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We study magnetic excitations and thermal Hall effect on the Kitaev-Heisenberg model under magnetic fields.
By employing the spin-wave theory for the magnetic orders realized in this model, we examine the topological
nature of the spin-wave dispersions and calculate the thermal Hall conductivity. The comprehensive investiga-
tions on the field-angle dependence clarify that the thermal Hall conductivity is sensitive to the spin ordered
pattern and excitation spectra of magnons; this quantity is enhanced by the noncoplanar spin configurations and
small magnon gap in the excitation spectrum. On the other hand, we also find a common feature in the field-angle

dependence of the thermal Hall conductivity. It vanishes when the magnetic field is on the planes spanned by
the spin axes. We reveal that the behavior is intrinsic to the Kitaev-Heisenberg model in an applied field and
demonstrate that the introduction of the off-diagonal spin interaction causes the disappearance of the feature in

the thermal Hall conductivity.

DOLI: 10.1103/PhysRevB.104.075121

I. INTRODUCTION

The Kitaev quantum spin model has been intensively inves-
tigated since the proposal by A. Kitaev [1-7]. In the model,
the ground state is exactly shown to be a quantum spin liq-
uid (QSL) with the fractionalization of spins into Majorana
fermions, which are expected to be applicable to topological
quantum computation [1]. The Kitaev model is thought to
be realized in compounds with 4d or 5d transition metal
ions with the strong spin-orbit coupling [8]. In particular,
the iridium oxides A;IrO; (A = Li, Na) and «-RuCl; have
been energetically studied as candidate materials of the Kitaev
QSL, where the magnetism is governed by jegr = 1/2 spins
in Ir** or Ru* ions [9-17]. Although the QSL ground state
should be realized in the Kitaev model, a magnetic order
appears at the lowest temperature in the real materials. To
understand the origin of the magnetic ordering, one has in-
troduced additional interactions such as the Heisenberg and
off-diagonal I terms in the Kitaev model [18-23]. While a
lot of efforts have been devoted to clarifying the global phase
diagrams of the Kitaev-Heisenberg and Kitaev-Heisenberg-I"
models [23-28], the relationship to the candidate materials, in
particular, the realistic values of the exchange constants, has
been still under debate [29].

Recently, magnetic-field effects on the Kitaev QSL have
attracted considerable attention. It has been reported that, in
the Kitaev candidate material «-RuCl; [30], the magnetic field
suppresses the zigzag order, and it disappears at H. ~7 T
at the lowest temperature [31-33]. When the magnetic order
disappears, a continuum in the magnetic excitation spectrum
was observed above H, by the inelastic neutron scattering
measurement [34]. These results suggest that the magnetic
field induces the Kitaev QSL. To clarify the nature of the
fractional quasiparticles in this state, the thermal transport
has been measured in «-RuCl; [35-40]. In particular, the
half-quantized plateau has been observed in the thermal Hall
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conductivity [41-44], which offers convincing evidence for
the emergence of Majorana fermions and the presence of a
Majorana chiral edge mode. Triggered by these experimental
results, magnetic-field effects on the Kitaev-related systems
have been studied theoretically [45-60]. Moreover, classical
phase diagrams of the Kitaev-Heisenberg and Kitaev-I" mod-
els under the magnetic field were obtained by the mean-field
(MF) approach and Monte Carlo simulations [25-28,61]. In
the phase diagrams, an applied magnetic field stabilizes var-
ious ordered states, including noncollinear and noncoplanar
configurations. Stimulated by the recent experimental results
on the field-angle dependence of the thermal Hall conductivity
[43], the thermal Hall effect for various field directions has
been examined in the Kitaev models with additional interac-
tions in the Majorana fermion representation [48,54,56] and
spin-wave theory [27,46,47,55,62]. However, details on the
field-angle dependence of magnetic excitations and thermal
Hall conductivity remain unclear in the Kitaev-related models.

In this paper, we investigate the magnetic-field effect on
the transport properties of magnetically ordered states in the
Kitaev-Heisenberg model on a honeycomb lattice. By apply-
ing the MF approximation and linear spin-wave theory, we
calculate the dispersion of magnons and the thermal Hall con-
ductivity ascribed to the magnons by changing the direction
and strength of an applied magnetic field. We examine the
magnetic phase diagram with respect to the field angles and
reveal that noncoplanar magnetic orders tend to appear when
the field is applied perpendicular to the honeycomb plane. In
this field direction, the thermal Hall conductivity is enhanced
by noncoplanar spin configurations associated with the spin
scalar chirality. We also find that the enhancement can be
induced by a small magnon gap in the dispersion relation.
On the other hand, the thermal Hall effect originating from
the topological nature of the magnon dispersions is absent
when the field is parallel to the bond of the honeycomb lattice.

©2021 American Physical Society
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This behavior is indeed a consequence of the symmetry of
the system. Moreover, the field-angle dependence exhibits
nodal lines where the thermal Hall conductivity vanishes.
The feature does not depend on the types of magnetic orders
stabilized in the Kitaev-Heisenberg model. We clarify that this
is the intrinsic nature of the model and violated by introducing
off-diagonal spin interactions such as the I" term.

This paper is organized as follows. In the next section,
we introduce the Kitaev-Heisenberg model in an applied
magnetic field. In Sec. III, we present the method used in
the present study. The MF approximation and spin-wave
theory are described in Secs. III A and III B, respectively.
Section IIIC provides the formalism of the thermal Hall
conductivity in the spin-wave theory. The symmetry of the
Kitaev-Heisenberg model is discussed in Sec. III D. The re-
sults are given in Sec. IV. In Sec IV A, we show the field
angle dependence of the thermal Hall conductivity in the
spin-polarized state. The results for the magnetic-field effect
in the stripy and zigzag states are given in Secs. IV B and IV C,
respectively. In Sec. V, we discuss the role of the scalar spin
chirality in the thermal Hall effect and the effect of additional
interactions. Finally, Sec. VI is devoted to the summary.

