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We study scattering of itinerant electrons off a magnetic hopfion in a three-dimensional metallic magnet
described by a magnetization vector S(r). A hopfion is a confined topological soliton of S(r) characterized by
an emergent magnetic field Bγ (r) ≡ εαβγ S · (∇αS × ∇βS)/4 �= 0 with vanishing average value 〈B(r)〉 = 0. We
evaluate the scattering amplitude in the opposite limits of large and small hopfion radius R using the eikonal
and Born approximations, respectively. In both limits, we find that the scattering cross section contains a
skew-scattering component giving rise to the Hall effect within a hopfion plane. That conclusion contests the
popular notion that the Hall effect in noncollinear magnetic structures necessarily implies 〈B(r)〉 �= 0. In the
limit of small hopfion radius pR � 1, we expand the Born series in powers of momentum p and identify different
expansion terms corresponding to the hopfion anisotropy, toroidal moment, and skew scattering.
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I. INTRODUCTION

In the celebrated paper [1], Aharonov and Bohm consid-
ered scattering of electrons off a solenoid carrying magnetic
flux � and showed that the differential cross section is a
periodic function of �. That work laid the foundation for
the discussion of the topological effects in quantum me-
chanics. In many respects, the recent investigation on the
topological Hall effect [2,3] in noncollinear magnetic tex-
tures is the most recent incarnation of the Aharonov-Bohm
physics. In the appropriate transport regime [4], the non-
collinear spin configuration generates a (fictitious magnetic)
field [5–7] Bγ (r) ≡ εαβγ S · (∇αS × ∇βS)/4 �= 0, which pro-
duces a skew-scattering deflection of carriers. For example,
a magnetic skyrmion, observed in two-dimensional magnetic
films [8–10], generates a fictitious magnetic flux equivalent
to the flux quantum. Therefore, electronic scattering off such
structures closely resembles the Aharonov-Bohm setup. Ow-
ing to a small size (large density) of skyrmions, the fictitious
magnetic field B produced in such structures may be an order
of magnitude larger (∼500 T) than that attainable in con-
ventional magnetic experiments (∼50 T). That magnetic field
may produce a large topological Hall effect [11]. We note
that the topological Hall effect was also predicted in systems
without skyrmions [12,13].

In the recent past, there has also been a significant push
to extend the research of noncollinear magnetic structures
to three dimensions (3D). Magnetic simulations [2,3,14] and
experiments [15] reveal that, under appropriate conditions,
three-dimensional magnets may host a zoo of exotic magnetic
textures and quasiparticles interesting from both fundamental
and practical standpoints. New experimental imaging tools
[16] are becoming available, which may facilitate the search
and identification of such objects. In this paper, we focus
on one such paradigmatic topological object—a magnetic
hopfion. Conceived originally in the context of field theory

[17,18], hopfions are now discussed in the realm of magnetic
systems [19–23]. Various recipes have been proposed for how
to stabilize hopfions in specific materials [22] and finite ge-
ometries [19–21]. Reference [24] reported a first observation
of a hopfion in a magnetic nanodisk. Hopfions were also dis-
cussed in the context of superconducting [25] and ferroelectric
systems [26].

It is an appropriate point to mention that a hopfion has
a nontrivial profile of the emergent magnetic field B(r) [see
Fig. 1(b)]. It is characterized by a nonvanishing Hopf number

Q = 1

(2π )2

∫
d3r B(r) · A(r), (1)

where A(r) is the associated vector potential, i.e., B(r) = ∇ ×
A(r). Another notable feature is that the average emergent
magnetic field vanishes

〈B(r)〉 ≡
∫

d3r B(r) = 0. (2)

Nevertheless, as we show in this work, a hopfion configuration
does lead to skew scattering and the Hall effect within the
hopfion plane.

In this paper, motivated by the original Aharonov-Bohm
paper [1] as well as the recent interest in 3D magnetic systems,
we pose a hitherto unexplored question of electronic scatter-
ing off a topological magnetic object in 3D. We consider a
hopfion configuration in a metallic magnet and evaluate the
scattering amplitude of the itinerant electrons. We lay out
the basics of the hopfion geometry in Sec. II and proceed to
evaluating the scattering amplitude in Sec. III. A challenge is
that a hopfion does not have spherical symmetry, so a standard
method of expanding in partial wave harmonics is not appli-
cable. Therefore, in order to evaluate the scattering amplitude,
we resort to the eikonal and Born approximations for large
pR 	 1 and small pR � 1, respectively. Here, R and p are
the hopfion radius and electronic momentum, respectively. We
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FIG. 1. Hopfion texture. (a) Magnetic vector S(r) in 3D. Col-
oring scheme is shown in the top-right corner: The vectors with
components in the z = 0 plane are shown in colors, whereas vectors
with S(r) ‖ ẑ are shown in gray. The two linked contours are the solu-
tions of equations S(r) = x̂ (red) and S(r) = −ŷ (blue). (b) Profile of
the emergent magnetic field B(r) in the y = 0 plane (left) and z = 0
plane (right). Average field vanishes, see Eq. (2).

provide a detailed account of the applicability of these approx-
imations in Sec. III A. In Sec. III B, we proceed to evaluating
the scattering amplitude in the eikonal approximation. We find
that the differential cross section contains a skew-asymmetric
component within a hopfion plane, but the average trans-
ferred momentum in the transverse direction vanishes, i.e.,
〈�ptransverse〉. However, as we explain, the latter exact equality
is an artifact of the eikonal approximation. There are two
implicit assumptions “under the hood” of the eikonal approx-
imation: (i) that the semiclassical approximation is applicable
and (ii) that semiclassical trajectories may be approximated as
straight lines. Departing from either of the two conditions ren-
ders 〈�ptransverse〉 �= 0, and, hence, the associated Hall effect
to survive as well. That conclusion contests the widespread
belief in the community [27–29] that nonzero topological
Hall signal necessarily implies 〈B〉 ≡ ∫

d3rB(r) �= 0. In the
deeply quantum regime pR � 1, we evaluate the scattering
amplitude using the Born series (truncated to second order)
in Sec. III C. As a biproduct, we also evaluate the second-
order Born approximation for a Gaussian-type potential in
Appendices A and B. To the best of our knowledge, only a
similar calculation for the Yukawa potential exists so far [30].
That calculation allows us to expand the scattering amplitude
in powers of momentum. Different terms in that expansion
correspond to the hopfion anisotropy, toroidal moment of
the hopfion, skew-scattering contributions, etc. We comment

on the possible manifestation of those terms in transport in
Sec. III D and offer concluding remarks in Sec. IV.

