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Machine learning detection of Berezinskii-Kosterlitz-Thouless transitions in q-state clock models
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We demonstrate that a machine learning technique with a simple feedforward neural network can sensitively
detect two successive phase transitions associated with the Berezinskii-Kosterlitz-Thouless (BKT) phase in
q-state clock models simultaneously by analyzing the weight matrix components connecting the hidden and
output layers. We find that the method requires only a data set of the raw spatial spin configurations for
the learning procedure. This data set is generated by Monte Carlo thermalizations at selected temperatures.
Neither prior knowledge of, for example, the transition temperatures, number of phases, and order parame-
ters nor processed data sets of, for example, the vortex configurations, histograms of spin orientations, and
correlation functions produced from the original spin-configuration data are needed, in contrast with most of
previously proposed machine learning methods based on supervised learning. Our neural network evaluates
the transition temperatures as T2/J = 0.921 and T1/J = 0.410 for the paramagnetic-to-BKT transition and
BKT-to-ferromagnetic transition in the eight-state clock model on a square lattice. Both critical temperatures
agree well with those evaluated in the previous numerical studies.
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I. INTRODUCTION

Machine learning techniques have been widely used for
image recognition and are applied practically nowadays [1,2].
The techniques are based on a design of devices capable
of giving correct guesses, assignments, and classifications of
unknown data by extracting features and patterns that the data
contain. This procedure resembles research in the field of
physics, in which physical principles are often deduced from
accumulated experimental data. Therefore, machine learning
techniques might have good compatibility with scientific re-
search and have thus been applied to a wide variety of physical
issues [3–6]. An ultimate goal of this research direction is to
discover new physics through machine learning, but state-of-
the-art machine-learning-based research in physics has not yet
reached this stage. Currently, we are developing efficiencies
of the techniques by testing whether the techniques correctly
guess and identify well-known behaviors and properties of
established theoretical models.

In particular, several spin models have been intensively
examined to test whether the machine learning techniques can
detect and classify phases and their phase transitions. To date,
the Ising model [7–16] and the XY model [17–21] in two
dimensions have been the subject of intensive studies. The
former model exhibits the second-order phase transition to a
symmetry-broken phase with decreasing temperature; that is,
the paramagnetic-to-(anti)ferromagnetic transition where the
order parameter is well defined. The latter model possesses
a continuous U(1) symmetry and thus does not exhibit a
normal second-order phase transition to a symmetry-broken
phase according to the Mermin-Wagner theorem [22]. Instead,
the XY model exhibits the Berezinskii-Kosterlitz-Thouless
(BKT) transition or the vortex-binding transition associated

with topological defects; that is, a transition from a high-
temperature phase having unbound vortices and antivortices to
a low-temperature phase having bound vortex-antivortex pairs
with decreasing temperature [23–25].

Machine learning techniques are mainly classified into
two categories: techniques based on supervised learning and
techniques based on unsupervised learning. The supervised
learning techniques use training data, to which labels of de-
sired output are attached, whereas the unsupervised learning
techniques treat the cases without labels and the desired
outputs are unknown. To date, not only supervised learn-
ing techniques [7–10] but also many different unsupervised
learning techniques, such as principle-component analyses
combined with the autoencoder method [11,12] or cluster-
ing analysis [13], the use of support-vector machines [14],
learning by confusion [15], and the use of discriminative
cooperative networks [16], have succeeded in detecting the
second-order phase transition in the Ising model.

In contrast, only a few machine learning techniques have
succeeded in detecting the BKT transition in the XY model
[17–21]. Most of these techniques are based on supervised-
learning techniques [17–20] and require feature engineering
in advance; that is, preprocessed data of, for example, vortex
configurations [18], histograms of spin orientations [19], and
spin correlation functions [20] need to be prepared as input
data instead of the raw data of spatial spin configurations.
Moreover, most of these techniques need prior knowledge of
fundamental properties of the model, such as approximate val-
ues of transition temperatures [17] and the number of phases
[17,19]. These aspects are problematic for the establishment
of a generalized scheme for the machine-learning-based study
of phase-transition phenomena.
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In this study, to establish a machine learning technique
for detecting general phases and phase transitions including
topological phase transitions, we extend and generalize a
method proposed in Refs. [7,9]. Those works demonstrated
that the second-order phase transition of the Ising model and
that of the transverse-field Ising model can be detected in the
weight matrix components of a convolution neural network.
We apply this technique to the eight-state clock model and
examine if the technique is capable of detecting the BKT
phase and the BKT transitions in this model. We use un-
processed spin-configuration data generated through Monte
Carlo thermalization at various temperatures as training data
and use temperatures at which the Monte Carlo thermalization
is performed as labels of the training data for the supervised
learning. By analyzing the weight matrix after training using
a newly introduced correlation function, we demonstrate that
this method with a simple feedforward neural network can
detect three different phases including the BKT phase and
two successive BKT transitions in the eight-state clock model
simultaneously. The proposed method is found to have several
advantages over previously proposed machine-learning-based
methods as listed below.

