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Coexistence of strong and weak Majorana zero modes in an anisotropic XY spin
chain with second-neighbor interactions
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We theoretically investigate Majorana zero modes emerging in an anisotropic XY spin chain with second-
neighbor interactions. The spin chain is mathematically equivalent to the Kitaev chain comprised of spinless
fermions if only nearest-neighbor interactions are considered. Recent studies on the Kitaev chain with long-
ranged interactions, have presented coexistence of several Majorana zero modes. Investigating the topological
phase diagram of the anisotropic XY spin chain with second-neighbor interactions, we find coexistence of
several Majorana zero modes similar to the Kitaev chain. However, we confirm that one of the zero modes
is restricted into a Hilbert subspace. The mode is regarded as a so-called weak zero mode that should exhibit
thermodynamical properties different from a (strong) zero mode appearing in the whole Hilbert space. Since the
quantum statistics of spin is the same as a hard-core boson, we expect an experimental realization of the weak
mode in not only quantum spin materials but also optical lattices for cold atom systems.
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I. INTRODUCTION

Majorana zero mode (ZM) is a zero-energy excitation de-
fined as a Majorana fermion, whose antiparticle corresponds
to itself [1–3]. In condensed matter physics, the Majorana
ZM emerging in topological superconductors [4,5] has at-
tracted much attention, because it not only gives fundamental
and valuable information of quantum properties originating
from non-Abelian statistics [6], but also has a capability to
carry out topologically protected quantum computing [7,8]
and Majorana qubits [9–14]. For these purposes, realization
and control of the Majorana ZMs are urgent issues in current
technologies of nano fabrication from both theoretical and ex-
perimental points of view [15–37], and moreover these studies
bring numerous discussions on the effects of dimerization,
quasiperiodicity, disorder, and interaction [38–94].

As a typical topological superconductor, the Kitaev chain
is well investigated [5]. In this model, a pairing potential be-
tween spinless fermions on neighboring sites plays a key role
in topological superconductivity. An alternative to the Kitaev
chain is an anisotropic XY spin chain (AXYSC) with S = 1/2
spins given by the Jordan-Wigner transformation of the Kitaev
chain [82–87,89–92,94,95]. These models are mathematically
equivalent if they have only nearest-neighbor interactions.

Recent studies on long-ranged interactions in the Kitaev
chain [45,64,72,96,97] have reported coexistence of sev-
eral Majorana ZMs [64,72,96]. The increase of Majorana
ZMs is in general important for improving efficiency of
quantum computing. From an experimental point of view,
long-ranged spin interactions, e.g., superexchange couplings,
the Ruderman-Kittel-Kasuya-Yosida interactions [98–100],
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and dipole-dipole interactions, are more easily introduced as
compared with long-ranged superconducting pair potential of
spinless fermions appearing in the Kitaev chain. Therefore,
in this paper, we investigate the effects of long-ranged inter-
actions in the spin chain, which differ from the long-ranged
interactions in the Kitaev chain.

In addition, in connection with non-Abelian statistics,
another type of Majorana ZM has also attracted much at-
tention in recent years [69,82,101–103]. The Majorana ZM,
the so-called weak Majorana ZM, is restricted into a Hilbert
subspace including low-lying eigenstates, while the conven-
tional Majorana ZM called strong Majorana ZM emerges in
the whole Hilbert space. The weak Majorana ZM, which is
basically discussed in non-Abelian parafermion systems, be-
haves in the same manner with the strong Majorana ZM at
low temperature. Since the parafermions satisfy an interme-
diate commutation relation between fermions and hard-core
bosons, clarifying behaviors of Majorana ZMs in a spin chain
obeying the hard-core bosonic commutation relation is an
important study from the quantum statistical point of view.

In contrast to the Kitaev chain, the effects of long-ranged
interactions in the spin chain cannot be easily examined due to
many-body interactions originating from the Jordan-Wigner
string. To overcome this difficulty, we combine numerical cal-
culation based on a variational matrix-product state (VMPS)
method [104] with an analytical calculation in the Ising limit.
Note that the concept of the VMPS is based on the density-
matrix renormalization group (DMRG) method proposed by
White [105,106], and thus, the VMPS is mathematically
equivalent to the DMRG. In the numerical algorithm, the
VMPS, however, has some differences from the DMRG,
e.g., the singular-value decomposition of coefficient rectan-
gular matrix of the wave function instead of diagonalization
of the reduced density matrix, and matrix-product operator
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(MPO) representation of the Hamiltonian as a more sophis-
ticated form of renormalized operators (see Appendix A for
the AXYSC model). While the VMPS method gives only
a few low-lying eigenstates, the analyses of the Ising limit
provides all eigenstates because of classical level for special
parameters. Combining both the calculations, we can discuss
the overall structure in the full Hilbert space to clarify the
Majorana ZM.

In this paper, we start with the correspondence between
the Kitaev and Ising chains. The Majorana ZM is derived in
the Ising chain, and we discuss its features about boundary
conditions. In addition, we analytically show a weak Majo-
rana ZM emerging in the Ising chain with second-neighbor
interactions. This weak Majorana ZM originating from an
extension of unit cell in the ground states is induced by the
second-neighbor interactions. Next, to investigate the effects
of quantum fluctuations, we present the VMPS study on
low-lying eigenstates in the AXYSC with second-neighbor
interactions. Based on detailed examinations of degeneracy
in the low-lying states, we determine the topological phase
diagram. To confirm robustness of the weak Majorana ZM
against quantum fluctuations, we numerically clarify energy
spectra in several parameter points. In these calculations, we
find a nontopological phase, where there is no Majorana ZM
but a weak trivial ZM associated with an extension of unit
cell as well as the doubly degenerate Majumdar-Ghosh ground
states [107–109]. Finally, we summarize these results and
mention possible experiments to find the weak Majorana ZM.