II. MAGNETIC HOPFION

To set the stage, we discuss details of a hopfion texture in
this section. We consider a 3D ferromagnet described by a
magnetization vector S(r) normalized to unity |S(r)| = 1. A
hopfion is a localized topological soliton of the field S(r). We
use the following parametrization of the hopfion [23]

S(r) = ẑ + δS(r),

δS(r) = sin 2η(r)

r

⎛
⎝x

y
0

⎞
⎠ − 2 sin2 η(r)

r2

⎛
⎝ −yz

xz
x2 + y2

⎞
⎠. (3)

Here, ẑ describes a uniform magnetization at r → ∞, whereas
δS(r) encapsulates the localized hopfion texture. The phase
η(r) is an arbitrary monotonic function of r =

√
x2 + y2 + z2

with constraints η(0) = 0 and η(∞) = π . It controls the ex-
tent of the hopfion in the radial direction.

The texture (3) has cylindrical symmetry around the ẑ axis.
For that reason, the ẑ axis is referred to as the hopfion axis,
and z = 0 the hopfion plane. A hopfion occupies finite space,
as illustrated in Fig. 1(a), and may be thought of as a localized
magnetic quasiparticle. Its dynamics under the applied electric
current was studied in Ref. [23].

A complementary description of a hopfion
may be obtained by evaluating an emergent field
Bγ (r) = εαβγ S · (∇αS × ∇βS)/4. We evaluate both the
field

B = 2 cos θ sin2 η(r)

r2
er − sin θ sin 2η(r) η′(r)

r
eθ

+ 2 sin θ sin2 η(r) η′(r)

r
eφ (4)

and the associated vector potential

A = 2 cos θ sin2 η(r) η′(r) er + sin θ sin2 η(r)

r
eφ (5)

satisfying the conventional relation B = ∇ × A. In writing
Eqs. (4) and (5), we used spherical coordinates, where cos θ =
z/r and er , eθ , eφ denote the orthogonal unit vectors in the
radial, polar, and azimuthal directions with respect to the
hopfion axis ẑ.

The topological character of a hopfion may be illustrated
in two complementary ways: either directly from the spin
configuration S(r) or using the Hopf number Q. To illus-
trate the former, let us pick arbitrary two vectors on the unit
sphere S1 and S2, i.e., |S1| = |S2| = 1. Then, the two contours,
determined by the solutions of the equations S(r) = S1 and
S(r) = S2, are linked. A specific example, corresponding to
S1 = x̂ and S2 = ŷ, is shown in Fig. 1(a). On the other hand,
the linking number between these contours equals [31] the
topological Hopf number Q defined in Eq. (1). We substitute
Eqs. (4) and (5) in Eq. (1) and verify the value Q = 1.

We note that the average emergent magnetic field vanishes
according to Eq. (2). The profile of the field in the y = 0 and
z = 0 planes is shown in the left and right panels of Fig. 1(b).
The field in the y = 0 plane has a skyrmion-antiskyrmion
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structure. The field in the hopfion plane z = 0 has a structure
reminiscent of a target skyrmion [32]. As usual in electrody-
namics, a nonuniform distribution of the field B(r) may be
characterized by moments. Evaluating the first-order moment
Bα,β ≡ ∫

d3r Bα (r)rβ for the field (4), we find

Bα,β = εαβγ Lγ ,

L = 1

2

∫
d3r [r × B(r)] = L ẑ, (6)

where L = 2
3

∫
d3r sin2[η(r)] η′(r). Vector L is referred to as

the toroidal moment [33] and originates from the azimuthal
component (∝eφ) of the field B(r) winding along a torus. A
slice of that torus is shown in the left panel of Fig. 1(b). The
two representations of a hopfion either via a magnetic texture
(3) or the emergent fields (4) and (5) are complementary.

III. SCATTERING OFF A HOPFION

In this section, we evaluate the scattering amplitude. A
standard method of decomposition in spherical harmonics
is not applicable because hopfion texture (3) does not have
spherical symmetry. Therefore, we resort to approximate
methods: the eikonal approximation and the Born approxima-
tion. Below, in Sec. III A, we address the applicability of the
two approximations.

A. Hamiltonian and applicability conditions

Here, we define the Hamiltonian and discuss the applica-
bility of approximations used in the following sections. We
assume that the magnetic system, described by vector S(r), is
embedded in a metallic host, so the total Hamiltonian is

H = H0 + V,

H0 = p2

2m
− σz� − μ, V = −�δS(r) · σ, (7)

where p is a 3D momentum of itinerant electrons. The terms
proportional to � describe the exchange coupling between
the spin σ of itinerant electrons and the static magnetiza-
tion vector S(r). The Hamiltonian (7) is split into the bare
H0 and the perturbation V part induced by the hopfion. In
this work, we do not include the spin-orbit coupling, which
would produce the anomalous Hall effect [34,35] and obscure
the skew-scattering contributions from the hopfion. We note,
however, that a recent work [36] looked at the effect of spin-
orbit coupling and noncollinear spin textures on equal footing
and found interesting contributions to the Hall resistivity. We
use units h̄ = 1 throughout this work.

Following Ref. [4], we examine basic parameters that de-
termine different scattering regimes in this subsection. The
electronic energy spectrum of the bare Hamiltonian H0 con-
sists of two branches ε1,2 = p2

2m ± � shifted by the energy
gap 2�, as shown in Fig. 2(a). The electrons with energy
in the interval −� < ε < � occupy only the bottom band,
whereas the electrons with higher energy ε > � may occupy
both bands. In momentum variables p, the boundary between
the two domains is determined by the equation p = p�,
where p� = √

4m� is the momentum associated with energy
2�. That boundary is illustrated with a dashed blue line in

FIG. 2. (a) Energy spectrum of a two-band model given by
Hamiltonian (7). For simplicity, we assume that only the lower band
is occupied, i.e., p < p�. (b) Diagram of applicability of the Born
and eikonal approximations. The Born approximation, analyzed in
Sec. III C, is applicable in the domains (i) and (ii). The eikonal
approximation is evaluated in the case of one Fermi surface in the
adiabatic limit in Sec. III B. The shaded area (iii) indicates the do-
main where it is applicable.

