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Unconventional pairing from local orbital fluctuations in strongly correlated A3C60
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The pairing mechanism in A3C60 is investigated by studying the properties of a three-orbital Hubbard model
with antiferromagnetic Hund coupling in the normal and superconducting phases. Local orbital fluctuations are
shown to be substantially enhanced in the superconducting state, with a fluctuation energy scale that matches
the low-energy peak in the spectral weight of the order parameter. Our results demonstrate that local orbital
fluctuations provide the pairing glue in strongly correlated fulleride superconductors and support the spin/orbital
freezing theory of unconventional superconductivity. They are also consistent with the experimentally observed
universal relation between the gap energy and local susceptibility in a broad range of unconventional supercon-
ductors.
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I. INTRODUCTION

The phenomenon of unconventional superconductivity in
strongly correlated electron systems (SCES) remains mysteri-
ous and debated even decades after the discovery in different
classes of materials, including heavy Fermion systems [1,2],
cuprates [3–6], strontium ruthenate [2,7,8], and fulleride
compounds [9,10]. While most researchers agree that the
mechanisms in these materials are different from conventional
phonon-mediated pairing, and more likely related for example
to spin fluctuations [11], it is difficult to provide convincing
evidence for a given scenario because of the challenges of
analytical and numerical treatments of SCES. Nevertheless,
there has been important progress on the theoretical side in
recent years. Model calculations on the strongly interacting
repulsive and attractive Hubbard model have revealed pe-
culiar cancellations between spectral signatures which have
been interpreted as evidence for a coupling to a “hidden
Fermion” [6]. The clarification of the origin and nature of this
fermionic excitation may result in a deeper understanding of
unconventional superconductivity [12]. In a separate effort,
it was shown that superconductivity in strongly correlated
multiorbital Hubbard systems is closely linked to enhanced
spin [2] or orbital [10,13] fluctuations and the phenomenon
of spin/orbital freezing [14]. This observation also applies
to the two-dimensional Hubbard model, where an auxiliary
multiorbital problem can be constructed from cluster orbitals
[5]. While the spin/orbital freezing theory of unconventional
superconductivity is applicable to different classes of ma-
terials, from uranium-based superconductors to cuprates, to
fulleride compounds, and in this sense is universal [5], it has
so far never been tested inside the superconducting phase. In
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this study, we provide the direct link between local moment
fluctuations and unconventional superconductivity in strongly
interacting electron systems.

II. MODEL AND METHOD

As target system, we consider the three-orbital Hubbard
model with antiferromagnetic Hund coupling, which captures
the physics of the fulleride superconductors A3C60 [9]. These
are three-dimensional, strongly correlated materials with three
half-filled bands of t1u symmetry, which are clearly separated
from the other bands [15]. Due to the extended molecular
orbitals, the bare Hund coupling is small, so that the coupling
to Jahn-Teller phonons can invert the sign of the effective
static Hund coupling [16–18]. This is the origin of the un-
conventional properties, which have been studied extensively
[9,10,18] using dynamical mean field theory (DMFT) [19].
DMFT is an appropriate method because of the large con-
nectivity of the C60 molecules in A3C60 and the importance
of local (Hund) physics. For simplicity, we will consider a
three-orbital Hubbard model with density-density interactions

Hloc =
∑

α

Unα↑nα↓

+
∑

σ,α>γ

[(U − 2J )nασ nγ σ̄ + (U − 3J )nασ nγ σ ], (1)

and orbital-diagonal hopping on a Bethe lattice with bare
bandwidth 2D. Here U is the intraorbital repulsion, J the
effective Hund coupling, α, γ = 1, 2, 3 denotes the orbitals
and σ the spin. This setup allows efficient DMFT simulations
based on the segment representation [20] of the hybridization
expansion impurity solver [21]. To treat the superconducting
(SC) state, we use a Nambu implementation as described in
Refs. [19,22]. The Green’s functions Ĝ and self-energies �̂
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FIG. 1. Phase diagram of the three-orbital Hubbard model with
J = −U/4 (reproduced from Refs. [10,23]). The blue line shows the
SC dome and we use a yellow (pink) shading to indicate the weak-
coupling (strong-coupling) regime. The solid black lines indicate the
Uc1 and Uc2 lines of the Mott transition and the dashed line locates
the orbital freezing crossover in the normal phase.

