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We consider a planar SIS-type Josephson junction between diffusive superconductors (S) through an insu-
lating tunnel interface (I). We construct fully self-consistent perturbation theory with respect to the interface
conductance. As a result, we find correction to the first Josephson harmonic and calculate the second Josephson
harmonic. At arbitrary temperatures, we correct previous results for the nonsinusoidal current-phase relation in
Josephson tunnel junctions, which were obtained with the help of conjectured form of solution. Our perturbation
theory also describes the difference between the phases of the order parameter and of the anomalous Green
functions.
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I. INTRODUCTION

One of the key characteristics of a superconductor is the
complex-valued order parameter �(r), which is parametrized
by its absolute value and phase ϕ(r) [1]. Both parameters
are essential for describing current-carrying states of super-
conductors. While the absolute value of the order parameter
determines the density of the superconducting condensate,
the phase gradient is related to the condensate velocity. At
the same time, more detailed spectral (i.e., energy-resolved)
information about superconductivity in a system is contained
in the anomalous Green function F (r, ω) (here ω is the Mat-
subara frequency), with its own absolute value and phase
χ (r, ω). The anomalous Green function and the order param-
eter (related by the self-consistency equation) fully describe
superconductivity inside an equilibrium system [2].

The Josephson effect is a prominent example of the phys-
ical role of the superconducting phases [1]. The simplest
Josephson system is a planar SIS-type junction (superconduc-
tors S separated by an insulating barrier I). All characteristics
of the system depend on a single coordinate x (normal to the
plain interface). Fully self-consistent treatment of the Joseph-
son effect in the SIS junction requires taking into account
difference between the phases of the order parameter and the
anomalous Green function, ϕ(x) �= χ (x, ω). Although differ-
ence between the two phases is a well-known fact (which is
already evident from frequency, or energy, dependence of χ

while ϕ depends only on coordinate) [3–5], it has been taken
into account in actual calculations mainly numerically [6].

At the same time, the SIS junction is the fundamental
system for which the Josephson effect was originally pre-
dicted [7,8], and it has been considered in many various
limiting cases. In the main order with respect to the interface
conductance, the Josephson current proportional to the sine

of the order-parameter phase difference between the banks
arises, J ∝ sin δϕ. Next orders with respect to the interface
conductance take into account additional effects such as pair-
breaking due to current and the proximity effect between the
banks (suppression of the order parameter near the interface)
[9,10]. These effects influence basic characteristics of the
Josephson current such as the value of the critical current and
the current-phase relation in SIS and more complicated types
of Josephson junction (including SNS junctions with normal
metal N as a weak link) [11–13]. As a result, the current-phase
relation J (δϕ) can deviate from the simple sinusoidal form
[11,13].

Anharmonic (nonsinusoidal) Josephson current is also pos-
sible in the case of pair-breaking interfaces [14,15]. SIS
junctions with arbitrary interface transparency have been con-
sidered in the limit of temperature close to the critical one
[16,17].

In this paper, we consider the SIS Josephson junction be-
tween diffusive superconductors at arbitrary temperature T .
We consider the tunneling limit but focus on deviations from
the sinusoidal current-phase relation due to small but finite
conductance of the interface. We develop fully self-consistent
perturbation theory taking into account difference between the
phases ϕ(x) and χ (x, ω). We carry out perturbation theory
with respect to the ratio of the interface conductance to the
conductance of the superconductor on the coherence length,
and this parameter is small in the tunneling limit. As a result,
we find the second harmonic of the Josephson relation, i.e.,
contribution to J (δϕ) of the form sin 2δϕ. The first harmonic
sin δϕ arises in the first order of the perturbation theory, while
the second harmonic sin 2δϕ comes from the second order,
thus being small in comparison with the first one. In the
limit T → Tc, we reproduce the results by Kupriyanov [18].
At arbitrary temperatures, we revisit the results by Golubov
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and Kupriyanov [19]. In Ref. [19], the authors employed
a conjectured form of solution, which turns out to be only
qualitatively correct. As a result, they obtained parametrically
correct answer but with wrong numerical coefficients. Our
perturbation theory reproduces their parametrical results and
provides exact numerical coefficients.

We also discuss quantitative difference between the phase
of the order parameter and the phases of the anomalous Green
functions that follows from our perturbation theory.

The paper is organized as follows: In Sec. II, we formulate
our model and equations. In Sec. III, we develop our pertur-
bation theory with respect to the interface conductance and
calculate the Josephson current. In Sec. IV, we develop our
perturbation theory further and discuss difference between the
phase of the order parameter and the phases of the anoma-
lous Green functions. In Sec. V, we discuss the applicability
conditions of our perturbation theory and the role of self-
consistency. In Sec. VI, we present our conclusions. Finally,
some details of calculations are presented in the Appendices.

Throughout the paper, we employ the units with
h̄ = kB = 1.

II. FORMALISM

A. Basic equations

SIS-type junction is a system of two superconductors sep-
arated by a thin insulating layer.

In the diffusive, or so-called dirty, limit, when the super-
conducting coherence length ξ is much larger than the mean
free path l , superconductors can be described by the Usadel
equations [20], which are written for the isotropic (in the
momentum space) parts of the quasiclassical Green functions,
normal function G(r, ω) and anomalous function F (r, ω).