(1) The proposed method is applicable not only to phase
transitions to a symmetry-broken phase but also to topological
phase transitions with no trivial order parameters.

(2) The proposed method can detect multiple phases and
multiple phase transitions simultaneously.

(3) The proposed method can detect phase transitions
without any prior knowledge of the model, such as knowledge
of the transition temperatures, the number of phases, or order
parameters.

(4) The proposed method does not require processed data
created through feature engineering and requires only the raw
data of spatial spin configurations as input.

II. MODEL

We study ferromagnetic (J > 0) q-state clock models on a
square lattice. The Hamiltonian is given by

H = −J
∑
〈i, j〉

Si · S j . (1)

The planar discrete classical spin vectors are

Si = (
Sx

i , Sy
i

) =
(

cos
2πk

q
, sin

2πk

q

)
, (2)

where k = 0, 1, · · · , q − 1. Here, the summation is taken over
pairs of adjacent sites i and j. These models have been rec-
ognized as important because they connect two fundamental
classical spin models; that is, the Ising model (q = 2) in the
discrete limit and the XY model (q → ∞) in the continuum
limit (see Fig. 1). The Ising model exhibits the second-order
phase transition at a finite temperature even in two dimen-
sions because of the discretized spin variables. In contrast,
the XY model exhibits the BKT transition, which is regarded
as a topological phase transition, at a finite temperature. The
critical integer number qc above which the BKT transition
emerges has been a subject of controversy [26–32]. A recent
study has put an end to this controversy [32], which concluded
that a single second-order transition from the paramagnetic
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FIG. 1. Phase diagrams of q-state clock models as a function
of temperature T . (a) When q � 4, the model exhibits a single
second-order phase transition from the paramagnetic (PM) phase to
the ferromagnetic (FM) phase. (b) When q � 5, the model exhibits
two phase transitions from the PM phase to the BKT phase to the
FM phase. (c) In the continuum limit of q → ∞, the model exhibits
a single BKT transition from the PM phase to the BKT phase.

phase to the ferromagnetic phase occurs when q � 4, whereas
two phase transitions from the paramagnetic phase to the
BKT phase to the ferromagnetic phase occur when q � 5 as
claimed in the earliest stage of the research [26,27].

The specific heat cannot be used for the determination
of the critical temperatures of the BKT transitions, although
this quantity is usually exploited to detect phase transitions.
Figure 2(a) shows calculated temperature profiles of the spe-
cific heat of the q-state clock model with q = 8 for various
system sizes of L × L; these profiles were obtained through
Monte Carlo calculations. The profiles have two broad peaks.
However, these peaks do not represent the critical tempera-
tures (T1 and T2) [28–30]. Here, T1 is the critical temperature
for the phase transition between the low-temperature ferro-
magnetic phase and the intermediate BKT phase, whereas
T2 is that for the phase transition between the BKT phase
and the high-temperature paramagnetic phase. The calculated
temperature profiles of magnetic susceptibility are presented
in Fig. 2(b). A sharp peak at higher temperature and a weak
jump at lower temperature are observed. The determination of
the critical temperatures from these anomalies is, in principle,
possible but difficult. It requires highly accurate evaluations of
the anomaly points and precise size-scaling analysis because
significant finite-size effects due to the logarithmic corrections
hamper the conventional finite-size scaling scheme such as the
Binder plot.

Figure 3 presents typical snapshots of spatial spin config-
urations of (a) the paramagnetic phase at T/J = 1.3, (b) the
BKT phase at T/J=0.8, and (c) the ferromagnetic phase at
T/J = 0.25 for the eight-state clock model obtained through
Monte Carlo thermalization for a system of 32 × 32 sites.
The positions of vortices and antivortices are respectively
indicated by (red) circles and (blue) crosses. Notably, there are
many unbounded vortices and antivortices in the paramagnetic
phase (a) whereas there are a few vortex-antivortex bounded
pairs in the BKT phase (b). In the ferromagnetic phase (c), a
nearly uniform spin configuration is observed, where almost
all the spins are aligned in a parallel manner. It is difficult
to distinguish these phases and their phase transitions with
human eyes. We demonstrate that a simple fully connected
neural network can correctly distinguish the physical phases
and precisely determine the phase-transition points.