are orbital-diagonal, with a 2 × 2 matrix structure

Ĝα (τ ) =
(

Gnor
α↑ (τ ) Fα (τ )

F ∗
α (τ ) −Gnor

α↓ (−τ )

)
, (2)

and similarly for �̂. Gnor
ασ (τ ) = −〈T cασ (τ )c†

ασ 〉 and Fα (τ ) =
−〈T cα↑(τ )cα↓〉 denote the normal and anomalous Green’s
functions for orbital α. The Hund coupling will be set to
J = −U/4, which is larger than in the realistic compounds
[15,18], but does not change the physics at a qualitative level
[10]. From the numerical point of view the advantage is that
superconductivity appears at higher temperatures (T ). Some
results for smaller J are provided in Appendix A.

III. RESULTS

Figure 1 shows the DMFT phase diagram of the half-filled
model as established in Refs. [10,23]. It features a SC dome
as a function of U , which borders a Mott insulating phase.
Not shown is the spontaneous orbital-selective Mott [10,23]
(or Jahn-Teller metal [24]) phase between the SC dome and
the Mott region since this type of symmetry breaking, as well
as orbital and magnetic orders [25], will be suppressed in
the following analysis, which focuses on the SC state. The
phase diagram is qualitatively consistent with that of A3C60

[24], where the SC dome and Mott transition line has been
mapped out by the application of chemical pressure. As in the
case of other unconventional SCs, the dome shape indicates a
crossover from a weak-coupling to a strong-coupling regime.
For example, K3C60 and Rb3C60 (located on the weak-U side
of the dome) are sometimes treated as “conventional” SCs
[24,26,27], while overexpanded RbxCs3−xC60 (on the strong-
U side of the dome) is an unconventional SC which clearly
violates the BCS prediction for the ratio between the SC gap
and Tc [24]. In Fig. 1 we indicate these two regimes with the
yellow and pink shading, and we will use this color code also
in the following figures.

A relevant insight from recent DMFT studies [10,13] is
that the superconductivity in multiorbital Hubbard models
with negative J is intricately linked to an orbital freezing

FIG. 2. U dependence of the local orbital fluctuation �χorb
loc ,

Re�ano(i0+), stiffness, order parameter � for T = 0.005 (red), 0.01
(green), and 0.015 (blue), respectively. The dashed lines in panel
(a) show the fluctuations in the normal metal phase. Panels (e) and
(f) show the ratio of Re�ano(i0+)/� at T = 0.01 and T = 0.005,
respectively, and the black-dashed lines a quadratic fit to the data
points.

crossover. This is suggested by the fact that the SC dome
peaks in the region of the phase diagram where the lo-
cal orbital fluctuations, measured by the quantity �χorb

loc =∫ β

0 dτ [〈Oi(τ )Oi(0)〉 − 〈Oi(β/2)Oi(0)〉] (with Oi some appro-
priately defined orbital moment), reach a maximum in the
normal phase (see dashed line in Fig. 1). Using a weak-
coupling picture, the enhancement in this quantity can be
related to an effective attraction [10]

Ueff ∼ U − 4U ′(U ′ + |J|)�χloc + O(U 3), (3)

with U ′ = U − 2J , and hence (indirectly) to SC. Here, we will
provide direct evidence which links orbital fluctuations with
Oi = (n1 + n2 − 2n3)/

√
3 in the present three-orbital model

to SC.
We start by comparing �χorb

loc to other SC related quanti-
ties which can be evaluated directly on the Matsubara axis
(see Fig. 2). The first important observation is that �χorb

loc is
enhanced in the SC phase compared to the normal phase, i.e.,
the orbital fluctuations which have previously been suggested
to play a role in the pairing [2] are present and even stronger
in the SC state. This becomes clear from the comparison
between the solid (dashed) lines in Fig. 2(a), which show
�χorb

loc from simulations with (without) symmetry breaking.
The enhancement is particularly pronounced on the orbital-
frozen side of the dome, where the transition into the SC
state “unfreezes” the local moments (see also Appendix B).
Hence, the peak in �χorb

loc appears on the strong-coupling
side and coincides with the maximum in the static anomalous
self-energy Re�ano(iωn → i0+) [Fig. 2(b)]. This quantity
measures the strength of the pairing [4,6], so that the data
are consistent with the picture of an unconventional pairing
induced by orbital fluctuations, which is strong on the large-
U side of the dome. Furthermore, from the self-energy and
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FIG. 3. Anomalous spectral function Aano(ω), normal spectral
function Anor (ω), and bosonic spectrum 1