The contents of this paper are as follows. In Sec. II, we
introduce the model Hamiltonians of the AXYSC and the
Kitaev chain together with the Jordan-Wigner transformation.
In Sec. III, the Majorana ZMs in the Ising chain are exactly
derived as an example of the AXYSC. Two types of Majorana
ZMs, i.e., strong and weak Majorana ZMs, are demonstrated
in the Ising chain. After explaining the VMPS method, we
present a topological phase diagram obtained by the VMPS
method in Sec. V. As another VMPS result, we also show
degeneracy in ground states in Sec. VI. Sections VII and VIII
are used for discussion and summary, respectively.

II. MODEL

We consider the AXYSC with a second-neighbor interac-
tion given by

HS =
∑

n=1,2

[
HB

n + ηHE
n

]
, (1)

with

HB
n =

N−n∑
j=1

[
(Jn + λn)Sx

j S
x
j+n + (Jn − λn)Sy

j S
y
j+n

]
, (2)

HE
n =

n∑
j=1

[
(Jn + λn)Sx

N−n+ jS
x
j + (Jn − λn)Sy

N−n+ jS
y
j

]
, (3)

where HB
n (HE

n ) is the bulk (edge) Hamiltonian of nth neigh-
bor interaction for n = 1, 2 (see Appendix A for the MPO
representation). The x (y) component of the spin-1/2 operator
on the jth site is denoted by Sx

j (Sy
j ). The exchange energy

and anisotropy of the nth neighbor coupling are defined as

(a)

(b)

FIG. 1. Schematics of the AXYSC. Red (green) balls represent
x (y) components of the spin-1/2 operator. The spin operator except
for the z component is denoted by a yellow oval. Solid and dashed
lines are the first- and second-neighbor interactions, respectively.
(a) The anisotropic interactions of x (y) components are colored
brown (purple). (b) The bulk (edge) Hamiltonian is colored black
(gray). Without the edge Hamiltonian (η = 0), the system corre-
sponds to the open boundary condition (OBC), while the periodic
boundary condition (PBC) is chosen with η = 1.

Jn and λn, respectively (see Fig. 1). To control the boundary
condition, we use the parameter η.

The Majorana ZM emerges on the edges in a topologi-
cal phase of a one-dimensional p-wave superconductor (the
Bogoliubov–de Gennes class) [110], e.g., the Kitaev chain,
with the open boundary condition (OBC). The Kitaev chain
of the nth neighbor interaction is given by

HK
n =

N−n∑
j=1

(tnc†
j c j+n + �nc†

j c
†
j+n + H. c.), (4)

where c†
j (c j) denotes the creation (annihilation) operator of

spinless fermion on the jth site. The Kitaev chain with only
the first-neighbor interaction HK

1 is mathematically equivalent
to the AXYSC HB

1 with 2t1 = J1 and 2�1 = λ1 through the
Jordan-Wigner transformation [95],

S+
j = c†

j

j−1∏
k=1

e−iπnk , S−
j = c j

j−1∏
k=1

eiπnk , (5)

where n j = c†
j c j represents the number operator of spinless

fermion on the jth site. The topological bulk state in the
Kitaev chain has a finite energy gap, so that the Majorana ZM
is also expected in the AXYSC model with small J2 and λ2 as
compared with J1 and λ1 under OBC (η = 0). Furthermore,
preceding works have pointed out that a second-neighbor
interaction HK

2 in the Kitaev model induces multiple Majorana
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ZMs [64,72,96]. However, the second-neighbor interaction
HB

2 in the AXYSC model discords with HK
2 in the Kitaev

model, because the JordanWigner phase of a middle site, the
so-called Jordan-Wigner string, does not cancel out after the
transformation, that is,

HB
2 = 1

2

N−2∑
j=1

(
J2c†

j e
iπn j+1 c j+2 + λ2c†

j e
iπn j+1 c†

j+2 + H. c.
)
. (6)

Thus, it is an interesting problem to clarify whether HB
2 in the

AXYSC model also induces multiple Majorana ZMs as well
as HK

2 in the Kitaev chain.

III. MAJORANA ZMs IN ISING CHAIN

We first demonstrate the Majorana ZM appearing in the
Ising chain as the classical limit of the AXYSC. The Majorana
ZM is a zero-energy quasiparticle excitation which obeys the
Majorana condition, i.e., its Hermitian conjugate is the same
as itself. Two types of Majorana operators γ τ

j (τ = a, b) sat-
isfying the Majorana condition γ τ

j = (γ τ
j )† are introduced by

one fermion:

γ a
j = 1√

2
(c†

j + c j ), γ b
j = i√

2
(c†

j − c j ). (7)

These operators obey the fermionic anticommutation relation
{γ τ

j , γ τ ′
j′ } = δ j, j′δτ,τ ′ . Moreover, the Majorana operator can be

regarded as an operator which changes the fermion-number
parity given by

F = eiπ
∑

j n j =
∏

j

2iγ b
j γ

a
j . (8)

In fact, the Majorana operators anticommute with the
fermionic parity {γ τ

j ,F} = 0, and the fermionic parity is con-
served in the AXYSC, [F ,HS] = 0. Thus, with considering a
simultaneous eigenstate of the Hamiltonian and the fermionic
parity |ε, χ〉 with eigenenergy ε and the eigenvalue of the
fermionic parity χ = ±, the state obtained by the Majorana
operator acting on an eigenstate has an opposite parity to the
eigenstate:

F
(
γ τ

j |ε, χ〉) = −χ
(
γ τ

j |ε, χ〉). (9)

Furthermore, if there is a Majorana operator γ̃ commut-
ing with the Hamiltonian [γ̃ ,HS] = 0, a pair of eigenstates
with different fermionic parity exists at every energy level,
|ε, χ〉 and |ε,−χ〉 ≡ √