075114-2



MACHINE LEARNING DETECTION OF … PHYSICAL REVIEW B 104, 075114 (2021)

T2T1

L=16
L=32
L=48
L=64
L=80

L=16
L=32
L=48
L=64
L=80

T2T1

Sp
ec

ifi
c 

he
at

 C
s

M
ag

ne
tic

 S
us

ce
pt

ib
ilit

y 
� s

2

4

6

8

0

20

40

60

80

0 1 2 3
T/J

T1

FM PMBKT
(a)

(b)

FIG. 2. Temperature profiles of (a) specific heat C and (b) mag-
netic susceptibility χs for the eight-state clock model on a square
lattice calculated using the Monte Carlo technique for various system
sizes of L × L. Two critical temperatures T1 and T2 for successive
phase transitions among the paramagnetic (PM), BKT, and ferro-
magnetic (FM) phases with decreasing temperature are indicated by
dashed lines. Note that anomalies (cusps, peaks, and jumps) in these
physical quantities do not correspond to the BKT phase transition
points.

III. METHOD AND RESULTS

We first prepare many spin configurations of the q-state
clock model for several differently sized lattices of L × L
sites (L = 16, 32, 48, 64, 72, and 80) using the single-flip
Monte Carlo technique based on the Metropolis algorithm. We
perform the Monte Carlo thermalization with 200 000 iterative
steps at various temperatures of Tn = T0 + (n − 1)�T with
T0 = 0.01, �T = 0.01, and n = 1, · · · , 300; i.e., at 300
temperature points between Tn=1=0.01 and Tn=300=3.00 with
the same interval of �T . We prepare 10 thermalized spin
configurations for each temperature point.

We implement a fully connected neural network with the
machine learning library KERAS [33] using TENSORFLOW
[34,35] as the computational backend. Our neural network
comprises one input layer, three hidden layers, and one output
layer of neurons [see Fig. 4]. The two adjacent layers are fully
connected, where each neuron in one layer is connected to

every neuron in the previous and next layers. The interlayer
connections are represented by sets of correlation weights
called weight matrices. The inputs to the neural network are
the snapshot spin configurations obtained through the Monte
Carlo thermalization; that is, the x and y components of the
planar discretized spin vectors Si = (Sx

i , Sy
i ) at all sites (i =

1, 2, · · · , L2) on the square lattice. Therefore, the required
number of nodes in the input layer is 2L2. Meanwhile, the an-
swer labels are given by the so-called one-hot representation
of temperatures. The temperature Tn = T0 + (n − 1)�T (n =
1, · · · , 300) is represented by a vector t with 300 components
in which only the nth component is set to unity while all other
components are set to zero. In other words, when the temper-
ature is T = Tn, the kth component tk (k = 1, 2, · · · , 300) of
the vector t is given by tk = δk,n, where δi, j is Kronecker’s
delta. Each node in the output layer is assigned to one of
the components of the vector t , and the number of nodes in
the output layer is thus 300. Typical numbers of nodes of the
three hidden layers are 2000, 1000, and 300. As the activation
function, the rectified linear unit (ReLU) is used for the first
and third hidden layers whereas the softmax function is used
for the second hidden layer and the output layer.

Using the prepared 300 × 10 sets of spatial spin config-
urations as training data, we optimize the weights of our
neural network so as to correctly guess temperatures at which
the input spin configuration is obtained. More concretely, the
weight matrices are optimized through backpropagation to
minimize the cost function on the training data [1]. Here, the
cross-entropy error function is employed as the cost function:

E (t i, yi ) =
∑

i

∑
k

t i
k loge yi

k, (3)

where i is the index of the spin-configuration data sets (1 �
i � 3000), k is the index of the output nodes or the discretized
temperature points (1 � k � 300), and yi

k is the output value
at the kth output node for the ith training. Here, t i

k is the kth
component of the vector t i in the one-hot representation of
the temperature at which the spin configuration data used for
the ith training are generated through Monte Carlo thermal-
ization. A training algorithm called Adam is used to train the
neural network through minimizing the cost function [36].

After completing the training, we focus on the weights Wj,n

connecting the jth node in the last (the third in the present
study) hidden layer ( j = 1, 2, · · · , 300) and the nth node in
the output layer (n = 1, 2, · · · , 300) [7,9]. It is found that
the weight matrix Wj,n has distinct behaviors among different
physical phases, which enables us to distinguish the phases
and to detect transitions among the phases. To confirm the
efficiency of the proposed method, we first examine the four-
state clock model (q = 4) on the square lattice, which exhibits
a single second-order phase transition from the paramagnetic
phase to the ferromagnetic phase with decreasing temperature.
Figure 5(a) presents a grayscale mapping of amplitudes of the
weight matrix Wj,n for a system size of L = 80. Here, the
horizontal axis represents the label n of nodes in the output
layer or the corresponding temperatures Tn while the vertical
axis represents the label j of nodes in the last hidden layer.
There is a clear difference in pattern between the areas above
and below Tc = 1.15. More specifically, we see a horizontal-
stripe pattern appears in the low-temperature regime and
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(a) Paramagnetic phase (T/J=1.3) (b) BKT phase (T/J=0.8) (c) Ferromagnetic phase (T/J=0.25)