π
Imχ orb

loc (ω). Panels (a) and
(b) are for weak coupling (U = 1.0), and panels (c) and (d) for strong
coupling (U = 1.9). The label M indicates the normal metal phase.

the SC order parameter � = 〈cα↑cα↓〉 = −Fα (τ = 0+), we
may (see Appendix C) extract the effective interaction U �

eff =
Re�ano(iωn → i0+)/�. As shown in Figs. 2(e) and 2(f), a
quadratic dependence of U �

eff on the bare U , qualitatively con-
sistent with Eq. (3), is found on the weak-coupling side of the
SC dome, while an even stronger increase with U is found on
the strong-coupling side, especially at low T [Fig. 2(f)] [28].
We also show in Fig. 2(c) the superfluid stiffness computed
by the procedure described in Ref. [29]. The stiffness peaks
on the weak-coupling side of the dome, as in the case of the
attractive Hubbard model [29]. The opposite tendencies in the
stiffness and pairing strength as a function of U lead to a
dome in �, which peaks somewhere in between the other two
quantities, around U = 1.4D.

Having revealed further evidence for the link between
orbital fluctuations and SC in this fulleride-inspired model,
we will now investigate real-frequency spectra. An impor-
tant question concerns the characteristic energy scale of the
local orbital fluctuations [4] and their relation to the SC
gap and peaks in the anomalous Green’s function spec-
trum [30]. The spectra are computed with the maximum
entropy method [31–33] with a bosonic or fermionic Kernel.
In the case of the anomalous Green’s function we employ
the so-called MaxEnt-Aux method [34], where an auxiliary
Green’s function with positive spectral weight is introduced
for the operator âα = 1√

2
[cα↑ + c†

α↓] [35]. In our particle-hole
symmetric system, Gaux

α (τ ) = Gnor (τ ) + F (τ ) [36]. Repre-
sentative spectra for the weak-U and strong-U side of the
SC dome are shown in Fig. 3. More results for different U
and T can be found in Appendix D. In the normal phase, the
bosonic spectrum 1

π
Imχorb

loc (ω) associated with the local or-
bital fluctuations [χorb

loc (τ ) = 〈T Oi(τ )Oi(0)〉] exhibits a peak
whose energy decreases with increasing U [see blue dashed
line with empty triangles in Fig. 4(a)] [37]. It is, however,
rather broad and in the large-U regime there is spectral weight
down to ω → 0, indicative of orbital freezing [13]. As tem-
perature is lowered and the system enters into the SC phase,
a gap in the bosonic spectrum opens and a sharp peak with
an energy comparable to that in the normal phase appears
[Figs. 3(b) and 3(d)]. Looking at the fermionic spectra, we
see the expected opening of a gap in the normal spectral

FIG. 4. Low-energy peak positions in Anor (ω), Aano(ω),
Imχ orb

loc (ω), and Im�ano(ω). Panel (a) shows the U dependence at
T = 0.01D, panels (b)–(d) show the T dependence at (b) U = 1.0,
(c) U = 1.5, and (d) U = 1.9, respectively. The blue dashed lines
with empty triangles in panels (a) and (d) show the peak positions of
Imχ orb

loc (ω) in the normal phase. The noise in the data is due to the
limitations of maximum entropy analytical continuation.

function Anor(ω) = − 1
π

ImGnor(ω) after the transition into the
SC state, with sharp peaks near the gap edge. The anomalous
spectral function Aano(ω) = − 1

π
ImF (ω) also exhibits a peak

at a similar energy. Interestingly, on the strong-U side of the
SC dome, these peak positions are very close and the energy of
the bosonic peak matches that of the fermionic spectra almost
exactly [Figs. 3(c) and 3(d)]. Since

∫ ∞
0 dω′Aano(ω′) = � at

low T (Appendix E), the anomalous spectrum represents the
spectral weight of the order parameter [30]. Hence, this match
demonstrates a direct link between the orbital fluctuations and
the pairing.