In the planar SIS junction all characteristics depend only
on the x coordinate. We can eliminate the vector potential by
a gauge transformation, so that all current-carrying properties
of the system are encoded in the phase gradients. In the an-
gular parametrization [4,5], G(x, ω) = cos θ (x, ω), F (x, ω) =
sin θ (x, ω)eiχ (x,ω), the Usadel equations take the form (see
Appendix A for more details)

D

2

d2θ

dx2
− ω sin θ + |�| cos (χ − ϕ) cos θ

− D

2

(
dχ

dx

)2

sin θ cos θ = 0, (1)

D

2

d

dx

(
dχ

dx
sin2 θ

)
= |�| sin (χ − ϕ) sin θ, (2)

where �(x) = |�(x)|eiϕ(x) is the order parameter, ω =
πT (2n + 1) is the Matsubara frequency (at temperature T ),
D = vF l/3 is the diffusion constant, and vF is the Fermi
velocity.

The Usadel equations must be accompanied by the self-
consistency equation

|�(x)| = πλT
∑

|ω|<ωD

ei(χ (x,ω)−ϕ(x)) sin θ (x, ω), (3)

where λ is the BCS coupling constant and ωD is the Debye
frequency of the superconducting material.

We consider the tunneling limit in which the Kupriyanov-
Lukichev (KL) boundary conditions apply [21]. In the angular
parametrization (see Appendix A), they can be written as

dθ (±0, ω)

dx
= ± gN

2σ
sin 2θ (0, ω)[1 − cos δχ (ω)], (4)

dχ (±0, ω)

dx
= gN

σ
sin δχ (ω), (5)

δχ (ω) ≡ χ (+0, ω) − χ (−0, ω), (6)

where σ is the normal-state conductivity of the superconduc-
tor material, gN = GN/S is the conductance of the interface
per unit area, S is the interface area, and GN is the interface
conductance (normal-state conductance of the weak link).

In addition to the boundary conditions at x = 0, we have to
take into account that far from the interface the superconduc-
tors are in the bulk current-carrying state: the density and the
velocity of the condensate become constant (do not depend on
x),

θ (x → ±∞, ω) = const, (7)

dχ (x → ±∞, ω)

dx
= dϕ(x → ±∞)

dx
= const (8)

The current J can be found after solving the set of Eqs. (1)–
(3), (4), and (5) with the use of

J = 2πeν0SDT
∑

ω

dχ (x, ω)

dx
sin2 θ (x, ω), (9)

where e is the charge of electron and ν0 is the density of states
at the Fermi level in the normal state.

The self-consistency equation guaranties the current con-
servation [16,22–24]. To see that, one can take the imaginary
part of Eq. (3), which yields

0 =
∑

|ω|<ωD

sin [χ (x, ω) − ϕ(x)] sin θ (x, ω). (10)

Then, summing Eq. (2) over ω and applying Eqs. (9) and (10),
we find

dJ

dx
∝

∑
|ω|<ωD

sin [χ (x, ω) − ϕ(x)] sin θ (x, ω) = 0, (11)

which means that J = const. Therefore, the current can be
found at the x = 0 interface with the help of the KL boundary
condition (5).

At the same time, according to Eq. (9), the current can
be written as a sum of spectral currents, J = ∑

ω Jω. The
“continuity” equation (2) implies that in the case of χ �= ϕ, the
spectral currents are not conserved, dJω/dx �= 0. The distri-
bution of the total (conserved) current between the Matsubara
frequencies then varies as a function of coordinate.

B. Tunneling limit

The self-consistent Usadel equations cannot be solved an-
alytically for arbitrary transparencies, but in some limiting
cases this can be done approximately. In this paper, we solve
the Usadel equations by the perturbation theory with respect
to the interface conductance.
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In a superconductor, the natural energy scale is the bulk
temperature-dependent value of the order parameter �0(T ). It
determines the coherence length, which can be written (in the
diffusive limit) as

ξ (T ) =
√

D/2�0(T ). (12)

This characteristic length follows from the Usadel equations;
however, it turns out to be indeed the relevant spatial scale on
which the superconducting properties vary, only at tempera-
tures not too close to the superconducting critical temperature
Tc. In the vicinity of Tc, the full set of the Usadel equations
can be reduces to the Ginzburg-Landau (GL) equation written
for the order parameter only. In the course of this reduction,
the Matsubara summation in the self-consistency equation
generates a different coherence length, which can be written
as

ξGL(T ) =
√

πD/8(Tc − T ). (13)

Although this GL coherence length arises when considering
the T → Tc limit, the resulting expression can be used at any
T . From this point of view, we can say that at T not too close
to Tc, the GL coherence length (13) is of the same order as the
Usadel coherence length (12) [25]. However, at T → Tc, they
are parametrically different since �0(T ) ∝ √

Tc − T , and ξGL

is turns out to be the actual scale for �(x) variation.
The boundary conditions (4)–(5) can be rewritten in terms

of the dimensionless variable z = x/ξ as

dθ (±0, ω)

dz
= ±α

2
sin 2θ (0, ω)[1 − cos δχ (ω)], (14)

dχ (±0, ω)

dz
= α sin δχ (ω), (15)

where we have defined the dimensionless conductance param-
eter

α = ξgN/σ. (16)

This parameter can be rewritten as [5]

α = 2ξ t/l, (17)

where the average barrier transparency t is small in the tun-
neling limit.