II. MODEL

We consider the Kitaev-Heisenberg model on the honey-
comb lattice shown in Fig. 1(a) [21-23,63]. The model is
given by

H =) 8 S;+2K> SIS —h-> 8. ()

(i) (isj)y i

where S,?/ (y = x,y, z) represents the S = 1/2 spin at site i,
and K and J are the exchange constants of the Kitaev and
Heisenberg interactions, respectively, between spins on the
nearest neighbor (NN) sites (i, j). In the Kitaev interaction,
(i, j), denotes the NN y bond on the honeycomb lattice,
which is depicted in Fig. 1(a). The exchange constants, K
and J, are parameterized by o (—7 < o < 7) as K =sin«
and J = cosa. The last term of Eq. (1) is the Zeeman term
with the magnetic field k. Considering the correspondence
to real materials, we introduce the spin coordinate such that
the [111] direction in the spin space is parallel to the ¢ axis
and the S* direction is on the ac plane (see Fig. 1), where the
a axis is chosen so as to be perpendicular to the z bonds of
the honeycomb lattice. In this situation, the a and b directions
correspond to [112] and [110] in the spin coordinate [43,55].
The direction of the magnetic field is parameterized by the
polar and azimuthal angles (6, ¢) in the real space, which is
depicted in Fig. 1(b). Namely, the components (k,, hp, h.) of
the magnetic field & along the a, b, and ¢ directions are given
by

(hg, hy, he) = h(sin 0 cos ¢, sin O sin ¢, cos 9), 2)

and the relationship to (A, hy, h;) in the spin space is written
as

hy 1/v6  —1/N2 1/V3\ [ha
=116 12 1/V3||mw]. 3
h, —2/v/6 0 1//3) \le

sy

s

sy

__» b($p=m/2)

a(¢=0)

FIG. 1. (a) Schematic picture of the honeycomb lattice on which
the Kitaev-Heisenberg model is defined. The red, blue, and green
lines stand for the x, y, and z bonds, respectively. The dashed lines
represent magnetic unit cells, including six and eight sites. The inset
is the top view from the ¢ positive direction. (b) Spatial arrangement
of the spin coordinate and the magnetic field, which is depicted by
the yellow arrow. The magnetic-field angle is parametrized by the
polar and azimuthal angles (6, ¢) measured from the ¢ and a axis,
respectively.

In the absence of the magnetic field, the ferromagnetic
(FM), Néel, zigzag, and stripy phases appear, although quan-
tum fluctuations stabilize the QSL state near « = 7 /2 and
—m /2 [23]. The classical phase diagrams for the Kitaev-
Heisenberg model were obtained in the cases with 74 ||
57 [(0. ¢) = (cos™'(1/+/3), )] and k || ¢ [(6. ¢) = (0,0)],
which are qualitatively different from each other [25]. In
the former case, the canted phases inherited from the Néel,
zigzag, and stripy states appear at nonzero s in addition to
the polarized phase. On the other hand, by applying the mag-
netic field along the ¢ axis, noncoplanar and multiple-Q states
emerge additionally. This is in contrast to the case with & || S7,
where the coplanar spin configurations only appear.

II1. METHOD
A. Mean-field theory

In this section, we briefly introduce the MF theory for the
localized spin model. We consider the quantum spin model,
whose Hamiltonian is generally written as

H= XY IS ST hs. @
(3% iy
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In the MF theory, the original Hamiltonian is decoupled to the
two terms as

H = H +H, 5)
where the MF Hamiltonian is written as
= Z ‘HI-MF + const., (6)

and H’ is neglected in this approximation. The local Hamilto-
nian HMF at site i is given by
)S}’ . @)

- (ST
¥
Here, p stands for the nearest-neighbor sites of i, and (S");, =
(0;1;]8710; I;) represents the expectation value for the ground
state |0; /;) of the local Hamiltonian 'H,MF where site i belongs
to the sublattice /;.

In the present study, we perform the MF calculations in
up to eight sublattices. The unit cells including six and eight
sites are depicted in Fig. 1(a). Note that we cannot reproduce
the two of the ordered phases for the present sublattice con-
figurations: diluted star and zigzag star states, which appear
in the classical phase diagram with & || ¢ [25]. We avoid the
parameters at which these states are stabilized.

B. Linear spin-wave theory
To calculate the dispersion relation of elementary excita-
tions from the magnetically ordered state determined by the

MF approximation, we apply the linear spin-wave theory. The
contribution beyond the MF Hamiltonian, H’, is represented

by
=Y > Jrrestssy ®)

iy vv'

where 853/ denotes the deviation from the MF value as follow:

8s] = S —(S7),- ©)

1

Here, we apply the Holstein-Primakoff transformation to
Eq. (9) [64-66]. By introducing the bosonic operator a; at each
site i, we approximate 8S; as

88T >~ (151,887 05 l,-)a}L + (0; ;|8S” |15 L) a, (10)

where |1;1;) is the excited state in HMF. Using this proce-
dure, we approximately describe ' as a bilinear form of the
bosonic operators as H' >~ Hgw, where Hgw is given by

Hsw = ZM(“)a aj+ ZM(IZ) Tal i+ ZM(Zl)a aj,
ij

an

where /\7((11), M(lz), and M®D are N x N matrices deter-
mined from the coefficients of a; and a;}' in Eq. (10) with N
being total number of sites. By applying the Fourier transfor-
mation, Eq. (11) is rewritten as

1 .
— f
Hsw = 3 Ek ANMe A, (12)

with
ay—1). (13

Here, we drop constant terms in Eq. (12). M is the number
of sublattices and My, is a 2M x 2M Hermitian matrix. The
bosonic operator gy j is represented as

M .
VN > ae (14)

i€l

ot §
Ay =(ay ayy - Ay a1k @k -

aik =

where r; is the position of the lattice point in real space. By
applying the Bogoliubov transformation [67] to Eq. (12), the
spin-wave Hamiltonian is represented as

1 T
Hsw = EijBkakBk, (15)

where By = jk_lﬂk and & = jkMkjk The 2M x 2M
matrix J; is the paraunltary, which satisfies the re-
lation j’kagj r =, kagj'k =03 with the paraunit ma-
trix o3 :(IMOXM _llgxM)’ is the M xM
unit matrix. & 1is the diagonal matrix given by & =

diag{er k. €2k, EM ks €1,—k, €2,k * » EM,—k}. Where &y
is the excitation energy for the nth branch.

where 1.