Figure 4(a) demonstrates that the SC gap exhibits a dome
shape as a function of U , with a peak near the orbital-freezing
crossover line, and that the almost perfect match between
fermionic and bosonic spectral features starts around the max-
imum of that dome. In this crossover region, with increasing
U , the orbital moments in the normal phase start to freeze and
the orbital fluctuation energy scale in the normal phase (blue
dashed line with empty triangles) drops below the energy
scale of the order parameter (green line). Since the timescale
of orbital fluctuations, which is given by the inverse of the
peak energy in Imχorb

loc , cannot be longer than that of the
relevant single particle fluctuations (roughly the inverse gap
in the SC state), the peak in Imχorb

loc (ω) cannot shift below
the peak in Anor/ano(ω) and the two fluctuation energy scales
get locked in. This feedback of the SC state on the orbital
fluctuations results in the melting of the orbital-frozen state,
the release of the large entropy of the frozen metal state [38],
an enhanced �χorb

loc , and [see Eq. (3)] an enhanced pairing
strength.

It is interesting to note in this context that an almost perfect
match between the excitation energies in the single-particle
and two-particle spectra is also found in Bose fluids [39], and
it would be worthwhile to explore the possible connection to
these systems in more detail.

The lock-in phenomenon is also clearly seen in Fig. 4(d),
which plots the peak positions as a function of T on the
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strong-coupling side of the SC dome. In the normal phase,
the orbital fluctuation energy scale monotonously decreases
with decreasing T (blue dashed line with empty triangles),
while the transition into the SC state leads to a synchroniza-
tion with the (higher) single-particle excitation energy scale.
In the orbital-freezing crossover regime [Fig. 4(c)], which
features the largest gap, the results are qualitatively similar,
but here the orbital fluctuation energy scale in the normal
phase is already close to the synchronized orbital fluctuation
and pairing energy scale in the symmetry-broken phase. On
the weak-U side of the dome, however, the lock-in phe-
nomenon is absent [Fig. 4(b)] since the orbital moments in the
normal phase are not frozen and the orbital fluctuation energy
scale is higher than the SC one, although it is reduced in the
SC phase compared to the normal state. Here, we roughly
find a factor of 2 between the peak position in 1

π
Imχorb

loc

and Anor/ano, as expected in the weak-correlation limit, where
χorb

loc (τ ) = 4[F (τ )2 + G(τ )2].

IV. DISCUSSION

Some previous studies of unconventional SCs focused on
the anomalous self-energy �ano instead of the anomalous
Green’s function F [4,6]. Inspired by an analogy to phonon-
mediated SCs, one may search for a peak in Im�ano(ω),
whose position corresponds to the sum of the gap edge
energy [∼ peak in Anor(ω)] and the bosonic excitation en-
ergy [4]. For the calculation of Im�ano(ω), we employ the
procedure proposed in Ref. [36], i.e., extract it from aux-
iliary self-energies �±(iωn) = �nor (iωn) ± �ano(iωn) with
positive-definite spectral weight in the presence of particle-
hole symmetry. The low-energy peak positions as a function
of T or U are shown by the black lines in Figs. 4(a) and 4(b) to
4(d). Clearly, this energy is higher than the above-mentioned
sum on the large-U side of the dome. Similarly, if we compute
the ratio between the SC gap and Tc, the result is up to three
times higher than the BCS prediction, indicating an unconven-
tional pairing mechanism.

Finally, we would also like to briefly test the hidden
Fermion scenario in our fulleride-SC-inspired model. Accord-
ing to Refs. [6,12,40], a remarkable property of the attractive
Hubbard model and two-dimensional repulsive Hubbard
model in the strongly correlated SC regime is an almost per-
fect cancellation between the peak in Im�nor(ω) and a peak in
ImW (ε = 0, ω), where W (ε = 0, ω) = �ano(ω)2/[ω − μ +
�nor(−ω)∗] [40]. This implies that the sharp peak in Im�nor

does not leave an obvious trace in Anor. In Fig. 5 we plot
Im�nor, ImW , and Im[�nor + W ] for U = 1.9, at two temper-
atures close to and much below Tc. We find that the low-energy
peaks have roughly the same positions and opposite signs, in
agreement with the hidden Fermion prediction, but there is
no cancellation. In fact, the peak in Im�nor is much more
prominent than that in ImW . Also, a close inspection of the
spectra reveals that Anor does in fact exhibit a shoulder struc-
ture associated with the peak in Im�nor. Hence, the hidden
Fermion mechanism seems not to be applicable to fulleride
superconductors.

