gauge fields, η is the
spin structure, and Qη is the quadratic form associated to it.

APPENDIX G: DISCRETE GAUGE FIELD PRIMER

Here we collect some basic definitions and facts about
discrete gauge fields. A good reference for the general topo-
logical notions is Ref. [122].

1. Discrete gauge fields

Let G be a finite group, possibly non-Abelian. To describe
a G gauge field on a space X , we choose a triangulation of
X . A flat G gauge field is a 1-cocycle A ∈ Z1(X, G) meaning
to each oriented edge (i j) (“i to j”) it assigns an element
A(i j) ∈ G such that A( ji) = A(i j)−1 and for every triangle
(i jk) with ordered vertices (“i to j to k”), it satisfies the
cocycle condition

A(i j)A( jk) = A(ik), (G1)

which says that the magnetic flux through this triangle van-
ishes. A gauge transformation is parametrized by a 0-cochain
g ∈ C0(X, G) meaning that to each vertex i it assigns an ele-
ment g(i) ∈ G. It acts on A by

A(i j) 
→ Ag(i j) = g(i)−1A(i j)g( j). (G2)

Since we have written A multiplicatively, the Wilson loop
along some oriented cycle γ = (i1i2) + (i2i3) + · · · + (ini1) is

WR(γ , A) = Tr

(∏
j

ρ(A(i j i j+1))

)
, (G3)

where ρ is a representation of G.
We will be interested in studying the Euclidean partition

function on an arbitrary spacetime X equipped with a flat G
gauge field. It is so far unclear how to do this for a general
lattice model, especially when X has interesting topology.
In field theory, it is more-or-less clear however what one
needs to do. That is, we think about the gauge field, defined
on a triangulation, in terms of a Poincaré dual network of
topological defects [121]. That is, in the cell structure dual
to the triangulation of X , there are hypersurface associated to
each edge (i j). We choose boundary conditions for the fields
across these hypersurfaces such that when a field crosses the
hypersurface along the direction i → j, it satisfies the gluing
condition φL · A(i j) = φR, where φL · A(i j) is the action of the
global symmetry. The cocycle condition says that at a codi-
mension 2 junction of hypersurfaces, the boundary condition
is well-posed. Otherwise there would be a singularity in the
fields and we would have a G flux. The triangulation consid-
ered above should be considered on a length scale where the
continuum field theory reigns.

For more general “quantum symmetries,” whose action
cannot be seen on the fields, we associate a topological defect
to each of these hypersurfaces, defined by the group element
A(i j). If the topological defect associated to g ∈ G is placed
along a spacelike slice of the theory, then in the partition func-
tion we apply the global g symmetry at that moment in time.

If the topological defect is placed along some hypersurface
with one coordinate in the time direction and the rest along
the spatial directions, then where the spatial slice intersects it
we are considering a g-twisted sector of the Hilbert space.

Gauge transformations allow us to freely move and recom-
bine this network of topological defects without changing the
value of the partition function. In the case of an anomaly,
however, the phase of the partition function will change under
certain gauge transformations. In 1+1D, the basic recombina-
tion of the network of topological line defects is the “F -move”
or “crossing relation.” The anomaly in this case is captured by
the F symbols of the 2+1D Dijkgraaf-Witten theory obtained
by gauging the global symmetry of the associated bulk SPT.
See Ref. [98] for more details.

2. Simplicial cohomology

We will need some basic constructions from simplicial
cohomology. First, a k-simplex is determined by its k + 1
vertices. If these vertices are ordered v0 < · · · < vk we write
(v0 · · · vk ) to denote the corresponding k-simplex with this
vertex ordering. When we are talking about a single k-
simplex, we will just write it with the shorthand (0 · · · k).

We define the group of k-chains Ck (X,Z) on a trian-
gulated space X to be integer combinations of k-simplices
with ordered vertices, modulo reordering of the vertices:
(σ (0) · · · σ (k)) = (−1)σ (0 · · · k).

Let M be an Abelian group. We define a k-cochain
α ∈ Ck (X, M ) to assign an element α(0 · · · k) ∈ M to ev-
ery k-simplex (0 · · · k) with ordered vertices such that
α(σ (0) · · · σ (k)) = (−1)σα(0 · · · k) for any permutation σ ∈
Sk+1 of the vertices with sign (−1)σ . From now on we just
refer to (1 · · · k) as a k-simplex.

For � ∈ Ck (X,Z), α ∈ Ck (X, M ) integral∫
�

α ∈ M (G4)

is defined to be the sum of α evaluated on these k-simplices,
weighted by those integers. Thus by definition∫

(0···k)
α = α(0 · · · k), (G5)

so α is determined by its integrals. In this sense, α is like a
discrete analog of a differential k-form.