C. Thermal Hall conductivity

In this section, we introduce the expression of the ther-
mal Hall conductivity «® in the spin-wave approximation
[68-71]. The thermal Hall conductivity is defined as (J§)vr =
k% (—V,T), where V, T is the thermal gradient along the b di-
rection and (Jg)vr is the expectation value of the heat current
along the a axis in the presence of the thermal gradient. The
heat current is introduced as

oPg i
= — = —[H, Pg], 16
Jo Y h[ £l (16)
where Pg is the energy polarization given by
PEZZI‘,‘]’[,'. (17)

The local Hamiltonian 4; is defined from the terms of the
Hamiltonian involving site i so as to satisfy H = ), h;. The
effect of the thermal gradient is introduced by replacing the
local Hamiltonian h; to (1 + ¢g(r;))h;, where ¢o(r) is the
pseudogravitational potential, which is linear in the position
[68,69]. Evaluating the linear response with respect to Vd,,

one can calculate «? as
k2 BZ M
K== Y D lfeE )@, (18)
k n=1

where ¢, (x) is defined as

() = / xdt(l ﬂ) , (19)
0 t

and fgg(eux) is the Bose distribution function, and BZ de-
notes the Brillouin zone for the magnetic unit cell. Note
that c,(fgg(g)) is positive and quickly decays from 72/3 to
zero while increasing ¢ at low temperatures. €2, is the Berry

075121-3



SHINNOSUKE KOYAMA AND JOJI NASU

PHYSICAL REVIEW B 104, 075121 (2021)

curvature in the momentum space, which is defined as

NN
—= H.c. 20
7ok ok, N +H.c (20)

an = l|:

In this equation, we need to evaluate the momentum deriva-
tives of %, which are difficult to be obtained in the numerical
calculations. To avoid the computation of the momentum
derivatives, we rewrite Eq. (20) to

Q, =2 2ZM Im |: (03)n(63)m(jljvzjk)nm(jljv,?jk)mn :|
" m(#n) {(638k)m - (036k);1}2 ’
2D

where v}’ = oM/ dk, [72]. If a magnon branch is well
separated from others, one can define the Chern number NnCh
for the corresponding branch n as [73]

S T Q- (22)
n BZ 27r

D. Symmetry argument

Before showing the results for the numerical calculations,
we discuss the properties of the thermal Hall conductiv-
ity based on the symmetry of the Hamiltonian and lattice
structure. There are two symmetric operations in the present
system: the C; rotation around the ¢ axis and C, rotation
around b axis or its equivalent directions. In the former,
the spin axes are changed cyclically, such as (S¥, S”, $°) —
(87, §%, ). On the other hand, the spin coordinate (S*, S*, $%)
is transformed to (—S”, —S*, —S%) by the latter operation.
In the absence of the magnetic field, the Kitaev-Heisenberg
model given in Eq. (1) is invariant under these operations.
Moreover, the invariance is retained even with the I and I'’
interactions [56]. With respect to the thermal Hall conductiv-
ity, k% should be unchanged by the C; rotation around the
¢ axis, but it changes its sign under the C, rotation around
the b axis. This is because the latter operation flips the a
direction, and thereby, k“ should change to x "%’ = —x .
If the magnetic field is applied along the b direction, the
Hamiltonian is unchanged under the C, rotation around b axis.
Therefore, k® should be zero in the presence of the magnetic
field parallel to b or its equivalent directions when a magnetic
order does not occur [43,56,74].

In addition to this symmetry, there is an additional property
specific to the Kitaev-Heisenberg model (see Appendix A for
details). In the absence of the magnetic field, this model is
trivially written by a real symmetric matrix when choosing
the spin bases appropriately. The feature is maintained even in
the presence of the magnetic field applied on the S*-S* plane.
On the other hand, Eq. (16) indicates that the heat current
is represented by the Hermitian matrix with pure imaginary
matrix elements as the Hamiltonian is given by a real sym-
metric matrix. Even in the presence of the pseudogravitational
potential, the matrix elements of the Hamiltonian are also
real, and hence, (Jé)VT = 0. Thus, «® vanishes when the
magnetic field is on the $¥-$”, $”-S%, and S$°-S* planes (the
planes involving two of the spin axes). We refer to them
as the spin axis planes hereafter. In this case, hchyh, =0 is
satisfied, and the above condition includes the case of h | b.

We note that Kitaev pointed out that % /T is quantized as
sgn(hhyh,) x 7w /12 in the Majorana fermion picture when
the magnetic field is small enough [1]. This is consistent with
the above condition.

When a magnetic order occurs, one should discuss the
properties of H’ given in Eq. (8) instead of /. Suppose the
local moments of the magnetic order and the applied magnetic
field are on the same spin axis plane. In that case, the above
discussion can be applied to H’ as it is written as a real matrix
on appropriate spin bases. In the spin-wave approximation,
this corresponds to the fact that all matrix elements of MS”,
A;ll(.ll-z) ,and /\7(512.1) are real in Eq. (11). The details of the above
augments are given in Appendix A.

The properties of ¥ vanishing in the case of h,hyh, = 0 s
violated by the introduction of off-diagonal spin interactions
such as the I' term. The properties in the presence of the I'
interaction will be discussed in Sec. V. The nonzero ¥ in
a magnetic field on the spin axis planes is understood as the
contribution beyond the Kitaev-Heisenberg model.