Due to finite value of α, the proximity effect between the
two sides of the Josephson junction leads to suppression of
|�(x)| in the vicinity of the interface (at nonzero phase differ-
ence). We standardly define the tunneling limit as the regime
in which the proximity effect [i.e., suppression of |�(x)|] is
weak. This condition implies that α must be small. The exact
condition for the smallness of α will be discussed below in
Sec. V A.

One more point regarding various interface parameters
should be commented here. The KL boundary conditions
(4) and (5) are valid in the limit of small transparencies of
interface conducting channels, which may be formulated as
t � 1. They can be obtained in the first order with respect to t
from the more general Nazarov boundary conditions [26]. We
plan to do the perturbation theory with respect to α (staying
in the regime of validity of the KL boundary conditions) but
we do not take into account higher-order terms with respect
to t from the Nazarov boundary conditions. This is legitimate

since α 	 t [see Eq. (17)] due to the diffusive limit condition
ξ 	 l .

For example, the next-order term from the Nazarov bound-
ary conditions would lead to contributions of the order of
αt in the right-hand sides of Eqs. (4) and (5) (and in the
solutions). At the same time, the proximity effect treated
within the KL boundary conditions leads to corrections of the
order of α2. Since α2 	 αt , the main effect is captured by the
self-consistent theory based on the KL boundary conditions.

III. PERTURBATION THEORY WITH RESPECT TO THE
INTERFACE CONDUCTANCE: JOSEPHSON CURRENT

A. Arbitrary temperatures

The starting point of our perturbation theory is the solution
of the Usadel equations with the KL boundary conditions at
α = 0. This trivial solution can be written as

|�(z)| = �0, (18)

θ (z, ω) = θ0 ≡ arctan(�0/ω), (19)

χ (z, ω) = ϕ(z) = (δϕ/2)sgn z. (20)

We consider the order-parameter phase jump at the interface,

δϕ = ϕ(+0) − ϕ(−0), (21)

as the parameter that defines the current-carrying state of
the Josephson junction. This parameter enters the full self-
consistent set of equations and determines, in particular, the
strength of the proximity effect between the superconducting
banks and the current at any point of the junction.

Expanding θ , χ , �, and ϕ in powers of α, we get

θ (z, ω) = θ0 + αθ1(z, ω) + α2θ2(z, ω), (22)

|�(z)| = �0 + α�1(z) + α2�2(z), (23)

χ (z, ω) = (δϕ/2)sgn z + αχ1(z, ω) + α2χ2(z, ω), (24)

ϕ(z) = (δϕ/2)sgn z + αϕ1(z) + α2ϕ2(z), (25)

δχ (ω) = δϕ + αδχ1(ω) + α2δχ2(ω). (26)

The phases χ (z, ω) and ϕ(z) in the case of nonzero cur-
rent J �= 0 grow linearly in the bulk of the superconductors.
Corrections χ1(2) and ϕ1(2) therefore become large, which
may seem to create a problem for our perturbation theory.
However, this problem is purely formal because the quantities
that actually enter our perturbation theory are not χ and ϕ

themselves but their derivatives dχ/dz and dϕ/dz as well as
their difference χ − ϕ; all those quantities are finite in the
bulk.

Our goal is to find the answer for J up to the α2 order.
The current given by Eq. (9) contains dχ/dz ∼ α; so, in order
to obtain the answer up to α2, it is sufficient to find θ1, �1,
and χ2.

We start with calculating θ1 and �1. In the first order of
the perturbation theory, equations for θ1 and �1 separate from
equations for χ1 and ϕ1, the pair-breaking term (dχ/dx)2 in
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Eq. (1) should be dropped out, and cos(χ − ϕ) should be
substituted by 1.

The Usadel equation (1) and the boundary condition (4) up
to the first power in α have the form

d2θ1

dz2
+ �1(z)

�0
cos θ0 − θ1

sin θ0
= 0, (27)

d

dz
θ1(±0) = ±1

2
(1 − cos δϕ) sin 2θ0. (28)

We can solve this linear system with the help of the Fourier
transformation (with respect to z). In the Fourier space we find

θ1(k) = sin θ0 cos θ0

k2 sin θ0 + 1

[
�1(k)

�0
− 2(1 − cos δϕ) sin θ0

]
.

(29)

In the first order of the perturbation theory, the real part of
the self-consistency equation (3) yields

�1(k) = πλT
∑

|ω|<ωD

θ1(k, ω) cos θ0(ω). (30)

The answer for �1 can be written in terms of �0

without any explicit information on ωD and λ. The bulk self-
consistency equation can be written as

1

λ
= πT

�0

∑
|ω|<ωD

sin θ0. (31)

Substituting this expression for λ into Eq. (30), we can rewrite
the latter equation in the form

πT
∑

|ω|<ωD

(
�1

�0
sin θ0 − θ1 cos θ0

)
= 0. (32)

Plugging expression (29) for θ1 into this equation, we see
that the resulting sum is convergent. We can therefore extend
the Matsubara summation to infinite limits (formally putting
ωD = ∞). For more details, see Appendix B.