Fig. 2(b). For simplicity, we restrict the discussion throughout
this work to the case with a single Fermi surface, i.e., p < p�.

The dynamics of the electronic spin is determined by the
adiabaticity parameter λ = τ�. Here, τ = Rm/p is the time
it takes to traverse the hopfion, and � is spin precession
frequency. If λ 	 1, the electronic spin adjusts to the local
magnetic direction S(r) as an electron travels through the
magnetic texture. In the opposite regime λ � 1, the spin
does not keep up with a fast motion of the electron. The
former regime is referred to as an adiabatic and the latter
as nonadiabatic. It is convenient to rewrite these conditions
in dimensionless variables pR and (p�R)2 as follows pR �
(p�R)2/4 and pR 	 (p�R)2/4 for the adiabatic and nonadia-
batic regimes, respectively. The line separating these domains
pR = (p�R)2/4 is shown in green in Fig. 2(b).

In our work, we evaluate the scattering amplitude us-
ing the Born and eikonal approximations. Let us comment
on their applicability conditions. The applicability of Born
approximation [37] in the long-wavelength pR � 1 and
short-wavelength pR 	 1 limits are mR2� ≡ (p2

�R)/4 � 1
and mR2� ≡ (p2

�R)/4 � pR, respectively. Both domains are
shown schematically as shaded regions (i) and (ii) in Fig. 2(b).
In Sec. III C, we evaluate the scattering amplitude in the long-
wavelength region (i).

Note that Born approximation is incorrectly applied in
some modern literature on two-dimensional (2D) skyrmions
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in the limit pR → 0. The scattering amplitude has a loga-
rithmic nonanalyticity in 2D in that limit [37], so the Born
approximation is not applicable.

The eikonal approximation relies on two assumptions: that
semiclassical approximation is applicable and that semiclas-
sical trajectories may be approximated as straight lines. The
semiclassical approximation is applicable when the momenta
associated with the two bands are large, i.e., at pR 	 1 and
|(p�R)2 − (pR)2| 	 1. The straight-line approximation as-
sumes that the momentum change due to the Lorentz force
is much smaller than the magnitude of the initial momentum
p. For a hopfion, that condition amounts to pR 	 1 and coin-
cides with the condition on semiclassics. As stated above, we
focus on the case where only the bottom band is occupied, i.e.,
p < p�. The domain, where all these inequalities are satisfied,
is shown as a shaded area (iii) in Fig. 2(b).

B. Scattering amplitude in the eikonal approximation

In this section, we use the eikonal approximation [37]
in order to evaluate the scattering amplitude in the domain
(iii) shown in Fig. 2(b). In other words, we assume that
pR 	 1 and that only the bottom band, shown in Fig. 2(a),
is occupied, i.e., p < p�. This limit is interesting because
emergent fields A(r) and B(r) yield an appropriate description
of a scattering process. By performing the well-known gauge
transformation [6,7], we reduce the original Hamiltonian (7)
to H = (p − A)2/2m. That allows us to treat A(r) as a con-
ventional vector potential (electric charge e is absorbed in the
definition of A). We omit the possible effects of the physical
magnetic fields present in magnets because they are, gener-
ally, much weaker than the emergent fields, which we take into
account. An additional merit of the eikonal approximation is
that it is nonperturbative in potential V and provides an easy
way to capture the anisotropy of the hopfion texture. In this
approximation, the electrons are slightly deflected from the
original direction of propagation, i.e., the momentum transfer
q = p′ − p is small q ∼ 1/R � p, where p and p′ are the
initial and finite momenta. That prompts us to denote the scat-
tering amplitude as fp(q), where the subscript p emphasizes
the initial momentum.

To simplify analytical calculation within this
section, we use a hopfion profile (3) with
η(r) = arccos[(R2 − r2)/(R2 + r2)] that produces a
power-law decay δS ∼ R/r at r → ∞. We substitute it
in Eq. (5) and bring the latter equation to a concise form

A(r) = −4R2[r z ∂R + r × ẑ]
1

(r2 + R2)2
. (8)

For clarity, here z and ẑ = (0, 0, 1) denote the Cartesian co-
ordinate and the unit vector aligned with the hopfion axis;
∂R ≡ ∂/∂R is a partial derivative.

Scattering in the eikonal approximation may be understood
as follows. Fast semiclassical electrons with momentum p are
incident onto a magnetic texture and only slightly bend their
trajectories. In the first approximation, their trajectories may
be treated as straight lines. Let us label a given trajectory
Tp(ρ) = {r = ρ + p

mt} by the momentum p and the impact
parameter ρ. The latter is a vector residing in the plane per-
pendicular to p, i.e., ρ ⊥ p; the origin ρ = 0 is chosen at

the center of the hopfion. Upon passing through the magnetic
texture, electrons accumulate a (Berry) phase

δp(ρ) =
∫

Tp(ρ)
dr · A(r)

= 2πR2

(R2 + ρ2)3/2
[R ( p̂ · ẑ) + ρ · ( p̂ × ẑ)], (9)

where the first line is the definition and the second is the
result of substituting Eq. (8). Equation (9) is practical because
it yields a 2D map of a semiclassical phase for arbitrary
direction of propagation p̂ = p/p. It is instructive to compare
phase (9) with the emergent field profile shown in Fig. 1(b).
Let us consider electrons moving along the hopfion axis p̂ = ẑ,
so the second term in Eq. (9) vanishes. Then the two equations
δẑp(0) = 2π and δẑp(x̂ · ∞) = 0 imply that the correspond-
ing electron trajectories Tẑp(0) and Tẑp(x̂ · ∞) enclose an
area with magnetic flux quantum piercing through it. Indeed,
the two lobes of magnetic field, shown in the left panel of
Fig. 1(b), carry quanta of magnetic flux of opposite signs,
which produce phase accumulations of 2π . Let us consider
an incident electron traveling within the hopfion plane, e.g.,
p̂ = x̂. Then only the second term in Eq. (9) survives and
renders δx̂p(ρy, ρz ) an odd function of ρy. It is a consequence
of the target-skyrmion-type profile of the field Bz shown in the
right panel of Fig. 1(b). It is responsible for a skew-skattering
component within the hopfion plane as will be shown below.