IV. RESULT
A. Spin-polarized state

First, we show the results for the spin-polarized phase at
(o, h) = (—m /2, 0.01), which corresponds to the FM Kitaev
model under the magnetic field. Figure 2(a) shows the field-
angle dependence of x®/T at several temperatures. We set
kg, h, and the length of the primitive translation vectors of the
honeycomb lattice to be unity. With increasing temperature,
the magnitude of k“” /T becomes small for almost all the field
angles. We find that «® is zero for h || b while it is nonzero
for h || a, c. The features are understood from the symmetry,
which was discussed in Sec. III D. Moreover, in addition to
h || b, the field angles with x® vanishing are found in the
spin-polarized phase. For example, x®> = 0 when the mag-
netic field is parallel to (S* + )/ V2 as shown in Fig. 2(a).
To discuss the issue more detail, we show the spherical plot
of k% /T at T = 0.02 in Fig. 2(b). As presented in this figure,
this is zero when the magnetic field is on the spin axis planes,
which include the direction along (S* + $)/ V2. The result is
consistent with the discussion described in Sec. III D.

The sign of k/T is dependent on the angle of the mag-
netic field. As shown in Figs. 2(a) and 2(b), this is negative
(positive) for k || a (h || ¢). To clarify the origin of the sign, we
calculate the Berry curvature given in Eq. (20). Figures 2(c)—
2(e) show the momentum dependence of €2, in the branch of
® = gy for the cases with k || a, b, and c, respectively. For
h || b, the Berry curvature is always zero for the all branches,
leading to the zero «_On the other hand, the Berry curvature
is nonzero and exhibits the momentum dependence for the
other directions. In the case of & || ¢, the Chern numbers for
the lower and upper bands are +1 and —1, respectively. As
shown in Fig. 2(e), the sign of 2, depends on k and the low-
energy part of 2, is negative although its momentum integral
is positive. Since the negative sign is present in Eq. (18), k%
is positive. We have confirmed that the Chern number of each
branch is not changed while increasing /, and the sign of k%
is inverted to negative by temperature because of the positive
Chern number in the lower band. The results are consistent
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FIG. 2. (a) Thermal Hall conductivity «“*/T as a function of the field angle in the FM Kitaev model (@ = — /2) for the fixed field strength
h = 0.01 at several temperatures, and (b) its spherical plot at 7 = 0.05. The gray and orange arrows represent the real-space axes and the spin
axes, respectively. [(c)—(e)] Spin-wave dispersions under the magnetic fields applied along (c) the a, (d) b, and (e) ¢ directions. The parameters
used here are the same as those in (b). The line color indicates the Berry curvature 2,4 associated with the magnon branch €.

with the previous study [46]. In the case of & || a [Fig. 2(c)],
the sign of €2, is opposite to that in & || ¢. This leads to the

negative value of k.

B. Canted stripy, FM star, and vortex states

In this section, we show the result fora« = —0.3127, where
the stripy state is stabilized in the absence of the magnetic field
[23]. Figure 3(a) shows the total magnetization m projected
onto the field direction in the magnetic fields along a, b, and
¢ directions, where m = N~! Zi S;. In the case of & || a, the
canted stripy state shown in Fig. 3(c) appears by introducing
the magnetic field. Eventually, the fully spin-polarized state
along the field direction is stabilized above & > 0.867 with
the magnetization jump. A similar behavior is observed for
h || b but the magnetization is continuous at the boundary
between the canted stripy and spin-polarized phases. In this
case, the magnetization linearly increases with increasing / in
the canted stripy phase while it is not linear for h || a. The
difference originates from the fact that m is parallel to the
field direction for & || b but is not for k || a, where the angle
between m and h depend on the strength of the applied field
[25].

Although the canted stripy and spin-polarized phases are
stabilized for h || a and b, the magnetic field parallel to the ¢
direction yields the additional states, the FM star [Fig. 3(d)]
and vortex states [Fig. 3(e)], in between these phases [25].
Note that the total magnetization for the FM star and vortex
states is parallel to the field direction but is not in the canted
stripy state. This results in a continuous change of the mag-

netization at the boundary between the vortex and polarized
states [25]. We note that the FM star and vortex states possess
noncoplanar spin configurations accompanied by a magnon
gap.

Next, we examine the transport properties and discuss the
relationship to such peculiar spin configurations. Figure 3(b)
shows the thermal Hall conductivity as a function of the field
strength at 7 = 0.05. For the case with h || b, k is always
zero independent of the field strength. This result originates
from the fact that the Berry curvature €2, is zero, similar to
the case for the spin-polarized state [Fig. 2(d)]. On the other
hand, for h | a, «® is nonzero. In particular, the absolute
value of k¥ is enhanced around the phase boundary between
the canted stripy and spin-polarized phases while its sign
is inverted between these phases. While changing the field
strength away from the phase boundary, the absolute value of
k" gradually decreases and goes to zero.

The thermal Hall conductivity is nonzero also for the mag-
netic field parallel to the ¢ direction. In the canted stripy
phase, |k“?| gradually increases with increasing 4. When the
field strength is beyond the boundary with the FM star state,
this quantity is strongly enhanced. The absolute value of the
thermal Hall conductivity in the FM star and vortex states is
substantially larger than that in the canted stripy phase. We
expect that the noncoplanar spin configurations are relevant to
the topological nature of the magnon bands and play a crucial
role in the enhancement of the thermal Hall conductivity. We
also find that ¥ is continuously changed at the phase bound-
ary between the vortex and spin-polarized states because of
the continuous change of the total magnetization, unlike at
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FIG. 3. (a) Total magnetization m and (b) thermal Hall conduc-
tivity k*/T of the Kitaev-Heisenberg model with o = —0.3127 in
the magnetic field along the a, b, and ¢ directions as a function of
field strength h. The inset of (b) shows the extended plot in the
FM star phase. [(c)—(e)] The spin configurations of (c) the canted
stripy, (d) FM star, and (e) vortex states. Arrows with the same
color denote the equivalent spins. The FM star and vortex states are
eight-sublattice and six-sublattice spin configurations surrounded by
the dotted lines and exhibit noncoplanar spin structures, indicated by
asterisks.

the phase boundary between the canted stripy and FM star
states.

