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Driving force on flowing quantum vortices in type-II superconductors with finite
Ginzburg-Landau parameter
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The origin of the driving force on quantum vortices in superconductors has long been discussed. We investigate
the origin of this force using the momentum flux tensor P, Maxwell stress tensor T, and numerical solutions for
a flowing rectilinear vortex in the time-dependent Ginzburg-Landau (TDGL) theory for three-dimensional super-
conductors with finite Ginzburg-Landau parameter κ and the Maxwell equations. We calculate the hydrodynamic
force Fhydro(C) and magnetic Lorentz force Fmag(C) respectively using the contour integral of P and T along a
closed path that winds around the vortex line. The calculations show that neither Fhydro(C) nor Fmag(C) reaches
the full magnitude of the driving force. However, when the path C is farther than the penetration depth from the
vortex line and hence the energy dissipation is negligible on C, the sum of the two forces becomes independent
of the choice of C and accounts for the full magnitude of the driving force on the vortex. We demonstrate the
applicability of this result to a flowing vortex described in the generalized or modified version of the TDGL
equation and to a pinned vortex. We then discuss the driving force on the Pearl vortex in two-dimensional
superconductors and a curved vortex line in three-dimensional superconductors. We propose an experiment that
locally probes the magnetic field with a pinned vortex to verify our results that the contribution of the magnetic
pressure (Lorentz force) to the total driving force on the vortex is less than half.
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I. INTRODUCTION

Quantum vortices play an important role in most recent
research on superconductivity, such as that on twisted bilayer
graphene [1], Majorana fermions in Fe-based superconductors
[2], and spintronics in superconductors [3]. A vortex in topo-
logical superconductors accommodates Majorana fermions
[4], and two-dimensional (2D) superconductors undergo the
Berezinskii-Kosterlitz-Thouless transition [5–8], which is in-
duced by the dissociation of a vortex pair at high temperature.
In recent research on spintronics in superconductors, the
vortex spin-Hall effect was discussed [9,10], where the vor-
tex carries spin and thus its motion is accompanied by the
spin current. An understanding of vortex dynamics and a
method for controlling vortices are thus of vital importance
to advancements in the physics of superconductivity and its
applications. A fundamental but unsettled issue related to
vortices in superconductors, which is addressed in the present
study, is the origin of the driving force on a single vortex in
the presence of an external current [11–22]. Many reviews and
textbooks [22–29] state that a single vortex located at r in the
presence of a transport current jtr (r) is subjected to the driving
force Fdrv (per unit length along the vortex axis), which is
expressed as

Fdrv = jtr (r) × φ0, (1)
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where φ0 is the vector parallel to the magnetic field at the
vortex center and |φ0| is h/(2|e|), with h being the Planck
constant and |e| being the unit charge. In the following, we
take the charge of Cooper pair e∗ = 2|e| to be positive for
simplicity. For a pinned vortex, the driving force Eq. (1) is
balanced by the pinning force Fpin (per unit length along the
vortex axis):

Fdrv + Fpin = 0. (2)

For a flowing vortex, it is balanced by the environmental force
[28]:

Fdrv + Fenv = 0. (3)

Fenv has the general form

Fenv = −η1v + η2ez × v, η1 > 0. (4)

Here, v denotes the velocity of the vortex and ez is the unit
vector parallel to the z axis, which we take as the direction of
the magnetic field. The force balance relation Eq. (3) with the
expressions for η1 in Eq. (4) has been derived with the time-
dependent Ginzburg-Landau (TDGL) and generalized TDGL
equations [28,30], Usadel equations [31], and quasiclassical
theory for superconductivity [32–34]. The force balance re-
lation with η1 and η2 was given in [35,36]. In this method
[33,34], Eq. (3) with Eq. (4) is derived from the solvability
condition of inhomogeneous linear equations without solving
the equations themselves. To address the origin of the driving
force, however, it is necessary to solve the equations used
to calculate the flow state of the vortex. No consensus has
been reached regarding the origin of the driving force Eq. (1)
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[11–21], which is often referred to as the Lorentz force in re-
view articles and monographs [28,34]. Several authors [16,17]
have argued that Eq. (1) is of hydrodynamic origin in the type-
II limit (where the penetration depth λ is much longer than
the coherence length ξ ). Other authors [19,21] have argued
that the driving force consists of hydrodynamic and magnetic
contributions. One reason for this lack of consensus is the
lack of an experiment that could demonstrate which theory is
correct. Another reason is that a direct method to calculate the
force on a pinned vortex is not applicable to a flowing vortex.
The force on the pinned vortex can be obtained by derivative
of the interaction energy or potential energy [37] but the force
on the flowing vortex cannot. In the presence of dissipation, it
is legitimate to calculate the force on the flowing vortex based
on the local momentum balance relation.

One of the present authors and Chung previously in-
vestigated the origin of the driving force on vortices in
superconductors [21] based on the local momentum bal-
ance relation and hydrodynamic and Maxwell stresses. In the
present study, we investigate the origin of the driving force
using the fully solved TDGL and Maxwell equations up to the
linear response to the transport current. We then propose an
experiment for confirming the origin of the driving force. We
also extend our discussion to other types of TDGL equations
and the Pearl vortex [38] in 2D superconductors.

The rest of this paper is organized as follows. In the next
section, we explain the underlying properties of the well-
defined force on vortices and define the driving force, the
pinning force, and the environmental force. In Sec. III, we
explain the TDGL equation, the local balance relation and
boundary condition, and the numerical calculation method.
In Sec. IV, we present the numerical results for the current
density, electromagnetic field, local hydrodynamic force, local
magnetic Lorentz force, dissipation function, energy flow, and
the driving force on the vortex. In Sec. V, we discuss the
validity of our results on the driving force on quantum vortices
in various types of TDGL models and for a pinned vortex.
Among these cases, we study the driving force on the vortex in
2D superconductors (i.e., the Pearl vortex) in detail in Sec. VI.
In Sec. VII, we discuss the relation between the driving force
and the topological number that characterizes vortices. We
also remark on the Berry phase approach for deriving the
driving force on vortices. We further propose an experiment
for verifying some of our results and discuss future issues. In
Sec. VIII, we summarize our results and give the conclusions.
In Appendix A, we present the calculation and a discussion of
the driving force on a deformed vortex line. In Appendix B,
we explain the details of the calculation for the Pearl vortex.

II. PRELIMINARIES

We first briefly review the Magnus force on a narrow
cylindrical object in a classical ideal fluid as a prototype of
the force on various kinds of vortex. An object immersed
in a uniform flow is subjected to the Magnus force when
the circulation around the object is nonzero. This force is
defined by the contour integral of the normal component of
the momentum flux tensor Pμν [= ρ(vμvν − v2δμν/2)] along
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FIG. 1. Flow of ideal fluid around an object. Circulation is posi-
tive and thus this object is subjected to the Magnus force.

the closed path C surrounding the object:

F(C)μ = −
∮

C
d	Pμνnν . (5)

The right-hand side of Eq. (5) expresses the momentum flow-
ing into the region S surrounded by the closed loop C. Owing
to the divergence-free property ∂νPμν = 0 in an ideal fluid,
the right-hand side of Eq. (5) is path-independent so long
as the closed path has the same winding number (=1 in the
present case). Due to this path independence of Eq. (5), the
net force on the fluid particles in the region between C1 and
C0 is zero in Fig. 1 and thus the force F(C1) acts only on the
object.

Now we turn to superconductors and consider the Maxwell
stress (magnetic pressure) acting on the region S, which con-
tains an isolated flowing/pinned vortex.

[Fmag(C = ∂S)]μ =
∮

C
d	Tμνnν,

Tμν = 1

μ0

(
hμhν − δμν

2
h2

)
. (6)

Here, Tμν denotes the magnetic part of the Maxwell stress
tensor and h = h(r) denotes the local magnetic field. The
right-hand side of Eq. (6) expresses the momentum flow (of
the magnetic field) into the region S surrounded by the closed
loop C. In contrast to the momentum flux tensor in an ideal
fluid, the divergence of the Maxwell stress tensor ∂νTμν =
( j × h)μ is not zero and thus [Fmag(C)]μ is path-dependent
and thereby cannot be regarded as a force on the vortex.

Next, we consider the hydrodynamic momentum flow into
the region S in the superconductor. It can be expressed in the
same way as Eq. (5) but the expression and the property for
the momentum flux tensor are different for superconductors
[the expression for Pμν in the TDGL equation for supercon-
ductors is given later in Eq. (26)]. In superconductors, the
momentum flux tensor Pμν is not divergence-free; that is,
∂νPμν �= 0. The hydrodynamic pressure Eq. (5) in supercon-
ductors is path-dependent and thus cannot be regarded as a
force on the vortex. However, when C is sufficiently far from
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the vortex core [21], the sum of the magnetic and hydrody-
namic pressures in superconductors becomes divergence-free:

∂ν (Tμν − Pμν ) = 0. (7)

This divergence-free condition holds outside the region where
energy dissipation occurs for a flowing vortex. For a pin-
ning vortex, the divergence-free condition holds in the region
where the pinning force on the vortex is negligible. The rela-
tion Eq. (7) was called the stress-free condition in [39]. The
force

[F tot (C)]μ =
∮

C
d	(Tμν − Pμν )nν (8)

is path-independent and thus Eq. (8) can be regarded as a force
on the vortex in superconductors so long as C belongs to the
stress-free region. As stated in a review article [22] (see page
1130 in the reference), this is a strict way to define the force
of the (driving) force on vortices in superconductors in terms
of the momentum flux tensor and Maxwell stress tensor to
discuss the origin of the driving force.