Our findings are instead qualitatively similar to those
for the square lattice repulsive Hubbard model reported in
Ref. [30]. These authors demonstrated an analogous connec-

FIG. 5. Imaginary part of the real frequency normal and anoma-
lous self-energy, and ImW (ω) for (a) T = 0.015 and (b) T = 0.005
at U = 1.9. The dashed lines show ImW (ω) + Im�nor(ω).

tion between the spectrum of local spin fluctuations and that of
the order parameter, and a considerable mismatch between the
peak in Im�ano, shifted by the half-gap value, and the peak in
the local spin fluctuation spectrum. This similarity suggests a
universal pairing mechanism in unconventional SCs. Accord-
ing to the spin/orbital freezing theory of superconductivity
[2,5,10,13], the pairing mechanism in negative-J and positive-
J multiorbital Hubbard systems is essentially the same, since
the sign change of J to a first approximation inverts the role
of spins and orbitals [13]. Hence, orbital-freezing-induced SC
is mapped to spin-freezing induced SC and vice versa, and we
expect a completely analogous connection between local spin
fluctuations and unconventional SC in positive-J systems.
The mapping of the two-dimensional Hubbard model to an
effective two-orbital model with J > 0 and the spin-freezing
related SC in this system has been discussed in Refs. [5,41],
and these results are fully consistent with the findings pre-
sented in our study and in Ref. [30]. With these facts in mind,
it is very interesting to note that a universal linear relation-
ship Er ≈ 1.28� between the magnetic resonance energy Er

and the superconducting gap is experimentally found in a
broad range of cuprates, iron pnictides, and heavy electron
materials [42], which (see Appendix F) appear to be the spin-
freezing analog of the lock-in phenomenon revealed in this
work.
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APPENDIX A: SPECTRAL FUNCTIONS FOR SMALLER
|J/U |

For smaller |J/U |, the maximum Tc is reduced and the
Mott transition line shifts to larger U . Hence, we need to
treat lower T and larger U to reach the large-U regime of
the SC phase. Figure 6 shows the evolution of Aano(ω) and
1
π

Imχorb
loc (ω) as one increases the interaction U for |J/U | ≈

0.13 at T = 0.005. At U = 1.9, the peak positions in Aano(ω)
and 1

π
Imχorb

loc (ω) are still well separated since this parameter
set is now on the weak-pairing side of the dome. While the
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FIG. 6. (a) Anomalous spectral function Aano(ω) and (b) bosonic
spectrum 1

π
Imχ orb

loc (ω) for the indicated values of U , J/U ≈ −0.13
and T = 0.005.

peak positions in Aano(ω) change only slightly as U increases,
the peak energies for 1

π
Imχorb

loc (ω) rapidly shift to lower val-
ues. At U = 2.5, the peaks in the fermionic and bosonic
spectral functions nearly match (lock-in phenomenon).

With realistic parameters, our three-orbital Hubbard model
yields a meaningful value for the superconducting transi-
tion temperature Tc. Based on the ab initio calculations in
Ref. [18], we choose the on-site interaction U = 0.6 eV,
the bandwidth W = 0.4 eV, and the Hund coupling J =
−0.02 eV. In this case the simulation for T = 20 K converges
to a normal solution, while the simulation for T = 12.5 K
converges to a superconducting solution. This locates the tran-
sition temperature in the range 12.5 K < Tc < 20 K, while
experimentally, the Tc for K3C60 is found to be 18 K [46].
This result suggests that our model is indeed appropriate for
studying the superconducting pairing mechanism.

FIG. 7. Local imaginary-time orbital-orbital correlation function
χ orb

loc (τ ). Panel (a) is for U = 1.0 and panel (b) for U = 1.9. The red
solid (dashed) lines are for the SC (normal metal) phase at T = 0.01,
and the green solid lines for the normal phase at T = 0.02.

APPENDIX B: ORBITAL-ORBITAL CORRELATION
FUNCTION

Figure 7 shows the orbital-orbital correlation function
χorb

loc (τ ) in both the SC (solid lines) and normal phase (dashed
lines). On the weak-U side of the SC dome [U = 1.0,
Fig. 7(a)], χorb

loc (τ ) in the SC phase differs only slightly from
the result in the normal phase. On the strong-U side of the
dome, however, the orbital freezing leads to a large value of
χorb

loc (τ ) near τ = β/2 in the metallic state. The transition into
the SC state induces particle fluctuations, and hence orbital
fluctuations, which results in a more pronounced decay of the
correlation function, and hence a larger �χorb

loc . This change in
the long-time behavior of χorb

loc (τ ) is the direct evidence for the
“unfreezing” of orbital correlations.