2γ̃ |ε, χ〉. This Majorana operator γ̃

is called (strong) Majorana ZM. Besides the commutation re-
lation [γ̃ ,HS] = 0, recent theoretical study has predicted the
Majorana ZM satisfying a weaker condition P[γ̃•,HS]P =
0 with a projection to a certain Hilbert subspace P
[69,82,101–103]. In this case, only eigenstates belonging to
the subspace are doubly degenerate. The Majorana ZM γ̃•
with such a weaker condition P[γ̃•,HS]P = 0 is called weak
Majorana ZM, as compared with the strong Majorana ZM γ̃

satisfying [γ̃ ,HS] = 0.
We can easily find the strong Majorana ZM in the Ising

chain without the second-neighbor interaction, corresponding
to a condition λ1 = ±J1 in the AXYSC. For instance, the

Majorana representation of the Ising chain is given by

HB
1 |λ1=J1 = −J1

N−1∑
j=1

iγ b
j γ

a
j+1. (10)

Two Majorana operators γ a
1 and γ b

N on the edges apparently
commute with the Hamiltonian, indicating two strong Majo-
rana ZMs γ̃ a = γ a

1 and γ̃ b = γ b
N existing in the Ising chain.

These Majorana ZMs γ̃ a and γ̃ b are essentially the same
Majorana ZM. The reason is as follows. The Hermite operator
2iγ̃ aγ̃ b, which has two eigenvalues χe = ±1, commutes with
both the Hamiltonian HB

1 |λ1=J1 and the fermionic parity F ,
so that there are simultaneous eigenstates |ε, χ, χe〉. With
applying γ̃ a on the eigenequation of 2iγ̃ aγ̃ b, we obtain the
following relation:

γ̃ b|ε, χ, χe〉 = −iχeγ̃
a|ε, χ, χe〉. (11)

These two states are the same without the phase factor −iχe,
and thus, the Majorana ZMs γ̃ a and γ̃ b are essentially equiva-
lent (see Appendix B for more information of these Majorana
ZMs). Interestingly, these strong Majorana ZMs survive with
periodic boundary condition (PBC) in the Ising chain, that is,
the γ̃ a and γ̃ b also commute with the edge Hamiltonian,

HE
1 |λ1=J1 = −iJ1γ

b
Nγ a

1 F . (12)

This startling feature originates from the operator F as a
remnant of the Jordan-Wigner transformation, and thus, this
feature is inherent in the spin chain. In a general case with
J1 �= λ1, a strong Majorana ZM is obtained as a superposition
of Majorana operators. In the Kitaev chain with OBC, this
mode is slightly expanded from edges but exponentially de-
creasing into the bulk. Thus, it is exactly obtained only in the
thermodynamic limit.

Next, let us consider the effects of the second-neighbor
interaction in the Ising chain with PBC (λ1 = J1 and λ2 = J2).
In the following, the system size N is set to satisfy N =
0 (mod 4), and the interactions are restricted into antiferro-
magnetic J1 > 0 and J2 > 0 for simplicity. The ground-state
phase undergoes the first-order phase transition at Jx

1 = 2Jx
2 ,

where the degeneracy of ground states changes from twofold
(Jx

1 > 2Jx
2 ) to fourfold (Jx

1 < 2Jx
2 ). In the latter region Jx

1 <

2Jx
2 , the fourfold ground states are given by

|gs1〉 = |↑↑↓↓ · · ·〉x , |gs2〉 = |↓↓↑↑ · · ·〉x , (13)

|gs3〉 = |↑↓↓↑ · · ·〉x , |gs4〉 = |↓↑↑↓ · · ·〉x , (14)

where |↑↓↑↓ · · ·〉x is defined as a direct product,
|↑〉x

1 |↓〉x
2 |↑〉x

3 |↓〉x
4 · · · with the eigenstates of Sx

j , |↑〉x
j ,

and |↓〉x
j . To diagonalize the fermionic parity in these states,

we adopt bonding and antibonding ground states as linear
combinations of these states:

|gs±
1,2〉 = 1√

2
(|gs1〉 ± |gs2〉),

|gs±
3,4〉 = 1√

2
(|gs3〉 ± |gs4〉). (15)

With the relations |↓〉x
j = −eiπn j |↑〉x

j and |↑〉x
j = −eiπn j |↓〉x

j ,
where eiπn j corresponds to a spin-flip operator of the
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x component, eigenequations of the fermionic parity are
obtained by

F |gs±
1,2〉 = ± |gs±

1,2〉 , F |gs±
3,4〉 = ± |gs±

3,4〉 . (16)

Thus, there is a Majorana ZM between the bonding and
antibonding ground states. This characteristic is common
to all energy levels. In fact, every state can be written
by a direct product of local eigenstate |↑〉x

j or |↓〉x
j , e.g.,

|ψ〉 = |↑↑↓↑ · · ·〉x. The direct product state |ψ〉 has a
spin-flip pair F |ψ〉 = |↓↓↑↓ · · ·〉x, which has the same
energy as |ψ〉. The bonding and antibonding states |ψ±〉 =
(|ψ〉 ± F |ψ〉)/

√
2 have diferrent fermionic parity. Therefore,

this Majorana ZM between bonding and antibonding states
at each energy level corresponds to a strong Majorana ZM,
γ̃ a = ∑

ψ (|ψ+〉 〈ψ−| + |ψ−〉 〈ψ+|)/√2, e.g., γ̃ a = √
2Sx

1.
On the other hand, there is another Majorana ZM in the

ground states, i.e., a Majorana ZM between |gs+
1,2〉 and |gs−

3,4〉
(|gs−

1,2〉 and |gs+
3,4〉). This mode is constructed by the spin-flip

operator of odd sites Fo and the parity-flip operator Sx
1, i.e.,

γ̃ a
• = √

2iSx
1Fo. This operator also satisfies the Majorana con-

dition {γ̃ a, γ̃ a
• } = 0, 2(γ̃ a

• )2 = 1, and γ̃ a
• = (γ̃ a

• )†. However,
for instance, with respect to the highest-energy (saturated)
states |↑↑↑ · · ·〉x and |↓↓↓ · · ·〉x, which are only doubly de-
generate, γ̃ a

• corresponds to a Majorana mode in a different
energy sector. The difference of degeneracy originates from
P[γ̃ a

• ,HS]P = 0 with a projection P to a certain Hilbert sub-
space including the ground states but except for the saturated
states. Therefore, this mode is regarded as a weak Majorana
ZM.