Equation (9) is used to evaluate the scattering amplitude
[38] in the eikonal approximation [37]

fp(q) = p

2π i

∫
d2ρ e−iq·ρ [eiδp(ρ) − 1]

= −ipR2
∫ ∞

0
ds s

{
exp

[
2π i p̂ · ẑ

(s2 + 1)3/2

]

× J0

[∣∣∣∣ 2π p̂ × ẑ
(s2 + 1)3/2

− qR

∣∣∣∣s
]

− J0[qR s]

}
, (10)

where, in the second equation, we integrated over the two-
dimensional polar angle φ = arctan(ρy/ρx ), producing the
Bessel function J0(z) of zeroth order, and reduced the inte-
gration to the dimensionless variable s. The value of equation
(10) is that it provides a closed expression of the scattering
amplitude for arbitrary incidence direction p̂. It is the central
result of this section.

As a first application of Eq. (10), we evaluate the scattering
cross section

σp ≡
∫

d2q

p2
| fp(q)|2

= 4πR2
∫ ∞

0
ds s

{
1 − cos

[
2π ( p̂ · ẑ)

(s2 + 1)3/2

]
J0

[
2πs|p̂ × ẑ|
(s2 + 1)3/2

]}
.

(11)

We evaluate the integral numerically and find σp‖ẑ ≈ 7.17 R2

and σp⊥ẑ ≈ 8.42 R2 for an electron traveling along the hopfion
axis ẑ and in the equatorial plane, respectively. It is a manifes-
tation of the hopfion anisotropy.

Let us inspect the differential cross section | fp(q)|2 in the
two opposite cases of electron traveling along the hopfion
axis, i.e., p ‖ ẑ, and within the hopfion plane, i.e., p ⊥ ẑ.
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FIG. 3. Normalized differential cross section | fp(q)|2 vs mo-
mentum transfer q = p′ − p evaluated using eikonal approximation.
(a) In the case of the incoming electronic momentum parallel to
the hopfion axis p ‖ ẑ, | fp(q)|2 is cylindrically symmetric. (b) Con-
versely, in the case of the incoming electronic momentum lying
within the hopfion plane p ⊥ ẑ, the function | f (q)|2 is not cylin-
drically symmetric and contains a skew-scattering component [see
discussion in the text below Eq. (11)]. The orientation of momentum
p relative for the hopfion axes is illustrated in the top-right corners of
the corresponding panels.

The case of intermediate angles may be understood as an
interpolation between these two cases. We evaluate the in-
tegral (10) numerically and plot the results in Figs. 3(a)
and 3(b). In the case p ‖ ẑ, the differential cross section is
cylindrically symmetric. It is a consequence of the cylin-
drical symmetry of hopfion configuration (3) around the
hopfion axis ẑ. Conversely, for the electron traveling within
the hopfion plane p ⊥ ẑ, the differential cross section contains
a skew-scattering component. It is practical to expand the
momentum-transfer vector q = (qφ, qθ ) in the polar qθ and
azimuthal qφ components [with respect to the hopfion axis
ẑ, see geometry in Fig. 3(b)]. The scattering is even in the
polar | fp⊥ẑ(qφ,−qθ )|2 = | fp⊥ẑ(qφ, qθ )|2 and asymmetric in
the azimuthal | fp⊥ẑ(−qφ, qθ )|2 �= | fp⊥ẑ(qφ, qθ )|2 component.
In other words, scattering has a skew-scattering component
within the hopfion plane conventionally associated with the
transverse Hall current. It is a consequence of the target-
skyrmion-type profile of the magnetic field Bz shown in the
right panel of Fig. 1(b). In order to quantify it, let us evaluate

the corresponding cross section

σ (1)
p ≡

∫
d2q

p2

qφ

p
| fp(q)|2 =

∫
d2ρ

p
∂ρφ

δp(ρ) = 0, (12)

where the first line is the definition, and the second line
is the result of substituting Eq. (10). The superscript 1 in
Eq. (12) indicates that the first power of momentum qφ

enters the integrand. The integral vanishes because the in-
tegrand is a full derivative of the continuous function δp̂(ρ)
that tends to a constant value δp̂(ρ) → 0 at ρ → ∞. It is
consistent with a semiclassical observation [4] that the Hall
current in the limit pR → ∞ is proportional to the mag-
netic flux � piercing through the system. Since � ∝ 〈B〉 = 0
for a hopfion [see Eq. (2)], the first-order skew-scattering
cross section σ (1)

p vanishes in that limit. The first nonzero
skew-scattering cross section is of the third order, i.e., σ (3)

p

≡ ∫ d2q
p2

qφq2
θ

p3 | fp(q)|2 �= 0.
Nevertheless, note that Eq. (12) does not imply that the

transverse Hall current vanishes for a hopfion. The precise
equality σ (1)

p = 0 is a consequence of the eikonal approxi-
mation and the conditions of its applicability. As discussed
in Sec. III A, those are that the semiclassical approximation
is applicable and that trajectories may be approximated as
straight lines. Departing from either of these conditions ren-
ders σ (1)

p �= 0. In the following section, we demonstrate that a
hopfion, indeed, has a skew-scattering cross section σ (1)

p �= 0
in the deeply quantum regime pR � 1.

C. Scattering amplitude in the Born approximation

In this section, we examine scattering amplitude in the
long-wavelength pR � 1 and weak-coupling p�R � 1 limit.
To simplify the discussion, we focus on the case of a single
Fermi surface, i.e., we further assume that the Fermi momen-
tum is low pR < p�R. The combination of these conditions
defines a shaded domain (i) in the space of parameters shown
in Fig. 2(b). Then scattering may be analyzed using the Born
series in V = −� σ · δS(r), see Eq. (7). Below, we discuss
results of Born series evaluated to second order. The details of
the calculation are presented in Appendix A.