APPENDIX C: RELATION BETWEEN GAP AND
SELF-ENERGY

In this section, we present the SC gaps obtained by differ-
ent methods. The SC gap given by the peak energy of Anor(ω)
[36] generally overestimates the SC gap. When the normal
self-energy exhibits a Fermi liquid behavior, ZRe�ano(i0+)
provides a more accurate estimation, which matches the gap
value measured at the half-maximum of the peak in Anor(ω),
see Fig. 8.

At very low-temperature, the normal fermionic self-energy
in the SC phase indeed shows a Fermi-liquid (FL) behav-
ior, i.e., �nor(ω) ≈ (1 − Z−1)ω + iO(ω2). The anomalous
self-energy scales as �ano(ω) ≈ Re�ano(i0+) + O(ω2). If we
neglect the second-order corrections, and insert this FL self-
energy into the expression for the lattice Green’s function, we
get

G(εk, ω) =
[
ω − εk − (1 − Z−1)ω −Re�ano(i0+)

−Re�ano(i0+) ω + ε−k − (1 − Z−1)ω

]−1

= Z

{
ωσ0 −

[
Zεk ZRe�ano(i0+)

ZRe�ano(i0+) −Zε−k

]}−1

, (C1)

which is essentially the Green’s function of a BCS-type
Hamiltonian in Nambu space

H =
∑
kν

[
ck↑

c†
−k↓

]†[
Zεk ZRe�ano(i0+)

ZRe�ano(i0+) −Zε−k

][
ck↑

c†
−k↓

]
.

(C2)

Hence, ZRe�ano(i0+) represents the BCS gap or half the total
single-particle gap of the normal Green’s function G11(ω).
Interpreting (C2) as the mean-field Hamiltonian of a Hubbard
model with bandwidth 2ZD and interaction ZU , this quantity
is related to the interaction by ZRe�ano(i0+) = ZU�, with �

the local order parameter. Re�ano(i0+)/� hence represents
the effective interaction.
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FIG. 8. The SC gap at (a) T = 0.01 and (b) T = 0.005 obtained
by different procedures. The red dots show ZRe�ano(i0+), where Z
is the quasiparticle weight. The green dots represent the low-energy
peak positions ωpeak in the normal fermionic spectral functions
Anor(ω). The blue dots are the energies ωhalf, where Anor reaches half
the maximum height of the peak, i.e., Anor(ωhalf ) = 1

2 Anor(ωpeak).

Alternatively, we can determine the SC gap from the gap
function. In the Matsubara frequency domain, the gap func-
tion is defined as

�g(iωn) = �ano(iωn)

1 − �o(iωn )
iωn

, (C3)

where �o(iωn) = �nor (iωn )−�nor (−iωn )
2 = iIm�nor(iωn) in the

presence of particle-hole symmetry. In the FL regime,
�nor(iωn) ≈ (1 − Z−1)iωn and the low-frequency approx-
imation to the anomalous self-energy reads �ano(iωn) =
Re�ano(i0+). In this case the gap function is simply a real
constant

�g(iωn) = Re�ano(i0+)

1 − (1 − Z−1)
= ZRe�ano(i0+) = �g(ω).

(C4)
The SC gap is determined from the crossing point Re�g(ω) =
ω, and we obtain again ZRe�ano(i0+). A comparison between
the spectral function of the three-orbital model in the SC
phase obtained by means of DMFT and that of the low-energy
effective model (C2) is shown Fig. 9(b).

APPENDIX D: Aano(ω) AND Imχorb
loc (ω)/π

As supplementary data to Fig. 4(a), we show in Fig. 10 the
evolution of the anomalous spectra Aano(ω) and the bosonic
spectra Imχorb

loc (ω)/π for T = 0.01 in the U range from U =

FIG. 9. (a) Matsubara self-energy and (b) normal Fermionic
spectral function at T = 0.01, U = 1.5. The red dashed line in panel
(a) is y(iωn) = (1 − Z−1)(iωn) with Z ≈ 0.34. The green dots at
ωn ≈ 0 exhibit a parabolic behavior. In panel (b), the red solid line
is the single-particle fermionic spectral function of the three-orbital
model, while the red dashed line shows the normal spectral function
of the toy model [Eq. (C1)], with a sharp peak at ω = ZRe�ano(i0+)
(the bandwidth is renormalized by Z). The half-maximum position
of the low-energy peak in Anor gives a good estimate of the SC gap.