For clarity, we more explicitly define the driving force
and the environmental force. Let g(r, t ) be the momentum
density and suppose that the momentum balance relation for
superconductors in the lattice frame is given in the form

∂g(r, t )

∂t
+ ∇ · �(r, t ) = − f (r, t ), (9)

where �(r, t ) is a second-rank tensor and the right-hand side
represents the momentum transfer to the background or pin-
ning center. When ∮

C
d	�(r, t ) · n (10)

for the closed path C, which winds around the vortex and
belongs to the stress-free region, is independent of the path,
we define the driving force on the vortex as

Fdrv(t ) := −
∮

C
d	�(r, t ) · n. (11)

When the right-hand side of Eq. (9) represents the irreversible
momentum transfer to the background, the environmental
force on the vortex is defined by

Fenv(t ) := −
∫

S
dS f (r, t ) (12)

with the 2D region S such that ∂S = C. When the right-hand
side of Eq. (9) represents the reversible momentum transfer to
the pinning center, the pinning force on the vortex is defined
by

Fpin(t ) := −
∫

S
dS f (r, t ). (13)

However, there is no consensus on how the force that origi-
nates from ∫

S

∂g(r, t )

∂t
(14)

should be categorized. Because this is a matter of semantics,
we assign (14) to neither the driving force, environmental
force, nor pinning force.

III. MODEL

We introduce the TDGL equation [40,41] in Sec. III A
and present the local balance relations (energy balance and
momentum balance) in Sec. III B. The momentum balance
relation plays a key role throughout this paper. In Sec. III C,
we present the boundary value problem for a flowing single
vortex. In Sec. III D, we briefly summarize the numerical
methods. The details of the numerical methods are explained
in the Supplemental Material [42].

A. TDGL equation

The TDGL equation is the simplest model of a vortex based
on microscopic theory [40,41]. We make the order param-
eter ψ = f (r, t )eiχ (r,t ) dimensionless so that an equilibrium
solution in the bulk becomes f = 1 with a constant χ . It
is convenient to introduce the gauge-invariant scalar P and
vector Q potentials as

P =  + h̄

e∗
∂χ

∂t
, Q = A − h̄∇χ

e∗ , (15)

where  is the electrochemical potential divided by e∗ = 2|e|
and the vector potential A. The electric field (including the
gradient of the chemical potential) and magnetic field are
respectively expressed as ε = −∂t Q − ∇P and h = ∇ × Q
for any position except the vortex center. The TDGL equation
can be written in terms of f , P, and Q as

γ
∂ f

∂t
= ξ 2∇2 f −

(
e∗ξQ

h̄

)2

f + f − f 3, (16a)

∇ · f 2Q = −γ f 2P

ξ 2
, (16b)

where the relaxation time γ > 0 for the order parameter. The
equations are coupled with the Ampère law

∇ × h = μ0 j, (17)

where the current density j consists of two parts:

j = js + jn, js = − f 2Q
μ0λ2

, jn = σnε. (18)

Here, js and jn are respectively the supercurrent density and
normal current density. The symbol σn denotes the Ohmic
dissipative conductivity.

The system of equations has two characteristic length
scales, namely λ and ξ , and two characteristic timescales,
namely γ and σnμ0ξ

2, for the relaxation process. With the
dimensionless quantity

ζ =
(

σnμ0

γ

) 1
2

ξ, (19)

the characteristic length scale for the electrochemical poten-
tial is given by ζλ =: 	P. With the unit v0 = 1/(σnμ0λ), we
can measure the vortex velocity.
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B. Local balance relations

The energy balance relation for Eqs. (17), (16a), and (16b)
is given by [28,43]

∂

∂t

(
B2

2μ0
+ Fsn

)
+ ∇ · jE = −W (20)

with

Fsn ≡ Q2

2μ0λ2
+ B2

c

μ0

{
ξ 2|∇ f |2 − f 2 + f 4

2

}
, (21)

the energy current density

jE =
[
ε × h
μ0

+ P f 2Q2

μ0λ2
−

(
h̄

e∗

)2 1

μ0λ2

∂ f

∂t
∇ f

]
, (22)

and the local dissipation function

W = σnε
2 + γ̃

(
e∗ f P

h̄

)2

+ γ̃

(
∂ f

∂t

)2

. (23)

Here, we introduce the notation

γ̃ = 2B2
c

μ0
γ , Bc = |φ0|

2
√

2πλξ
. (24)

The expression for W can be used to determine the strength
and distribution of the energy dissipation in the flowing vortex
state. The momentum balance relation, shown below, follows
from Eqs. (17), (16a), and (16b):

∂ν (−Pμν + Tμν ) + γ̃ ∂μ f ∂t f − γ̃ (2π/φ0)2 f 2PQμ

− ( jn × h)μ = 0. (25)

See [21] for derivation of Eq. (25). The tensor Pμν , expressed
as

Pμν = f 2QμQν

μ0λ2
+ 2B2

cξ
2

μ0
∂ν f ∂μ f − δμνFsn, (26)

can be considered as the momentum flux tensor. In the London
approximation ( f is fixed to be unity),

Pμν → 1

μ0λ2

(
QμQν − δμν

Q2

2

)
+ δμν

B2
c

2μ0

= μ0λ
2

(
js,μ js,ν − δμν

j2
s

2

)
+ δμν

B2
c

2μ0
, (27)

which is similar to the momentum flux tensor for an ideal
fluid. From Eqs. (23) and (25), we see that in the region

where W = 0 (dissipation-free region), the divergence-free
condition Eq. (7) holds for the TDGL equation.

C. Boundary value problem of flowing state of single vortex

We consider a superconducting system with infinite exten-
sion along the x and z axes but with a finite thickness along
the y axis, y ∈ [−	y, 	y]. We take the direction of the magnetic
field in equilibrium to be along the z axis and the direction of
transport current far from the vortex to be along the x axis.
All physical quantities are assumed to be uniform along the z
axis. The half thickness 	y is a few times the penetration depth
so that the effect of the image vortex is negligible. We set the
(spatially varying) transport current density near the bound-
ary to be much smaller than the critical current density. We
can then obtain the solution for boundary value problems by
solving the same equations for systems with infinite extension
along y with an accuracy on the linear order of the transport
current. At the end of the next subsection, we evaluate the
condition on the value of 	y and the magnitude of the transport
current for our approach to be valid.

We denote the vortex velocity by v and set the correspond-
ing flux flow solution in the form of the sum of the rigid
translation and the deformation:

X (r, t ) = X0(r − vt ) + X1(r) + O(v2),

X = f , Q, P, . . . . (28)

Here, X0(r) is the equilibrium solution (note that P0 = 0). The
asymptotic forms of Q0(r) and h0(r) for r 	 ξ are given by
(e.g., [44])

Q0(r) ∼ −c(κ )|φ0|K1(r/λ)

2πλ
eθ = Q0(r)eθ , (29)

h0(r) ∼ c(κ )|φ0|K0(r/λ)

2πλ2
ez. (30)

Here, the factor c(κ ) is unity in the London limit but c(κ ) ∼
1.086 for κ = 3, 1.039 for κ = 5, 1.023 for κ = 7, and 1.013
for κ = 10. K0 (K1) denotes the second kind of modified
Bessel function of the zeroth (first) order. With the notation

Xv (r) := −v · ∇X0(r), X = f , Q, P, . . . , (31)

the boundary value problems for f1(r), Q1(r), and P1(r) are
expressed as

∇2P1 − f 2
0 P1

	2
P

= ∇ · Qv = 0, (32a)

LX = g, (32b)

L =
(

Hf , − f0Q0/(μ0λ
2)

− f0Q0/(μ0λ
2), −(

rot rot + λ−2 f 2
0

)/
(2μ0)

)
, (32c)

X =
(

f1

Q1

)
, g = −1

2

(
γ̃ fv
jn

)
, (32d)

Hf = B2
c

μ0

[
ξ 2∇2 −

(
e∗ξQ0

h̄

)2

+ 1 − 3 f 2
0

]
(32e)
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under the boundary conditions

ε1(r � λ) < + ∞, ε1(r 	 λ) → 0, (33a)

| f1(r → 0)| < ∞, f1(r 	 ξ ) ∼ 0, (33b)

|h1(r → 0)| < ∞, h1(r 	 ξ ) ∼ μ0λ( j+ey/λ − j−e−y/λ)ez, (33c)

| j1(r → 0)| < ∞, j1(r 	 ξ ) ∼ ( j+ey/λ + j−e−y/λ)ex ≡ jtr (r), (33d)

which sets the transport current in the x direction far from
the vortex core. The boundary value problem Eq. (32b) has
a solution only when the inhomogeneous term g satisfies the
following condition (solvability condition):

c(κ ) jtr (0) × φ0 = γ̃

∫
dr[∇ f fv + (2π/|φ0|)2 f 2P1Q0]

+
∫

dr jn × h. (34)

The integral on the right-hand side is taken over the entire
2D plane. We discuss this relation (34) at the end of this
subsection.

The right-hand side is determined by v, f0, Q0, P1, and
ε1. P1 and ε1 are proportional to v. Thus, the condition
Eq. (34) imposes a relation between v and parameter j+ +
j− = | jtr (0)| =: jtr in the boundary conditions.

The procedure for solving the flux flow state is as follows:
(1) Set v so that the relation Eq. (34) holds for a given

boundary condition.
(2) Solve Eq. (32a) under the boundary condition

Eq. (33a) to obtain P1.
(3) Obtain ε1 from Eq. (33a) and obtain jn from Eq. (18).
(4) Solve Eq. (32b) under the boundary conditions

Eqs. (33b)–(33d) and obtain f1 and Q1.
We now discuss the solvability condition Eq. (34). This

relation can be derived in essentially the same way as those
for the solvability condition in earlier studies [30,35] for the
large-κ case. Equation (34) is different from those in earlier
studies in two ways. In earlier studies, the factor c(κ ) was set
to unity because c(κ → ∞) = 1 and jtr (0) was replaced by a
uniform supercurrent density far away from the vortex in the
type-II limit.

The procedure for deriving Eq. (34) can be summarized as
follows:

(1) Solve Eq. (32a) under the boundary condition
Eq. (33a) and obtain P1.

(2) Obtain ε1 from Eq. (33a) and obtain jn from Eq. (18).
(3) Integrate the inner product between Eq. (32b) and the

zero mode over the disk region with the vortex core as the cen-
ter. Perform partial integration using the boundary conditions
Eqs. (33b)–(33d) and obtain the transport relation.

