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At low temperature, a fermionic system with perfectly nested Fermi surface orders into a spin-density wave.
Upon doping, however, the latter state becomes unstable, and several spatially inhomogeneous phases emerge
competing against each other to become the true ground state. We investigate this competition using the
anisotropic Hubbard model on a three-dimensional cubic lattice in a weak-coupling regime as a convenient
study case. For this model it is known that, at half-filling (one electron per site), the Fermi surface nesting is
perfect, and the ground state is the commensurate spin-density wave. Away from the half-filling, various types
of spatially inhomogeneous phases, such as phase-separated states and the state with domain walls (“soliton
lattice”), emerge. Using the mean-field theory, we evaluate the free energies of these phases to determine which
of them could become the true ground state. Our study demonstrates that the free energies of all discussed states
are very close to each other. Smallness of these energy differences suggests that, for a real material, numerous
factors, unaccounted by the model, may arbitrary shift the relative stability of the competing phases. We further
argue that purely theoretical prediction of a structure of inhomogeneous phase in a particular doped system is
unreliable.
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I. INTRODUCTION

Investigations of inhomogeneous electronic states of dif-
ferent types constitute an active research area of modern
condensed matter physics [1–23]. In this work, we specifi-
cally focus our attention on inhomogeneous states hosted by
doped antiferromagnetic (AFM) or spin-density wave (SDW)
insulator. In the most general sense, this physical situation is
of interest for cuprates [24–28], manganites [29–33], pnic-
tides [12,34–36], the Bechgaard salts [18–23], among others.
(Related phenomenon may be observed in some nonmagnetic
superconducting systems [17] as well.) For doped AFM/SDW
materials, inhomogeneities of several types (e.g., domain
walls, or “stripes”, spatial separation into several nonidentical
phases, “checkerboard” state, as well as others) are discussed
[10,18,21–24,34,37–42].

Many-body states hosting these types of inhomogeneities
commonly occur in theoretical and numerical research
[14–16,38,43–49]. Often, various inhomogeneous phases
compete against each other to become the true ground state
of a model Hamiltonian. The outcome of this competition
is usually presented [15,16,38,43] as a phase diagram that
depicts how various states, both homogeneous and inhomo-
geneous, replace each other upon parameters variations. Yet,
when comparing the model phase diagram against experimen-
tal data, one inevitably has to address the following question:
to which extent the diagram calculated within a simplified
theoretical framework with the help of inexact tools is robust
in the presence of various perturbations unaccounted by the

model, or distortions and artifacts introduced by the approxi-
mations?

Answering this question, it is often implicitly assumed that,
although some variability of the phase boundaries is indeed
unavoidable, the qualitative features of the diagram survive
the reality check. In the context of the cuprates and the man-
ganites, however, it was argued [50] that the situation might
not be that straightforward: The presence of several competing
states with close energies make it possible for a weak pertur-
bation, such as disorder or external pressure, to induce drastic
changes in the ground-state structure. Several papers [46–48]
including recent state-of-the-art numerical studies [44,45,49]
reiterated this concern. For example, Ref. [45] emphasized the
smallness of energy difference separating contending phases,
remarking that discrepancies between numerical results and
experimental data could be a consequence of certain contribu-
tions neglected by the model Hamiltonian.

Unfortunately, for cuprates, a detailed analysis of this com-
petition is painfully difficult. The root of the problem here
is strong electron-electron interaction, a distinctive aspect of
cuprates and similar materials. Strong interaction forces one
to rely on uncontrollable approximations, or highly special-
ized custom-made numerical tools. Yet adequate description
of the inhomogeneous phases competition remains relevant
theoretical issue beyond the realm of systems with strong
coupling. Various materials believed to be in a weak-coupling
regime (most notably, iron-based pnictide superconductors
and Bechgaard salts), host inhomogeneous states emerging
against the backdrop of a parent SDW. As we will see below,
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the study of the inhomogeneous states competition at weak
electron-electron interaction is a much more tractable task
amenable to general physics methods.

One must remember that, to stabilize the SDW phase in
a weak-coupling model, Fermi surface nesting is necessary.
At perfect (or near-perfect) nesting, the SDW order is robust,
and can be consistently described [15,35,36,51–71] within the
mean-field approximation. Upon doping the SDW state be-
comes unstable with respect to formation of inhomogeneous
phases. The following phases are typically discussed in the
literature: (i) real-space separation into the paramagnetic state
and commensurate SDW; (ii) separation into commensurate
and incommensurate SDW phases; and (iii) a phase with
domain walls (sometimes called “soliton lattice” or “soliton
phase”), see, for example, Refs. [15,35–37,43,62,64,72,73].
The energies of (i)–(iii) can be readily evaluated, and the com-
petition can be minutely scrutinized, much unlike the regime
of strong coupling.

Below we focus our attention on the inhomogeneous phase
competition for an SDW system with weak interaction. The
outline of the investigation is as follows. We adopt the Hub-
bard model with small interaction parameter U/t as a study
case (a continuous-space Hamiltonian [36,51] could be also
used, yet, natural discretization of a lattice model is an advan-
tage for numerical calculations). We investigate the relative
stability of the inhomogeneous states (i)–(iii). To determine
which of them is energetically favorable, it is necessary to
compare the states’ free energies F , the latter being calculated
using the mean-field approximation. It is found that for all
three states the values of F are virtually identical, at least at
small doping. This finding and its implications are the main
focus of this paper.

Our presentation is organized as follows. General mean-
field approximation specialized for the Hubbard model at
finite doping is introduced in Sec. II. In Sec. III we present
calculations for the phase-separated states. The application of
the mean-field approximation to the state with domain walls is
explained in Sec. IV. Section V is dedicated to the discussion
of the results. Some auxiliary results are relegated to two
Appendices.