As shown in the inset of Fig. 3(b), in the FM star phase
for h || ¢, we find the nonmonotonic / dependence of k. To
clarify the origin, we calculate the energy difference between
the lowest and second-lowest magnon branches, AEj,, and
Chern number of the lowest magnon branch, N, ICh. As shown in
Fig. 4, we find that AE|, vanishes at i >~ 0.7184 and hy. >~
0.7327 and NlCh is nonzero above h.. Moreover, NlCh changes
from 2 to —1 at hp. while increasing h. The change of the
Chern number causes the decrease of % around h,; and the
increase around /., because of the negative sign in Eq. (18).
Note that, below k., the Berry curvature is nonzero although
NlCh = 0, which causes the nonzero «“.

While there appears to be no anomaly in the /4 dependence
of k% for h || a, we find a topological transition in the canted
stripy phase. Figure 5(a) shows NlCh as a function of the
strength of the magnetic field parallel to the a direction. A
topological transition from —1 to 0 is found at 2, >~ 0.52. Note
that the lowest magnon branch is well separated from the oth-
ers except for the transition point. Figure 5(b) shows «® /T for
several temperatures. Although we do not find any anomaly
in k% at T =0.02 and 0.05, the abrupt decrease at /.. are
exhibited at 7 = 0.1 and T = 0.15, which is a consequence
of the topological transition associated with the increase of
the Chern number N for the lowest energy branch.
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FIG. 4. Energy gap between the lowest and second-lowest
magnon branches in the FM star phase in the Kitaev-Heisenberg
model with « = —0.3127 for & || ¢. The Chern number of the lowest
energy branch is shown at the top of the figure.

Here, we discuss the field-angle dependence of the excita-
tion gap of magnons and the thermal Hall effect for the fixed
field strength in the model with « = —0.3127. Figure 6(a)
shows the ground state phase diagram on the plane of the field
angles (0, ¢) at h = 0.4. In this case, the canted stripy state

(a) he
! hla
a=-0312n

Ch
1
(=}

N

©-0-0-0-00-0-0-0 -G Q-

-1 poo-0-0-0-0-0-0-0-0-00
L

(b)

0010
— T=002
ool —— T =005
: T=01
T =015
0.006}
~
=
=
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0.002} /
I—
0.000
0.4 05 0.6 0.7

h

FIG. 5. (a) Field-strength dependence of the Chern number of
the lowest magnon branch and (b) the thermal Hall conductivity in
the Kitaev-Heisenberg model with @« = —0.3127 under the magnetic
field along the a direction.
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FIG. 6. (a) Classical phase diagram of the Kitaev-Heisenberg model with « = —0.3127 on the plane of the field angles (6, ¢) in the field
strength fixed to 4 = 0.4. Spherical plots of (d) the magnon gap and (g) «**/T at (T, &) = (0.05, —0.3127) and & = 0.4. Corresponding plots

at [(b), (e), and (h)] & = 0.63 and [(c), (), and (i)] 0.75, respectively.

is realized regardless of the field direction. With increasing #,
additional phases appear. Figures 6(b) and 6(c) show the phase
diagrams at & = 0.63 and 0.75, respectively. The FM star
state is stabilized around the ¢ axis at 7 = 0.63, and further
increase of the field strength stabilizes the vortex state, which
is surrounded by the FM star phase at 2 = 0.75. We note that
the magnon gap is present for the canted stripy and FM star
phases, but the vortex state possesses a gapless magnon mode.

While the spin configuration of the ground state is not
altered by changing the field direction for the weak field
strength, the magnon gap strongly depends on it. Figure 6(d)
shows the spherical plot of the magnon gap at 7 = 0.4. We
find that the gap vanishes when the magnetic field is parallel
to the spin axes. Moreover, the gap takes minimal values
on the lines from these spin axes to the ¢ axis. Such lines
divide the sphere into twelve, on which the field component
taking the smallest value among Ay, hy, and k., is switched.
With increasing &, the magnon gap increases, but the overall
structure of the angle dependence is almost unchanged as
shown in Figs 6(e) and 6(f). Note that the gap is always zero
in the magnetic field along one of the spin axes except for the
spin-polarized phase. On the other hand, the magnon gap is
present in & || b. We have confirmed the existence of the spin

gap in the pure Kitaev model with « = — /2 in the magnetic
field. This result contrasts with that in the Majorana fermion
picture in the Kitaev model under the effective magnetic field
where the Majorana gap disappears when the magnetic field
is applied along the b direction [1,75].

Next, we show the field-angle dependence of the thermal
Hall conductivity. Figure 6(g) shows the spherical plot of
k% /T with respect to the field direction at T = 0.05 and
h = 0.4. The sign of k“’ changes on the spin axis planes sim-
ilar to the case of the spin-polarized phase shown in Fig. 2(b).
The nodal lines along the spin axis planes appear commonly
for the larger field strength [Figs. 6(h) and 6(i)], and the exis-
tence of them is consistent with the symmetry analysis, which
was discussed in Sec. I[II D. Note that we have confirmed that
the magnetic field and local ordered moments are on the same
spin axis plane when the magnetic field is on the spin axis
plane. We find that the absolute value of x“” is relatively small
near the lines where the magnon gap takes minimal values.
On the other hand, a distinctly different feature is found in
the angle dependence of x“ for 4 = 0.63 and 0.75 around
the ¢ axis. As presented in Fig. 6(h), «k% is substantially
enhanced in the vicinity of this direction for & = 0.63, where
the FM star phase appears. This behavior is observed also
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FIG. 7. (a) Classical phase diagram of the Kitaev-Heisenberg model with « = 0.7647 on the plane of the field angles (6, ¢) in the field
strength fixed to & = 0.1. (d), (g) Spherical plots of (d) the magnon gap and (g) «*/T at T = 0.05 and («, h) = (0.764x, 0.1). (b), (e), (h)
and (c), (f), (i) Corresponding plots at (o, &) = (0.62267,0.7) and (0.62267, 1.2), respectively.

for h = 0.75, as shown in Fig. 2(i). The results imply that
the noncoplanar spin configurations play a crucial role in en-
hancing «% rather than the small magnon gap. Nevertheless,
k% in the FM star phase appears to be smaller than that in
the canted stripy phase surrounding the FM star one. This
suggests that the magnitude of the thermal Hall conductivity
is not simply determined by whether the spin configuration is
coplanar or not.