FIG. 3. [(a)–(c)] Typical snapshots of spatial spin configurations of (a) the paramagnetic phase at T/J = 1.3, (b) the BKT phase at T/J =
0.8, and (c) the ferromagnetic phase at T/J = 0.25 for the eight-state clock model on a square lattice of 32 × 32 sites generated by the Monte
Carlo thermalization. The positions of vortices and antivortices are respectively indicated by (red) circles and (blue) crosses. There are many
unbound vortices and antivortices in the paramagnetic phase (a), whereas there are three vortex–antivortex bound pairs in the BKT phase (b).
In the ferromagnetic phase (c), the spins are aligned in a nearly parallel manner.

a sandstorm pattern in the high-temperature regime. These
two regimes are assigned to different phases (i.e., the ferro-
magnetic phase and paramagnetic phase, respectively) in the
present model. The evaluated boundary Tc of 1.15 coincides
well with the exact transition temperature of Tc = J/ ln(1 +√

2) ≈ 1.1346J in the thermodynamic limit [37,38].
To analyze the pattern changes in Wj,n more quantitatively,

we introduce the quantity

CW (T ) = 1

Nh

∑
m(Tm<T )

Nh∑
j=1

Wj,mWj,m+1, (4)

where Nh(= 300) is the number of nodes on the last hid-
den layer. The product Wj,mWj,m+1 quantifies the extent of
similarity/difference between the adjacent columns in the
weight matrix Wj,n, and the quantity CW (T ) is a sum of the
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FIG. 4. Schematic diagram of the fully connected neural network
used in the simulations for a system size of L × L.

products over m for Tm < T . This quantity can reveal pat-
tern changes associated with phase transitions. Figure 5(b)
presents the temperature profile of CW (T ), which changes
slope at the transition points Tc. Although the pattern change
in the heat map of Fig. 5(a) is easy to identify in the present
case, there might be cases in which the pattern change is diffi-
cult to identify by eye. In fact, the newly introduced quantity
CW (T ) can be used to detect the pattern changes in the heat
map sensitively as will be argued for the next example.

We next examine the eight-state clock model (q = 8). This
model exhibits successive two phase transitions associated
with the BKT phase; that is, phase transitions from the para-
magnetic phase to the BKT phase to the ferromagnetic phase
with decreasing temperature. Figure 6(a) shows the heat map
of Wj,n for a system size of L=72. We expect two pattern
changes in the heat map corresponding to the two BKT phase
transitions. We see a clear pattern change at T1 = 0.421 as-
sociated with the BKT-to-ferromagnetic phase transition at
lower temperature. In this heat map, however, another pat-
tern change associated with the paramagnetic-to-BKT phase
transition is difficult to identify with human eyes. Thus, we
calculate the correlation function CW (T ) for this heat map.
Figure 6(b) shows the temperature profile of CW (T ), in which
the solid (red) lines are presented for guides to eyes. We find
that three phases characterized by distinct slopes appear. The
two variations of slope reflect successive two BKT phase tran-
sitions. We can determine the second critical temperature T2

for the paramagnetic-to-BKT phase transition in this profile.
The critical temperatures T1 and T2 depend on the system

size (see Table I). We perform a finite-size scaling analysis to
evaluate the critical temperatures in the thermodynamic limit.
According to the Kosterlitz-Thouless theory, the correlation
length ξ is proportional to exp(c/

√
t ), where c is a constant

and t is the relative temperature, which is given by

t = |T − TBKT(∞)|
TBKT(∞)

. (5)
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FIG. 5. (a) Heat map of the weight matrix components Wj,n

connecting the jth node in the last hidden layer and the nth node
in the output layer in the plane of j(= 1, 2, · · · , 300) and Tn =
T0 + (n − 1)�T (n = 1, 2, · · · , 300) for the four-state clock model
(q = 4) on the square lattice of L = 80, where T0 = 0.01 and �T
= 0.01. A clear change in pattern at Tc = 1.15 is seen and ascribed
to the phase transition from the paramagnetic (PM) phase to the
ferromagnetic (FM) phase at this temperature. (b) Correlation CW (T )
of the weight matrix components Wj,n defined by Eq. (4) as a function
of Tn, clearly showing a change in slope at Tc.