To simplify calculation in this section, we rely on the
hopfion profile (3) with a Gaussian-type hopfion profile (see
Appendix A for details). In the long-wavelength limit pR �
1 electrons do not resolve the fine spatial structure of the
perturbation. As in electrodynamics, it is natural to analyze
scattering in terms of moments. Therefore instead of the exact
hopfion configuration (3), we may use an approximate one

δS(r) =
⎡
⎣a1

R

⎛
⎝x

y
0

⎞
⎠ − a2

R2

⎛
⎝ −yz

xz
x2 + y2

⎞
⎠

⎤
⎦e−r2/R2

, (13)

where the dimensionless numerical coefficients a1, a2 ∼ 1
play the role of moments.

Anticipating the Born series, let us evaluate the diagonal
V↑↑(q) = −�δSz(q) as well as the off-diagonal V↓↑(q) =
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−� [δSx (q) + i δSy(q)] and V↑↓(q) = −� [δSx(q) − i δSy(q)]
matrix elements of the perturbation V with respect to the
plane-wave eigenstates of Hamiltonian (7). To that end, we
evaluate the Fourier transform of the Gaussian-type configu-
ration (13) and obtain

V↑↑(q) = −π3/2� R
(
∂2

qx
+ ∂2

qy

)
e−q2R2/4

V↓↑(q) = −iπ3/2� R
(
∂qx + i∂qy

)(
R a1 + a2 ∂qz

)
e−q2R2/4

V↑↓(q) = −iπ3/2� R
(
∂qx − i∂qy

)
(R a1 − a2 ∂qz ) e−q2R2/4.

(14)

Here the derivatives ∂qx ≡ ∂/∂qx and ∂qy ≡ ∂/∂qy originate
from the terms x and y in the real space [see Eq. (13)]. We
commence with the first-order Born approximation, which is
related to the Fourier transform f (1)(n′, n) = − m

2π
V↑↑[p(n′ −

n)] (we use units h̄ = 1), where n = p/p and n′ = p′/p′ are
the unit vectors in the direction of propagation of an incident
and scattered electron. Within this section, it is practical to
use a following notation for the scattering amplitude f (n′, n),
where n and n′ denote the unit vectors aligned with the
direction of propagation of incident and scattered electrons.
Expressing � = p2

�/4m and using Eq. (14), we obtain

f (1)
↑↑ (n′, n) =

√
πa2 p2

�R3

8

{
−1 + (pR)2

[
1 − n′ · n − 1

4
(n′

z − nz )2

]}
+ O(R7), (15)

where we also expanded in powers of R. Note that anisotropy of the hopfion configuration along the hopfion axis ẑ carries over
to the anisotropy of scattering amplitude in that direction. In the second-order approximation, the scattering amplitude contains
the no-spin-flip and spin-flip contributions

f (2)(n′, n) = f (2)
↑↑↑(n′, n) + f (2)

↑↓↑(n′, n) = m2

π

∫
d3k

(2π )3

V↑↑(p′ − k)V↑↑(k − p)

k2 − p2 − iδ

+ m2

π

∫
d3k

(2π )3

V↑↓(p′ − k)V↓↑(k − p)

k2 + p2
� − p2 − iδ

. (16)

The sign of the infinitesimal imaginary part in the denominators accounts for causality in the scattering theory [37]. It may be
dropped in the spin-flip term f (2)

↑↓↑(p′, p) due to the assumed condition p� > p. We evaluate the integrals above in Appendix A
and expand in powers of R:

f (2)
↑↑↑(n′, n) =

√
π p4

� R5

4! 8
√

2

{
c1 + 3 i (pR)

√
2π + (pR)2

[−c2 + c3n′ · n − c4n′
znz + c5

(
n′2

z + n2
z

)]} + O(R8), (17)

f (2)
↑↓↑(n′, n) =

√
π p4

�R5

4! 8
√

2

{
c6 + c7 (pR) (n′

z + nz ) − c8(p�R)2

+ (pR)2[−c9 + c10 n′ · n + c11 n′
znz + c12

(
n′2

z + n2
z

) + i c13 (n′ × n)z
]} + O(R8). (18)

The second-order Born correction (17) and (18) has a rich
angular structure. A few comments are in order. (i) The dimen-
sionless coefficients c1–c13 are numbers of order 1 and depend
on the details of the hopfion structure at short-range scale.
Their specific values are listed in Appendix A. (ii) The imag-
inary part of f (2)

↑↑↑ is universal (i.e., independent of short-scale
geometry of the hopfion) and originates from the on-shell
processes in the denominator in Eq. (15). It satisfies the optical
theorem and together with the first-order Born result (15)
serves as an additional verification of Eqs. (17) and (18). (iii)
The scattering amplitude is anisotropic due to the anisotropy
of the hopfion profile. (iv) The lowest order ∝R5 terms are
scalars, which produce s-wave scattering. The first term with
nontrivial angular dependence c7(n′

z + nz ) appears in the order
∝R6 in f (2)

↑↓↑. It is odd both under inversion and time-reversal
transformations. We interpret it as a scattering due to the
toroidal moment of the hopfion (see the following section).
(v) Observe that the skew-scattering term ∝ic13(n′ × n)z is
generated in f↑↓↑. Its interference with the imaginary term in
Eq. (17) produces a skew-scattering term in the differential
cross section | f (n′, n)|2, which results in the nonzero Hall
effect.

D. Possible transport signatures

1. Toroidal scattering

Below, we discuss the origin and possible experimental sig-
nature of the toroidal term ∝c7(nz + n′

z ) appearing in Eq. (18).
In order to motivate its naming, let us evaluate the scatter-
ing amplitude in the first-order Born approximation in the
vector-potential part (p · A + A · p)/2m of the Hamiltonian
H = (p − A)2/2m. We get [30,39]

f (p′, p) = 1

4π
(p′ + p) · Ap′−p, (19)

where we used the units with h̄ = 1. Equation (19) implies
that the expansion of the scattering amplitude f (p′, p) in small
p may be obtained from the corresponding expansion of the
vector potential Ap−p′ Fourier transform. Let us show that
the zeroth order term in the latter expansion is related to the
toroidal moment L given by Eq. (6). To that end, let us express
the toroidal moment (6) in terms of the vector potential as fol-
lows L = 1