It is also worth noting that this weak Majorana ZM is
regarded as a product of the strong Majorana ZM γ̃ a, the
fermionic parity F , and a weak (not Majorana) ZM, that we
call a weak trivial ZM in this paper, between |gs+

1,2〉 and |gs+
3,4〉

(|gs−
1,2〉 and |gs−

3,4〉). This weak trivial ZM corresponds to a
translation operator T defined by

|gs1〉 = T |gs3〉 , |gs2〉 = T |gs4〉 . (17)

In the ground states, the translation operator T is equivalent
to the spin-flip operator of even sites Fe, i.e., PT P = PFeP .
Thus, we can obtain the relation γ̃ a

• = iγ̃ aFT in the ground
states.

More generally, if there is a trivial ZM ζ defined by any
parity-flip operator (ζ 2 = 1), commuting with another (in-
trinsic) Majorana ZM γ̃ , the fermionic parity F , and the
Hamiltonian H, i.e., [ζ , γ̃ ] = [ζ ,F] = [ζ ,H] = 0, a product
of them, γ̃ ′ = iγ̃Fζ , satisfies the Majorana ZM condi-
tions independent from the γ̃ , namely, {γ̃ ′, γ̃ } = {γ̃ ′,F} =
[γ̃ ′,H] = 0, 2(γ̃ ′)2 = 1, and γ̃ ′ = (γ̃ ′)†. To avoid misunder-
standing, we again insist that this Majorana ZM γ̃ ′ is diffrent
from the pair to the Majorana ZM γ̃ (see Appendix C for more
information). Moreover, it is intriguing that this reconstructed
Majorana ZM γ̃ ′ can exist only with the intrinsic Majorana
ZM γ̃ , otherwise there is just a trivial ZM. In the Ising chain
with large enough second-neighbor interactions, unit cell of
the ground state is extended twice as large as the Néel state,
resulting in generation of sublattice degree of freedom associ-
ated with the translation. This degree of freedom corresponds
to the weak trivial ZM (ζ ) in the ground states, so that we

can find a weak Majorana ZM (γ̃ ′) if there is another strong
Majorana ZM (γ̃ ).

IV. NUMERICAL METHOD

In general, the Majorana ZM in the AXYSC with second-
neighbor interactions is not easy to be clarified due to quantum
fluctuation. To clarify the quantum effects, we investigate low-
lying states with the VMPS method. In this study, we set the
bond dimension of the VMPS to be greater than 400 and con-
firmed that truncation error is approximately less than 10−6.
If there is a degeneracy in the ground states with different
fermionic parities, we can confirm at least existence of a weak
Majorana ZM. Moreover, we can discuss the type of ZMs
by comparison with the Ising chain. The number and type
of Majorana ZMs can help us to determine the ground-state
phase diagram.

In the AXYSC, the strong Majorana ZM is not localized
in the edges, and thus, we can detect the Majorana ZM with
both OBC and PBC by checking the degeneracy of the ground
states. In addition, the bulk state is common between OBC
and PBC in the thermodynamical limit, so that the topological
phase diagrams with OBC and PBC should be the same. Thus,
to determine the topological phase diagram, we choose the
OBC to reduce the numerical costs of the VMPS method. On
the other hand, as explained in Sec. III, the translational sym-
metry is crucial in finding the weak trivial ZM, irrespective of
existence of the strong Majorana ZM. Since the OBC breaks
the translational symmetry, we apply the PBC when we dis-
cuss the existence of the weak trivial ZM. Note that even with
the OBC, we can find the phase transition related to the weak
trivial ZM of the PBC, because the first-excitation gap closes
at the transition point. If there is the strong Majorana ZM, the
weak trivial ZM is regarded as an additional Majorana ZM
(see Appendix C). Therefore, we can obtain a more detailed
classification of the topological phase diagram in light of the
weak trivial ZM.

To obtain the ground-state energy in specified parity sub-
spaces, we add an auxiliary field in the Hamiltonian defined
by

HF = μ
∑

α

|Fα − χα|, (18)

where Fα = ∏N
j=1(−2Sα

j ) is the α = x, y, z component of
the parity operator, which is conserved in the Hamiltonian
because of [Fα,HS] = 0. The fermionic parity F in Sec. III
corresponds to the z component F z. These parity operators
have Z2 quantities according to their eigenvalues, while there
is a constraint F xF yF z = (−i)N . For simplicity, in this paper,
we consider only the N = 4n system size with a positive
integer n, so that acceptable subspaces distinguished by eigen-
values of the parities, χi = (χ x

i , χ
y
i , χ z

i ), are given by

χ0 = (+,+,+), χ1 = (+,−,−),

χ2 = (−,+,−), χ3 = (−,−,+), (19)

where χα
i denotes each eigenvalue of the parity operator

Fα [111]. Therefore, with a fixed χ for the target subspace,
we can calculate the ground-state energy using the VMPS
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(c) (d)

FIG. 2. Size dependence of ground-state energies ε
(i)
0 in four

subspaces with different parity χi for i = 0, 1, 2, 3, corresponding
to (+,+, +), (+,−, −), (−,+, −), (−,−, +) with fixed λ1/J1 = 1
(θ = π/4) and J2/J1 = 2 for (a) N = 8, (b) N = 16, (c) N = 32, and
(d) N = 64 systems. The real ground-state energy ε

(0)
0 is set to be

zero.

method for HS + HF with a large enough positive potential
μ > 0 (see Appendix A for the MPO representation).