II. MEAN-FIELD APPROACH FOR THE HUBBARD
MODEL

We consider antiferromagnetic state of anisotropic Hub-
bard model on a three-dimensional (3D) cubic lattice in the
weak-coupling regime. The Hamiltonian of the model equals
to

H =
∑
〈i j〉σ

ti j (c
†
iσ c jσ + H.c.) − μ

∑
iσ

c†
iσ ciσ +

+U
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
, (1)

where c†
iσ and ciσ are the creation and annihilation opera-

tors for an electron with spin projection σ =↑, ↓ located
in the site i, local density operator is niσ = c†

iσ ciσ , notation
〈i j〉 implies that sites i and j are nearest neighbors, and ti j

represents the hopping amplitude connecting sites i and j.
To model anisotropy typical for the pnictides, the Bechgaard

salts, as well as other materials, we assume that ti j are different
for different orientations of the 〈i j〉 bond: when the bond is
parallel to the α axis (α = x, y, z), the amplitude is ti j = tα .

In the second term of Eq. (1), μ is the chemical potential.
The last term in Eq. (1) describes on-site Coulomb repulsion
of electrons with opposite spin projections, with the interac-
tion constant U > 0. The terms 1/2 in parentheses are added
in order to chemical potential μ would equal to zero at half-
filling (one electron per site).

We consider the Hubbard model (1) near the half-filling. At
half-filling, the ground state of the Hubbard model is known
to be antiferromagnetic [74]. It is assumed that small doping
modifies but does not destroy the antiferromagnetic ordering.

Antiferromagnetic state is characterized by finite position-
dependent order parameter

�i = U

2
(〈ni↑〉 − 〈ni↓〉), (2)

where 〈. . .〉 denotes the ground-state matrix element. For
the states with domain walls, the sum 〈ni↑〉 + 〈ni↓〉 is also
position-dependent. Thus, it is useful to introduce the local
doping level

xi = 〈ni↑〉 + 〈ni↓〉 − 1. (3)

We study antiferromagnetic states of the model (1) in the
weak-coupling regime, when U < W , where W is the band-
width, W = 4

∑
α tα . In this case, the mean-field approach is

the appropriate method to study the model (1), as discussed in
Appendix A. The mean field form of Hamiltonian (1) is

H = Hkin + HMF
int , (4)

Hkin =
∑
〈i j〉σ

ti j (c
†
iσ c jσ + H.c.) −

∑
iσ

μ′
ic

†
iσ ciσ , (5)

HMF
int =

∑
i

[
�i(c

†
i↓ci↓ − c†

i↑ci↑) − U

(
xi(2 + xi )

4
− �2

i

U 2

)]
,

(6)

where μ′
i = μ − Uxi/2 is the effective (position-dependent)

chemical potential, which accounts for both μ and “Hartree”
contribution Uxi/2. Parameters xi and �i are to be found self-
consistently.

III. PHASE SEPARATED STATES

At zero doping the system’s ground state is the homo-
geneous commensurate SDW. When electrons or holes are
added, the homogeneous state may become unstable. In this
section we will investigate two specific scenarios of this in-
stability. For both scenarios we start assuming the stability
of the doped homogeneous phase, and then invalidate this
assumption.

A. Commensurate antiferromagnetism

In this subsection the phase separation into the commen-
surate SDW and the paramagnetic states is discussed. We
assume that the doped system remains homogeneous xi = x =
const., and the order parameter is commensurate:

�i = (−1)ix+iy+iz�, (7)
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where � = const., and integers ix, iy, and iz describe the posi-
tion of the lattice site i = (ix, iy, iz ). For �i given by Eq. (7)
we derive

H =
∑
kσ

(εk − μ′)c†
kσ

ckσ
+

+
∑

k

�
(
c†

k↑ck+Q0↑ − c†
k↓ck+Q0↓

) −

−UN
(

x(2 + x)

4
− �2

U 2

)
, (8)

where μ′ = μ − Ux/2, the number of sites in the lattice is
denoted by N , vector k = (kx, ky, kz ) is the quasi-momentum,
and

εk = 2[tx cos(kx ) + ty cos(ky) + tz cos(kz )] (9)

is the kinetic energy. At half-filling (x = 0, μ = μ′ ≡ 0) the
model’s Fermi surface nests perfectly, with Q0 = (π, π, π )
as the nesting vector. Indeed, at the half-filling the Fermi
surface is defined by the equation

εk = 0, (10)

which remains invariant under translation by Q0, as guaran-
teed by the relation

εk+Q0 = −εk. (11)

Note that this equation is valid for μ = 0 only. Thus, finite
doping destroys the perfect nesting. (Curiously, however, the
nesting is insensitive to hopping anisotropy.)

The eigenenergies of Hamiltonian (8) can be easily found

E (1,2)
k = −μ′ ∓

√
ε2

k + �2. (12)

At zero temperature, the grand potential per site is

� =
∑

s

∫
d3k

(2π )3
E (s)

k �
( − E (s)

k

) − U

(
x(2 + x)

4
− �2

U 2

)
.

(13)
Minimizing � with respect to � the following equation re-
lating � and μ′ can be derived (details are presented in
Appendix B)

|μ′| +
√

μ′2 − �2 = �0, (14)

where

�0 = W exp

[
− 1

ρ0

(
1

U
− 1

Uc

)]
(15)

is the gap at half-filling (here, ρ0 is the density of states at the
Fermi level, and Uc is defined in Appendix B). Since a typical
experiment is performed at fixed doping, not fixed chemical
potential, it is necessary to express the order parameter and
the chemical potential as functions of the doping level x. The
doping x is given by the following relation:

x =
∑

s

∫
d3k

(2π )3
�

( − E (s)
k

) − 1. (16)

Acting in the same manner as described in Appendix B, we
obtain in the weak-coupling limit

x = 2ρ0sign(μ′)
√

μ′2 − �2. (17)

If we set � = 0 in Eq. (17), we recover a familiar expression

μ = x

2ρ0
, (18)

which relates doping and chemical potential in the paramag-
netic phase. In Eq. (18) the contribution Ux/2 to the effective
potential is omitted. The effects due to this term are small in
the weak-coupling limit, as we will show below.