We introduce the following notation for a class of sums
arising as a result of this procedure:

Ln(k, T ) ≡ 2πT

�0

∑
ω>0

sinn θ0

k2 sin θ0 + 1
. (33)

The result for �1(k) can then be written in the form

�1(k)

�0
= −2(1 − cos δϕ)

L2(k, T ) − L4(k, T )

k2L2(k, T ) + L3(k, T )
. (34)

Figure 2 illustrates the correction to the order parameter
�1(z)/�0 in the coordinate space at T = 0. Since �1 is
proportional to 2(1 − cos δϕ), the plot is shown without this
factor. As one can see, the result of calculations is in line with
the expectations shown schematically in Fig. 1.

The next step is to find χ1 and ϕ1. This can be done by
using the linearized form of the continuity equation (2), the
imaginary part of the self-consistency equation (3), and the

FIG. 1. Sketch of a planar SIS junction. Two superconductors
(S) are separated by a thin insulating layer (I). At the interface,
the order-parameter phase ϕ is discontinuous. The absolute value of
the order parameter |�| is suppressed at x = 0, while at the bulk it
reaches the value �0. Both plots are schematic. Due to the spatial
symmetry of the problem, the coordinate dependence |�(x)| is even
while ϕ(x) can be chosen odd. We parametrize the Josephson current
J in the junction by the phase difference δϕ ≡ ϕ(+0) − ϕ(−0) at the
interface.

boundary condition (5) for the velocity of the Cooper pairs,

d2χ1

dz2
sin2 θ0 = (χ1 − ϕ1) sin θ0, (35)∑

|ω|<ωD

(χ1 − ϕ1) sin θ0 = 0, (36)

d

dz
χ1(±0) = sin δϕ. (37)

The solution of this system is trivial,

χ1(z, ω) = ϕ1(z) = z sin δϕ. (38)

This formula tells us that in the main order with respect
to the interface conductance, the Josephson relation have
the standard form J ∝ sin δϕ. Moreover, χ1(z, ω) = ϕ1(z)
are continuous functions at z = 0, unlike χ0(z, ω) = ϕ0(z) =
(δϕ/2)sgnz. Therefore, δχ1(ω) = 0.

FIG. 2. �1(z)/�0 plot at T = 0 without factor 2(1 − cos δϕ).
The correction to the order parameter is negative and the order
parameter is most strongly suppressed in the vicinity of the interface.
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Expanding Eq. (15) up to α2, we obtain

d

dz
χ2(±0) = 0. (39)

This boundary condition implies that in order to calculate J
(which can be done at z = 0), we do not actually need to
calculate χ2(z). To find the current up to the α2 order, we thus
only need �1 and θ1. For more details, see Appendix B.

The answer for the current has the form

J = J0 sin δϕ[1 − 4α(1 − cos δϕ)V (T )], (40)

J0 ≡ πGN�0

2e
tanh

(
�0

2T

)
, (41)

V (T ) = coth

(
�0

2T

)∫ ∞

−∞

dk

π2

[
(L2 − L4)2

k2L2 + L3
+ (L3 − L5)

]
,

(42)

where V (T ) is a positive number, which depends on temper-
ature T . While at arbitrary temperature, V (T ) can be found
only numerically, we can find explicit results in the limiting
cases of T → 0 and T → Tc.

The answer for the current given by Eq. (40) contains not
only the standard part of the Josephson relation J0 sin δϕ but
also the second harmonic (sin 2δϕ with positive coefficient)
and a negative correction to the first harmonic. Below we
present results in the limiting cases of T = 0 and T → Tc.

B. Limiting cases

In the limiting cases, we find

V (T ) =
{

π
2

[
1

56ζ (3)(1−T/Tc )

]1/4
, T → Tc,

0.272, T → 0.
(43)

Thus the answer for the current at (Tc − T ) � Tc is

J = πGN�2
0(T )

4eTc

{
[1 −

√
2γ (T )] sin δϕ + γ (T )√

2
sin 2δϕ

}
,

(44)

γ (T ) = GN/GD(T ), (45)

where GD(T ) = σS/ξGL(T ) is the diffusive conductance of
the superconductor on the length ξGL(T ).

In the T → 0 limit, the characteristic length scale becomes
ξ (0). At the same time, since ξ (0) ∼ ξGL(0), we can write the
answer with the help of the same definition for GD(T ) as

J = πGN�0(0)

2e

× {[1 − 0.93γ (0)] sin δϕ + 0.46γ (0) sin 2δϕ}. (46)

C. Comparison with previous results

Equations (40)–(46) are the main results of this paper. In
the limit T → Tc, Eq. (40) reduces to Eq. (44) and reproduces
the result by Kupriyanov [18]. The answer (40) for arbitrary
T and its T → 0 limit, Eq. (46), are new results.

The Josephson relation with the second harmonic in the
SIS tunnel junction at arbitrary T was previously derived
by Golubov and Kupriyanov [19]. In their paper, the Usadel
equations (1)–(3), (4), and (5) were solved in the coordinate
space. The authors employed a conjecture for the form of

the solution to the full self-consistent problem [27]. On the
contrary, our perturbation theory allows systematic rigorous
calculation of the solution. The results of Ref. [19] for the
Josephson current turn out to be parametrically correct but
with wrong numerical coefficients in front of the γ correc-
tions. Our theory provides exact values of the coefficients.