Furthermore, to clarify the degeneracy in the same sub-
space, we also calculate the νth lowest eigenenergy εν after
obtaining up to (ν − 1)th low-lying eigenstates |l〉 (l = 0, 1,

2, . . . , ν − 1). In the VMPS method, we can obtain any exci-
tation energy with shifting all low-lying states to upper levels.
To shift the low-lying states, we introduce an additional term
defined by

HL = ε

ν−1∑
l=0

|l〉 〈l| . (20)

With applying an energy shift larger than νth excitation
energy, ε > εν − ε0, the lowest-energy state corresponds to
the νth eigenstate, since the Hamiltonian is deformed into
HS + HL = ∑

l�ν εl |l〉 〈l| + ∑
l<ν (εl + ε) |l〉 〈l|. Thus, if we

separately set the shift energy to the eigenenergy, i.e., ε =
−εl , the effect of HL corresponds to the projection into the
Hilbert subspace perpendicular to the subspace comprised of
the low-lying eigenvectors |l〉 (l = 0, 1, . . . , ν − 1).

V. TOPOLOGICAL PHASE DIAGRAM

In this section, we present the topological phase diagram of
the AXYSC, which is determined by the degeneracy and par-
ities of ground states with OBC. The degeneracy and parities
are clarified by the VMPS method with the auxiliary field (see
Sec. IV). Since the Majorana ZMs in the AXYSC emerge in
the thermodynamic limit, we first confirm the size effects.

0 0.16 0 0.08 0 0.08
0

1.2

0

0.6

0

0.6 )c()b()a(

FIG. 3. Size dependence of ground-state energies ε
(i)
0 in

four subspaces χi. The parameter points are (θ, J2/J1, λ2/λ1) =
(a) (π/4, 2.0, 0.8), (b) (π/4, 2.0, 0.2), and (c) (7π/20, 1.2, 0.2).

Figure 2 shows the size dependence of the ground-state
energies in four subspaces χi (i = 0, 1, 2, 3), which are iden-
tified by the three-component parities Fα . With increasing the
system size N , i.e., from (a) to (d), the energies converge into
two levels with twofold degeneracy. In (d), the ground states in
χ0 and χ2 (χ1 and χ3) are degenerate for λ2/λ1 � 0.2, while
the ground states in χ0 and χ1 (χ2 and χ3) are degenerate for
λ2/λ1 � 0.2.

Next, to clarify the size dependence in more detail,
we show the ground-state energies as a function of in-
verse system size 1/N , in which we can apparently check
the thermodynamical limit. In Fig. 3, the size depen-
dence of ground-state energies in subspaces is shown at
certain parameter points, (θ, J2/J1, λ2/λ1) = (π/4, 2.0, 0.8),
(π/4, 2.0, 0.2), and (7π/20, 1.2, 0.2). In Fig. 3(a), we can
see the convergence of energies into two energy levels cor-
responding to the strong Majorana ZM. On the other hand,
we can see the convergence of energies into one energy level
in Fig. 3(b) (see also Fig. 2), indicating the phase boundary.
Moreover, we can find parameter points where no degeneracy
exists at the ground state like Fig. 3(c), implying no Majorana
ZMs. Based on these behaviors, we have classified the topo-
logical phase diagram.

Since the parity component associated with degeneracy
changes at the topological phase boundary, the fourfold de-
generacy in the ground state helps us draw a topological
ground-state phase diagram. In Fig. 4, we show the phase
diagram, where there are three parameters λ1/J1 represented
by θ = tan−1(λ1/J1), J2/J1, and λ2/λ1. We find three phases
distinguished by the degeneracy and the parity components:
two topological phases with different parities [(light and dark)
green, and blue regions] and a nontopological phase without
degeneracy between different parities (orange region). In the
(light and dark) green regions, the ground states are degener-
ate between χ0 and χ1 subspaces, while in the blue region, the
ground-state degeneracy exists between χ0 and χ2 subspaces.
On the other hand, we do not find the ground-state degeneracy
between different parity subspaces in the orange region, in-
dicating that two-body interactions in second-neighbor terms
break topological ground state and Majorana ZMs.

Next, we explain the equivalence of the separated blue
regions and the difference of the two green regions. On
θ = π/4, corresponding to J1 = λ1, there is a mirror
symmetry with respect to the diagonal line (Ising limit),
because the Hamiltonian HB

2 is invariant under permutation
of J2 and λ2 with a distinct spin rotation around the x
axis Sy

j → −Sy
j for j = 0, 1 (mod 4). Note that the spin
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Ising Limit

A
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D
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2

2

-2

2-2 2

-2

2-2 2
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-2

2

2

Strong Majorana ZM b/w 

No Majorana ZMs, But a weak ZM in
Strong & weak Majorana ZMs b/w 
Strong & weak Majorana ZMs b/w 

FIG. 4. Topological phase diagram of the AXYSC with second-
neighbor interaction. In the light- and dark-green regions, the ground
state exhibits the Majorana ZM between χ0 and χ1 subspaces,
whereas in the blue region, the Majorana ZM exists between χ0

and χ2 subspaces. Except for a common fermionic parity F z, the
green and blue topological phases are characterized by the fermionic
parities F y and F x , respectively. In the orange region, there is no
degeneracy between different parity subspaces. The calculation is
performed for an N = 64 system with OBC. The parameter points
A (θ = π/4, J2/J1 = 0.6, λ2/λ1 = −0.6), B (θ = π/4, J2/J1 = 1.6,
λ2/λ1 = −0.2), C (θ = π/4, J2/J1 = 1.6, λ2/λ1 = 1.0), and D (θ =
π/20, J2/J1 = 0.6, λ2/λ1 = 0.4) are used to demonstrate correlation
functions (see Fig. 5) and degeneracy at the ground states (see
Sec. VI). The red dashed line denotes the Ising chain with second-
neighbor interactions, where J2/J1 = λ2/λ1 at θ = π/4 (λ1/J1 = 1).

rotation also keeps the parity operators Fα . Accordingly, the
left-upper topological phase (a blue region) is identical to the
right-lower topological phase (the other blue region) at least
on θ = π/4. Since every blue region on each θ panel should
be continuously connected to each other, we conclude that
blue regions are the same phase.