Using Eqs. (14) and (17), and neglecting Ux/2 contribution
to μ′, we further obtain [37,51]

|μ| = �0

(
1 − |x|

2ρ0�0

)
, (19)

� = �0

√
1 − |x|

ρ0�0
. (20)

These two formulas describe homogeneous SDW state. We
note that the chemical potential is the decreasing function of
the doping

∂μ

∂x
= − 1

2ρ0
< 0. (21)

It means that the compressibility is negative and homogeneous
SDW state is unstable, disproving the initial assumption of
stability. This is the first example of the phase separation.
Observe that the small correction to ∂μ/∂x due to the omitted
Ux/2 contribution to μ′ cannot restore the stability of the
homogeneous state as long as we consider the weak-coupling
limit.

The structure of inhomogeneous phase can be established
with the help of Maxwell construction, see Fig. 1. It shows
the chemical potential of the homogeneous commensurate
SDW state [decreasing line, Eq. (19)] and paramagnetic state
[increasing line, Eq. (18)] versus the doping level. The hor-
izontal line in Fig. 1 should be drawn so that areas S1 and
S2 are equal. This line represents the phase-separated state.
In thermodynamic equilibrium (that is, neglecting metastable
states), the chemical potential of the this state is

μcAF = �0√
2

≈ 0.707�0, (22)

where the subscript “cAF” stands for “commensurate an-
tiferromagnet”. The neglected Ux/2 term introduces small
correction (of the order of Uρ0�0) to the value of μcAF.

The physical meaning of μcAF is the threshold value which
must be exceeded by the chemical potential of an external
reservoir for doping to commence. The electrons injected into
the SDW parent state, however, do not spread over the whole
lattice evenly. Instead, as the Maxwell construction implies,
the inhomogeneous state is split into areas of the undoped
SDW and paramagnetic areas (the latter accumulate all the
doping).

The main goal of this study is to determine which of the
inhomogeneous states is energetically favorable. At fixed dop-
ing, this can be decided by comparison of the free energies
F (x) = � + μx of the competing phases. For evaluation of
F (x), the following expression is useful

F (x) = F (0) +
∫ x

0
μ(x′)dx′, (23)
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FIG. 1. The doping dependence of the chemical potential for the
commensurate SDW and paramagnetic phases. Chemical potential μ

and doping x are normalized by �0 and ρ0�0, correspondingly. From
x = 0 to x = ρ0�0/2 the chemical potential in the commensurate
SDW phase is shown as a straight (red) line, see Eq. (19). Since
this line has negative derivative, the doped commensurate SDW
state is unstable. For the paramagnetic phase, μ = μ(x) is shown
as a straight (black) line, see Eq. (18). To determine the chemical
potential of the phase-separated state, we use Maxwell construction:
The horizontal dashed line is drawn to guarantee the equality of
the areas S1 = S2. The chemical potential of the inhomogeneous
state is �0/

√
2. As one can see from the Maxwell construction,

the separation occurs into the undoped SDW and the paramagnetic
phases.

where F (0) is the free energy of undoped SDW insulator.
Since the chemical potential is doping-independent in the
phase-separated state, we derive

FcAF(x) = F (0) + μcAFx. (24)

This expression is valid for sufficiently low doping, as long
as the system remains on the horizontal line in Fig. 1. In
the following sections, FcAF will be compared with the free
energies of other inhomogeneous states.

Finally, let us note that the long-range Coulomb interaction
may arrest or drastically modify the phase separation into
the regions of unequal electron density. This issue will be
discussed in more details in Sec. V.

B. Incommensurate antiferromagnetism

We have seen in the previous section that at half-filling
perfect nesting is realized at Q0. For finite doping the perfect
nesting is impossible, but the quality of nesting may be im-
proved if we consider incommensurate SDW, whose nesting
vector is

Q = Q0 + q (25)

where q is incommensurability vector. When |q| is finite, the
order parameter takes the form

�i = U 〈c†
i↑ci↓〉 = �(−1)ix+iy+iz eiqri , (26)

FIG. 2. The doping dependence of the chemical potential of the
incommensurate SDW state (solid red curve) and the paramagnetic
state (blue dot-dashed curve). The Maxwell’s construction requires
that the hatched areas S1,2 are equal to each other. Horizontal dashed
(green) line corresponds to the chemical potential of the phase-
separated state. It equals to μiAF/�0

∼= 0.698. Model parameters are
tx = ty = 1, tz = 0.7, incommensurability vector q is parallel to the z
axis.

where ri = (ix, iy, iz ). The interaction part of the mean-field
Hamiltonian in k space becomes

HMF
int =

∑
k

�
(
c†

k↑ck+Q↓ + c†
k+Q↓ck↑

) −

−UN
(

x(2 + x)

4
− �2

U 2

)
, (27)

Taking into account the relation εk+Q = −εk+q, we can write
the equations for eigenenergies

E (1,2)
k = −μ′ + εk − εk+q

2
∓

√(εk + εk+q

2

)2

+ �2. (28)

Grand potential of the system per one site is given by
Eq. (13) with eigenenergies from Eq. (28). The equations for
the order parameter �, nesting vector q, and the chemical
potential are

∂�

∂�
= 0,

∂�

∂q
= 0, − ∂�

∂μ′ = 1 + x. (29)

These equations are solved [15,35,51] in the limit of small |q|,
see Appendix C for details.