Taking the boundary of a k-simplex with ordered vertices,
and passing that ordering onto its boundary k − 1-simplices
produces a k − 1 chain, and extending that function by lin-
earity defines the boundary map ∂ : Ck (X,Z) → Ck−1(X,Z).
We define the group of k-cycles as Zk (X,Z) := ker(d ) and
the group of k-boundaries as Bk (X,Z) := im(d ). We have
∂2 = 0, so Bk (X,Z) ⊂ Zk (X,Z). The homology is defined by
Hk (X,Z) := Zk (X,Z)/Bk (X,Z).

We define the differential d : Ck (X, M ) → Ck+1(X, M ) by
Stokes’ theorem ∫

�

dα =
∫

∂�

α, (G6)
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which translates to

(dα)(0 · · · k + 1) =
k+1∑
j=0

(−1) jα(0 · · · ĵ · · · k + 1) (G7)

= α(123 · · · k + 1) − α(023 · · · k + 1) + α(013 · · · k + 1)

− · · · + (−1)k+1α(0 · · · k), (G8)

where ĵ means j is excluded from (0 · · · j · · · k + 1).
We define the group of k-cocycles as Zk (X, M ) :=
ker(d ) ⊂ Ck (X, M ) and the group of k-coboundaries
as Bk (X, M ) := im(d ) ⊂ Ck (X, M ). We find d2 = 0 so
Bk (X, M ) ⊂ Zk (X, M ). The cohomology group is defined by
Hk (X, M ) := Zk (X, M )/Bk (X, M ).

We can connect this to two physical objects: gauge fields
and partition functions.

Firstly, when G is Abelian, A ∈ C1(X, G), and the cocycle
condition (G1) for a G gauge field can be rewritten

dA = 0, (G9)

and a gauge transformation acts by

A 
→ Ag = A + dg, (G10)

with g ∈ C0(X, G) so gauge equivalence classes of flat G
gauge fields on X are classified by H1(X, G). [This in fact
also holds for non-Abelian G, although in that case this con-
struction does not generalize to Hk (X, G).]

Secondly, if X is a spacetime of dimension k = d + 1, then
Hk (X,U (1)) (where we identify U(1) ∼= R/Z) corresponds
to topological actions. More precisely, any ω ∈ Hk (X,U (1))
defines a partition function Z = e2π i

∫
X ω for any closed man-

ifold X . The fact that dω = 0 physically implies cobordism
invariance of Z .

To connect these two, i.e., the gauge field A and the action
ω, we turn to group cohomology.

3. Group cohomology and topological terms

There is a useful space called the classifying space, denoted
BG, which has the property that a flat G gauge field on X is
the same as a map X → BG. A construction can be found in
[122]. See also [104]. The group cohomology is defined to
be the cohomology of this space: Hk (BG, M ). An element
of Hk (BG, M ) can be represented by an M-valued group
k-cocycle which is a function � : Gk → M that satisfies the
group k-cocyle equation

�(g2, g3, g4 . . . , gk+1) − �(g1g2, g3, g4, . . . , gk+1)

+�(g1, g2g3, g4, . . . , gk+1) − · · ·
+ (−1)k+1�(g1, . . . , gk ) = 0. (G11)

One can use such a k-cocycle to define a map (not necessarily
a group homomorphism)

ω : Z1(X, G) → Zk (X, M ), (G12)

which satisfies the k-cocycle equation

dω(A) = 0 (G13)

and the gauge-invariance equation

ω(Ag) = ω(A) + dω1(A, g) (G14)

for some ω1(A, g) ∈ Ck−1(X, M ). To do so, we define

ω(0 · · · k) = �(A(01), A(12), . . . , A(k − 1, k)). (G15)

(In terms of A considered as a map A : X → BG, ω(A) =
A∗�, where A∗ is the pullback [122].) � can be reconstructed
from ω by evaluating ω on a k-simplex.

For M = U (1) = R/Z, k = d + 1 the dimension of space-
time, such a cocycle defines a topological action for the G
gauge field [89]:

Ztop(X, A) = e2π i
∫

X ω(A). (G16)

We think of this partition function as arising from a d-space-
dimensional SPT coupled to the background gauge field A.
It turns out that in a certain sense gauge invariance (G14)
is equivalent to the cocycle equation (G13) (see below), and
moreover shifts ω(A) 
→ ω(A) + dχ (A) do not change the
partition function on closed spacetime. Thus the gauge in-
variant partition functions of this form on closed spacetimes
are classified by Hd+1(BG,U (1)). If we assume that these
partition functions capture all the topological features of the
G symmetry of the underlying model, we reproduce the group
cohomology classification of SPTs from Ref. [42]. See also
Refs. [60,61] for generalizations.

The equivalence between gauge invariance (G14) and the
cocycle equation (G13) is very important. It underlies our
anomaly vanishing equation as well as the calculations of
anomalies in Ref. [68]. A mathematical proof can be found
in Ref. [105], which we reproduce here.