Note that the current density jtr (0) on the left-hand side
of Eq. (34) in the present case is a subtle quantity [21]; it is
not the local value of the current density at the vortex core
but rather a value extrapolated into the vortex core from the
region far from the vortex core [see Fig. 2(a)] via the London
equation. For a given state with a flowing vortex located at
r = 0 [Fig. 2(a)], we can prepare the transport current state
[Fig. 2(b)] with the same current density as that of the state
with the vortex [Fig. 2(a)] in the remote region from the vortex

core. Then, jtr (0) is just the local current density j(0) at r = 0
in the transport current state.

Note that the right-hand side of Eq. (34) is the same as that
of the momentum balance relation Eq. (25) and it thus follows
that

lim
R→∞

∮
|r|=R

(Tμν − Pμν )nνd	 → c(κ )( jtr (0) × φ0)μ, (35)

which implies that the expression Eq. (1) for the driving force
in superconductors with κ 	 1 should have a multiplicative
factor c(κ ) for superconductors with finite κ . The existence
of this multiplicative factor has been discussed for the vortex-
vortex two-body interaction [45].

D. Summary of numerical methods

First, we numerically obtain the equilibrium solution to
f0(r) and A0(r) via an iteration method (note that the shooting
method with the Runge-Kutta method is inadequate). The

f(r)

y

h0(r)

j(0)

�

�

jtr(0)

jtr(r) j(r)

f(r)

y

f0(r)jtr(0)

jtr(r)

(a)

(b)

f0(r)

j(r)

j(0)=

FIG. 2. (a) Schematic diagram of the order parameter, the current
density, and magnetic field around a single vortex located at r = 0.
Green solid line denotes the current density on the plane x = 0. Pink
dotted line denotes the current density in the absence of a vortex.
These lines have common asymptotes. Blue-violet and blown lines,
respectively, represent the modulus of order parameter and magnetic
field. (b) Order parameter and current density in the absence of a
vortex. Pink dotted line is the same as that in (a).
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operator ∇2 − f 2
0 /	2

P acting on P1 in Eq. (32a) and the op-
erator L acting on X in Eq. (32d) are axisymmetric and thus
Eqs. (32a) and (32d) can be solved separately in each sec-
tor for f1(r), Q1(r), P1(r) with a definite angular momentum
(= m) around the z axis. The boundary value problem for each
partial wave is solved numerically via hybrid series expansion
near the core and the Runge-Kutta method in other regions.
In the Supplemental Material [42], we explain the reduction
to a one-dimensional problem in the radial direction for each
partial wave and the procedure to solve the boundary value
problem. We retained partial waves up to the angular momen-
tum m = 9 and found that it is sufficient to retain partial waves
up to the angular momentum m = 5.

We consider the case with j+ = j− = jtr/2, where only
odd m contribute.

In the next section, the numerical results are presented in
the following units:

√
2Bc = h̄

e∗λξ
, for h(r), h0(r), (36a)

√
2vBc

v0
, for h1(r), (36b)

√
2vBc, for ε(r), (36c)√
2Bc

μ0λ
=: jc, for j(r), j0(r), (36d)

√
2vBc

μ0λv0
, for j1(r). (36e)

The dimensionless parameters are κ (= λ/ξ ) = 3, 5, 7, 10,
ζ = 1/3, and v/v0 = 0.003 for all figures but v/v0 = 0.05 for
Fig. 5.

We present the results for r � λ on the basis of calcula-
tions for systems with infinite extension along the y, x, and z
directions. However, we can interpret them as the results for
systems with finite thickness 2	y along the y direction if our
solution approximately satisfies the boundary condition

| jy(r)|y=	y � jc. (37)

Our results are the solutions to the TDGL and Maxwell equa-
tions up to O( jtr ) and thus valid when | jtr (y = ±	y)| is much
smaller than the critical current density, i.e.,

jtre
	y/λ � jc. (38)

For each value of κ , the conditions Eqs. (37) and (38) hold
within an error of 1% when

(i) for κ = 3, 	y/λ ∼ 2.3 and jtr/ jc < 1.0 × 10−3, v/v0 <

8.4 × 10−4;
(ii) for κ = 5, 	y/λ ∼ 2.1 and jtr/ jc < 1.3 × 10−3,

v/v0 < 1.4 × 10−3;
(iii) for κ = 7, 	y/λ ∼ 1.8 and jtr/ jc < 1.8 × 10−3,

v/v0 < 2.2 × 10−3;
(iv) for κ = 10, 	y/λ ∼ 1.5 and jtr/ jc < 2.2 × 10−3,

v/v0 < 3.3 × 10−3.

IV. NUMERICAL RESULTS

In Sec. IV A, we present the results for the current den-
sity, electromagnetic fields, and the order parameter as the

basic quantities of the system. We also present the results
for a backflow around the vortex core to confirm the validity
of our result through a comparison with an earlier result.
In Sec. IV B, we show the results for local force densities,
namely the local magnetic Lorentz force density and the local
hydrodynamic force density. We also present the energy flow
and dissipation function. Finally, in Sec. IV C, we show the
momentum flow into the region that contains the vortex. We
take the region to be a cylinder with the axis as the vortex line.
The results show that the sum of the two forces is independent
of the radius R of the cross section of the cylindrical region
when R > λ.

A. Current density, electromagnetic fields, and order parameter

Figure 3(a) shows the spatial distribution of the current
density j0(r) (arrows) and h0(r) (density plot) in equilib-
rium. Figure 3(b) shows j1(r), which is dominated by the
transport current jtr (r) = ( j+ey/λ + j−e−y/λ)ex. Figure 3(c)
shows the normal current density jn(r), which is proportional
to ε(r). The supercurrent density js1(r) shown in Fig. 3(d)
dominates in the distant region and is depleted in the core
region. Figure 4 shows the backflow, which is defined as
j1(r) − jtr (r), and the magnetic field for backflow h1(r) −
htr (r) with htr (r) = μ0λ( j+ey/λ − j−e−y/λ)ez to confirm the
validity of our calculations by a comparison with the results
of Hu and Thompson (Fig. 2 in Ref. [43]). Our results and the
earlier results exhibit similar patterns with a pair of circular
currents near the core. We note that the backflow is one order
of magnitude smaller than jn(r) in the core region. Figure 5
shows the current distribution (arrows) and magnetic field
(density plot). Note that we set v/v0 = 0.05 for this figure to
emphasize the similarity between this figure and Fig. 1 for a
classical fluid.

Figure 6 shows the amplitude of the order parameter.
In Fig. 6(a), f0(r) dominates and thus we extract f1(r) in
Fig. 6(b). We see that f1(r) is negative in front of the moving
vortex (y < 0) and positive behind it (y > 0). This behavior
can be understood on the basis of Eq. (32b) for f1(r). We can
see that

f1(r) ∼ − j0(r) · js1(r)

j2
c

(39)

[ jc is defined in Eq. (36d)] when we assume that

Hf ∼ −2B2
c

μ0
, fv ∼ 0, (40)

in Eq. (32b). The assumption in Eq. (40) holds for the region
farther than ξ from the vortex. In front of the moving vortex
(y < 0), j0(r) and js1(r) are parallel to each other. Behind the
moving vortex (y > 0), the two current densities are antipar-
allel to each other [see Figs. 3(a) and 3(d)]. The numerical
results shown in Fig. 6 and Eq. (39) are thus consistent. This
result is physically reasonable because the local value of the
order parameter amplitude should be more suppressed under
a larger current density.

B. Local force densities, energy flow, and dissipation function

For the local Lorentz force density and magnetic energy
density, we found that the O(v2) terms are negligible for
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√

2vBc
v0

. (c) Normal component of the current density
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v/v0 � 0.01, where the Lorentz force density and magnetic
energy density are dominated by the O(v0) terms j0(r) ×
h0(r) and h0(r)2/(2μ0). The O(v0) term of the magnetic en-
ergy density is axisymmetrically distributed and accordingly
the O(v0) term of the Lorentz force density is oriented in the
radial direction.

To examine the net force and net magnetic pressure in the
region near the vortex core, we present, in Fig. 7, the local
Lorentz force density (arrows) and magnetic pressure (density
plot) subtracted by the O(v0) terms. The local Lorentz force
near the core region is oriented downward. The higher mag-
netic energy density puts more pressure on adjacent regions
than does the lower magnetic energy density and thus the
net magnetic pressure on the region near the vortex is ori-
ented downward. This agrees with the direction of jtr (0) × φ0.
Figure 8 shows the local hydrodynamic force density −∂νPμν ,
where the force density has the same direction as that of the

y
ξ

-10

-5

0

5

10

x ξ
-10 -5 0 5 10

h0+h1 j0+j1

0.30

0.20

0.15

0.25

0.10

0.05

0.18

0.14
0.12

0.16

0.10

0

0.02

0.04

0.06

0.08

FIG. 5. j0(r) + j1(r) (arrow) and h0(r) + h1(r) (density plot) for
κ = 10, ζ = 1/3, and v/v0 = 0.05. Left and right color bars show
values for the magnetic field and current density, respectively, in the
units

√
2Bc and

√
2Bc

μ0λ
.
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local Lorentz force density in the region r � 5ξ but the mag-
nitude of the local hydrodynamic force density is one order
of magnitude larger than that of local magnetic Lorentz force.
In the region r � 5ξ , the two force densities are in opposite
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density [h0(r) + h1(r)]2/2μ0 subtracted by h0(r)2/2μ0 (density plot)
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FIG. 8. Local hydrodynamic force density −∂νPμν for κ = 10,
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λ
.

directions and practically cancel each other. Figure 9 shows
the dissipation function W (r) defined in Eq. (23) (density) and
the O(v2) terms of the energy current density jE (r) defined in
Eq. (22) (arrows). We see that jE (r) is oriented toward the
core region and that the dissipation function W is intense in
the core region r < 2ξ but is distributed in the region r � λ.
In Eq. (23), ε1(r), P1(r), and ∇ f0 are distributed in the regions
up to the distance λ, 	P, and ξ , respectively, and thus the
dissipation region around the vortex core is given by r � λ.

C. Momentum flow into cylindrical region that contains vortex

We examine the magnitude and path dependence of the
magnetic force, Fmag(C), to determine whether this force can
be regarded as the driving force on the vortex and whether it
can account for the full magnitude of the driving force.