2

∫
d3r [r × ∇ × A(r)]. Integrating that integral by

parts, we may flip the gradient operator ∇ to act onto r, which
reduces the integral to L = ∫

d3rA(r) ≡ ∫
d3rA(r)e−i0·r =
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Aq=0. In other words, the leading order term in the q expansion
of the vector potential Aq is the toroidal moment L, i.e.,
Aq ≈ L + O(q). Substituting the latter equation in Eq. (19),
one may find the small momentum expansion of the scattering
amplitude as

f (p′, p) = 1

4π
(p′

z + pz )L, (20)

where we used that a hopfion toroidal moment L is aligned
with the hopfion axis ẑ. The provided first-order Born cal-
culation in p · A is distinct from that in Sec. III C, which
produced Eqs. (17) and (18). The former assumes that we
are deep in the adiabatic region p�R 	 1, whereas the latter
assumes p�R � 1 [see the applicability diagram in Fig. 2(b)].
However, comparison of Eq. (20) with Eq. (18) offers an intu-
ition that ∝c7(nz + n′

z ) is generated by the toroidal moment
L. Similar to the toroidal vector L, the term ∝c7(nz + n′

z )
is odd under time-reversal and inversion operations. When
the total differential cross section is evaluated | f (n′, n)|2 =
| f (1)

↑↑ (n′, n) + f (2)
↑↑↑(n′, n) + f (2)

↑↓↑(n′, n) + . . . |2, the term due
to the toroidal scattering ∝c7(nz + n′

z ) interferes with s-wave
terms [such as, e.g., ∝c1 and ∝c6 in Eqs. (17) and (18)] and
renders the differential cross section | f (n′, n)|2 a nonrecipro-
cal [40,41] function of n and n′. Specifically, the differential
cross section for electrons propagating in ẑ and −ẑ directions
is distinct. It is conceivable [40,41] that a device containing a
hopfion could exhibit a diode-type behavior along the hopfion
axis ẑ. In other words, the I-V curve could be asymmetrical
in the applied bias voltage Vz, i.e., Iz(Vz ) ≈ G0Vz + G1V 2

z +
O(V 3

z ). Here, the second-order conductance G1 is induced by
the toroidal moment L.

2. Skew-scattering term

Observe that Eq. (18) contains a skew scattering term
i c13 (n′ × n)z. When the total differential cross section is eval-
uated | f (n′, n)|2 = | f (1)

↑↑ (n′, n) + f (2)
↑↑↑(n′, n) + f (2)

↑↓↑(n′, n) +
. . . |2, the skew-scattering term i c13 (n′ × n)z interferes with
an imaginary s-wave scattering term 3 i (pR)

√
2π in (17).

That also produces a skew-scattering term ∝(n′ × n)z in the
differential cross section | f (n′, n)|2 responsible for the Hall
effect within a hopfion plane. We note that the Hall conduc-
tance in the hopfion plane was indeed observed in a numerical
Landauer-Buttiker calculation of a hopfion in a mesoscopic
setting [42]. However, it was interpreted as an artifact due
to the discretization of the hopfion on a lattice. In contrast,
we argue that the Hall effect is an intrinsic property of the
hopfion, which arises due to the target-skyrmion-type profile
of the magnetic field, see right panel in Fig. 1(b).

Throughout this work, we assume that the Fermi energy
is sufficiently low � > ε > −�. In other words, only the
bottom electronic band with spin-↑ is populated, whereas
the top band with spin-↓ is empty [see Fig. 2(a)]. In this
regime, the on-shell scattering occurs only in the spin-↑ band,
whereas scattering in the spin-↓ band is forbidden by the
energy conservation. Nevertheless, the spin-↓ band may be
excited virtually, which leads to the important contributions
to the scattering amplitude, e.g., see Eq. (18).

One may also consider the case of higher energies ε > �,
where both bands are occupied. Then, on-shell scattering oc-

curs in both spin-↑ and spin-↓ channels. On general grounds,
we expect that it will reduce the overall Hall signal. It is most
clearly seen in the adiabatic regime, where the spin-↑ and
spin-↓ electrons experience the emergent magnetic fields of
the opposite signs B(↑)

γ = −B(↓)
γ = εαβγ S · (∇αS × ∇βS)/4.

They will induce skew scattering of the opposite signs and
thus reduce the overall Hall signal. A numerical modeling of a
related magnetic structure (target skyrmion) will be discussed
in our forthcoming paper [43].

IV. CONCLUSION

A hopfion is a topological configuration (3) of the vector
S(r). It has been long sought after in magnetic [17,18,23]
and other systems [25,26]. There is a claim of the first ob-
servation in experiment [24]. Motivated by an analogy with
the Aharonov-Bohm scattering [1] in 2D, we study a hith-
erto unexplored question of itinerant electrons scattering off
a topological object (hopfion) in 3D. Because a hopfion is
anisotropic, the conventional method of decomposing in par-
tial waves with distinct angular harmonics is not applicable.
So we resort to eikonal and (second-order) Born approxima-
tions applicable in the opposite limits pR 	 1 and pR � 1.
Both approaches show that a scattering amplitude has a rich
angular structure induced by the hopfion anisotropy. We find
that, although the average magnetic field (2) vanishes, the
differential cross section does have a skew-scattering compo-
nent within the hopfion plane z = 0. It is associated with a
target-skyrmion-type structure of the emergent magnetic field
induced by the hopfion, shown in the right panel of Fig. 1(b).
It leads to the nonvanishing Hall effect within the hopfion
plane (see Sec. III D 2). In the pR � 1 limit, we find a term
due to the hopfion toroidal moment L. It is odd both under
the time-reversal and inversion operations. It could produce
a nonreciprocal response in a device containing a hopfion,
i.e., the I-V curve Iz(Vz ) ≈ G0Vz + G1V 2

z + O(V 3
z ) contains

the second order term in the bias voltage Vz applied along the
hopfion axis (see Sec. III D 1). Measuring the second-order
conductance G1 could help to distinguish hopfions from other
3D textures [14,15] experimentally. The developed methods
are applicable to other 3D magnetic structures, which will be
explored experimentally [16] in the near future.
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APPENDIX A: DETAILS OF CALCULATION OF THE
SECOND BORN APPROXIMATION (16)

In this section, we provide the details of evaluating the
second-order Born approximation in perturbation V (see
Eq. (7) for a hopfion configuration (3).