The result of Ref. [19] for the current can be written in
the form of Eq. (40) but with a different coefficient VGK(T )
instead of V (T ). We can therefore characterize the magnitude
of difference between our final results by comparing the two
quantities. In the T = 0 limit, expressions from Ref. [19]
imply VGK(0) = B(3/2, 3/4)/π ≈ 0.305 [where B(x, y) is the
Euler beta function], instead of our value V (0) ≈ 0.272, see
Eq. (43). In the T → Tc limit, VGK(T ) = 16V (T )/π2. So, the
difference amounts to a factor, which can exceed 1.6.

IV. PERTURBATION THEORY FOR THE PHASES

As we have shown in Eq. (38) in the first order of the per-
turbation theory, the phases χ1(z, ω) and ϕ1(z) are the same at
all frequencies. In this section, we show that the second-order
perturbation theory yields χ2(x, ω) �= ϕ2(x).

We start the second-order perturbation theory by expanding
Eqs. (2), (3), and (15) up to α2. Thus, we obtain

sin θ0
d2χ2

dz2
+ 2

dθ1

dz
cos θ0 sin δϕ = χ2 − ϕ2, (47)∑

|ω|<ωD

[χ2(z, ω) − ϕ2(z)] sin θ0(ω) = 0, (48)

d

dz
χ2(±0, ω) = 0. (49)

Due to linearity of the system, we solve it with the help of
the Fourier transformation. We must take into account that
χ2(z, ω) can be discontinuous at z = 0 with a (yet unknown)
phase jump δχ2(ω). Moreover, in the bulk dχ2/dz can be
finite, so it is convenient to write equations for new variable

φ2(z, ω) ≡ χ2(z, ω) − ϕ2(z), (50)

which has zero derivative in the bulk, where χ2 = ϕ2. In the
Fourier space, we obtain

φ2(k, ω) = ik
(ikϕ2 − δχ2) sin θ0 + 2θ1 cos θ0 sin δϕ

1 + k2 sin θ0
, (51)∑

|ω|<ωD

φ2(k, ω) sin θ0 = 0, (52)

lim
z→0

( ∫ ∞

−∞

dk

2π
ikφ2eikz − δχ2δ(z)

)
= 0. (53)

The system of Eqs. (51)–(53) determines φ2(z, ω) and δχ2(ω).
In order to find these functions, we employ an algorithm
similar to the one used in the case of θ and �. First, we
substitute Eq. (51) into Eq. (52) and then find ikϕ2(k) and
φ2(k). We still do not know δχ2(ω) but we can find it from
Eq. (53). This procedure gives us the following equation for
δχ2(ω) (for more details, see Appendix C):

δχ2

2
√

sin θ0
= dχ

(0)
2 (z = 0)

dz
− V0 +

∫ ∞

−∞

dk

2π

�(k)/L2(k)

1 + k2 sin θ0
,

(54)

V0 = 4V (1 − cos δϕ) sin δϕ, (55)
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FIG. 3. δχ2(ω) plot at T = 0 without factor 4(1 −
cos δϕ) sin δϕ. Interestingly, the curve crosses the abscissa
very close to the ω = �0 point. While this may be a hint to an exact
property, we do not have a proof for that.

where χ
(0)
2 (z, ω) and ϕ

(0)
2 (z) are the auxiliary functions that

solve the system of Eqs. (47) and (48) with the (auxiliary)
conditions that χ

(0)
2 is a continuous function of z vanishing

in the bulk. The constant V0 is a new constant, proportional
to V . Since V0 = −dϕ2(z = ∞)/dz, then V0 determines the
correction to the velocity of Cooper pairs in the bulk according
to dχ/dz = α sin δϕ − α2V0 (for more details, see Appendix
C). Here we also define the phase functional �(k) according
to

�[δχ2](k) ≡ 2πT

�0

∑
ω>0

δχ2 sin2 θ0

1 + k2 sin θ0
. (56)

The solution of Eq. (54) gives us δχ2(ω) and �(k), and with
the use of Eqs. (51) and (52), we can find χ2(z, ω) and ϕ2(z).

Even without explicit implementation of this algorithm, we
can make sure that χ2 �= ϕ2. Indeed, if we assume that χ2 =
ϕ2, then Eq. (54) immediately simplifies to the form

dχ
(0)
2 (0, ω)

dz
= V0, (57)

which cannot be satisfied since both χ
(0)
2 (z, ω) and its deriva-

tive at z = 0 have nontrivial dependence on ω (as witnessed,
for example, by numerical calculations). This proves that
χ2 �= ϕ2. Moreover, this result is a consequence of Eq. (47),
which contains dθ1/dz that plays the role of the nonzero
source in this equation.