We take as C a circle whose center is the vortex core and
plot the radius R dependence of the magnetic Lorentz force
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FIG. 9. Dissipation function W (r) defined in Eq. (23) (density)
and O(v2) terms of the energy current density jE (r) defined in
Eq. (22) (arrows) for κ = 10, ζ = 1/3, and v/v0 = 0.003. Left color
bar shows values for W in the unit 2σnv

2B2
c and right one those of

O(v2) terms of jE (r) in the unit of v2B2
c

v0μ0
.
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FIG. 10. Radius dependence of the hydrodynamic force
Fhydro(C), Eq. (41), magnetic Lorentz force Fmag(C), Eq. (6), and
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Fmag(C) acting on the region surrounded by C in Fig. 10. We
see that the magnetic force depends on the path and does not

reach half c(κ )| jtr (0) × φ0|. On this basis, we confirm that the
magnetic Lorentz force cannot be regarded as the force on the
vortex alone. Let us consider the hydrodynamic force

[Fhydro(C)]μ = −
∮

C
d	Pμνnν (41)

in a similar way. In Fig. 10, Fhydro(C) depends on R and its
magnitude does not reach c(κ )| jtr (0) × φ0|.

In this figure, we see that the sum of the two forces in
Eq. (8) is practically independent of R � λ for κ = 3, 5, 7, 10
and thus can be regarded as the force on the vortex core.
The magnitude of this force coincides with c(κ )| jtr (0) × φ0|
for κ = 3, 5, 7, 10. The effect of the factor c(κ ) is small for
κ = 10 but is visible for κ = 3, 5, 7.

It has been claimed that the driving force jtr × φ0 on the
vortex in the London equation is a purely hydrodynamic force
(e.g., [17] and [46]). However, in Fig. 10, even for κ = 10
(which is a relatively large value), the driving force is not
purely hydrodynamic around R � λ, where the driving force
becomes R-independent.

We also note that the magnitude of the magnetic Lorentz
force is less than half | jtr (0) × φ0| for an arbitrary value
of R. This result can be indirectly tested experimentally, as
discussed in Sec. V D.

V. EXTENSION BASED ON VARIANTS
OF CONVENTIONAL TDGL EQUATION

We discuss the applicability of our conclusion on the driv-
ing force to other types of TDGL equations in Secs. V A and
V B. We then discuss the implication on the multiple-vortex
state and the pinned vortex in Sec. V C. The force on a seg-
ment of a curved vortex line is discussed in Appendix A.

A. Validity of results for conventional TDGL equation

The TDGL equation, shown in Eqs. (16a) and (16b), is
valid only when the pair-breaking mean free time is much
smaller than h̄/�(T ) near Tc [�(T ) is the energy gap for the
excitation in the uniform state]. The region of validity of the
TDGL is small. Here, we demonstrate that our main assertion
regarding the driving force on the vortex holds in the gener-
alized TDGL equation derived by Watts-Tobin, Krähenbühl,
and Kramer [47].

When the mean-free time due to nonmagnetic impurities
τimp is much smaller than h̄/�(T ) but the spin-flip relaxation
time τsf or inelastic mean-free time τE is larger than h̄/�(T ),
the conventional TDGL equation [Eqs. (16a) and (16b)] is
replaced by the following set of equations (generalized TDGL
equation):

γ ( f ) ∂ f

∂t
= ξ 2∇2 f −

(
e∗ξQ

h̄

)2

f + f − f 3, (42a)

∇ · js = γ (χ ) f 2P

μ0λ2ξ 2
, (42b)

with

γ ( f ) = γ
[
1 + 4τ 2

E�(T )2 f 2/h̄2
] 1

2 ,

γ (χ ) = γ
[
1 + 4τ 2

E�(T )2 f 2/h̄2
]− 1

2 . (43)
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Here we assume that τsf 	 τE . The symbols γ ( f ) and γ (χ ),
respectively, represent the relaxation times for the amplitude
and phase of the order parameter. When τE�(T )/h̄ � 1,
γ ( f ) ∼ γ (χ ), and Eqs. (42a) and (42b) reduce to the conven-
tional TDGL equation [Eqs. (16a) and (16b)].

Correspondingly, the momentum balance relation Eq. (25)
for the conventional TDGL equation is replaced by

∂ν (−Pμν + Tμν ) + γ̃ ( f )∂μ f ∂t f

− γ̃ (χ )(2π/|φ0|)2 f 2PQμ − ( jn × h)μ
= 0. (44)

In the dissipation-free region, ∂t f ∼ 0, P ∼ 0, jn ∼ 0, and
Eq. (44) reduces to Eq. (7), from which the path independence
of the total force Eq. (8) follows and the driving force on the
vortex becomes well defined.

B. TDGL equation allowing for Hall effect

In the conventional TDGL equation and the generalized
TDGL equation in the previous subsection, the vortex flows
perpendicular to the magnetic field and transport current;
i.e., the Hall effect cannot be described. The conventional
TDGL equation has been generalized so that the Hall effect
can be discussed by introducing a complex relaxation time
γ → γ + iγ ′. The flux flow Hall conductivity was discussed
with this variant of the TDGL equation in [35,36]. In this
subsection, we discuss how the momentum balance relation
and the force on the vortex are modified in this variant of the
TDGL equation and show that our results on the driving force
still hold.

In this variant of the TDGL equation, Eqs. (16a) and (16b)
are respectively modified as

γ
∂ f

∂t
− γ ′ e

∗P f

h̄
������

= ξ 2∇2 f −
(

e∗ξQ
h̄

)2

f + f − f 3 (45)

and

∂ρs

∂t
���

+ ∇ · js = γ̃

(
2π

|φ0|
)2

f 2P, ρs := − γ ′h̄ f 2

2μ0e∗λ2ξ 2
. (46)

Here, the new terms are underlined (all new terms are un-
derlined in this subsection). The momentum balance relation
Eq. (25) is then modified as

∂t (−ρsQμ)
��������

+ ∂ν

(
P′

μν
���

− Tμν

)

= ρsεμ
���

+ γ̃ ∂μ f ∂t f − γ̃

(
2π

|φ0|
)2

f 2PQμ − ( jn × h)μ,

(47)

with

P′
μν = Pμν − δμνρsP

�����
. (48)

We see that Eq. (47) is reduced to Eq. (25) when ρs = 0.
Equation (47) consists of the stock term (first term on the
left-hand side), flow term (second term on the left-hand side),
and sink (right-hand side) of the momentum density. The
flow term and sink, respectively, correspond to the driving

force and the environmental force. There is no consensus
on whether the stock term should be assigned to the driving
force or the environmental force. We remark that the driving
force obtained from this variant of the TDGL equation is the
same as that obtained in the conventional TDGL equation. The
additional term (−ρsP) in the momentum flux tensor does not
contribute to the driving force, because P practically vanishes
in the dissipation-free region.

Rewriting Eq. (47) and integrating both sides yield the
force balance relation

c(κ ) jtr (0) × φ0 = γ̃

∫
dr(∇ f fv + (2π/|φ0|)2 f 2PQ0

��������������
)

+
∫

dr jn × h,−
∫

dr(Q0∂tρs − P∇ρs)
��������������

,

(49)

which reduces to Eq. (34) when we set ρs = 0 (γ̃ ′ = 0). The
three underlined terms contribute to the η2 term in Eq. (4).
The second term on the right-hand side on the first line does
not depend on ρs or γ̃ ′; however, the equation used to solve
P contains ρs and thus P is modified so that it contributes to
the η2 term. The η2 term in the environmental force Eq. (4)
is responsible for the Hall effect. At the early stage of some
discussion of the Hall effect in superconductors, this term was
introduced in [46,48] as a Magnus-type force with a reduced
amplitude. The authors of [48] did not show the origin of
this force. We thus emphasize that the force η2ez × v does
not originate from momentum transfer from the distant region
(dissipation-free region) to the core region.

C. Driving force on pinned vortex, size of core region,
and multiple vortices

The present scheme is applicable for deriving the driving
force on a vortex pinned by a columnar defect parallel to the
z axis. For such a vortex, the TDGL equation [Eqs. (16a) and
(16b)] is replaced by the static Ginzburg-Landau equation

U (r) f = ξ 2∇2 f −
(

e∗ξQ
h̄

)2

f + f − f 3, (50a)

∇ · f 2Q = 0. (50b)

Here, U (r) denotes a uniform pinning potential along the z
axis. From Eqs. (50a), (50b), and the Ampère law Eq. (17),
the momentum balance relation for the pinned vortex is

∂ν (Tμν − Pμν ) + U (r) f ∂μ f = 0. (51)

We see that the relation ∂ν (Tμν − Pμν ) = 0 holds in the
region where the pinning potential is zero. We refer to this
region as the pinning-free region. It follows that the sum of
the hydrodynamic force and the magnetic force acting on the
region surrounded by the closed loop C does not depend on the
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FIG. 11. Setup for calculation of the force on the Pearl vortex in
a 2D superconductor. The transport magnetic field in the z direction
is perpendicular to the wide surface of the slab. The transport current
flows uniformly in the x direction and varies along the y axis. The
closed surface S consists of the surface S+, bottom S−, and side S′.
The normal vector S points outward.

choice of C but depends on the winding number of C around
the vortex center. Under the same boundary condition as that
for the flow state, the path-independent driving force on the
pinned vortex is given by c(κ ) jtr (0) × φ0.

A crucial difference between flowing and pinned vortices
is the different conditions required for the driving force on
the vortex to be well defined. We saw in Fig. 10 that the
path-independent force is realized when the radius R is larger
than λ. For the pinned vortex, the path-independent force can
be defined when the radius R is larger than the range of the
pinning potential. This implies that the (path-independent)
driving force on the flowing vortex lattice can be defined only
when the intervortex distance is larger than λ; this condition is
realized in the external field near the lower critical field Hc1.
In contrast, the (path-independent) driving force on the pinned
vortex lattice is well defined when the intervortex distance
is larger than the range of the pinning potential. When the
range of the pinning potential is on the order of ξ or smaller,
this condition is realized practically in all field ranges of the
magnetic field lower than the upper critical field Hc2.