The resultant dependence μ = μ(x) calculated for q paral-
lel to the z axis is plotted in Fig. 2. Here, as in the previous
section, the small correction Ux/2 was neglected. We see
nonmonotonic behavior of μ(x), indicating the instability of
the homogeneous state toward the phase separation, analogous
to what Fig. 1 has shown. This time, however, the separated
phases are (undoped) commensurate and incommensurate
SDW states, as one can prove using the Maxwell construction.
The chemical potential of the inhomogeneous state is

μiAF ≈ 0.698�0, (30)

where the subscript “iAF” stands for “incommensurate anti-
ferromagnet”. When q is parallel to the y axis, the dependence
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μ = μ(x) is very similar to that shown in Fig. 2, except that
the transition to the paramagnetic state in this case occurs at
smaller doping.

Similar to FcAF, Eq. (24), the free energy FiAF for the
inhomogeneous phase represented by the horizontal line in
Fig. 2 is

FiAF(x) = F (0) + μiAFx. (31)

It is easy to see that

FiAF(x) < FcAF(x) ⇔ μiAF < μcAF. (32)

Thus, the phase separation into the commensurate and incom-
mensurate SDW phases is more favorable than the separation
into the commensurate SDW state and the paramagnetic state.

It is interesting to note that Eq. (32) reduces the comparison
of the free energies to the comparison of the critical chemical
potentials μcAF and μiAF. Since these quantities are very close
to each other (μiAF

∼= 0.698�0 vs μcAF
∼= 0.707�0), the en-

ergy difference between these two inhomogeneous states is
very small for all relevant values of x.

IV. A STATE WITH DOMAIN WALLS

A. General considerations

Yet another type of inhomogeneous phase competing to
become the true ground state is the phase with domain walls.
In the previous section we have seen that, to decide which
phase-separated state is more energetically favorable, the crit-
ical chemical potentials have to be compared. In this section,
we will calculate μdw, the critical chemical potential for the
phase with domain walls.

When the system’s chemical potential is close to the thresh-
old value, the doping concentration is low (this is a direct
consequence of the critical chemical potential definition). A
phase with domain walls in such a regime is characterized by
large interwall separation and negligible interaction between
the domain walls. Thus, μdw is determined by the properties
of a single domain wall.

Beginning our study of an isolated domain wall, several
considerations must be taken into account. An important char-
acteristics of a domain wall is its orientation relative to lattice
axes. The vector normal to the domain wall plane may be
parallel to one of the crystallographic axes, or it may point
in an arbitrary direction [75]. All these orientations cannot
be investigated in complete generality, and the study scope
must be restricted. Numerical calculations for the arbitrary
orientations of the domain walls are computationally costly.
We expect that, in agreement with previous publications [45]
the domain walls whose normal vectors are parallel to one of
the axis are the most stable.

We study two types of domain walls: bond-centered and
site-centered. They can be schematically depicted with the
help of the following one-dimensional cartoons

↑↓↑ ↓↓ ↑↓↑ bond-centered domain wall,

↑↓↑ ↓ o ↑ ↓↑ site-centered domain wall.

The arrows here represent the direction of the on-site
spin magnetization, the symbol “o” corresponds to a site
with vanishing magnetization. Despite obvious differences in

real-space structures, our numerical simulations show that the
energies of bond-centered and site-centered configurations are
very close to each other.

B. Mean-field description of a domain wall

Let us now outline the mean-field formalism we employ
to study a single domain wall. For definiteness, we assume
the domain wall is perpendicular to the x axis. For such an
orientation, the translation invariance in y and z directions
is preserved, while it is explicitly broken in x direction: the
density of electrons and the order parameter are

〈ni↑〉 + 〈ni↓〉 = nix ,

�i = �ix (−1)iy+iz . (33)

Therefore, it is convenient to switch to the mixed representa-
tion of c†

iσ as follows

c†
ixpσ = 1√

NyNz

∑
iy,iz

c†
iσ ei(pyiy+pziz ). (34)

Here p = (py, pz ) is the 2D quasi-momentum, Nα is the num-
ber of unit cells along axis α = x, y, z.

The mean-field Hamiltonian in the mixed representation
reads

H = Hkin + HMF
int , (35)

Hkin =
∑
ixpσ

tx
(
c†

ixpσ cix+1pσ + H.c.
) +

+
∑
ixpσ

(
ε⊥

p − μ′
ix

)
c†

ixpσ cixpσ , (36)

HMF
int = −

∑
ixp

�ix

(
c†

ixp↑cixp+P0↑ − c†
ixp↓cixp+P0↓

)

−U
N
Nx

∑
ix

(
n2

ix − 1

4
− �2

ix

U 2

)
, (37)

where μ′
ix = μ − U (nix − 1)/2. We also use the notations

ε⊥
p = −2ty cos(py) − 2tz cos(pz ) and P0 = (π, π ).

If we introduce the 2Nx-component vectors

ψ†
pσ = (

c†
1pσ , . . . , c†

Nxpσ
, c†

1p+P0σ
, . . . , c†

Nxp+P0σ

)
, (38)

the Hamiltonian (35) can be expressed as H =∑
pσ ψ†

pσ Ĥpσψpσ , where the matrices Ĥpσ can be written
in the following block form

Ĥp↑ =
(

Ĥ0p �̂

�̂ Ĥ0p+P0

)
, Ĥp↓ =

(
Ĥ0p −�̂

−�̂ Ĥ0p+P0

)
. (39)

In the latter formulas, the matrices Ĥ0p and �̂ are

Ĥ0p =

⎛
⎜⎜⎜⎜⎜⎜⎝

ε⊥
p − μ′

1 t 0 · · · t

t ε⊥
p − μ′

2 t · · · 0

0 t ε⊥
p − μ′

3 · · · 0
...

...
...

. . .
...

t 0 0 · · · ε⊥
p − μ′

Nx

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(40)
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FIG. 3. Schematic illustration of the dependence of the grand
potential �Nx on the number of sites in the x direction. For even Nx ,
the dashed line represents proportionality �even

Nx
∝ Nx , see Eq. (43).