Equation (54) can be solved numerically, and we present
the results of this procedure in the case of T = 0 in Figs. 3
and 4. Both the figures confirm that χ �= ϕ. From Fig. 3, we
see that δχ2(ω) is an alternating function, which could be
inferred from Eq. (48) at z = ±0. Indeed, due to the continuity
of corrections ϕ1(z) and ϕ2(z), we obtain∑

ω

δχ2 sin θ0 = 0. (58)

The sum can turn to zero only if δχ2(ω) changes its sign.
Figure 4 demonstrates how the phases χ2(z, ω) and ϕ2(z)

depend on z in a nonlinear manner (such nonlinear depen-
dence was discussed in Ref. [11] in the case of SNS junction).
χ2(z, ω) and ϕ2(z) become equal in the bulk and vary linearly

FIG. 4. χ2(z) plot at different ω without factor
4(1 − cos δϕ) sin δϕ. Since χ2 is an odd function, nonzero
values χ2(z = 0) �= 0 signify that this function is discontinuous at
z = 0. At z → ∞, all the curves become linear. Interestingly, this
linear dependence of the form asgn z + bz crosses the z axis very
close to z = 1. While this may be a hint to an exact property, we do
not have a proof for that. The figure demonstrates that δχ2 changes
nonmonotonically as the function of ω: the curve for ω = 7�0

is lower than for ω = 3�0, but higher than for ω = 0.7�0 (this
correlates with the result of Fig. 3). In the ω → ∞ limit, the χ2(z, ω)
curves converge to ϕ2(z).

with the slope −V0(T ),

χ2(z → ±∞, ω) = ϕ2(z → ±∞) = a sgn z − V0z, (59)

where a is a constant, which can be obtained after solving the
integral equation (54) (for more details, see Appendix C).

Physically, the overall nonlinear spatial dependence of
the phases corresponds to increased velocity of the super-
conducting condensate in the vicinity of the interface. This
compensates for the interface suppression of the order param-
eter (see Fig. 2) and, hence, of the condensate density (due to
the proximity effect between the superconducting banks with
different phases) in order to provide position-independent
Josephson current throughout the system.

More details on the second-order perturbation theory for
the phases are presented in Appendix C.

V. DISCUSSION

A. Applicability conditions of the perturbation theory

The condition of weak proximity effect, which we assumed
when developing our perturbation theory, can be formulated
according to Eq. (23) as

α|�1(z = 0)|/�0 � 1. (60)

In the Fourier representation, the result for �1 is given by
Eq. (34). At T not too close to Tc, this yields |�1(z = 0)| ∼
�0, so that the condition becomes α � 1. At the same time,
at T → Tc, Eq. (B17) demonstrates that |�1(z = 0)|/�0 ∼√

Tc/�0(T ) ∼ (1 − T/Tc)−1/4.
Summarizing, at all temperatures, the condition of small-

ness of α can be written as

α � (1 − T/Tc)1/4. (61)
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Note that the α parameter itself depends on T in the vicinity
of Tc as α ∝ (1 − T/Tc)−1/4.

Alternatively, condition (61) can be written as γ (T ) � 1,
where γ (T ) is defined by Eq. (45). The limiting results for
the Josephson current, Eqs. (44) and (46), confirm that this
is indeed the condition of smallness of the corrections to the
Josephson relation.

B. Role of self-consistency

While self-consistency for the order parameter is inherent
in our calculations, it may be instructive to discuss its role,
considering what changes if the self-consistency is neglected
and we simply put � = �0. Below, we discuss how this would
change the results for the Josephson current J .

Neglecting self-consistency implies putting �1(k) = 0 in
Eq. (29). Following step-by-step the algorithm described in
Appendix B, one would then obtain

V (T ) = coth

(
�0

2T

) ∫ ∞

−∞

dk

π2
(L3 − L5). (62)

Neglecting self-consistency thus leads to dropping out the first
term under the integral in Eq. (42).

In the limit of low temperatures, T → 0, neglecting self-
consistency makes the result for the numerical coefficient V ,
Eq. (62), valid only by the order of magnitude. Indeed, for the
frequencies ω ∼ �0, we have sin θ0 ∼ 1, which means that
the Ln sums defined in Eq. (33) are all of the same order and
vary on the scale of k ∼ 1. Therefore, both the terms under the
integral in Eq. (42) are of the same order.

In the case of approaching the critical temperature, T →
Tc, self-consistency begins to play a major role. Indeed, in
this limit, we have sin θ0 � 1, hence the Ln sums are of the
order of (�0/Tc)n−1 and vary on the scale of k ∼ √

Tc/�0 	
1. Substituting this into the integral in Eq. (42), one finds
that the first term (which is due to self-consistency) gives
a contribution of the order of

√
Tc/�0, while the (L3 − L5)

term gives a contribution of the order of
√

�0/Tc � √
Tc/�0.

The major role of self-consistency in this case is expectable
since in the T → Tc limit, the Usadel equations reduce to the
GL equations [22], so all information about spatial variations
of superconducting characteristics inside the superconducting
banks must be encoded in the �(x) function. Neglecting this
spatial dependence would mean neglecting the corrections
due to finite interface conductance, which is the main effect
considered in this paper.

We thus conclude that taking into account self-consistency
in our problem is necessary in order to obtain quantitatively
and qualitatively correct results.

C. Different definitions of the phase jump

Physically, the current-carrying state of the SIS junction
can be defined in several ways. In this paper, we parametrize
it by δϕ, the order-parameter phase jump at the interface. At
the same time, it can be more experimentally relevant [11]
to define the phase jump not at the interface but in the bulk
of the superconductor after subtracting the linearly-growing

contribution,

δϕnonlin ≡ 2

[
ϕ(z → ∞) − z

dϕ(z → ∞)

dz

]
, (63)

where the factor of 2 takes into account that ϕ(z) is an odd
function. Equation (59) provides the connection between δϕ

and δϕnonlin,

δϕnonlin = δϕ + 2α2a. (64)

While we study J (δϕ), the current-phase relation could al-
ternatively be defined as J (δϕnonlin). Nevertheless, within our
accuracy, this difference does not change any of the above
results. This is because in the Josephson relation Eq. (40), the
difference defined by Eq. (64) would manifest itself only in
the third order with respect to α, which we do not consider
(since J0 is itself of the first order).