VI. FORCE ON PEARL VORTEX

This paper mostly focuses on the force on a vortex in three-
dimensional (3D) superconductors (with a demagnetization
factor of zero). Quantum vortices also play an important role
in 2D superconductors. We thus consider the driving force
on a pinned vortex in 2D superconductors, namely the Pearl
vortex, with the London equation for the outside of the core
region within a distance of rc = O(ξ ) from the vortex. At the
end of this section, we briefly discuss the driving force on a
flowing Pearl vortex.

We consider a superconductor with a slab thickness d that
is much smaller than λ. The areal dimension of the slab is
taken to be infinite. We set the normal direction of the slab to
be along the z axis. We express the position vector in 3D space
as r = r⊥ + zez with r⊥ · ez = 0. We consider that the current
density is uniform along the z direction for |z| < d/2 (see
Fig. 11). We can obtain the vector potential via the Maxwell-

London equation [38]

∇2A = −μ0 js = 2δ(z)

λeff
(−� + A), (52)

� = h̄

e∗r⊥
eθ = h̄

e∗ ez × r⊥
r⊥

, (53)

with the effective penetration depth λeff = 2λ2/d in 2D super-
conductors [38]. We assume that rc � λeff . The momentum
flow in the core region is O((rc/λeff )2). It is thus ignored in
the following. We seek the solution to Eq. (52) in the presence
of a transport current. We derive the magnetic field h(r⊥, z)
and the current density j(r⊥, z) from the vector potential, with
which we can calculate the inward flow of hydrodynamic
momentum into the region V through the surface S (= ∂V ),

[Fhydro(S)]μ = −
∮

S
dSPμνnν, (54)

with Eq. (27) and the inward flow of magnetic momentum into
the region V through the surface S,

[Fmag(S)]μ =
∮

S
dSTμνnν, Tμν = 1

μ0

(
hμhν − δμν

2
h2

)
.

(55)
It follows that for V ⊂ V ′,

Fhydro(S = ∂V )μ + Fmag(S = ∂V )μ (56)

= Fhydro(S′ = ∂V ′)μ + Fmag(S′ = ∂V ′)μ, (57)

from the relations ∂νPμν = ( j × h)μ and ∂νTμν = ( j × h)μ,
which hold in the London and Maxwell equations, respec-
tively. When we take V to be the core region (i.e., r⊥ ∼ 0
and z ∼ 0), the sum of the two forces Fhydro(S′) and Fmag(S′)
does not depend on the choice of V ′ so long as V ⊂ V ′ is
satisfied. Thus, the sum of the two forces is not exerted on
the region V ′ − V ; it is only exerted on the core region V . In
2D superconductors, the driving force on a vortex consists of
the hydrodynamic force and the magnetic Lorentz force, as is
the case for 3D superconductors.

It is important to determine how much Fhydro(S) or Fmag(S)
contributes to the driving force on the vortex in 2D super-
conductors. We consider this issue more explicitly below. Our
goal is to derive the expressions for the hydrodynamic force
Eq. (78) and the magnetic force (79), which are shown in
Fig. 12, and discuss their implications.

The solution to Eq. (52) in the presence of a transport
current is given by the sum of Atr (r⊥, z) and APearl(r⊥, z).
Here, Atr (r⊥, z) is a solution to the homogeneous equation

∇2A + 2δ(z)

λeff
A = 0 (58)

that describes the transport current without a vortex.
APearl(r⊥, z) is the solution to Eq. (52) in the absence of a
transport current.

We see that

Atr (r⊥, z) = A1

(
1 + |z|

2λeff

)
ex (59)
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FIG. 12. Force on Pearl vortex in a 2D superconductor with
thickness d that is much smaller than the penetration depth λ. Cal-
culation is based on the Maxwell-London equation Eq. (52), namely
the radial dependence of the hydrodynamic force Eq. (54) and the
magnetic force Eq. (55) on the vortex in the presence of the transport
current jtr . The characteristic scale λeff = 2λ2/d is the effective
magnetic screening length in the 2D superconductor. The top panel
(a) shows the spatial range on the order of R ∼ λeff and the bottom
panel (b) shows the results in a much wider range of R.

is one of the solutions to Eq. (58). From Eq. (59), the magnetic
field

htr (r⊥, z) = ∇ × Atr (r⊥, z) = A1sgn(z)

2λeff
ey (60)

and the current density

jtr (r⊥, z) = 1

μ0
∇ × htr (r⊥, z) = −ex

A1

μ0λeff
δ(z) (61)

follow. Equation (61) shows that the solution Eq. (59)
describes the transport current in the absence of a vor-
tex. For later convenience, we introduce the notation jtr =
−A1/(μ0λeffd ) and respectively write Eqs. (60) and (61) as

htr (r⊥, z) = −μ0 jtrd

2
sgn(z)ey, jtr (r⊥, z) = jtrdδ(z)ex.

(62)
The Pearl solution (isolated vortex in the absence of a

transport current) is given by

APearl(r⊥, z) = eθA(r⊥, z) (63)

with

A(r⊥, z) = |φ0|
∫ ∞

0

dq⊥
2π

e−q⊥|z|J1(q⊥r⊥)

(1 + λeffq⊥)
. (64)

From Eqs. (63) and (64), we can derive the magnetic
field hPearl(r⊥, z) = hr⊥(r⊥, z)er⊥ + hz(r⊥, z)ez = ∇ × APearl

and the current density j, as shown in Appendix B.
The physical quantities necessary to calculate the driving

force on a vortex are listed below. The current density is given
by

jPearl(r⊥, z) = δ(z)eθ j2D(r⊥), (65)

j2D(r⊥) = |φ0|
πμ0λ

2
eff

[
λeff

r⊥
− ϑ

( r⊥
λeff

)]
, (66)

with∫ ∞

0

J1(sx)

1 + s
ds = π

2

[
H−1(x) − N−1(x) + 2

πx

]
≡ ϑ (x),

(67)

where Jn(x), Hn(x), and Nn(x) respectively denote the nth-
order Bessel function, nth-order Struve function of the first
kind, and nth-order Neumann function. The radial and z com-
ponents of the magnetic field near z = 0 are given by

hr (r⊥, z → ±0) = ± |φ0|
2πλ2

eff

[
λeff

r⊥
− ϑ

( r⊥
λeff

)]
, (68)

hz(r⊥, 0) = |φ0|
2πλ2

eff

�
( r⊥
λeff

)
, (69)

with

� (x) ≡ 1

x

d

dx
[xϑ (x)] (70)

= 1

x
+ π

2
[−H0(x) + N0(x)], (71)

as derived in Appendix B.
We are now ready to calculate the force on the vortex. We

take the region V that contains the vortex as

V = {(r⊥, z)|r⊥ � R, |z| � d/2} (72)

and decompose the surface S of V as

S = S+ ∪ S− ∪ S′, (73)

with

S± = {(r⊥, z)| r⊥ � R, z = ±d/2}, (74)

S′ = {(r⊥, z)| r⊥ = R, |z| � d/2} (75)

(see Fig. 11). The normal vectors are n = ±ez on S± and n =
er⊥ on S′. For the hydrodynamic force Eq. (54), the surfaces
S± do not contribute and thus

[Fhydro(S)]μ = −
∫

S′
dSPμνnν . (76)

In the integral over S′, we replace the expressions for the
current densities in Eqs. (62) and (65) with

jtr (r⊥, z) = jtrex�

(
d

2
− |z|

)
, (77a)

jPearl(r⊥, z) = eθ j2D(r⊥)�

(
d

2
− |z|

)
, (77b)
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with the Heaviside’s step function �(x) = 1 for x > 0 and
0 otherwise. Substituting Eqs. (77a) and (77b) into Pμν in
Eq. (76) yields

Fhydro(S) = −ey jtr|φ0|d
[
1 − R

λeff
ϑ

( R

λeff

)]
. (78)

For Fmag(S), the contribution from S′ is O(d2) and thus neg-
ligible. The contributions from S+ and S− are equal. Substi-
tuting h(r⊥, z = +0) = htr (r⊥, z = +0) + hPearl(r⊥, z = +0)
with the expressions for magnetic fields in Eqs. (69) and (62)
into Eq. (55) yields

Fmag(S) = −ey jtr|φ0|d
R

λeff
ϑ

( R

λeff

)
. (79)

From Eqs. (78) and (79), we confirm that both Fhydro(S)
and Fmag(S) depend on the radius R but the sum of the two
forces

F tot (S) = Fhydro(S) + Fmag(S) = −ey jtr|φ0|d (80)

does not depend on R. This observation demonstrates that
only the sum of the two forces can be regarded as the force
on the vortex. Figure 12 shows the radial dependence of
|F tot (S)|, |Fhydro(S)|, and |Fmag(S)|. The asymptotic behavior
of |Fhydro(S)| is given by

|Fhydro(S)|
jtr|φ0|d

∼
{

1 − R
λeff

, for R � λeff ,
λeff
R , for λeff � R,

(81)

and

|Fmag(S)|
jtr|φ0|d

∼
{ R

λeff
, for R � λeff ,

1 − λeff
R , for λeff � R,

(82)

from that of ϑ (x),

ϑ (x) ∼
{

1 + x
2 ln

(
xeγ− 1

2

2

)
+ O(x2), for 0 < x � 1,

1
x + O(x−2), for 1 � x.

(83)

We note that |Fhydro(S)| dominates |Fmag(S)| for R � λeff

and |Fmag(S)| dominates |Fhydro(S)| for R 	 λeff . This is
in contrast to the 3D case, where |Fhydro(C)| is larger than
|Fmag(C)| for all ranges of R and the magnitudes of the two
forces approach each other for large R.

The difference from the 3D case stems from (i) the trans-
port current being uniform and (ii) the superconductor being
2D while the magnetic field exists both outside and inside the
superconductor.

The radial dependence of the driving force on the Pearl vor-
tex can be understood on the basis of the asymptotic behavior
of the current density and magnetic field:

j2D(r⊥) ∼
⎧⎨
⎩

|φ0|
πμ0λeff r⊥

, ξ � r⊥ � λeff ,

|φ0|
πμ0r2

⊥
, λeff � r⊥,

(84)

hz(r⊥, 0) ∼
⎧⎨
⎩

|φ0|
2πλeff r⊥

, ξ � r⊥ � λeff ,

|φ0|λeff

πr3
⊥

, λeff � r⊥,
(85)

hr (r⊥, z → ±0) ∼
⎧⎨
⎩

± |φ0|
2πλeff r⊥

, ξ � r⊥ � λeff ,

± |φ0|
2πr2

⊥
, λeff � r⊥.