However, recalling the phase transition in the Ising chain
with the PBC, the light- and dark-green regions are not re-
garded as the same phase. As explained in Sec. III, the ground
state in the Ising chain comes across the phase transition at
Jx

1 = 2Jx
2 , corresponding to the crossing point of the black line

and the red dashed line on θ = π/4 in Fig. 4, where degen-
eracy of the ground states changes from twofold to fourfold
with increasing J2 = λ2. In fact, we find that there is a sign of
topological transition on the phase boundary between light-
and dark-green regions, where all ground states in different
four-parity subspaces are degenerate (not shown) as for the
phase boundaries between the blue and green regions.

To confirm the phase transition accompanying the doubly
extended unit cell with spontaneous breaking of translational
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FIG. 5. Correlation functions Cα (r) for α = x, y in the ground
state at the four parameter points A, B, C, and D in Fig. 4. We
calculate the ground state without any auxiliary fields HF and HL ,
i.e., μ = ε = 0, in an N = 256 system with OBC.

symmetry, we show the correlation functions of α = x, y com-
ponents of spins defined by

Cα (r) = 〈
Sα

N/2Sα
N/2+r

〉
. (21)

The correlation functions at the four parameter points A, B, C,
and D in Fig. 4, representing the light-green, blue, dark-green,
and orange regions, respectively. By comparison between A
and C in Fig. 5, we can see that the periods of Cx(r) are dif-
ferent. In addition, we can also confirm that the y component
of the spin correlations Cy(r) shows a long-range order in B,
while in A and C, the x component Cx(r) is long ranged. On
the other hand, in D, there is no long-range order of spins,
because both the correlation functions |Cα (r)| exponentially
decrease with increasing the length r.

Although the weak Majorana ZM is also expected off
the diagonal line (Ising limit) in the dark-green region, it
is difficult to prove it analytically. In the next section, we
demonstrate the ground-state degeneracy at four points A, B,
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FIG. 6. Size dependence of the ground-state (ν = 0) and first-
excitation (ν = 1) energies in four subspaces χi (i = 0, 1, 2, 3), by
means of the VMPS method in the N = 8, 16, 32, 48, 64 AXYSCs
with the PBC. Four panels correspond to the points A, B, C, and D in
Fig. 4. In each panel, closed (open) symbols denote the ground-state
(first-excitation) energies with four different shapes, upward triangle,
downward triangle, circle, and square corresponding to the subspace
indices i = 0, 1, 2, and 3, respectively. The energy origin is set to
the minimal energy of the ground-state energies.

C, and D, representing the light-green, blue, dark-green, and
orange regions, respectively.

VI. GROUND-STATE DEGENERACY
AND WEAK MAJORANA ZM

To confirm the degeneracy associated with the weak Majo-
rana ZM in topological phases, we numerically obtain lowest
energies with PBC at three points A, B, and C at θ = π/4
(J1 = λ1) in Fig. 4 by means of the VMPS method.

Figure 6 shows the size dependence of the ground-state
and first-excitation energies in all subspaces, where strong
quantum fluctuations exist contrary to the Ising limit. We have
confirmed that the numerical overlap between the ground and
first-excited states in the same subspace is negligibly small,
|〈0|1〉| � 10−5. In all panels, we can see the convergence of
energies to approximately two or three levels with increasing
the system size.

To check the degeneracy more closely, we present the
ground-state and first-excitation energies of the N = 64
AXYSC in Fig. 7. In contrast to the point A, we can see
fourfold degeneracy in the points B and C, whereas both the
points A and C belong to the (light- and dark-) green regions
where the ground states are degenerate between the χ0 and χ1
subspaces. Hence, the degeneracy is unchanged even in the
presence of quantum fluctuation.

In the dark-green region, as we explained in Sec. III, there
is a weak Majorana ZM in addition to the strong Majorana ZM
in the Ising limit, indicating that some excited states are only
twofold degenerate. At least in a certain region near the Ising

0.0

1.5

0.0

1.0

0.0

2.5

0.0

0.4

0 0 1 1 2 2 3 3
0 1 0 1 0 1 0 1

(a)

(b)

(c)

(d)

FIG. 7. Ground-state and first-excitation energies obtained by the
VMPS method in the N = 64 AXYSC with the PBC. Panels from top
to bottom correspond to the energy spectra at the points A, B, C, and
D in Fig. 4. The horizontal axis represents the index of the subspace
(i = 0, 1, 2, 3) and state number ν = 0, 1; i.e., ground state (ν = 0)
and first excitation (ν = 1) in the χi subspace.

limit, the excited states are still twofold degenerate, while
degeneracy of the ground states should be fourfold even if
quantum fluctuations exist. Therefore, we conclude that the
weak Majorana ZM survives not only in the classical Ising
limit but with quantum fluctuations, although we cannot deny
the existence of two strong Majorana ZMs, i.e., a shift of
Majorana ZM from weak to strong mode, in a part of the
dark-green region.

On the other hand, we find ground-state degeneracy even
in the nontopological phase without Majorana ZMs (orange
region in Fig. 4). This degeneracy in the same subspace
does not exist in the light-green region, which corresponds
to the topological phase in the Kitaev chain with only first-
neighbor terms. Therefore, this degeneracy is also induced
by the second-neighbor interaction. In fact, one of the or-
ange regions appears near the isotropic spin condition, λ1 = 0
(θ = 0) and λ2 = 0, and the other seems to be continuously
connected with another isotropic point with the condition that
J1 = 0 (θ = π/2) and λ2 = 0. In the isotropic case with large
enough second-neighbor interaction, the ground states are
doubly degenerate dimerized states with spontaneous break-
ing of translational symmetry similar to the Majumdar–Ghosh
state [107–109]. This degeneracy in the same subspace can
be characterized as a (at least weak) trivial ZM. In fact, the
origin of this trivial ZM, which is sublattice degree of freedom
in a doubly extended unit cell with spontaneous breaking of
translational symmetry induced by the second-neighbor inter-
actions, is common to the weak trivial ZM in the dark-green
and blue regions (see also Sec. III). Thus, considering the
generality in physics, it may be appropriate that the weak
ZM is regarded as not a Majorana ZM but just a trivial ZM.
However, it is more intriguing that if there is at least one
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Majorana ZM, other trivial ZMs can also play the role of a
Majorana ZM (see Sec. III and Appendix C).