Here, TBKT(∞) is the transition temperature in the thermody-
namic limit. Because ξ is maximized at T = TBKT(L) to be
ξ = L in finite-sized systems, the size dependence of TBKT(L)

TABLE I. Critical temperatures of the eight-state clock model
for various system sizes. The case of L → ∞ corresponds to the
thermodynamic limit.

L 16 32 48 64 72 80 ∞
T1 0.319 0.376 0.388 0.392 0.401 0.390 0.410
T2 1.279 1.000 0.943 0.931 0.931 0.930 0.921

0 1 2 3
Tn

1

300

j

0 1 2 3
T

C
w
 (T

)

0

1

2

3

T2=0.931(a)

(b)

0.4

-1.2

-0.8

-0.4

0.0

PMFM

T1=0.401

T2=0.931T1=0.401

BKT

FIG. 6. (a) Heat map of the weight matrix components Wj,n for
the eight-state clock model (q = 8) on the square lattice of L = 72.
(b) Correlation CW (T ) defined by Eq. (4) as a function of Tn, clearly
showing two slope changes attributable to two successive phase
transitions from the paramagnetic (PM) phase to the BKT phase to
the ferromagnetic (FM) phase.

is given by

TBKT(L) = TBKT(∞) ± c2TBKT(∞)

(ln bL)2
, (6)

where the + (−) sign is taken for the higher (lower) critical
temperature T2 (T1).

The size dependencies of the critical temperatures T1 and
T2 are plotted in Fig. 7. According to the finite-size scaling
analysis with Eq. (6), T1 and T2 in the thermodynamic limit
are evaluated to be T1 = 0.410 and T2 = 0.921. These values
are consistent with those evaluated in previous studies (see
Table II) [39,40]. Here, the values of b and c obtained by
fitting are (b, c) = (0.182, −0.104) for T1 and (b, c) = (0.049,
0.016) for T2.
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FIG. 7. System-size scaling of the critical temperatures T1 and T2

for the eight-state clock model. Extrapolations indicate T1 = 0.410
and T2 = 0.921 in the thermodynamic limit (see the main text).

IV. DISCUSSION

In this section, we discuss the proposed method and the
analysis scheme in detail.

A. Comparison with Monte Carlo methods

The present machine-learning-based method has both ad-
vantages and disadvantages over the Monte Carlo methods
for the computational studies on the phase-transition phe-
nomena. The advantage is, in fact, the reduced computing
cost. The present method requires neither a large number of
Monte Carlo samplings to obtain thermal averages of physical
quantities nor a time-consuming thermalization procedure to
realize thermal equilibrium states in contrast to the Monte
Carlo methods. Instead, the present method requires a set of
spin configurations as training data, which are prepared by
the Monte Carlo thermalization procedure. Importantly, this
procedure does not require a long time because it does not
need to reach real thermal equilibrium. Indeed, we stop the
thermalization cycles at a small iteration number of 2 × 105

irrespective of the system size. Even a training with not fully
relaxed spin configurations turned out to be efficient to detect
the BKT transitions possibly because the spin configurations
taken on the way to the thermal equilibrium already involve
features of the equilibrium state at which the system would
finally arrive. It is also important to mention that the neural

TABLE II. Critical temperatures of the eight-state clock model
in the thermodynamic limit obtained by the present and previous
studies.

Reference T1 T2

Ref. [39] 0.4259(4) 0.8936(7)
Ref. [40] 0.42(2) 0.898(7)
This study 0.410 0.921

network requires a training procedure, but it turned out to take
only little computational time (a few ten minutes or less even
for the largest system size of L = 80), which is much shorter
than the time-scale of the standard Monte Carlo calculations
(typically several hours or even a few days).

On the contrary to the above advantage, the proposed ma-
chine learning method has some disadvantages over the Monte
Carlo methods at the same time, e.g., difficulty to obtain quan-
titatively accurate results for critical phenomena. This might
be because the present method is based on a kind of image-
recognition technique, and hence the controlled improvement
of the accuracy is difficult. This problem is not specific to
the present method but is common to most of the machine
learning methods in contrast to the Monte Carlo calculations
in which a larger number of Monte Carlo samplings can neces-
sarily suppress the statistical errors of thermal averages. Note
that in the case of machine learning, on the contrary, an excess
training often causes an overlearning problem. Another disad-
vantage is difficulty to distinguish anomaly points associated
with real phase transitions in the plot of CW (T ). Indeed, we
found additional kinks in some plots at higher temperatures,
which are not related with real phase transitions. We consider
that the present method based on the image recognition senses
not only phase transitions but also cross-over phenomena.
To distinguish real phase transitions from several anomalous
behaviors of the system, a more elaborate analysis may be
required.