(86)

Equations (84) and (86) follow from Eq. (83). Equation (85)
follows from

� (x) ∼
{

1
x + ln

(
xeγ

2

) + O(x), for 0 < x � 1,

2
x3 + O(x−5), for 1 � x.

(87)

First, consider the case R � λeff . The transport current is
uniform and the current density Eq. (84) has the same form as
that for the 3D case at short distance R � λ. The z component
of the magnetic field Eq. (86) has the same r⊥ dependence as
Eq. (84) for R � λeff . However, hz(r⊥, z) contributes to the
force through S±. Integration over the disk region S± gives the
additional factor R, which makes the magnetic contribution
small compared to the hydrodynamic contribution through S′.

Next, consider the case R 	 λeff , where the current density
Eq. (84) decays faster than 1/r⊥ owing to the screening effect.
The transport current is uniform and thus the hydrodynamic
contribution diminishes at large distance R 	 λeff . This is in
marked contrast to the 3D case, where the exponential decay
of the circular current density is compensated by the expo-
nential spatial dependence of the transport current density.
Consequently, the hydrodynamic contribution to the force on
the vortex remains even at large distance R 	 λ in the 3D
case.

The lost hydrodynamic contribution is compensated by the
magnetic contribution through S±. At a larger distance, the
integral over the disk region gives a larger contribution than
that over the side surface S′. Thus, the difference in the spa-
tial dimensionality in superconductors (2D) and the magnetic
field distribution (3D) also accounts for the different radial
dependence of the driving force on a vortex in the 2D and 3D
cases.

In this section, we have discussed the driving force on the
pinned Pearl vortex. For the flowing Pearl vortex, the size of
the core region (where dissipation occurs) rc is on the order of
λeff . In this case, the magnetic contribution to the momentum
flow through the surface and the bottom,

S±(rc) = {[r⊥, z|r⊥ � rc, z = ±d/2}, (88)

is not negligible. These surfaces belong to the core region,
where the London equation is not valid. Thus, the deriva-
tion of the driving force on the flowing Pearl vortex requires
consideration beyond the London equation. This situation is
similar to that for the flowing deformed vortex in 3D super-
conductors discussed in Appendix A.

VII. DISCUSSION

We first discuss the underlying relation between the driving
force and the topological number of vortices in Sec. VII A. We
also remark on the Berry phase approach. In Sec. VII B, we
propose an experiment that shows that the magnetic Lorentz
force does not have the full amplitude expected as the driving
force on vortices. In Sec. VII C, we discuss future theoretical
issues.

A. Relation between driving force and topological
number of quantum vortices

We discuss the underlying physics of the driving force on
a vortex in superconductors via a comparison with neutral
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superfluids. In neutral superfluids, the circulation is quantized
around a quantum vortex,∮

C
d� · vs(r) = ±2π h̄

m
, (89)

where vs(r) is the superfluid velocity and m is of mass of
particles. This relation leads to

∇ × vs(r) = 0 (90)

in the dissipation-free region. It follows from Eq. (90) that
the momentum flux tensor Pμν is divergence-free and that the
integral of Pμν Eq. (5) is path-independent and thus eligible
as a force on the vortex.

In superconductors, instead of the circulation Eq. (89),
London’s fluxoid [39] is quantized,∫

dS · h(r) + μ0λ

∮
C(=∂S)

d� · js(r) = ±|φ0|, (91)

when C belongs to the stress-free region. This relation leads
to the London equation

∇ × j(r) = h(r)

μ0λ2
(92)

in the stress-free region. It then follows from Eq. (92) that
neither Tμν nor Pμν but rather the combination Tμν − Pμν

is divergence-free and that the integral of the sum of the two
tensors is path-independent and thus eligible as a force on the
vortex. We can see that different driving forces on the vortices
in the two systems result from different quantum numbers that
characterize the quantum vortices [Eqs. (89) and (91)] or the
different local relations [Eqs. (90) and (92)].

This observation leads us to conclude that the nature of the
driving force on quantum vortices is nontrivial in superfluids
(superconductors) where the irrotational condition (London
equation) is modified. One of the examples is the Mermin-Ho
vortex in the A phase of the superfluid 3He [49], where the
irrotational condition Eq. (90) does not hold. We will discuss
the driving force on these vortices and related topological
objects in superfluids and superconductors in a separate paper.

So far we have discussed the driving force on quantum
vortices based on the TDGL equation and its variants for
rectilinear vortices in 3D superconductors (Sec. V) and the
London equation for the Pearl vortex (Sec. VI) and a curved
vortex (Appendix A). In the approach of Ao and Thouless
[17], the force

2π h̄ns(vs − vv) × ez (93)

on a vortex toward the z axis was derived with use of the Berry
phase, which is the phase that a many-body wave function
acquires after an adiabatic motion of a vortex. Here, ns, vs,
and vv respectively denote the superfluid density, superfluid
velocity, and vortex velocity.

The Berry phase approach is valid at zero temperature,
whereas the TDGL equation is valid near the transition tem-
perature. The two approaches are thus complementary. In
Eq. (93), the term proportional to vs corresponds to the driving
force in our definition, becoming the same [up to the multi-
plicative factor c(κ )] as the driving force in our results if vs

is properly defined and the effect of the superfluid velocity by
the vortex [Q0(r) in the notation of the present paper] is taken

into account in the Berry phase calculation. The multiplicative
factor c(κ ) implies that the force derived by the Berry phase
approach is not a purely hydrodynamic force.

B. Proposed experiment

It is possible to experimentally test some of our theoretical
results if the local magnetic field and the local current density
can be measured experimentally (e.g., via SQUID microscopy
[50,51]) in the following way:

(1) Allow an external current to flow through a supercon-
ductor without a vortex. Measure the spatial current density
jtr (r).

(2) Allow the same external current to flow through the su-
perconductor with a pinned vortex (whose location is denoted
by r0) so that the current density is asymptotically the same as
that in the previous setup.

(3) Measure the local value of the magnetic field on a con-
tour C surrounding the pinned vortex. Calculate the magnetic
pressure Fmag(C) on the region surrounded by C via Eq. (6).

(4) Confirm that |Fmag(C)| is smaller than half
c(κ )| jtr (r0)||φ0|. When C is sufficiently away from the
core, |Fmag(C)| is close to 1

2 c(κ )| jtr (r0)||φ0|.
By showing that the magnetic pressure (Maxwell stress)

does not reach the full value of the driving force, we will
provide evidence that the driving force on the vortex is not
purely the Lorentz force. In the above experiment, local mag-
netic measurements on the vortex core are unnecessary; this
requires local measurements of the magnetic field on the con-
tour in the peripheral region at a distance on the order of λ

from the vortex core.
This experiment is possible using SQUID microscopy

[50,51]. For example, the local magnetic field induced by the
transport current I = 10 μA was measured for a supercon-
ducting Nb film (thickness: 420 nm; width: 5 μm) at 4.2 K
using SQUID-on-tip technology [50]. The measured values,
which were typically 1 μT, agreed with the theoretical values.
The spatial resolution, determined by the pixel size, is on the
order of nanometers, which is much smaller than the pene-
tration depth λ = 105 nm for Nb film at 4.2 K. The typical
value of the current density in this experiment was 5 × 106

A/m2, which is much smaller than jc := √
2Bc/(μ0λ) ∼ 1012

A/m2 (we assume that κ ∼ 1 for Nb); i.e., the transport cur-
rent density was much smaller than jc. Further, the width of
the film corresponds to 	y/λ ∼ 2.5 and hence our argument
is applicable. The local measurements of the magnetic field
under the same transport current in the presence of a pinned
vortex will yield clear evidence on the nature of the driving
vortex on a quantum vortex.

C. Future issues

One future issue is the driving force on a vortex caused by a
temperature gradient. In the 1960s, the Nernst effect in alloys
of InPb was observed to be three orders of magnitude larger
than that in the normal state [52]. This large Nernst effect has
been attributed to the motion of a vortex.

For this process, the force balance relation (per unit length
along the vortex axis) is given in the form [53]

−sφ∇T + Fenv = 0 (94)
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with Eq. (4). Here, the first term represents the driving force,
where sφ denotes the transport entropy, which is generally
different from the thermodynamic entropy. This thermal driv-
ing force is from a hotter region toward a colder region;
this direction of the force can be understood from the larger
entropy density around the vortex compared to that in the sur-
rounding region [53]. The values of sφ have been determined
experimentally [52] and theoretically [54–58]. The theoretical
and experimental results are in qualitative agreement [53].
In a theoretical paper [59], however, earlier theories [55–57]
were criticized and the technical difficulty of constructing an
explicit expression for the heat current operator was pointed
out. Thus, the derivation of Eq. (94) for general cases and
the development of a numerical algorithm for calculating the
transport entropy remain open issues. The momentum balance
relation and partial wave expansion adopted in the present
paper will be helpful for these tasks.

The interplay between vortex motion and the spin current
will be important in future spintronics. Among the emergent
particles in various condensed phases, quantum vortices in
superconductors are advantageous in controllability of mo-
tion by several currents, such as electric, thermal, and spin
currents.

VIII. CONCLUSION

We investigated the origin of the driving force on a vor-
tex in superconductors using the momentum flux tensor,
Maxwell stress tensor, and numerical solutions of the TDGL
and Maxwell equations. The numerical results show that the
driving force on a rectilinear vortex in 3D superconductors is
well defined only when a dissipation-free region for a flowing
vortex exists in the superconductor and surrounds the vortex.
We demonstrated the applicability of our results on the driving
force to a flowing vortex in the generalized TDGL equation
and the TDGL equation that allows for the Hall effect and a
pinned vortex. We discussed the driving force on the Pearl
vortex in 2D superconductors and a curved vortex in 3D
superconductors.

The driving force on a quantum vortex in superconductors
is neither purely hydrodynamic nor magnetic. This composite
property originates from the fact that none of circulation and
magnetic flux but the London’s fluxoid is the topological
number characterizing the vortex in superconductors.