FIG. 10. (a) Anomalous spectral functions Aano(ω) and
(b) bosonic spectral functions Imχ orb

loc (ω)/π for the indicated values
of U at T = 0.01 in the SC phase. The curves in panel (a) [(b)]
are shifted by multiples of 0.25 (5.0) along the y-axis for a better
presentation. The full black circles in panel (a) mark the peak
positions in Aano(ω), and the open circles in panel (b) mark the
peak positions in Imχ orb

loc (ω)/π . For a better comparison between the
peak positions, we also indicate the peak positions from panel (a) in
panel (b).

0.75 to U = 2.3, where a SC solution exists. For a better com-
parison of the peak positions, we indicate the peak energies in
Aano(ω) from Fig. 10(a) by the full black dots in Fig. 10(b),
while the open dots in Fig. 10(b) indicate the peak positions
for Imχorb

loc (ω)/π . As one can see, the two peak energies merge
on the strong-U side of the SC dome.

APPENDIX E: CUMULATIVE SPECTRAL WEIGHT OF
THE SC ORDER PARAMETER

The SC order parameter is related to the anomalous
Green’s function and spectral function by

� = − F (τ = 0+) = − 1

π

∫ +∞

−∞
dωImF (ω)

1

1 + e−βω
.

(E1)

Using the property ImF (ω) = −ImF (−ω) we have � =
− 1

π

∫ +∞
0 dωImF (ω) eβω−1

eβω+1 . Thus one may define the cumu-
lative spectral weight contribution to � = limω→∞ IF (ω)
as IF (ω′) = − 1

π

∫ ω′

0 dωImF (ω) eβω−1
eβω+1 . In the low-temperature

limit β = 1/T → ∞, eβω−1
eβω+1 → 1, and one finds

lim
T →0

IF (ω′) = − 1

π

∫ ω′

0
dωImF (ω), (E2)

which is identical to Eq. (2) in Ref. [30].
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FIG. 11. Cumulative spectral weight IF (ω) (upper panel) and
Imχ orb

loc (ω) (lower panel) for (a) U = 1.0 and (b) U = 1.9 at T =
0.01. The dashed vertical line in panel (b) links the low-energy
bosonic peak in Imχ orb

loc (ω) to the fast increase in IF (ω). The hori-
zontal dashed line in the upper panel is the SC order parameter �.
The insets show IF (ω) in the frequency range ω ∈ [0, 20], illustrating
the limit � = limω→∞ IF (ω).

FIG. 12. (a) The low-energy peak positions in ImF (ω),
Imχ orb

loc (ω) (≡Er) and the SC gap �g = ZRe�ano(i0+) as a function
of U at T = 0.005, respectively. (b) The ratio Er/�g compared to the
experimentally found value (dashed line).

The cumulative spectral weight for the system at T = 0.01,
U = 1.9 is shown in Fig. 11(b). The match between the peaks
in ImF (ω) and Imχorb

loc (ω) yields a direct correspondence be-
tween the fast increase in IF (ω) and the peak in the bosonic
spectrum. In Fig. 11(a), we also show the data for U = 1.0,
where the peak in ImF (ω) and Imχorb

loc (ω) appears at a higher
energy than the fast increase in IF (ω).

The “overshooting” of IF (ω) is similar to what has been
reported in Ref. [30] for the underdoped Hubbard model.

APPENDIX F: Er VERSUS SC GAP

Figure 12 plots the evolution of the low-energy peak posi-
tions in ImF (ω), the low-energy peak positions in Imχorb

loc (ω)
(≡ Er), and the SC gap (�g) as a function of U at T =
0.005, respectively. On the strong-U side, the peak positions
in ImF (ω) (green) overlap with those of Imχorb

loc (ω) (blue).
The ratio Er/�g ≈ 1.2 for 1.6 < U < 2.4 is consistent with
the experimentally found value (≈1.28) in a broad range of
unconventional SCs [42].
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