C. Canted zigzag, AF star, and AF vortex states

In this section, we show the cases where the zigzag state is
stabilized in the absence of the magnetic field. This state ap-
pears when /2 < « < 0.857 [23,25], where the Kitaev and
Heisenberg interactions are antiferromagnetic (AF) and FM,
respectively. First, we focus on the case with o = 0.7647w.
At this parameter, the canted zigzag and spin-polarized states
are only induced by the magnetic fields along the ¢ and S°
directions [25]. Figure 7(a) shows the phase diagram on the
plane of the field angles (6, ¢) at (o, h) = (0.764m, 0.3). We
find that the canted zigzag state shown in Fig. 8(a) appears
regardless of the field angle. Figure 7(d) shows the spherical

plot of the magnon gap for the field angle. The gap takes a
minimal value on the lines where the field component taking
the smallest value among A, Ay, and h, is switched. This be-
havior is similar to the case of the canted stripy state presented
in Fig. 6(d). On the other hand, the field-angle dependence
of k% presented in Fig. 7(g) is distinctly different from that
in Fig. 6(g). The thermal Hall conductivity takes a relatively
large value on the lines from the c axis to the spin axes, where
the magnon gap is minimal.

Next, we show the results for « = 0.62267r. In the case
with 7 /2 < o < 3w /4, the zigzag state is destabilized, and
the AF star state presented in Fig. 8(c) appears immediately
by the magnetic field parallel to the ¢ axis [25]. Figure 7(b)
is the phase diagram on the plane of the field angles (6, ¢) at
h = 0.7. We find that the canted zigzag and extended zigzag
states appear in addition to the AF star state. Figure 8(b) shows
the extended zigzag state, which is a noncoplanar magnetic or-
der, unlike the canted zigzag state shown in Fig. 8(a). The AF
star state appears in the vicinity of the ¢ direction, which is an
eight-sublattice magnetic order with a noncoplanar spin con-
figuration. Figure 7(e) shows the spherical plot of the magnon
gap at (a, h) = (0.6226m, 0.7). The three phases appearing
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FIG. 8. Spin configurations of (a) the canted zigzag, (b) extended
zigzag, (c) AF star, and (d) AF vortex states. The magnetic unit
cells are shown as dashed lines in (b)-(d). Noncoplanar spin con-
figurations are indicated by asterisks. The yellow arrows represent
the magnetic fields. Note that the field in (b) is applied along the a
direction.

in Fig. 7(b) possess magnon gaps, but the gap disappears
at the boundaries between them. In particular, at & || S* and
its equivalent directions, phase boundaries between canted
zigzag and extended zigzag states are crossed, and the magnon
gap vanishes. We find that the thermal Hall conductivity is
enhanced along the phase boundaries, presumably due to the
suppression of the magnon gap as presented in Fig. 7(h).
With increasing the magnetic field along the ¢ direction, the
AF vortex state is stabilized before entering the spin-polarized
phase [25]. This state is a six-sublattice magnetic order with
a noncoplanar spin configuration as presented in Fig. 8(d).
Figure 7(c) shows the phase diagram with respect to the
field angles at («, 1) = (0.62267, 1.2). In addition to the AF
vortex phase, the canted zigzag and extended zigzag phases
are present in the phase diagram. We find that the canted
zigzag state is stable in the wider region than that at # = 0.7,
suggesting that an applied magnetic field stabilizes the canted
zigzag state rather than the extended zigzag state. In Figs. 7(f)
and 7(i), we show the spherical plots of the magnon gap and
k% /T at T = 0.05 for the field direction. At the boundary
between the canted zigzag and extended zigzag phases, the
magnon gap vanishes. In the vicinity of the boundary, the
thermal Hall conductivity is enhanced as shown in Fig. 7(i).
These behaviors are similar to the case at h = 0.7 [Figs. 7(e)
and 7(h)]. We also find that a gapless magnon mode is main-
tained in the AF vortex state as shown in Fig. 9. The excitation
energy is zero at the I' and K points, which originates from
the continuous degeneracy in the classical ground state.! In
this state, |k“’| takes a relatively large value [Fig. 7(i)] in

'The presence of the classical continuous degeneracy has been
suggested in Ref. [25] at & || ¢ and the present study reveals that this
degeneracy is also present away from h || c. Since the degeneracy
does not originate from the symmetry of the Hamiltonian, it should

2 1.0

3 ]; :>< L = N 0.0
e — = —— >

OF K M T -1.0

FIG. 9. Spin-wave dispersions under the magnetic field
(h,0,¢)=(1.2,7/24, ) at « = 0.62267 in the AF vortex phase.
The line color indicates the Berry curvature €2, associated with the
magnon branch €.

comparison with that in the AF star phase shown in Fig. 7(h).
This feature is thought to originate from the gapless magnon
mode with the nonzero Berry curvature as shown in Fig. 9.
Note that when the magnetic field is on the spin axis planes,
the thermal Hall conductivity vanishes regardless of the field
strength as we have confirmed that the magnetic field and local
ordered moments are on the same spin axis plane.