When Nx is odd, �Nx is shifted by a constant value, see Eq. (44).
This shift (shown by red arrows) is the energy of the domain wall
Edw.

�̂ = diag(�1, ..., �Nx ). (41)

Constructing the matrix Ĥpσ we use periodic boundary condi-
tions in the x direction.

For the system with Nx unit cells along x axis the grand
potential �Nx (per unit area in y-z plane) is

�Nx =
∑

σ

2Nx∑
S=1

∫
d2p

(2π )2
E (S)

pσ �
( − E (S)

pσ

) +

−U
∑

ix

(
n2

ix − 1

4
− �2

ix

U 2

)
, (42)

where E (S)
pσ are the eigenenergies of the matrix Ĥpσ . To obtain

�Nx , the spatial dependencies of the order parameter �ix and
the number of electrons per site nix minimizing �Nx are found
using a numerical recurrent procedure.

Once �Nx is known, the energy of a single domain wall
Edw can be calculated. To find Edw, it is necessary to consider
systems with even and odd values of Nx (this number must
be much larger than the width of the domain wall). A system
with even Nx is antiferromagnetically ordered and its grand
potential (per unit area in y-z plane) is directly proportional to
Nx:

�even
Nx

= �0Nx, (43)

where �0 is the grand potential per site of the system with
homogeneous SDW ordering. A system with odd number of
sites unavoidably contains a domain wall. Therefore

�odd
Nx

= �0Nx + Edw, (44)

where �odd
Nx

is the grand potential (per unit area in y-z plane)
for the systems with odd number of sites and Edw is the energy
of the domain wall (per unit area in the wall). The relations
(43) and (44) are illustrated in Fig. 3. They allow us to extract
Edw from numerical data for �even and �odd.

C. Numerical results

Numerically minimizing �Nx , we determine various prop-
erties of the studied system. Figure 4 demonstrates the
spatial dependence of the order parameter for even and odd
Nx. As we can see from Fig. 4(a), the system with even
number of sites has the homogeneous SDW order, as in
Eq. (7). Naturally, the grand potential for such a state satisfies
Eq. (43).

Due to the periodic boundary conditions, a system with
odd number of sites cannot maintain unfrustrated antiferro-
magnetic order, and a domain wall appears. Because of the
order parameter frustration, �ix is suppressed inside the do-
main wall, see Figs. 4(b) and 4(c). In our simulations, we can
stabilize both bond-centered and site-centered domain walls.
Figure 4(b) illustrates the order parameter structure for the
bond-centered domain wall. Such a configuration possesses
spatial reflection symmetry with respect to the center of the
bond connecting the sites with minimum values of the order
parameter. Site-centered domain wall is shown in Fig. 4(c).
Spatial inversion relative to central site of the domain wall (the
site with vanishing order parameter), accompanied by the spin
flip S → −S, preserves the site-centered configuration. Since
bond-centered and site-centered domain walls have different
symmetries, they represent mutually excluding classes of the
mean-field solutions. Thus, they must be discussed separately.
However, our simulations show that their energies are close to
each other.

The domain wall properties are sensitive to the chemical
potential. Indeed, Fig. 5 demonstrates the spatial dependen-
cies of the absolute value of the order parameter and the
electron density calculated for different values of μ′ for
the system with Nx = 101, U/W = 0.17, and (tx, ty, tz ) =
(1.0, 1.0, 0.7). One can see from this figure that even small
deviation of the chemical potential from zero value sharply
changes the order parameter and the electron density inside
the domain wall. At higher values of |μ′| the sensitivity
of the order parameter and other quantities becomes less
dramatic. Figure 5(a) shows that the order parameter is
even function of μ′. Also, this figure demonstrates that the
domain wall becomes wider when the chemical potential
changes.

The accumulation of the injected charge carriers in the
domain wall is illustrated by Fig. 5(b). At half-filling (μ′ = 0)
there is one electron per site. When the chemical potential
changes, the carriers pile up in the domain wall. For positive
chemical potentials, the carriers are electrons, and for the
negative ones, they are holes. Finally, Fig. 6 presents the
domain wall energy and the total charge accumulated inside
the domain walls (per unit area in y-z plane) versus the chem-
ical potential in the system with Nx = 101, U/W = 0.17, and
(tx, ty, tz ) = (1.0, 1.0, 0.7).

What can be understood from the numerical data about the
properties of a single domain wall? We can see from Fig. 6
that the energy Edw is the even function of the chemical poten-
tial. Similarly, Figs. 5(b) and 6(b) show that the accumulated
charge is odd function of μ′. These features are consequences
of the charge-conjugation symmetry of our model. This sym-
metry allows us to restrict our attention to positive value of the
chemical potential.
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(a) AFM ordered system

(b) Bond-centered domain wall

(c) Site-centered domain wall

FIG. 4. Spatial variation of the order parameter along x axis, for even and odd values of Nx . (a) When the number of sites in x direction
Nx is even, the antiferromagnetic order parameter maintains the same absolute value for all ix , while the sign changes from one ix to the next.
The data in the panel is plotted for Nx = 100. [(b), (c)] When Nx is odd (specifically Nx = 101 for both panels), the antiferromagnetic domain
wall emerges. Panel (b) shows the bond-centered domain wall. In the center of such a structure, we see two sites with identical values of the
order parameters. The site-centered domain wall is in panel (c). This domain wall is centered on a site with vanishing order parameter. The
simulations are performed for U/W = 0.17, (tx, ty, tz ) = (1.0, 1.0, 0.7).