The construction of the expression for the driving force on
other types of topological object in quantum matter is a topic
for future studies. The study of the driving force on a vortex
in superconductors caused by a temperature gradient and the
spin current is also important. The magnetic Lorentz force
contributes less than half of the driving force. We proposed
an experiment for confirming that the magnetic Lorentz force
alone cannot account for the driving force on a vortex in
superconductors.
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APPENDIX A: FORCE ON DEFORMED VORTEX

In this Appendix, we calculate the force on a curved vortex
in the pinned state and discuss the force in the flow state. We
show that the driving force on the pinned vortex is not purely
hydrodynamic even when κ 	 1. The equation of motion of
the curved vortex was given in [30,33,35]. We assume that the
deformation of the vortex line slowly varies over the scale of
the dissipation region or the range of the pinning potential.

We parametrize the shape of the vortex line with r = r(s)
with s as the length along the vortex line. The region where the
dissipation or pinned potential is nonzero is referred to as the
core region. We model the core region as a vortex tube with a
cross section of radius rc. Outside the core region, we assume
that the London equation generalized to include the effect of
the vortex line holds:

∇2h(r) + h(r)

λ2
= |φ0|

λ2

∫
ds

dr(s)

ds
δ(r − r(s)). (A1)

A solution to Eq. (A1) is given by

h0(r) = − |φ0|
4πλ2

∫
ds

dr(s)

ds

e−|r−r(s)|/λ

|r − r(s)| , (A2)

from which the expression for the current density

j0(r) = − |φ0|
4πμ0λ2

∇ ×
∫

ds
dr(s)

ds

e−|r−r(s)|/λ

|r − r(s)| (A3)

follows. The solution to Eq. (A1) in the presence of a spatially
varying transport current

jtr (r) = ( j+ey/λ + j−e−y/λ)ex (A4)

is given by

h(r) = h0(r) + htr (r) (A5)

with

htr (r) = μ0λ( j+ey/λ − j−e−y/λ)ez. (A6)

We assume that the vortex line varies slowly over the scale of
λ; i.e.,

	(s) :=
∣∣∣∣d2r(s)

ds2

∣∣∣∣−1

	 λ. (A7)

For a position r, let r(s) be the closest point to the given r.
The magnetic field Eq. (A2) and the current density Eq. (A3)
at position r within the distance rc < |r − r(s)| � 	(s) from
the vortex line are those around the straight vortex line with
the direction of dr(s)/ds := ez′ ,

h0(r) = |φ0|
2πλ2

K0

( |r − r(s)|
λ

)
ez′ , (A8)

j0(r) = |φ0|
2πλ3μ0

K1

( |r − r(s)|
λ

)
eθ ′ (A9)

with

eθ ′ := ez′ × r − r(s)

|r − r(s)| . (A10)

We consider the force on a segment of the vortex line dr(s)
ds �s.

Let S(R) be the closed surface that consists of the surface
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ez'  =dr/ds

ey'

ex'

ez'
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�
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R
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dr
ds�s

dr
ds�s

 r-r(s)

FIG. 13. Local Cartesian coordinates for the calculation of the
force on a segment of the vortex line. The transport current flows in
the x direction and varies along the y axis. The transport magnetic
field htr points along the z direction and varies along the y axis. The
z′ direction is parallel to the tangential direction along the vortex
line at r(s). Here, s is the length along the vortex line. The closed
surface S = S+(R; s + �s) ∪ S−(R; s + �s) ∪ S′(R; s, s + �s) sur-
rounds the segment of the vortex line. The normal vector S points
outward.

S+(R, s + �s), bottom S−(R, s), and side S′(R, s, s + �s)
(see Fig. 13). Here, we introduce the notation

S±(R; s) = {r|r ∈ C(R′; s);∃ R′ ∈ [0, R]},
with the normal vector n± = ±ez′ ,

S′(R; s1, s2) = {r|r ∈ C(R; s′);∃ s′ ∈ [s1, s2]},
with the normal vector n′ = r − r(s)

|r − r(s)| ,

and C(R; s) =
{

r|[r − r(s)] ⊥ dr(s)

ds
, |r − r(s)| = R

}
.

We also give an explicit relation between two Cartesian coor-
dinates:

ez′ = exsαcβ + eysαsβ + ezcα, (A11)

ey′ = ez′ × ex

|ez′ × ex| = eycα − ezsαsβ√
1 − s2

αc2
β

, (A12)

ex′ = ey′ × ez′

= ex
(
c2
α + s2

αs2
β

) − eys2
αsβcβ − ezsαcαcβ√

1 − s2
αc2

β

(A13)

with sα = sin α, cα = cos α, sβ = sin β, cβ = cos β.

First, we consider the pinned vortex and assume that rc =
O(ξ ) � λ. We find that the hydrodynamic contribution to the
momentum flow through the side surface S′(rc; s, s + �s) is
given by

−μ0λ
2
∫

S′(rc;s,s+�s)
dS

(
j(r) j(r) · n′ − j(r)2n′

2

)

= rc

λ
K1

( rc

λ

)
I0

(
r′

c

λ

)
jtr(r(s)) ×

(
|φ0|

dr(s)

ds
�s

)
(A14)

with

r′
c = rc

√
1 − s2

αs2
β. (A15)

Here Im(r) denotes the first-kind modified Bessel function of
mth order. The hydrodynamics contribution Eq. (A14) be-
comes

jtr(r(s)) ×
(

|φ0|
dr(s)

ds
�s

)
(A16)

with the use of

lim
x→0

xK1(x)I0(x) → 1. (A17)

The magnetic contribution to the momentum flow through
the side surface is given by

1

μ0

∫
S′(rc;s,s+�s)

dS

(
h(r)h(r) · n′ − h(r)2n′

2

)

= −�sey( jtr(r(s))|φ0|)
rc

λ
K0

( rc

λ

)
I0

(
r′

c

λ

)
cα√

1 − s2
αs2

β

,

(A18)

which is negligible when rc � λ, as shown with the use of

lim
x→0

xK0(x)I0(x) → 0. (A19)

The momentum flow through S+(rc, s + �s) and S−(rc, s)
cannot be directly calculated, because these surfaces belong to
the core region, where the London equation is not applicable.
However, we can show that these contributions are negligible
when rc � λ.

The electromagnetic fields are bounded in the core region
and thus the magnetic contribution to the momentum flow
through S+(rc, s + �s) and S−(rc, s) is proportional to r2

c and
thus O((rc/λ)2), which is negligible when rc � λ.

To estimate the hydrodynamic contribution to the momen-
tum flow through S+(rc, s + �s) and S−(rc, s), we assume
that the Ginzburg-Landau theory holds in the core region and
that the momentum flux tensor has the form Eq. (26) (note
that the form of the momentum flux tensor of the equilibrium
Ginzburg-Landau equation is the same as that for the TDGL
equation). Among the factors in Pμν , only Q0 (=Q in the
absence of a transport current) can be singular. In the case
discussed in this Appendix, Q0 ∝ 1/|r − r(s)|. The net con-
tribution to the momentum flow comes from the terms O( jtr )
and thus the singularity relevant to our calculation comes from
at most Q0Q1 ∝ 1/|r − r(s)|. Here, Q1 = Q − Q0. Thus, the
hydrodynamic contribution to the momentum flow through
S+(rc, s + �s) and S−(rc, s) is proportional to rc and thus
O((rc/λ)), which is also negligible when rc � λ.
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We find that the driving force on the segment of the vortex
line through the surface S(rc) is given by Eq. (A16) with the
accuracy O((rc/λ)). The hydrodynamic contribution through
the side surface is dominant. When we consider momentum
flow through S(R; s), S+(R; s + �s), and S−(R; s), the bottom
as well as side S′(R; s, s + �s) contribute. The resultant force,
as expected, is the same as Eq. (A16) but the relative contri-
bution depends on R. The magnetic contribution is given by

Fmag(R) = RK0
(

R
λ

)
I1

(
R′
λ

)
λ
√

1 − s2
αs2

β

jtr(r(s))

×
(

|φ0|
dr(s)

ds
�s

)
+ F ′(R), (A20)

where F ′(R) is zero when sαsβ = 0, otherwise

F ′(R) = −ez jtr(r(s))|φ0|�s

sαsβ

×
⎡
⎣R

λ
K1

(R

λ

)
I0

(
R′

λ

)
+ R

λ
√

1 − s2
αs2

β

× K0

(R

λ

)
I1

(
R′

λ

)
− 1

]
. (A21)

The hydrodynamic contribution to the force on the segment is

Fhydro(R) = jtr(r(s)) ×
(

|φ0|
dr(s)

ds
�s

)
(A22)

− RK0
(

R
λ

)
I1

(
R′
λ

)
λ
√

1 − s2
αs2

β

jtr(r(s))

×
(

|φ0|
dr(s)

ds
�s

)
− F ′(R). (A23)

When sαsβ = 0, i.e., the vortex is perpendicular to the trans-
port current, the two contributions respectively become

Fhydro(R)

= jtr(r(s)) ×
(

|φ0|
dr(s)

ds
�s

)(
1 − RK0

(
R
λ

)
I1

(
R
λ

)
λ

)
,

(A24)

Fmag(R) = jtr(r(s)) ×
(

|φ0|
dr(s)

ds
�s

)
RK0

(
R
λ

)
I1

(
R
λ

)
λ

.

(A25)

In this case, each force has the proper direction and the relative
weight depends on R. When sαsβ �= 0 (the segment of the
vortex line is not perpendicular to the transport current), the
term F ′(R) is nonzero and none of them has the proper direc-
tion. This demonstrates that only the sum of the two forces is
physically meaningful as the driving force on the segment of
the vortex line. In other words, the driving force on the vortex
segment is not purely hydrodynamic or magnetic.

In the derivation of F(rc), the evaluation of the contribution
of the momentum flow through S+(rc; s + �s) and S−(rc; s)
requires an argument beyond the London equation. For the
pinned vortex, these contributions are found be negligible due

to the smallness of rc/λ. For the flow vortex, rc/λ = O(1),
and thus the same argument in the derivation of F(rc) is
not directly applicable. Further discussion regarding the core
region is required.