V. DISCUSSION

In this section, we discuss the origin of the thermal Hall
conductivity and the effect of spin interactions beyond the
Kitaev-Heisenberg model. As pointed out by the previous
studies [70,71,76,77], spin configurations with the scalar
spin chirality y;jx =S; - (S; x Si) defined for the neighbor-
ing three sites [ijk] plays a crucial role in the appearance
of the Hall effect in insulating magnets. Here, we calculate
the absolute value of the scalar spin chirality defined by
X = N,_l th’jk] [ {Si) - (S;) x {Sk) |, where N, is the number
of neighboring three sites. Figure 10 shows the field-strength
dependence of y in the Kitaev-Heisenberg model with o =
—0.3127 under the magnetic field applied along the ¢ direc-
tion. As mentioned in Sec. IV B, the FM star and vortex states
appear, and the large thermal Hall conductivity is observed
in these states as shown in Fig. 3(b). Since the FM star
and vortex states exhibit noncoplanar spin configurations, x
is nonzero while it vanishes in the canted stripy and polar-
ized phases. The results suggest that spin configurations with
the nonzero scalar spin chirality enhance the thermal Hall
conductivity similar to conventional spin systems with the
Dzyaloshinskii-Moriya interaction. Note that, in the present
case, the existence of the noncoplanar spin configurations
is not a necessary condition for the nonzero thermal Hall
conductivity; it also appears in coplanar spin configurations
while its absolute value is small.

Finally, we comment on the effect of additional spin in-
teractions to Eq. (1). As discussed in Sec. III D, the thermal
Hall conductivity vanishes in the Kitaev-Heisenberg model

be lifted by quantum and thermal fluctuations, which is known as
the order-by-fluctuation mechanism in systems with bond-dependent
interactions [2].
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FIG. 10. (a) Scalar spin chirality x as a function of the field
strength at « = —0.312x for the field along the ¢ direction.

when the applied magnetic field is on the spin axis plane.
This feature originates from the fact that the Hamiltonian is
represented as the real matrix because the neighboring spins
interact with the same component. It remains intact even in the
presence of the long-ranged Heisenberg interactions [78,79].
On the other hand, when off-diagonal spin interactions are
introduced, the feature disappears, Here, we consider the I'
interaction, which is one of the off-diagonal symmetric inter-
actions [22,80]. This is given by

Hr =T (S¢s) +5P's?). (23)
(ij)y

where («, B,y) = (x,y,z) and its cyclic permutations. To
clarify the effect of the I' interaction, we calculate the thermal
Hall conductivity in the Kitaev-I" model with the magnetic
field applied along S¢, (S* + S?)/+/2, and the b axis. In the
absence of the I' interaction, k% is zero as these fields are
on the spin axis plane. Figure 11 shows the I' dependence of
the thermal Hall conductivity. As presented in this figure,
becomes nonzero for & || §¢ and (S¥ + §)/ V2 by introducing
the T" interaction. The thermal Hall conductivity shows the
nonmonotonic I' dependence and appears to approach zero
with increasing I". On the other hand, k® remains zero for
h | b. We also note that the above discussion is based on

0.05 1 T hls
— hI$*+$)/V2

0.101 \ L,
\ ’
\ ,/
\ 7’
\\_’/
-0.15 1 , , .
0.001 0.005 0.01 0.015 0.02

r

FIG. 11. Thermal Hall conductivity as a function of I'" for
the Kitaev-I' model at («,h,T)= (—x/2,0.01,0.05) with h ||
S%, (S* + 87)/+/2, and b.

the properties of the Hamiltonian, and it is applicable even
in the case beyond the spin-wave approximation. Therefore
we expect that the magnitude of off-diagonal interactions
such as the I" interaction can be generally deduced from the
field-angle dependence of the thermal Hall conductivity in
experiments. In the measurement of x* obtained by changing
the field angle from c to a, the deviation of the field angle sat-
isfying k® = 0 from the (S* 4+ $*)/+/2 direction is interpreted
as a consequence of the off-diagonal interactions.

VI. SUMMARY

In summary, we have revealed the magnetic-field effect
on the thermal transport in the Kitaev-Heisenberg model
using the mean-field approximation and the spin-wave theory.
We have demonstrated that the field-angle dependence of the
thermal Hall conductivity caused by the magnon excitations
strongly depends on the spin structure of the magnetic order.
In particular, noncoplanar spin configurations with nonzero
spin scalar chirality enhance the thermal Hall conductivity.
We have also found that it shows common nodal lines on
the sphere describing the field angle. The lines are located
on the spin axis planes, which is an intrinsic feature of the
Kitaev-Heisenberg model. The feature disappears by intro-
ducing the off-diagonal spin interactions such as the I" terms.
Therefore the present results not only provide comprehensive
data on the thermal Hall conductivity under the variation
of the field direction but also shed light on the role of the
off-diagonal interactions. This will stimulate further experi-
mental studies on the transport phenomena in Kitaev-related
systems.
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APPENDIX: DETAILS OF DISAPPEARANCE
OF «® ON SPIN AXIS PLANES

In this Appendix, we show the details of the discussion on
the disappearance of x* with the magnetic field applied on
the spin axis planes. We show this for the three cases: (i) the
case without a magnetic order, (ii) the case with a magnetic
order where all local moments appear on the same spin axis
plane as that on which the magnetic field is introduced, and
(iii) the case where the spin-wave approximation is applied to
(ii). To simplify the discussion, we focus on the case where
the magnetic field is on the S*-$* plane. The same argument
are applied for the other spin axis planes using the Cs rotation
symmetry around the c¢ axis or introducing an appropriate spin
basis set. First, we consider (i) the case without a magnetic
order. Here, we introduce a set of the 2V conventional spin
bases, W = {[ 11 ---), [ {11 ---),---}, where |o107 )
is the direct product of |o;) (o; =7, ) that is the eigenstate
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of §7. On this basis set, S7 and S; are described as matrices
with real matrix elements, and Sl‘ is described as a Hermitian
matrix with pure imaginary matrix elements. Since the spin
interactions involving S; appear as a pair S;S] in the Kitaev
and Heisenberg interactions, the matrix representation of the
Kitaev-Heisenberg Hamiltonian under the magnetic field on
the S°-S* plane is given as a real symmetric matrix on the basis
set W. Note that the eigenvectors of the real symmetric matrix
can be chosen as vectors with real numbers.