On general grounds, one expects that at zero doping and
zero chemical potential, the domain wall energy is positive,
meaning that the state with the domain walls is energeti-
cally unfavorable. However, as the chemical potential grows,
charges dope the domain walls, improving their stability. Fig-
ures 6(a) and 6(b) clearly illustrate these tendencies. Most
importantly, there is a specific value of μ at which Edw = 0.
When Edw vanishes, a state with no domain walls and a state
with a domain wall are degenerate. The corresponding value
of μ is the critical chemical potential μdw for the state with
domain walls: if μ > μdw, the domain wall energy becomes
negative, and domain walls carrying finite charge density enter
the bulk of the system. As in the previous section,

Fdw ≈ F (0) + μdwx, (45)

at low x. This equation remains applicable as long as the
distance between the domain walls is large, and the interac-

tion between them may be neglected. As the concentration
grows, the repulsion between the walls sets in, and Eq. (45)
progressively becomes less accurate. In the regime of validity
of Eqs. (24), (31), and (45) the competition between the in-
homogeneous states is decided by the lowest critical chemical
potential, as in Eq. (32).

The critical potential calculated numerically is shown in
Fig. 7 for three different anisotropies of “easy-plane” (tx =
ty > tz) type. We see that the critical chemical potential mono-
tonically increases when the anisotropy increases. To perform
consistent comparison of μdw with μiAF and μcAF, we need
to find μdw in the low-U limit, as we did above to obtain the
estimates (22) and (30). Numerical calculations at very low U
quickly become impossible since the width of the domain wall
grows quickly as U drops, and one has to increase the system
size stretching computational resources. To circumvent this
issue, μdw at U = 0 is evaluated extrapolating the available
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FIG. 5. Spatial dependencies of (a) the absolute values of the
order parameter |�ix |, and (b) the electron density nix , calculated
for the bond-centered domain wall, at different values of the chem-
ical potential μ′. Model parameters are: U/W = 0.17, (tx, ty, tz ) =
(1.0, 1.0, 0.7), and Nx = 101.

numerical data to zero value of U . The data points can be
adequately fitted by linear functions, see Fig. 7. The resultant
low-U values of μdw are shown in Fig. 8. Alternatively, the
same data can be approximated by a quadratic function. This
produces similar values of μdw, which are also plotted in
Fig. 8.
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domain wall energy Edw and (b) the number of charge carriers in
a domain wall. In panel (a) the critical chemical potential μdw is
marked. It corresponds to the value of μ at which the domain wall
energy vanishes. Model parameters are: Nx = 101, U/W = 0.17,
and (tx, ty, tz ) = (1.0, 1.0, 0.7).
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FIG. 7. Critical chemical potential vs interaction constant U for
three different anisotropies (see legend). Linear fits are shown as
dashed lines.

As long as the anisotropy is not too strong (tz > tx/10), the
critical values of the chemical potential for different phases
are ordered according to

μdw < μiAF � μcAF. (46)

Thus, for the model under study, the state with the domain
wall has the lowest energy, at least at low doping. However,
the energy differences separating the most stable phase and
metastable “contenders” are insignificant. Indeed,

μiAF − μdw � 0.06�0 (47)

for all anisotropy parameters. This is presented graphically in
Fig. 9. One can see that all critical chemical potentials are
tightly packed in a small region between 0 and �0.
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FIG. 8. Critical chemical potential for the state with domain
walls μdw vs the hopping anisotropy parameter tz/tx , in the limit of
low U , for the anisotropy of the “easy-plane” (tx = ty > tz) type. The
data points obtained by linear fit (quadratic function fit) are shown
by red circles (black squares).
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FIG. 9. Locations of the critical chemical potentials for all three
inhomogeneous phases. The hatched region represents the interval
where μdw can be located (depending on the anisotropy). Observe
that all critical values are squeezed into a small region of a much
larger interval [0,�0].

V. DISCUSSION AND CONCLUSIONS

In this paper we discuss inhomogeneous phases of the
anisotropic Hubbard model in weak-coupling regime. It is
known from various studies that a nesting-driven homoge-
neous SDW, when being doped, loses its stability and yields
to an inhomogeneous state. This feature is not unique to the
Hubbard Hamiltonian. Other models with nesting demon-
strate similar instability. In the context of superconductivity,
a related phenomenon exists in the form of inhomogeneous
Fulde-Ferrel-Larkin-Ovchinnikov states. Thus, destruction of
the electronic liquid homogeneity is not limited to systems
modeled by the Hubbard Hamiltonian with repulsion, but
rather is of relevance for many situations.

We discuss three specific inhomogeneous phases (two
types of phase separated states and the state with domain
walls) at zero temperature. It is argued that, at low doping,
the free energies of these states can be characterized by a
single parameter, critical chemical potential. Such a concept
has simple physical meaning: If the chemical potential of a
reservoir is lower than the critical chemical potential of a
certain inhomogeneous state, doping of our system through
formation of this state is impossible. It is clear from this defi-
nition that the phase with the lowest critical chemical potential
is the most stable at low doping.

The critical chemical potentials for all three phases
were evaluated within the mean-field framework. Our
calculations demonstrate that the state with domain
walls is the most stable. However, since the critical
chemical potentials are almost identical [see Eq. (47)
and Fig. 9] the energies of the inhomogeneous states
are close to each other. The latter property is not limited to the
model investigated here: in Ref. [15] the authors cited theoret-
ical evidence available in published literature which suggested
that similar “tight competition” between inhomogeneous
phases is present in the so-called Rice model [51]. Therefore,
we hypothesize that this feature is an intrinsic property of all
generic models with nesting and weak coupling.

Since theoretical descriptions of various substances (the
Bechgaard salts, iron-based pnictide superconductors) are of-
ten use Hamiltonians with nesting, our results have important
implications for these materials. Namely, one can argue that
purely theoretical prediction of the inhomogeneous phase
in a specific material is unreliable, as numerous material

factors lie outside the scope of simple theoretical models. We
expect that the relative stability of multiple inhomogeneous
states, competing to become the true ground state, is affected
by the lattice effects, band structure details, Coulomb inter-
action screening, disorder pinning, and other nonuniversal
features.