As argued above, the present machine learning method
has both advantages and disadvantages over the Monte Carlo
methods. However, we should note that the purpose of this
study is not to propose a method alternative to or better
than the Monte Carlo methods but to demonstrate the possi-
bility of neural networks in detection of topological phases
and related topological transitions, which are characterized
neither by trivial order parameters nor by simple symme-
try breakings. One of the goals of the research aiming at
application of machine learning to the physical science is dis-
covering a novel physics. A state-of-the-art research, however,
has not necessarily reached this level yet. Currently, we are
working to accumulate experiences and benchmarks of the
machine learning techniques and to improve their method-
ologies through examining established mathematical models
and well-known physical situations. At this stage, it is of
essential importance to clarify what the machine learning
can do and/or cannot do. Indeed, several types of machine
learning detection of the BKT transitions in the clock models
have been reported in literatures. This study has achieved a
precious contribution to development of the machine learning
research because the capability of detecting the BKT phase
and the BKT transitions have been confidently demonstrated
with novel advantages and improvement over the previously
proposed machine-learning-based methods as argued in the
end of the introduction section.

B. Neural network and weight matrix

In this study, the weight matrix Wi j connecting the last
hidden layer and the output layer is a 300 × 300 matrix
irrespective of the system size. The output of the present
neural network is not a phase type but a temperature to
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which the input spin configuration belongs, in contrast to most
of the previously proposed machine-learning-based meth-
ods. The number of output nodes (i.e., 300) is determined
by the number of temperature meshes or how finely to divide
the temperature range into meshes, which directly affects pre-
cision of the evaluation of transition temperatures. Because
of this, the present method requires a rather large number of
nodes for the output layer. But, in return, the method can be
widely implemented without any prior knowledge about mod-
els, e.g., the number of phases and the expecting phase types.

On the other hand, we employ 300 nodes in the last hidden
layer right before the output layer irrespective of the system
size. In these nodes, features of the input spin configuration
are accumulated in an integrated manner after processed by
the neural network. Because we treat systems of up to L = 80,
which has 80× 80 ×2 = 12 800 input data, we need, at
least, 300 nodes to achieve a proper functionality of the neural
network. We think that a neural network with a small number
of hidden nodes fails to capture the features of spin configu-
ration because of excessive coarse graining. This 300 × 300
weight matrix is not huge at all as compared with those used
for, e.g., image recognitions, voice recognitions, and character
recognitions, and it does not need much computational cost.
Indeed, we trained the neural network to a satisfactory level
only within a few ten or less minutes even for the largest
system of L = 80 in this study.

C. Data analysis

For evaluations of the transition temperatures, we first visu-
ally guess the kink positions in the plot of CW (T ). This human
intervention does not cause uncertainty in the evaluation of
transition temperatures so much. We perform the linear fit-
tings of finite regions in front and back of the guessed kink
position. We subsequently confirm that the two fitting lines
are indeed crossed on the kink position. In this procedure, the
evaluation of slope is not affected by roughness of the plot
of CW (T ) because we calculate an averaged slope in a finite
region before and behind the kink area. With this procedure,
we can eventually suppress errors due to ambiguity of the
visually guessed kink position. Indeed, we did several trials
with differently trained neural networks for the same system
size. The plot of CW (T ) and the extent of change in slope
vary for every trial. But we confirmed that the evaluated kink
positions fluctuate only negligibly, which guarantees that the
transition temperatures are correctly evaluated with very little
ambiguity.

It should be mentioned that we did not perform any un-
certainty estimations in this study. In fact, a method of the
uncertainty estimation for neural networks has not been es-
tablished yet. A fundamental difficulty lies in the fact that
conventional techniques of the uncertainty estimation for
continuous stochastic processes cannot be applied to neural
networks with high-dimension data input. The modeling and
estimate of the uncertainty of the neural networks used in this
study are an issue for future challenges.

V. CONCLUSION

We demonstrated that a simple fully connected neural net-
work is capable of detecting the two BKT phase transitions

input layer

...
...

...
...

...
...

...
...

...
...

hidden layer output layer

Input data
e.g., Bare spin configurations, Vortex configurations, 
Histograms of spin orientations, Correlation functions, etc. 