Finally, we briefly mention the effects of the boundary
conditions. In the present study, we determine the topological
phase diagram with OBC to reduce numerical costs, while the
degeneracy is investigated with PBC. As explained in Sec. III,
the strong Majorana ZM and the corresponding degeneracy
appear under both OBC and PBC in the AXYSC contrary to
the Kitaev chain. This significant feature originates from the
nonlocal Jordan-Wigner transformation, and thus the strong
Majorana ZM is a characteristic of bulk in the AXYSC.
Hence, with OBC, we can obtain the topological phase dia-
gram regarding the strong Majorana ZM. On the other hand,
the weak Majorana ZM and the degeneracy emerge under
only PBC at least in the Ising limit. Therefore, to confirm the
weak Majorana ZM, we have to examine whether additional
degeneracy does appear or not with PBC. In the thermody-
namical limit, the bulk state is common between OBC and
PBC, so that the phase boundaries determined using the strong
Majorana ZM as a bulk property should be the same between
OBC and PBC. In other words, even with OBC, there is a
certain topological invariance in the bulk, such as a winding
number, which is the difference between the light- and dark-
green regions, while the weak Majorana ZM as an edge mode
vanishes.

VII. SUMMARY

We have investigated Majorana ZMs in the AXYSC with
the second-neighbor interaction. In the Ising limit with PBC,
we first analytically demonstrate two types of Majorana ZMs,
i.e., strong and weak Majorana ZMs. The weak Majorana
ZM is restricted into a Hilbert subspace including the ground
states, whereas the strong Majorana ZM appears in the whole
Hilbert space. With quantum fluctuations, we have found
several topological phases characterized by the strong Ma-
jorana ZM by means of the VMPS method, in addition to a
nontopological phase. Furthermore, based on an analysis of
the lowest excitations in each subspace, we have confirmed
a weak Majorana ZM appearing with the strong Majorana
ZM in topological phases induced by a large second-neighbor
interaction. Although multiple Majorana ZMs have already
been reported, coexistence of mixed types of Majorana ZMs
induced by long-ranged interaction with strong correlations
is of interest from a theoretical point of view. Based on the
presence of the twofold degeneracy in the nontopological
phase, we conclude that it is inappropriate to regard the weak
trivial ZM as a Majorana ZM even in a topological phase.
Nonetheless, we also insist that the weak trivial ZM can play
the role of a weak Majorana ZM if there are other Majorana
ZMs.

Our study will contribute to realizing the Majorana ZM
if quantum spin materials described by the present AXYSC
model are synthesized. Additionally, the weak Majorana ZM
appearing in the ground state should induce intriguing low-
temperature physics. For instance, if there is a large gap upon
the ground state, the effects of excited states are effectively
ignored at low enough temperature as compared with the
energy gap. Therefore, temperature dependence can be a pos-
sible probe to detect an interesting feature due to the weak

Majorana ZM, which behaves in the same manner with the
strong Majorana ZM only at low temperature. Furthermore,
S = 1/2 spin has the same quantum statistics with a hard-core
boson. Since the hard-core boson is experimentally investi-
gated in optical lattices, a promising quantum system to detect
the weak Majorana ZM can also be realized in the optical
lattices.
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APPENDIX A: MPO REPRESENTATION
OF HAMILTONIAN

Although the MPO representation of Hamiltonian is used
in the VMPS method, it is neither unique nor well known how
to obtain. In this section, we explicitly show the MPO repre-
sentation of Hamiltonians HB

n and HF with OBC. Thanks to
the detailed review [104], the term of AXYSC HB

n is easily
transformed into the MPO form, given by∑

n=1,2

HB
n = H1H2 · · · HN−1HT

N , (A1)

where the local matrix (vector) operators are given by

H1 = (0, M1, P1, 1), (A2)

H j =

⎛⎜⎜⎜⎜⎝
1

pT
j L

mT
j L

0 M j P j 1

⎞⎟⎟⎟⎟⎠, (A3)

HN = (1, p2, m2, 0), (A4)

with the lower matrix

L =
(

0 0
1 0

)
. (A5)

Here, we define local vector operators ( j = 1, 2, . . . , N),

M j = 1
2 (J1S−

j + λ1S+
j , J2S−

j + λ2S+
j ), (A6)

P j = 1
2 (J1S+

j + λ1S−
j , J2S+

j + λ2S−
j ), (A7)

and

p j = (S+
j , 0), m j = (S−

j , 0). (A8)

On the other hand, the auxiliary field to restrict the parity
subspace is nontrivial. Since the eigenvalue of Fα is ±1, we
pay attention to the following relation:

|Fα − χα| =
{−Fα + χα (χα = +)

Fα − χα (χα = −).
(A9)

The auxiliary field is rewritten by

HF = μ

(
3 −

∑
α

χαFα

)
. (A10)
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TABLE I. Transformation to Majorana ZMs. The Majorana ZMs satisfy {γ̃ τ
j ,F} = [γ̃ τ

j ,H] = 0 and {γ̃ τ
j , γ̃ τ ′

j′ } = δ j, j′δτ,τ ′ . These are similar
to the Jordan-Wigner transformation.