To illustrate these nonuniversalities, let us briefly exam-
ine the role of the long-range Coulomb interaction, which is
ignored by the Hubbard-like and other models with purely
local interactions. Energy of an inhomogeneous state is un-
avoidably modified by the long-range Coulomb repulsion. Yet
such modification is strongly phase specific. For example,
the soliton lattice acquires finite positive contribution to its
energy, while any type of phase separation into macroscopic
regions of unequal charge density becomes impossible since
the corresponding Coulomb energy is extremely large. To
reduce this energy, the phase separation instability may re-
veal itself through formation of mesoscopic structures, like
bubbles, columns or slabs, as indeed observed in experiment
[23]. These structures compete against the domain wall phase
and against each other. This competition occurs within an
anisotropic and disordered effective medium created by the
host crystal. For a specific material, a reliable prediction
of a winner is likely impossible without experimental in-
put.

Our conclusions are not immediately applicable to antifer-
romagnetic materials with strong electronic correlations. The
cuprates, whose phenomenology exhibits striking non-mean-
field features (e.g., the pseudogap and “the bad metal” state),
is one of the most well-known examples of such systems.
Beside the cuprates, various iron-based superconducting al-
loys (particularly, the chalcogenides) are believed to be in the
same class. All these compounds are typically modeled by
Hubbard-like Hamiltonians with moderate-to-high values of
interaction constants. In these regimes the electronic proper-
ties are crucially affected by non-mean-field fluctuations that
cannot be accounted for within our framework.

However, the discussed theoretical issue remains rele-
vant for these systems as well. Indeed, numerical studies
[44,45,49] of the Hubbard Hamiltonian in the strong-coupling
regime revealed that several inhomogeneous states with al-
most identical energies compete against each other to become
the true ground state of the Hamiltonian. The diversity of the
contending phases can obfuscate the interpretation of experi-
mental data, which may be exemplified by opinion exchange
between the authors of Refs. [25,76], and ultimately might
indicate the need for alternative approaches in this field of
condensed matter physics.

To conclude, we studied inhomogeneous states of the
small-U Hubbard model in proximity to the half-filling. We
demonstrated that the state with the domain walls is the most
stable at low doping. However, the energies of metastable
inhomogeneous states are found to be very close to the
ground-state energy. We argue that the smallness of this
energy separation can introduce significant uncertainty into
theoretical modeling of the inhomogeneous states of many-
fermions systems with nesting. Numerical evidence of similar
energy difference smallness in strong-coupling systems, taken
together with our results, seems to suggest that the discussed
issue is of broad relevance.
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APPENDIX A: THE ROLE OF THE FLUCTUATIONS AND
THE ACCURACY OF THE MEAN FIELD APPROXIMATION

Theoretical framework outlined in Sec. II, as well as any
other version of the mean-field approximation, relies on small-
ness of fluctuations. Fluctuations-induced corrections to the
mean field is an area with long research history, Yet the
topic still attracts theorists’ attention [77,78]. This attests to a
degree of dissatisfaction with the current level of understand-
ing of the importance of non-mean-field (NMF) corrections
to the mean-field approximation. Fortunately, despite persis-
tent concerns, various results already available in published
literature seem to suggest that NMF physics can be safely
incorporated into the mean-field approximation using a simple
trick of replacing “bare” model parameters by their “dressed”,
or effective, counterparts.

This “triviality” of NMF contributions can be illustrated
using the findings of Ref. [79], which studied the NMF cor-
rections for the negative-U Hubbard model. The renormalized
interaction U ′ was estimated as

|U ′| = |U |[1 − 2 ln(2)|U |/W ]. (A1)

This formula for the effective U ′ was further employed to
evaluate the gap and the transition temperature. Examining
Eqs. (43,44,47) of Ref. [79], one can easily recognize the
familiar BCS expressions for the order parameter and the
transition temperature in which the bare U is replaced by
U ′. Most revealingly, the ratio 2�/Tc was found to be equal
to 3.53, as one would expect from an ordinary mean-field
scheme, indicating that NMF corrections do not violate the
basic structure of the mean-field theory.

Interpreting NMF studies, one should keep in mind that,
owing to nonanalytical nature of the mean-field equations,
weak modifications to the coupling constant, similar to
Eq. (A1), may lead to significant variations of both � and Tc.
To illustrate this, let us generalize Eq. (A1) as λ′ = λ + δλ(2),
where λ′ is the effective dimensionless coupling, δλ(2) = cλ2

is the second-order correction to “bare” λ, and c is a constant
independent of λ. We now compare the renormalized gap

� ∼ We−1/(λ+δλ(2) ) (A2)

(here W is the band width) against the “bare” gap

�b ∼ We−1/λ. (A3)

Since in the weak-coupling regime 1/(λ + cλ2) ≈ 1/λ − c +
c2λ, one derives

� ≈ �b exp(c − c2λ) < �b exp(c). (A4)

Similar formula for the critical temperature Tc and the corre-
sponding “bare” quantity T b

c reads

Tc ≈ T b
c exp(c − c2λ) < T b

c exp(c). (A5)

Multiplicative renormalization relations analogous to
Eqs. (A4) and (A5) were reported in Refs. [80–84]. Note
that, even for moderate values of |c|, the renormalizations
described by Eqs. (A4) and (A5) may be quite pronounced
[curiously, the third-order correction δλ(3) = O(λ3) always
introduces weak modifications to both � and Tc, as
long as interaction is weak]. For instance, extracting c
from expression (A1), one finds c = −2 ln 2 ≈ −1.39,
consequently, exp(c) = 0.25. Thus, in this specific example,
the NMF fluctuations depress the gap at least four-fold
relative to its “bare” value.