PM

BKT

FM

FIG. 8. Typical neural network of the supervised machine learn-
ing for spin-phase classifications where the input data are the raw
spin configurations or preprocessed data of, for example, vortex
configurations, spin-orientation histograms, or correlation functions
whereas the output data are the names of possible phases, such as
the paramagnetic (PM) phase, BKT phase, and ferromagnetic (FM)
phase.

in the q-state clock model on a square lattice in the weight
matrix Wj,n connecting the hidden layer and the output layer
after training of the supervised learning procedure. The newly
introduced correlation function CW (T ) is powerful in the de-
tection of BKT phase transitions through the identification of
the pattern change in the greyscale map (i.e., the heat map)
of the weight matrix components Wj,n in the plane of j (i.e.,
the index of nodes in the last hidden layer) and n (i.e., the
index of nodes in the output layer or the temperature points).
We evaluated the critical temperatures T1 and T2 of the two
BKT transitions in the eight-state clock model by conducting
finite-size-scaling analyses and found that their values in the
thermodynamic limit are consistent with those reported in the
literature.

The present method has several advantages over previous
methods. A typical neural network of the supervised machine
learning for spin-phase classification has the structure shown
in Fig. 8. Here, the input data are the bare spin configurations
or the preprocessed data of, for example, vortex configu-
rations, spin-orientation histograms, or correlation functions
created through feature engineering whereas the output data
are the names of possible phases, such as the paramagnetic
phase, BKT phase, and ferromagnetic phase. To train this
neural network, we need to know the name of the phase to
which each input datum belongs as an answer label. The
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approximate values of critical temperatures and the number
of phases must therefore be known in advance. Meanwhile,
the present method does not require preprocessed data, and
only data sets of the raw spin configurations, which can be
easily generated in Monte Carlo simulations, are used as input
data. Moreover, the answer labels attached to the input data
are only the temperatures at which the spin configurations are
generated. These temperatures are absolutely known without
uncertainty because they are set manually in the Monte Carlo
simulations. Thus, prior knowledge of critical temperatures is
not needed. Furthermore, because we determine the number
of phases and the phase-transition points through heat-map
analysis, prior knowledge of the number of phases is not
required either.

Finally, we would like to discuss an issue of future chal-
lenge. As mentioned in the introduction section, the clock
models are a class of fundamental classical spin models,
which connect two limiting cases, i.e., the Ising limit (q = 2)
and the XY limit (q → ∞). In the present study, we chose
the eight-state clock model as a target of the machine learning
analysis, which exhibits rather well-defined three spin phases,
i.e., the paramagnetic, BKT, and ferromagnetic phases. On the
contrary, the five-state clock model, which is considered to
be located in-between these two limits, must be difficult to
treat. It had been long debated whether there exists the BKT
phase in this model. The detection of the narrow BKT phase
in this model is necessarily difficult but worth trying. We may
need to improve both the neural network and the training data
with e.g., more nodes in the hidden layer, more thermalization
steps in the training-data preparation, and more sets of high-
quality training data to sharpen the kinks and anomalies in the
correlation function CW (T ) at the transition points.
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APPENDIX: HEAT MAP ANALYSES FOR VARIOUS
SYSTEM SIZES

Figures 9(a)–9(d) presents heat maps obtained using our
neural network after training and the temperature profiles of
the corresponding correlation function CW (T ) for various lat-
tice sizes. The solid (red) lines in the plots of CW (T ) are visual
guides that distinguish the three physical phases (i.e., the
paramagnetic phase, BKT phase, and ferromagnetic phase)
according to the variations of slopes in the linear fitting. The
crossing points are considered transition points. Note that
when the lattice size is as small as L = 16, the temperature
profile of CW (T ) cannot be fitted using a single linear line in

the intermediate area, whereas the profile in the paramagnetic
area at higher temperature and that in the ferromagnetic area
at lower temperature can be fitted with linear functions. There
seems to be an additional point at which the slope of the
linear fitting changes in the intermediate area. This anomaly
of CW (T ) might be attributed to an artifact generated by the
smallness of the lattice size because it disappears for the larger
lattices. In the present analysis, the transition temperatures
T1 and T2 for L = 16 are assigned to the points at which
the slopes of the linear fittings in the higher- and lower-
temperature areas change.

The weight matrix after training is never unique but varies
for every trial upon the variations of training data, training
procedure, and several other conditions of the neural network.
The slope and amplitude of the correlation function CW (T )
also vary. Nevertheless, we find a tendency in the temperature
profile of CW (T ) in Fig. 9 that the changes of slope are always
negative both at T1 and T2 for all the system sizes except for
the change at T2 for L = 16 i.e., the smallest system size
[Fig. 9(a)]. We should also note that an additional kink appears
at a higher temperature in some plots [see, e.g., Figs. 9(b) and
9(f)], although no phase transition takes place at the corre-
sponding temperature in reality. A further analysis is needed
to clarify what the neural network indeed detects and captures,
which is an issue left for future study.