Pauli matrix Majorana ZM Trivial ZMs Transformations

σ x (flip) γ̃ a
0 ζ a

j γ̃ a
j = iγ̃ a

0 Fζ a
j

∏
k> j Zk/

√
2

σ z (parity) F Zj

σ y (pair) γ̃ b
0 = iγ̃ a

0 F
∏

j Z j ζ b
j = iζ a

j Z j γ̃ b
j = −γ̃ a

0 Fζ a
j Z j

∏
k> j Zk/

√
2

Thus, we can express the auxiliary field with the MPO repre-
sentation as

HF = F1F2 · · · FN−1FT
N (A11)

with

F1 = μ
(−2χ xSx

1, −2χ ySy
1, −2χ zSz

1, 3
)
, (A12)

F j =

⎛⎜⎜⎜⎝
2Sx

j

2Sy
j

2Sz
j

1

⎞⎟⎟⎟⎠, (A13)

FN = (
2Sx

N , 2Sy
N , 2Sz

N , 1
)
. (A14)

It is not necessary to obtain the MPO representation for
another auxiliary field HL, because the operator is just a
(superposed) direct product of MPS. For the first-excited state
|1〉, the effect of HL reads

HL|1〉 = ε〈0|1〉|0〉. (A15)

Therefore, it is sufficient to calculate the inner product of two
MPSs 〈0|1〉.

Although the MPO representation with PBC is more com-
plicated than that with OBC, it is available via correspondence
between a single chain with PBC and a double chain coupled
with two edges [see Fig. 1(b)]. In this mapping, the site index
is alternately labeled in the first and second chains, that is, in
Fig. 1(b),

(S1, S2, S3, . . . , SN/2, SN/2+1, . . . , SN−2, SN−1, SN )

→ (S1, S3, S5, . . . , SN−1, SN , . . . , S6, S4, S2). (A16)

Thus, in appearance, longer-ranged interactions up to fourth-
neighbor site are required. Note that in this form, the bond
dimension of the MPO with PBC is approximately doubled as
compared with OBC, and we also have to set the bond dimen-
sion of MPS much larger due to a large value of entanglement
entropy.

APPENDIX B: A PAIR OF MAJORANA
ZMs AND NUMBER OF THEM

In general, supposing that a certain parity operator Q obeys
[Q,H] = 0, {Q, γ̃ a} = 0, and Q2 = 1 for a Majorana ZM γ̃ a,
we can make a pair to the Majorana ZM by using unitary
transformation,

γ̃ b = e−i(π/4)Qγ̃ aei(π/4)Q = iγ̃ aQ, (B1)

satisfying the Majorana condition {γ̃ τ , γ̃ τ ′ } = δτ,τ ′ and com-
mutation relation [γ̃ b,H] = 0. In the Ising chain, this parity
operator corresponds to Q = −2iγ b

Nγ a
1 = −4Sx

N Sx
1F for γ̃ a =

γ a
1 and γ̃ b = γ b

N . Simultaneously, we can obtain another pair
to the Majorana ZM, (γ̃ b)′ = iγ̃ aF �= γ̃ b, provided that Q =
F , while this mode (γ̃ b)′ does not anticommute with γ̃ b,
i.e., these modes are essentially not independent. Although
the definition of the paired Majorana ZM is not unique, only
one independent Majorana ZM can be constructed by one
Majorana ZM as its pair. Thus, the number of independent
Majorana ZMs Dm is always even, and the degeneracy of
eigenstates in the Hamiltonian corresponds to 2Dm/2.

APPENDIX C: TRANSFORMATION OF TRIVIAL ZMs
TO MAJORANA ZMs

As mentioned in Sec. III, we can rewrite several trivial
ZMs to Majorana ZMs, if there is an intrinsic Majorana ZM
γ̃ a

0 obeying {γ̃ a
0 ,F} = [γ̃ a

0 ,H] = [F ,H] = 0 and 2(γ̃ a
0 )2 =

1. Here, we explicitly present the transformation of the trivial
ZMs to Majorana ZMs. (In this section, we assume strong
ZMs, though weak ZMs can also be considered with introduc-
ing a certain projection.) Firstly, we define the jth trivial ZM
and its parity by ζ a

j and Zj ( j = 1, 2, . . . , D) where D denotes
the number of trivial ZMs, satisfying [ζ a

j , γ̃
a] = [ζ a

j ,F] =
[ζ a

j , ζ
a
j′ ] = 0 (independence of trivial ZMs) and {ζ a

j , Zj} =
[ζ a

j ,H] = [Zj,H] = 0 (zero-energy excitations) with (ζ a
j )2 =

Z2
j = 1 (Z2 quantities). The trivial ZM operator ζ a

j flips an
eigenvalue of the parity operator Zj , so that these can corre-
spond to Pauli matrices σ x

j and σ z
j acting on a Hilbert space

consisting of independent pseudospins. Hence, there is an-
other Pauli matrix σ

y
j = iσ x

j σ
z
j , which is regarded as a pair to

the trivial ZM ζ b
j = iζ a

j Z j satisfying {ζ b
j , Zj} = [ζ b

j ,H] = 0

and {ζ τ
j , ζ τ ′

j′ } = 2δ j, j′δτ,τ ′ (see Table I). These trivial ZMs
can be transformed to Majorana ZMs with introducing a
Jordan-Wigner phase

∏
k< j Zk and a flip of fermionic parity

iγ̃ a
0 F , i.e., γ̃ τ

j = iγ̃ a
0 Fζ τ

j

∏
k> j Zk/

√
2 for τ = a, b and j =

1, 2, . . . , D. In addition, we have to add a factor
∏

j Z j into a
pair to the intrinsic Majorana ZM γ̃ b

0 = iγ̃ a
0 F to anticommute

with other Majorana ZMs. Table I shows the correspondence
of them, where every Majorana ZM obtained by the trans-
formation is independent from the others, that is, {γ̃ τ

j ,F} =
[γ̃ τ

j ,H] = 0 and {γ̃ τ
j , γ̃ τ ′

j′ } = δ j, j′δτ,τ ′ . Consequently, we can
obtain (D + 1) Majorana ZMs, if there is an intrinsic Majo-
rana ZM and other trivial ZMs associated with any symmetry
breaking.
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