We want to remind the reader here that, despite such a
drastic disparity between � and �b, both these quantities
are obtained within identical mean-field framework, the only
difference being the use of either renormalized or “bare”
coupling constant. In other words, multiplicative renormal-
izations reported in Refs. [80–84] may look irreconcilable
with the mean-field framework, nonetheless, our derivation of
Eqs. (A4) and (A5) confirms the mean-field nature of such
relations.

Since we study our model at different doping levels, one
may ask how the variation of doping change the effective pa-
rameters. Fortunately, such changes are unimportant. Indeed,
since already (exponentially) weak x is sufficient to induce
all phase transitions discussed in this paper, doping-induced
corrections are, at best, exponentially weak. As for formal
calculations, Ref. [82] established insensitivity of the multi-
plicative renormalizations to doping. This means that we can
treat the effective coupling constant as being independent of
doping.

Concluding this analysis of the mean-field renormalization,
we would like to mention Ref. [78], which evaluated the
effects of Gaussian fluctuations of order parameter. A weak
(of order of a percent) correction to the coupling constant was
calculated, see Eq. (21) there. Needless to say that in a typical
experimentally relevant situation the coupling constant cannot
be determined with such an accuracy, limiting the relevance of
this correction to purely academic discussions.

The papers cited in this subsection discussed isotropic
models. Unlike these, we will investigate the model with
quasi-two-dimensional anisotropy. Let us make several re-
marks in this respect. Even in the extreme limit tz = 0, when
the model splits into decoupled planes, Mermin-Wagner theo-
rem does not rule out the ordered state at T = 0. However, the
fluctuation corrections beyond the mean-field approximation
are sensitive to the system’s dimensionality (for example, see
Eq. (21) of Ref. [78]). Thus, the limit tz → 0 require special
care. On the other hand, at moderate anisotropies tz/t � 1
we do not expect significant renormalizations coming from
the low-dimensional fluctuations. A more detailed study of
low-dimensional effects at higher anisotropies is beyond the
scope of the present study.

These examples suggest that a mean-field scheme, like the
one used in this paper, can easily accommodate the NMF
physics: one has to use the renormalized parameters instead
of the bare ones. Note that the only place where U ′ enter
our formalism is Eq. (15) for �0, while all other energies are
measured in terms of �0. Thus, once NMF contributions are
accounted for through �0 renormalizations, all other results
presented in this paper require no additional modifications.
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APPENDIX B: DETAILS OF THE SOLUTION TO THE GAP
EQUATION FOR THE COMMENSURATE SDW STATE

At half-filling (μ′ = 0), minimization of the grand poten-
tial �, Eq. (13), with respect to � gives the following equation

∂�

∂�
= �

⎡
⎣ 2

U
−

∫
d3k

(2π )3

1√
�2 + ε2

k

⎤
⎦ = 0. (B1)

Let us introduce the density of states

ρ(ε) =
∫

d3k
(2π )3

δ(ε − εk ). (B2)

In the limit of small � � W studied here, we can rewrite the
integral in the equation (B1) in the form∫

d3k
(2π )3

1√
�2 + ε2

k

=
∫ W/2

−W/2
dε

ρ(ε)√
�2 + ε2

∼=
∫ W/2

−W/2
dε

ρ(ε) − ρ0

|ε| + ρ0

∫ W/2

−W/2
dε

1√
�2 + ε2

∼= 2

Uc
+ 2ρ0 ln

W

�
, (B3)

where ρ0 = ρ(0) is the density of states at the Fermi level,
while parameter Uc is defined by the equation

2

Uc
=

∫ W/2

−W/2
dε

ρ(ε) − ρ0

|ε| . (B4)

Substituting Eq. (B3) into Eq. (B1), we derive Eq. (15) for the
gap at half-filling.

At finite doping, μ′ deviates from zero, and the equation
for the order parameter can be expressed as

2 ln
�0

�
=

∫ W/2

−W/2
dε

�(|μ′| − √
�2 + ε2)√

�2 + ε2
. (B5)

Evaluating the integral, one obtains Eq. (14) relating �

and μ′.

APPENDIX C: DETAILS OF THE MEAN-FIELD
FORMALISM FOR THE INCOMMENSURATE SDW STATE

In this Appendix, we will solve Eqs. (29). We start with the
observation that in the limit of small � � W , nesting vector
q is also small: q ∼ �/W � 1. In this regime, one can write

εk+q
∼= εk + q

∂εk

∂k
. (C1)

Calculating the derivatives of � with respect to �, q, and μ′,
and using the smallness of � and q in a manner similar to
that described in the Appendix B, we obtain the system of
equations:

ln

(
�0

�

)
= 1

ρ0

∫ η0

−η0

dηN (0, η)arccosh

( |μ′ − qη|
�

)
, (C2)

qκ =
∫ η0

η0

dηN (0, η)η
√

(μ′ − qη)2 − �2sign(qη − μ′),

(C3)

x = 2
∫ η0

η0

dηN (0, η)
√

(μ′ − qη)2 − �2sign(μ′ − qη), (C4)

where we introduce the joint density of states

N (ξ, η) =
∫

d3k
(2π )3

δ(ξ − εk )δ

[
η + n̂q

∂εk

∂k

]
, (C5)

η0 = max
k

(
n̂q

∂εk

∂k

)
, κ =

∫ η0

−η0

dηN (0, η)η2, (C6)

and the unit vector n̂q = q/|q| is collinear with q.
Equations (C2), (C3), and (C4) form a closed system of

equations for self-consistent determination of �(x), μ(x), and
q(x) = |q(x)| at the fixed direction of the nesting vector q. We
solve this system of equations for (tx, ty, tz ) = (1, 1, 0.7),
and for two directions of q: parallel to the z axis and parallel to
the y axis. At relatively large doping, the state with q parallel
to the z axis is energetically more favorable, while at small
doping the situation is opposite. However, the difference in
free energies between these two cases turn out to be negligibly
small. For the z axis orientation, the data is shown in Fig. 2.
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