D. Outlook

We have shown that the phases ϕ and χ differ in the second
order of the perturbation theory, but this difference does not
immediately show up in the answer for the current, Eq. (40),
due to the boundary condition for χ2, Eq. (39). This is because
we calculate the current at the “symmetric” point of the SIS
system, the interface (the answer does not depend on the point
at which it is calculated). At the same time, the ϕ–χ difference
would directly influence the calculation of current at any finite
distance from the interface. On the other hand, we expect that
the ϕ–χ difference would immediately show up in the answer
for the current at any point (including the interface) in the third
and higher orders of the perturbation theory.

At the same time, the Josephson current is an integral quan-
tity (the sum of the spectral components of the current), and
one can therefore expect the ϕ–χ difference to manifest itself
more clearly (both from theoretical and experimental point
of view) in spectrally-resolved quantities. The most obvious
quantity of this sort is the local density of states in the vicin-
ity of the interface, which requires reformulating the theory
in the real-energy technique. The behavior of the system in
the alternating electric field, so-called Shapiro steps, should
also be sensitive to spectrally-resolved characteristics of the
system.

In addition, an interesting direction is to study systems
such as SNS and SFS junctions (where N is a normal metal
and F is a ferromagnet). While in the case of tunnel SIS
junctions the second Josephson harmonic (which we have
calculated) is always small compared to the first one, the SFS
case looks especially intriguing since the first harmonic can
be suppressed in this case due to specific nature of proximity-
induces superconductivity inside the F interlayer [10].

We leave the above questions for future studies.

VI. CONCLUSIONS

We have considered the Josephson effect in a planar
diffusive SIS-type junction at arbitrary temperature and con-
structed fully self-consistent perturbation theory with respect
to the dimensionless conductance parameter α � 1, which is
the ratio of the interface conductance to the conductance of the
superconducting material on the coherence length. We have
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presented analytical analysis of two orders of the perturbation
theory.

The first order of the perturbation theory provides cor-
rection �1 to the absolute value of the order parameter, see
Eq. (34) and Fig. 2. In the coordinate space, �(z) is sup-
pressed in the vicinity of the interface. Knowledge of �1

makes it possible to find θ1. In its turn, θ1 provides the answer
for the Josephson current up to the α2 order, which contains
not only the standard part J (δϕ) ∝ sin δϕ but also a (nega-
tive) correction to the first harmonic and the second harmonic
sin 2δϕ (with a positive amplitude). We further analyze the
general answer given by Eq. (40), in two limiting cases, see
Sec. III B. In the T → Tc limit, we reproduce the result by
Kupriyanov [18], while our results in the T → 0 limit (as well
as in the case of arbitrary temperature) have not been reported
before. Although the same problem at arbitrary temperature
has been considered before in Ref. [19], the corrections to the
Josephson relation obtained there were only parametrically
correct due to a conjectured form of solution. Our theory
provides rigorous solution, which results in exact numerical
coefficients.

Our perturbation theory also provides solutions for the
superconducting phases of the anomalous Green functions
and of the order parameter, χ and ϕ, respectively. In the
zeroth order, the phases are equal constants corresponding to
the standard main-order solution for the Josephson effect in
tunnel junctions. In the first order, the phases are still equal
but acquire the linear part, which describes finite velocity of
the superconducting condensate at each point of the supercon-
ductors. Finally, in the second order, we find that χ �= ϕ. We
present the plot of χ2(z, ω) at different Matsubara frequen-
cies and of ϕ2(z) at T = 0 in Fig. 4. We also illustrate the
frequency dependence of the phase jumps δχ2(ω) at T = 0 in
Fig. 3 (note that the phase jumps δϕ2 are absent by definition).

The overall spatial dependence of the phases is nonlinear,
corresponding to increased velocity of the superconducting
condensate in the vicinity of the interface. This compensates
for the interface suppression of the order parameter and,
hence, of the condensate density (due to the proximity ef-
fect between the superconducting banks) in order to provide
position-independent Josephson current throughout the sys-
tem, see Fig. 1.
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APPENDIX A: EQUATIONS AND PARAMETRIZATION

The Usadel equations are written for the isotropic (in the
momentum space) parts of the quasiclassical Green functions,
G and F [20],

D

2
(G∇2F − F∇2G) + G� − ωF = 0, (A1)

D

2
(G∇2F̃ − F̃∇2G) + G�∗ − ωF̃ = 0, (A2)

D∇(G∇G + F∇F̃ ) − F̃� + F�∗ = 0, (A3)

G2 + FF̃ = 1. (A4)

The third equation, Eq. (A3), is actually a consequence of
the first two equations and the normalization condition (A4).
In order to see that, one can multiply Eqs. (A1) and (A2) by F̃
and F , respectively, and consider the difference between the
two resulting equations.