In the meanwhile, the plots of CW (T ) exhibit slight fluc-
tuation and roughness, but they are never a troublesome for
our analysis. The present method is not a scheme based on a
statistical averaging so that the quantity at each temperature
point necessarily fluctuates. Despite the fluctuations, the char-
acteristics of each phase should appear over the temperature
range in which the phase emerges. Thus, we focus on the slope
of CW (T ) evaluated by the linear fitting, which is expected
to capture the averaged and global features of each phase.
Importantly, the slight fluctuation and roughness in the plot of
CW (T ) have only negligible influence on the results of linear
fittings.

We also realize that the kink at T2 is relatively unclear
in some plots of CW (T ), particularly, for the largest system
of L = 80 [Fig. 9(f)]. In fact, the clearness or sharpness of
the kink can be improved rather easily. This issue is related
with the numbers of thermalization steps and the nodes in the
hidden layer. In this study, we adopted the same number of
thermalization steps (i.e., 2 × 105) and the same number of
nodes (i.e., 300) in the last hidden layer for all the system sizes
from L = 16 to L = 80 to equalize the conditions as much
as possible. In fact, these choices do not have any peculiar
reasons. We simply selected, more or less, equal and unbiased
conditions, aiming at the equal-footing demonstrations, while
a neural network has a numerous number of parameters to be
tuned or given by hand. We did neither examine systematic
variations of the neural-network parameters and the Monte
Carlo parameters nor discuss results obtained for different
parameters because there are too many variable parameters
for this machine-learning-based research, and we are afraid
that their case studies would obscure a purpose of this study.
However, we have examined a lot of cases with different
numbers of thermalization steps and hidden nodes. Through
these examinations, we have found that a larger number of
thermalization steps tend to give a clearer and sharper change
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FIG. 9. Heat maps and corresponding temperature profiles of CW (T ) of the eight-state clock model for various lattice sizes. Solid (red)
lines in the plots of CW (T ) are visual guides that distinguish the three phases: the paramagnetic (PM) phase, BKT phase, and ferromagnetic
(FM) phase. The crossing points are considered phase transition points.

in slope at T2. This indicates that a larger number of ther-
malization steps are required for preparing good training data
when the system size is larger, as is also the case for the
Monte Carlo calculations. We have also found that a neural
network with a larger number of hidden nodes tends to give
a clearer kink at T2. In the present neural network, the 2L2

input data are integrated into 300 nodes in the last hidden
layer after processed through the hidden layers. The above
finding indicates that too much integration or suppression of
data might cause a failure in capturing the features of each
physical phase, and an appropriate number of hidden nodes
should be employed depending on the system size.

[1] Y. LeCun, Y. Bengio, and G. Hinton, Nature (London) 521, 436
(2015).

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learn-
ing, Adaptive Computation and Machine Learning series (MIT
Press, Cambridge, 2016).

[3] G. Carleo and M. Troyer, Science 355, 602 (2017).
[4] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N.

Tishby, L. Vogt-Maranto, and L. Zdeborová, Rev. Mod. Phys.
91, 045002 (2019).

[5] T. Ohtsuki and T. Mano, J. Phys. Soc. Jpn. 89, 022001 (2020).

075114-9

https://doi.org/10.1038/nature14539
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.7566/JPSJ.89.022001


MIYAJIMA, MURATA, TANAKA, AND MOCHIZUKI PHYSICAL REVIEW B 104, 075114 (2021)

[6] Y. Nomura, A. S. Darmawan, Y. Yamaji, and M. Imada, Phys.
Rev. B 96, 205152 (2017).

[7] A. Tanaka and A. Tomiya, J. Phys. Soc. Jpn. 86, 063001 (2017).
[8] J. Carrasquilla and R. G. Melko, Nat. Phys. 13, 431 (2017).
[9] S. Arai, M. Ohzeki, and K. Tanaka, J. Phys. Soc. Jpn. 87,

033001 (2018).
[10] P. Suchsland and S. Wessel, Phys. Rev. B 97, 174435 (2018).
[11] W. Hu, R. R. P. Singh, and R. T. Scalettar, Phys. Rev. E 95,

062122 (2017).
[12] S. J. Wetzel, Phys. Rev. E 96, 022140 (2017).
[13] L. Wang, Phys. Rev. B 94, 195105 (2016).
[14] P. Ponte and R. G. Melko, Phys. Rev. B 96, 205146 (2017).
[15] E. P. L. van Nieuwenburg, Y. H. Liu, and S. D. Huber, Nat.

Phys. 13, 435 (2017).
[16] Y. H. Liu and E. P. L. van Nieuwenburg, Phys. Rev. Lett. 120,

176401 (2018).
[17] M. Richter-Laskowska, H. Khan, N. Trivedi, and M. M. Maśka,
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