The proof relies on being able to study ω on different X ,
so that ω is not allowed to depend on precise details of X .
Intuitively it should be a function of the gauge field only.
The precise condition is that ω is a natural transformation of
functors from Z1(−, G) to Zd+1(−,U (1)).

To show that gauge invariance (G14) implies the cocycle
equation (G13), we consider X = �d+2 a d + 2 simplex with
flat gauge field A and∫

�d+2
dω(A) =

∫
∂�d+2

ω(A). (G17)

Because �d+2 is contractible, A = 1g for some g (i.e. it is a
gauge transformation of the trivial gauge field A = 1, written
in the multiplcative notation). Using (G14), we then complete
the proof∫

�d+2
dω(A) =

∫
∂�d+2

ω(A)

=
∫

∂�d+2
ω(1) − dω1(1, g) = 0. (G18)

To show the other direction, for any A ∈ Z1(X, G), g ∈
C0(X, G), we can define a flat gauge field Â on X × [0, 1] such
that A|X×0 = A and A|X×1 = Ag. Using the cocycle equation,
we have

0 =
∫

X×[0,1]
dω(Â) =

∫
∂ (X×[0,1])

ω(Â)

=
∫

X
ω(Ag) −

∫
X

ω(A) +
∫

∂X×[0,1]
ω(Â|∂X×[0,1]). (G19)

075132-20



INTRINSICALLY GAPLESS TOPOLOGICAL PHASES PHYSICAL REVIEW B 104, 075132 (2021)

The last term can be integrated over the interval to define

ω1(A, g) := −
∫

[0,1]
ω(Â|∂X×[0,1]). (G20)

Gauge invariance (G14) follows.
This argument is very general, and can be easily adapted

to relative cohomology, in the form it is used to prove the
anomaly vanishing equation. That is, if we have a Glow gauge
field Alow on X and a G gauge field A on ∂X , we are interested
in invariants of the form∫

X
ω(Alow) −

∫
∂X

α(A). (G21)

We find that gauge invariance of such expressions is equiv-
alent to dω(Alow) = 0 and the anomaly vanishing equation
ω(Alow) = dα(A).

4. Example: Zn

Let us discuss the special case G = Zn and describe the
classification of its 2+1D SPTs using the method of topolog-
ical terms.

To do so we will need one more definition. Let R be a
ring. We define the cup product ∪ : C j (X, R) × Ck (X, R) →
C j+k (X, R) by

(α ∪ β )(0 · · · j + k) = α(0 · · · j)β( j · · · j + k). (G22)

It satisfies

d (α ∪ β ) = (dα) ∪ β + (−1)kα ∪ (dβ ), (G23)

and if dα = 0 and dβ = 0, then

α ∪ β − (−1) jkβ ∪ α = d (· · · ), (G24)

where · · · define higher “cup-i products” of cochains.
It turns out that H3(BZn,U (1)) = Zn. The generator of

this cyclic group defines, according to Eq. (G15), a map
ω : H1(X,Zn) → H3(X,U (1)) given by

ω(A) = 1

n2
A ∪ dA. (G25)

Note that because the denominator is n2 and not n, we need to
lift A to an integer-valued cochain to define this quantity. We

can do this by expressing A(i j) ∈ Zn as an integer Ã(i j) ∈
[0, n), so that Ã = A mod n. We see the cocycle equation for
A implies dÃ = nβ for some integer valued 2-cocycle β. β

can be thought of as the density of 2π fluxes. Thus the form
above may be rewritten

ω(A) = 1

n
A ∪ β. (G26)

We see that if we change the lift Ã 
→ Ã + nα, β 
→ β + dα

and so

ω 
→ ω + 1

n
A ∪ dα. (G27)

Integrating the second term by parts we find it is

δω = −1

n
dA ∪ α + d (· · · ) (G28)

which is an integer on a closed spacetime and does not con-
tribute to the phase of the partition function.

We see

dω = 1

n2
dA ∪ dA = β ∪ β ∈ Z, (G29)

which implies gauge invariance up to a boundary term. In-
deed, if we shift A 
→ A + dg, Ã 
→ Ã + d̃g, so

δω = 1

n
(dg ∪ β + A ∪ dd̃g + dg ∪ dd̃g)

= 1

n
d (g ∪ β − A ∪ d̃g + g ∪ dd̃g). (G30)

To get a handle on what this term means for the boundary
anomaly, we can consider a single 3-simplex (0123) with
Ã(01) = 1, Ã(12) = n − 1 Ã(23) = 1. We see nβ(123) =
Ã(12) + Ã(23) − Ã(13) = n − 1 + 1 − 0 = n, so

ω(A)(0123) = 1

n
. (G31)

Thus, this configuration is in some sense the minimal con-
figuration which yields a nontrivial contribution from the
topological term. It can be related to the nontrivial F symbol
of 2+1D Zn Dijkgraaf-Witten theory [89], and thus to the Zn

anomaly.
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