(i) The strategy is to reduce hopfion spatial configuration
(3) to a gaussian-type profile, for which integrals (16) may be
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FIG. 4. Dependence of sin η(r) and sin 2η(r), which specifies a
hopfion profile (A1). Solid lines correspond to the exact Eq. (A2),
whereas dashed and dashed-dotted lines correspond to different ap-
proximations of cos η(r) [see main text around Eq. (A3)].

evaluated carefully. We write the hopfion configuration as

δS(r) =
⎛
⎝x

y
0

⎞
⎠ sin 2η(r)

r
−

⎛
⎝ −yz

xz
x2 + y2

⎞
⎠2 sin2 η(r)

r2
. (A1)

Let us choose a specific form for the trigonometric functions
appearing in Eq. (A1)

sin η(r) = r

R
e

1
2 (1− r2

R2 )
,

cos η(r) = sign(R − r)

√
1 −

( r

R

)2
e(1− r2

R2 ). (A2)

The two functions sin η(r) and sin 2η(r), which appear in
Eq. (A1), are plotted in Fig. 4. As intended, they correspond
to a monotonic η(r) ranging from 0 to π as r goes from 0
to ∞. Observe that sin η is a product of r and a Gaussian
function e−r2/2R2

, which renders it convenient for integration
(performed below). In contrast, cos η(r), which ranges from
1 to −1 as r goes from 0 to ∞, is not easily reduced to a
Gaussian. Nevertheless, observe that cos η(r) enters Eq. (A1)
via sin 2η(r) = 2 sin η(r) cos η(r). Due to that and to the fact
that sin η(r) is exponentially localized (see Fig. 4), we do not
need a uniform approximation of cos η(r). We may approx-
imate cos η(r) as a product of a Gaussian and polynomial
of r2

cos η(r) ≈ e− r2

2R2

N∑
n=0

cn

( r

R

)2n
. (A3)

For example, setting N = 4 and evaluating coefficients cn

produces a very good approximation for sin 2η(r) shown with
a dashed line in Fig. 4. Further increase of N produces an ap-
proximation for sin 2η indistinguishable from the exact result.
To simplify analytical calculations, we truncate the polyno-
mial in Eq. (A3) to N = 0 and set the only coefficient c0 = 1.
It yields sin 2η(r) plotted with a dash-dotted line in Fig. 4. A
significant disparity between that approximation and the exact
dependence (solid dashed line) is not essential since we are in-
terested in evaluating the long-wavelength behavior pR � 1.
To conclude this paragraph, setting cos η(r) = e−r2/2R2

and

using sin η(r) from Eq. (A2) allows us to write Eq. (A1) as

δS(r) =
⎡
⎣a1

R

⎛
⎝x

y
0

⎞
⎠ − a2

R2

⎛
⎝ −yz

xz
x2 + y2

⎞
⎠

⎤
⎦e−r2/R2

, (A4)

where the dimensionless coefficients a1 = 2
√

e and a2 = 2e
are introduced to keep track of the contribution of the dis-
tinct terms in the calculations below. Observe that equation
(A4) is a product of a Gaussian and simple polynomials of
coordinates (x, y, z). As such it is amenable for the analytical
calculation performed below.

(ii) Anticipating the Born approximation, we evaluate the
Fourier transform of Eq. (A4)

δS(q) = π3/2R3

⎡
⎣a1

R

⎛
⎝i∂qx

i∂qy

0

⎞
⎠ + a2

R2

⎛
⎝ −∂qy∂qz

∂qx ∂qz

∂2
qx

+ ∂2
qz

⎞
⎠

⎤
⎦e− (qR)2

4 ,

(A5)

where we retain the momentum derivatives ∂q =
( ∂
∂qx

, ∂
∂qy

, ∂
∂qz

). Using Eq. (A5), we may also explicitly
write the matrix elements of the perturbation

V↑↑(q) ≡ −�δSz(q)

= −π3/2� R
(
∂2

qx
+ ∂2

qy

)
e−q2R2/4 (A6)

V↓↑(q) ≡ −�[δSx(q) + iSy(q)]

= −iπ3/2� R
(
∂qx + i∂qy

)(
R a1 + a2 ∂qz

)
e−q2R2/4

(A7)

V↑↓(q) ≡ −�[δSx(q) − iSy(q)]

= −iπ3/2� R
(
∂qx − i∂qy

)(
R a1 − a2 ∂qz

)
e−q2R2/4.

(A8)

(iii) First-order Born approximation. The scattering ampli-
tude in the first-order Born approximation may be evaluated
(in units h̄ = 1)

f (1)
↑↑ = − m

2π
V↑↑(q)

=
√

π a2 p2
� R

8

(
∂2

qx
+ ∂2

qy

)
e−q2R2/4,

where q = p′ − p is the momentum transfer; p and p′ are the
momenta of the initial and finite state. Further, we denote p′ =
p n′ and p = p n and expand the equation above in powers
of R

f (1)
↑↑ (n′, n)

=
√

πa2 p2
�R3

8

{
−1 + (pR)2

[
1 − n′ · n − 1

4
(n′

z − nz )2

]}

+O(R7). (A9)

(iv) Second-order Born approximation: the no-spin-flip
contribution. Now, let us evaluate the no-spin-flip part of the
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second-order Born approximation

f (2)
↑↑↑(p′, p) =m2

π

∫
d3k

(2π )3

V↑↑(p′ − k)V↑↑(k − p)

k2 − p2
E − iδ

= π2a2
2 p4

�R2

16

(
∂2

p′
x
+ ∂2

p′
y

)(
∂2

px
+ ∂2

py

)
I (p′, p),

where I (p′, p) =
∫

d3k

(2π )3

e−[(p′−k)2+(k−p)2]R2/4

k2 − p2
E − iδ

. (A10)

Here, we substitute the matrix element (A6) and pulled the derivatives over the “external” momenta outside the integral sign.
In the denominator of the integrand, we used a distinct notation pE = √

2mE to distinguish it from the variables p and p′, over
which the derivatives are taken. We set pE → p at the end of the calculation. The integral I (p′, p) is evaluated in Appendix
B. In principle, Eq. (A10) contains complete information about the second-order scattering amplitude f (2)

↑↑↑. However, we are
interested in the small-R expansion

f (2)
↑↑↑(n′, n) =

√
π p4

� R5

192
√

2

{
c1 + 3 i (pR)

√
2π + (pR)2

[−c2 + c3n′ · n − c4n′
znz + c5

(
n′2

z + n2
z

)]} + O(R8), (A11)

where c1 = 23a2
2/5, c2 = 1677a2

2/140, c3 = 157a2
2/140, c4 = −114a2

2/140, and c5 = 153a2
2/140 are the numerical coefficients.