APPENDIX B: PEARL VORTEX

1. Pearl’s solution

In this Appendix, we summarize the derivation of the vec-
tor potential Eq. (64), current density Eq. (66), and magnetic
field [Eqs. (68) and (69)] for a single vortex in a 2D super-
conductor in the absence of a transport current. The outline
of this Appendix is based on [23,38]. However, the current
density Eq. (66) and magnetic field [Eqs. (68) and (69)] for all
distances from the vortex were not given in these references.
We derive them as a prerequisite for calculating the force on a
vortex in Appendix B.

First, we define the Fourier transform of A(r) as

A(q) =
∫

3D
A(r)e−iq·rdr, (B1)

from which

A(r) =
∫

3D
A(q)eiq·r dq

(2π )3
(B2)

follows. Both sides of Eq. (52) are multiplied by e−i(q⊥·r⊥+qzz)

and then integrated with respect to r over the 3D space. We
then obtain

− (
q2

⊥ + q2
z

)
A(q)

= 2

λeff

(
−�2D(q⊥) +

∫ ∞

−∞
A(q)

dqz

2π

)
(B3)

with

�2D(q⊥) =
∫

2D
dr⊥e−iq⊥·r⊥ h̄

e∗ ez × r⊥
r2
⊥

= h̄

e∗ ez × −2π iq⊥
q2

⊥
.

(B4)
We set ∫ ∞

−∞
A(q)

dqz

2π
= 2πλeffKs(q⊥) (B5)

and derive Ks(q⊥). Dividing Eq. (B3) by −(q2
⊥ + q2

z ) yields

A(q) = 2[�2D(q⊥) − 2πλeffKs(q⊥)](
q2

⊥ + q2
z

)
λeff

. (B6)

After integrating the above equation with respect to qz, it
follows that

2πλeffKs(q⊥) = 1

q⊥

(
�2D(q⊥)

λeff
− 2πKs(q⊥)

)
, (B7)

which yields

Ks(q⊥) = �2D(q⊥)

2πλeff (1 + λeffq⊥)
(B8)

= h̄

e∗λeff
ez × −iq⊥

(1 + λeffq⊥)q2
⊥

. (B9)

From Eqs. (B6) and (B8),

A(q) = 2q⊥�2D(q⊥)(
q2

⊥ + q2
z

)
(1 + λeffq⊥)

(B10)
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follows. We then perform the inverse Fourier transform

A(r⊥, z) =
∫

dq⊥
(2π )2

eiq⊥·r⊥
∫

dqz

2π
eiqzzA(q) (B11)

=
∫

dq⊥
(2π )2

eiq⊥·r⊥ e−q⊥|z|�2D(q⊥)

(1 + λeffq⊥)

= −2π ih̄ez

e∗ ×
∫

dq⊥
(2π )2

eiq⊥·r⊥ q⊥
q⊥

e−q⊥|z|

(1 + λeffq⊥)q⊥
≡ eθA(r⊥, z) (B12)

with

A(r⊥, z) = |φ0|
∫ ∞

0

dq⊥
2π

e−q⊥|z|J1(q⊥r⊥)

(1 + λeffq⊥)
,

which is Eq. (64) in the main text. The magnetic field
h(r⊥, z) = hr (r⊥, z)er⊥ + hz(r⊥, z)ez = ∇ × A is given by

hz(r⊥, z) = 1

r⊥

∂ (r⊥A(r⊥, z))
∂r⊥

= |φ0|
∫ ∞

0

dq⊥
2π

e−q⊥|z|q⊥J0(q⊥r⊥)

(1 + λeffq⊥)
, (B13)

hr⊥(r⊥, z) = −∂ (r⊥A(r⊥, z))
∂z

= |φ0| sgn(z)
∫ ∞

0

dq⊥
2π

e−q⊥|z|q⊥J1(q⊥r⊥)

(1 + λeffq⊥)
.

(B14)

In the second equality in Eq. (B13), we use the recursive
formula of the Bessel functions. The derivatives of Eqs. (B13)
and (B14),

∂hz(r⊥, z)

∂r⊥
= |φ0|

∫ ∞

0

dq⊥
2π

e−q⊥|z|q⊥
(1 + λeffq⊥)

∂J0(q⊥r⊥)

∂r⊥

= −|φ0|
∫ ∞

0

dq⊥
2π

e−q⊥|z|q2
⊥J1(q⊥r⊥)

(1 + λeffq⊥)
, (B15)

∂hr (r⊥, z)

∂z
= 2|φ0|δ(z)

∫ ∞

0

dq⊥
2π

e−q⊥|z|q⊥J1(q⊥r⊥)

(1 + λeffq⊥)

−|φ0|
∫ ∞

0

dq⊥
2π

e−q⊥|z|q2
⊥J1(q⊥r⊥)

(1 + λeffq⊥)
, (B16)

lead to the current density

j(r⊥, z) = δ(z)eθ j2D(r⊥),

with

j2D(r⊥) = 2|φ0|
μ0

∫ ∞

0

dq⊥
2π

q⊥J1(q⊥r⊥)

(1 + λeffq⊥)

= |φ0|
πμ0λ

2
eff

[
λeff

r⊥
− ϑ

( r⊥
λeff

)]
. (B17)

Here, the relation Eq. (67) is used in the last equality. This
expression for the current density is Eq. (66) in the main text.
Equation (68) for hr⊥(r⊥, z → ±0) in the main text results
from Eq. (B14) in the limit z → ±0 and Eq. (67). Equation

(69) for hz(r⊥, 0) in the main text results from Eq. (B14) in
the limit z → ±0, and Eq. (70).

2. Derivation of expression Eq. (78) for Fhydro(S)

From symmetry, Eq. (76) is nonzero only for μ = y and
only O( jtr ) terms contribute to the integral. We obtain

Fhydro(S) = −ey

∫
S′

dSPyνeν · er⊥ = −eyμ0λ
2

×
∫

S′
dS[ jy(r⊥, z) j(r⊥, z) · er⊥

− j(r⊥, z)2

2
ey · er⊥

]
. (B18)

In the first term in the integrand in the last line, j(r⊥, z), comes
only from jPearl(r⊥, z) and thus∫

S′
dS jy(r⊥, z) j(r⊥, z) · er⊥ (B19)

=
∫

S′
dS{[ jPearl(r⊥, z) · ey]( jtr · er⊥)}

=
∮

d	[ j2D(R)/d]( jtr/d ) cos2 θ. (B20)

In the last equality, we use Eqs. (77a) and (77b). The contri-
bution in the second term in the integrand in the last line in
Eq. (B18) becomes

−
∫

S′
dS

[
j(r⊥, z)2

2
ey · er⊥

]

=
∫

S′
dS[ jPearl(r⊥, z) · jtr (r⊥, z) sin θ ]

= d
∮

d	[ j2D(R)/d]( jtr/d ) sin2 θ. (B21)

From Eqs. (B20), (B21), and (66), it follows that∫
S′

dS

[
jy(r⊥, z) j(r⊥, z) · er⊥ − j(r⊥, z)2

2
ey · er⊥

]

= 2πR jtr j2D(R)

d
= 2|φ0|

dμ0λeff︸ ︷︷ ︸
|φ0|/(μ0λ2 )

[
1 − R

λeff
ϑ

( R

λeff

)]
. (B22)

Substituting the expression in the last line into Eq. (B18), we
obtain the expression Eq. (78) for Fhydro(S).

3. Derivation of Eq. (79) for Fmag(S)

From symmetry, we see that Eq. (55) is nonzero only for
μ = y and only O( jtr ) terms contribute to the integral.

First, we consider the contribution from S+, where the
normal vector n is ez and the h2 term in the integrand in
Eq. (55) does not contribute. We can thus write∫

S+
dSTyνnν = 1

μ0

∫
S+

dShy(r⊥,+0)hz(r⊥,+0). (B23)

In the integrand, hz(r⊥,+0) comes only from hPearl(r⊥,+0)
and thus we replace the other factor, namely hy(r⊥,+0), in
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the integrand by htr (r⊥,+0) = −μ0 jtrd/2; i.e.,

∫
S+

dSTyνnν = − jtrd

2

∫
S+

dShz(r⊥, 0)

= − jtr|φ0|d
2λ2

eff

∫ R

0
dr⊥r⊥�

( r⊥
λeff

)
. (B24)

In the last equality, we use Eq. (69). The integration in the last
line is performed with the relation Eq. (70) between � and ϑ

as

∫
S+

dSTyνnν = − jtr|φ0|d
2

[xϑ (x)]R/λeff
ξ/λeff

= − jtr|φ0|d
2

( R

λeff

)
ϑ

( R

λeff

)
. (B25)

The contribution from S− to Fmag(S) is the same as that
from S+ because n on S− is the minus of the n on S+ and
hy(r⊥,−0) = −hy(r⊥,+0).

Last, we show that the contribution from S′ to Fmag(S)
is jtr|φ0|d × O(d/λeff ), which is negligible compared to that
from S± to Fmag(S). Considering that (i) the normal vector on
S′ is er⊥ and (ii) the O( jtr ) terms contribute to the integral, we

see that∫
S′

dSTyνnν

= 1

μ0

∫
S′

dS(hy(r⊥, z)h(r⊥, z) · er⊥

− 1

2
h(r⊥, z)2er⊥ · ey

)

= 1

μ0

∫
S′

dS[htr (r⊥, z) · ey][hPearl(r⊥, z) · er⊥]

+ 1

μ0

∫
S′

dS[hPearl(r⊥, z) · ey][htr (r⊥, z) · er⊥] (B26)

− 1

μ0

∫
S′

dS[htr (r⊥, z) · hPearl(r⊥, z)](er⊥ · ey) (B27)

= 1

μ0

∫
S′

dS[htr (r⊥, z) · ey][hPearl(r⊥, z) · er⊥] (B28)

= − jtr|φ0|d
2

(
1 − R

λeff

)
ϑ

( R

λeff

)
× d

λeff
. (B29)

In the course of calculation, note that the two lines Eqs. (B26)
and (B27) cancel each other. In the last equality, we use
Eqs. (62) and (68). We confirm that the contribution from
S′ is negligible compared to that from S±. The sum of the
contributions from S± to Fmag(S) is twice Eq. (B23) and we
arrive at Eq. (79).
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