Here, we consider the thermal Hall conductivity k®_ which
is defined by (J5)vr = k% (—V,T). This quantity can be
evaluated by using the Luttinger’s approach [81], where a
fictitious gravitational potential ¢,(r) is introduced to corre-
spond to the thermal gradient. Namely, ¢,(r) is proportional
to the position 7 as ¢,(r) =r - Vg, where V¢, is composed
of real numbers. By introducing the gravitational potential,
the local Hamiltonian /4;, which is defined in Sec. III C, is re-
placed to hiT = (1 + ¢4(r;))h; [68,69]. Then, the heat current
is represented as

Jo =3 PL] (AD
where H” =", h!', and P}, is the energy polarization given
by
(A2)

PL=> rh.

The thermal average of J, under the thermal gradient is ex-
panded up to the first order of VT or V¢, as [68,69]
Jolvr = (I )gr +I3)). (A3)
where J g)) is a part of Jy without ¢, and J (1) is a linear con-
tribution to ¢, in Jg. {---)vr and (- - -) stand for the thermal
averages with and without the thermal gradient, respectively.
First, we focus on the second term of Eq. (A3). Since the
matrix representation of A/ is given as a real symmetric matrix
on the basis set of W, all matrix elements of H” and PE are
real on this basis set. Thus all matrix elements of J 8) are pure

imaginary. Here, we consider the thermal average of J g) in the
absence of the thermal gradient. Since the Hamiltonian # is a
real symmetric matrix on the basis set of W, the eigenvectors
are chosen to be real vectors. Namely, the eigenstate |®,,) with
eigenenergy E, of H is written as a linear combination of
bases in W with real coefficients. Using the above argument,
(D, | (Ql) |®,,) should be pure imaginary but J (Ql) is a Hermitian
operator, and hence, (J (Ql) )y =0.

Next, we consider the first term of Eq. (A3). Up to the first
order of VT, (Jg)))VT is given as

v, T
(Jg))>VT = Lg’<—L),

where the coefficient Lg’ is evaluated by using the Kubo
formula as follows:

(A4)

1 P (O
Ly = | die /0 A" (—i)IF @) (A5)

e PEn — e PE (D, 1T0010,,) (D, TS| D)
En - Em E’" - E” + i8

i
zﬁ%;

(A6)

Here, O(t) = ¢ Qe is the Heisenberg representation of
O,and Z = )", e P+ is the partition function. In the present
case, we only consider the intrinsic contribution, and we can
safely take the infinitesimal real number § to be zero. Since the
matrix representations of J g”a and J S)b on W are given by
matrices with all matrix elements being pure imaginary, L"Q”

must be pure imaginary. However, (J 8))VT should be real, and

hence, it is zero. Therefore k¥ is zero when an applied mag-

netic field is on the spin axis planes in the Kitaev-Heisenberg
model without magnetic orders.

In the above argument, we assume the absence of a mag-
netic order. Here, we consider (ii) the case with a magnetic
order where all local spin moments appear on the same spin
axis plane as that on which the magnetic field is introduced.
In the case, one needs to change the local basis to that along
the ordered moment at each site. This can be achieved by the
local transformation from {| 1), | | )} to the eigenstates of the
local MF Hamiltonian 7—(iMF. Hereafter, we refer to the direct
product of the local eigenstates of HMF as W and choose
the S*-S* plane as a spin axis plane. Since the magnetic field
and local spin moments are perpendicular to the S” axis, the
transformation from W to W can be carried out by a real
orthogonal matrix. On the basis set of W, the MF Hamiltonian
HME is diagonal and H’ is given as a real symmetric matrix,
and hence, the Hamiltonian H = HMF 4+ #’ is written as a
real symmetric matrix even in the presence of the magnetic
order. Therefore x“ is zero when the applied magnetic field
and local moments of the magnetic order are on the same spin
axis plane.

Finally, we discuss the case (iii), where the spin-wave
approximation is applied to (ii). As mentioned in the previous
paragraph, the local MF is perpendicular to the $” axis, and
88} = 87 for all sites. Then, we find that the coefficients of
a; and aj for §S* and §S° in Eq. (10) are real and those for
8SY are pure imaginary. Since spin interactions involving 85}
in ' appear as a pair 85785’ in the Kitaev and Heisenberg
interactions, all matrix elements of M, M1?)_ and M@V
are real in Eq. (11). Here, for the simplicity, we assume that
the number of sublattices is equal to that of sites, M = N,
and we take only k = 0 for the summation of k in the Fourier
transformations of a; and aj. Then, the spin-wave Hamiltonian
is written as

Hsw = 1 A;_ MicoAko. (A7)
where My, is the 2N x 2N matrix given by
M}({ll) M’((IZ)
My = , (A8)
(v o)

and M,(cpip;) = Mgfp/)e”'k'(”"rf) with p, p’ = 1, 2. For the case
with k = 0, My—o is represented as

MaD
Mi—o = (

M(IZ)
e ) (A9)

(AN/((II))T
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which is a real symmetric matrix. The Bogoliubov transfor-
mation of a real symmetric matrix can be carried out by a
paraunitary matrix with real matrix elements [67]. Namely,

J

BT o
K = —;—V > ea(fae(Enk=0))n,
n=1

where the Berry curvature is represented as

Jr—o is a 2N x 2N matrix with real matrix elements. Here,
we consider the thermal Hall conductivity in the spin-wave
theory, which is given by [68,69]

(A10)

m(#n)

o - Z 1] €009 (TicoVicoTi0) ., (Tico Vo0 Th0),0,
{(03Ek=0)m — (03Ek=0)n}*

:|. (AlD)

Note that the matrix elements of the velocity v;_, = oM/ 9k, lx—o 1s pure imaginary. Since the matrix elements of Jx—o is

real, 2, = 0. Therefore k% = 0.
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