Observe that, to the lowest order in R, the imaginary part of the second-order amplitude satisfies the optical theorem, i.e.,
σ∝R6 = 4π

p Im f (2)
↑↑↑ = 4π | f (1)

↑↑ ∝R3 |2. It serves as an independent verification of the numerical coefficients.
(v) Similarly, we may evaluate the spin-flip contribution to the second-order scattering amplitude

f (2)
↑↓↑(p′, p) = m2

π

∫
d3k

(2π )3

V↑↓(p′ − k)V↓↑(k − p)

k2 − p2
E − iδ

= π2a2
2 p4

�R2

16

(
∂p′

x
− i∂p′

y

)(
Ra1 − a2∂p′

z

)(
∂px + i∂py

)(
Ra1 − a2∂pz

)
Ĩ (p′, p),

Ĩ (p′, p) =
∫

d3k

(2π )3

e−[(p′−k)2+(k−p)2]R2/4

k2 + p2
� − p2

E

,

where we substitute the matrix elements (A7) and (A8), pulled the derivatives outside of the integral Ĩ . The latter integral may
be obtained from the integral I , given by Eq. (B4), by the substitution

pE → iκ, κ =
√

p2
� − p2

E .

So, we may obtain an expansion of the amplitude in powers of R

f (2)
↑↓↑(n′, n) =

√
π p4

�R5

192
√

2

{
c6 + c7 (pR) (n′

z + nz ) − c8(κR)2

+ (pR)2
[−c9 + c10 n′ · n + c11 n′

znz + c12
(
n′2

z + n2
z

) + ic13 (n′ × n)z
]
,

where c6 = a2
1 + 3a2

2/20, c7 = a1a5/5, c8 = a2
1 + a2

2/20, c9 = 7a2
1/10 + 27a2

2/280, c10 = 13a2
1/10 + 29a2

2/280, c12 =
7a2

1/40 − 27a2
2/1120, and c13 = a2

1/28 + a2
2/20 are numerical coefficients of order 1.

APPENDIX B: EVALUATION OF THE INTEGRAL

In this section, we evaluate the integral

I (p′, p) =
∫

d3k

(2π )3

e−[(p′−k)2+(k−p)2]R2/4

k2 − p2
E − iδ

. (B1)

It may arise in other applications involving second-order Born approximation for a Gaussian-type potential. So, it is worth it to
provide the details of integration.

(i) We introduce auxiliary momentum variables Q = p′−p
2 and l = p′+p

2 and integrate I over the angles

I = e−Q2R2/2

(2π )2lR2

∫ ∞

−∞
dk

k e−(k−l )2R2/2

k2 − p2
E − iδ

,

where we also extended the limits of k integration to (−∞, 0).
(ii) The rational function of k in the integrand may be split as follows

k

k2 − p2
E − iδ

= 1

2

[
1

k − pE − iδ
+ 1

k + pE + iδ

]
= 1

2

[
π i δ(k − pE ) − π i δ(k + pE ) + 1

k − pE
+ 1

k + pE

]
,
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where we applied the Sokhotski formula in the second line to split the imaginary and real parts. The integration over the former
is then evaluated exactly, whereas the latter produce principal value integrals

I = e−Q2R2/2

2(2π )2lR2

{
2π i sinh(l pE R2)e−(l2+p2

E )R2/2 + v.p.

∫ ∞

−∞
dk

e−(k−l )2R2/2

k − pE
+ v.p.

∫ ∞

−∞
dk

e−(k−l )2R2/2

k + pE

}

= e−Q2R2/2

2(2π )2lR2

{
2π i sinh(l pE R2)e−(l2+p2

E )R2/2 + v.p.

∫ ∞

−∞
dk

e−(k−(l−pE ))2R2/2

k
+ v.p.

∫ ∞

−∞
dk

e−(k−(l+pE ))2R2/2

k

}

= e−Q2R2/2

2(2π )2lR2

{
2π i sinh(l pE R2)e−(l2+p2

E )R2/2 + J[(l − pE )R] + J[(l + pE )R]
}
,

where we shifted the integration variable in the penultimate and defined the function

J (t ) ≡ v.p.

∫ +∞

−∞
dk

e−(k−t )2/2

k
. (B2)

(iii) Note that J (t ) is not an elementary function. Let us evaluate its Taylor expansion in t . We introduce an auxiliary parameter
λ and upgrade to a new function

J̃ (t, λ) ≡ v.p.

∫ +∞

−∞
dk

e−(k2−2tkλ+t2 )/2

k

such that its derivative over λ may be easily evaluated by taking the Gaussian integral

dJ̃ (t, λ)

dλ
= v.p.

∫ +∞

−∞
dk t e−(k2−2tkλ+t2 )/2 =

√
2π t e−t2(1−λ2 )/2.

In addition, noting that J̃ (t, 1) = J (t ) and J̃ (t, 0) = 0 allows us to obtain

J (t ) =
∫ 1

0
dλ

dJ̃ (t, λ)

dλ
=

√
2π t

∫ 1

0
dλ e−t2(1−λ2 )/2

=
∞∑

n=0

an t2n+1, an =
√

2π

2n

n∑
m=0

(−1)n+m

m! (n + m)! (2m + 1)
, (B3)

where, in the second line, we expand the exponent in the Taylor series and integrate it term-by-term, which produces the
expansion in the third line.

(iv) This concludes the evaluation of the integral I (p′, p). Let us write it explicitly in the variables p and p′

I (p, p′) = exp
[− (p′−p)2R2

8

]
(2πR)2|p + p′|

{
2π i sinh

[ |p′ + p|pE R2

2

]
exp

[
(p′ + p)2R2 + 4p2

E R2

8

]

+ J

[
1

2
|p′ + p|R − pE R

]
+ J

[
1

2
|p′ + p|R + pE R

]}
. (B4)
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