Moreover, due to the symmetries

G = G∗, F̃ = F ∗, (A5)

Equation (A2) is just the complex conjugate of Eq. (A1). It is
therefore sufficient to consider only Eqs. (A1) and (A4).

The normalization condition (A4) can be resolved with the
help of the angular parametrization [4,5]

G = cos θ, F = eiχ sin θ, F̃ = e−iχ sin θ. (A6)

In this parametrization, the Usadel equation (A1) becomes
Eqs. (1)–(2). Also by direct substitution one can get the KL
boundary conditions [5,21] in the form of Eqs. (4)–(5) from
the expression for functions F and G

σl

gN
G2

l ∇n
Fl

Gl
= σr

gN
G2

r ∇n
Fr

Gr
= FrGl − Fl Gr, (A7)

where the indices l and r denote the left and right sides of the
interface, respectively, and n is the unit vector perpendicular
to the interface.

APPENDIX B: ORDER PARAMETER AND CURRENT

1. Arbitrary temperature

In this Appendix, we present detailed derivation of
Eqs. (34) and (40).

We start with the order parameter. In order to obtain
Eq. (29), one has to solve Eq. (27) for θ1 with the boundary
condition (28), which can be included into Eq. (27) by em-
ploying the Dirac delta function. The result reads

d2θ1

dz2
+ �1(z)

�0
cos θ0 − θ1

sin θ0
= sin 2θ0(1 − cos δϕ)δ(z).

(B1)
The Fourier transformation of Eq. (B1) leads to Eq. (29).
Substituting Eq. (29) into Eq. (32), we obtain

�1(k)

�0

(
k2

∑
ω

sin2 θ0

k2 sin θ0 + 1
+

∑
ω

sin3 θ0

k2 sin θ0 + 1

)

= −2(1 − cos δϕ)
∑

ω

sin2 θ0 cos2 θ0

k2 sin θ0 + 1
. (B2)

Since all the sums in this equation converge, we can extend
the limits of summation to infinity, formally putting ωD =
∞. Using the definition of Eq. (33), we can finally rewrite
Eq. (B2) in the form of Eq. (34).

In order to find the current J , we expand Eq. (9) up to α2,
obtaining

J = 2πeν0DT S

(
α

∑
ω

sin2 θ0
dχ1

dx
+ α2

∑
ω

sin2 θ0
dχ2

dx
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+α2
∑

ω

2θ1 sin θ0 cos θ0
dχ1

dx

)
. (B3)

Due to the current conservation, we can calculate the current
at any point. Doing this at the interface with the help of the
boundary conditions (37) and (39), we obtain

J = 4πeT ν0DS
gN

σ
sin δϕ

∑
ω>0

sin2 θ0

×
(

1 + α

∑
ω>0 2θ1(z = 0) sin θ0 cos θ0∑

ω>0 sin2 θ0

)
. (B4)

Here we use the relations 2e2ν0D = σ and

2πT

�0

∑
ω>0

�2
0

ω2 + �2
0

= π

2
tanh

(
�0

2T

)
. (B5)

The interface value θ1(z = 0) is calculated using the inverse
Fourier transformation of θ1(k) given by Eq. (29). As a result,

θ1(z = 0) =
∫ ∞

−∞

dk

2π

{
sin θ0 cos θ0

k2 sin θ0 + 1

×
[
�1(k)

�0
− 2(1 − cos δϕ) sin θ0

]}
. (B6)

Substituting this into Eq. (B4), we can write the result for the
current in the form of Eqs. (40)–(42).

2. Solvable temperature limits

In this Appendix, we evaluate the sums defined by Eq. (33)
in the two limiting cases, T → 0 and T → Tc. Then we
discuss the corresponding limiting results for the correction
�1(k) to the order parameter and for V (T ), which determines
the corrections to the Josephson current, see Eqs. (34) and
(42).

a. T → 0

In the T → 0 limit, the sums of the form Eq. (33) can be
replaced by the integrals

Ln(k, 0) =
∫ ∞

0

1

(w2 + 1)
n−1

2

1

k2 + √
w2 + 1

dw. (B7)

To calculate the sums at an arbitrary n, we use the following
recurrence identity:

Ln+1(k, T ) =
n−2∑
j=0

(−1) j

k2 j+2
Ln− j (0, T ) − (−1)n

k2n−2
L2(k, T ).

(B8)

In the T → 0 limit,

Ln(0, 0) =
√

π�
(

n−1
2

)
2�

(
n
2

) . (B9)

The sum L2(k, 0) has the form

L2(k, 0) =
{

1√
1−k4

[
π
2 − arctan

(
k2√
1−k4

)]
, |k| < 1,

1
2
√

k4−1
ln

∣∣√
k4−1+k2√
k4−1−k2

∣∣, |k| > 1.

(B10)

Then, we obtain

L3(k, 0) = π

2k2
− L2(k, 0)

k2
, (B11)

L4(k, 0) = 1

k2
− π

2k4
+ L2(k, 0)

k4
, (B12)

L5(k, 0) = π

4k2
− 1

k4
+ π

2k6
− L2(k, 0)

k6
. (B13)

Plugging the obtained expressions into Eq. (34), we find
�1(k).

At the same time, the current (40) in determined by V (T )
containing an integral with the Ln sums, see Eq. (42). Al-
though we are not able to calculate the integral in Eq. (42)
at T = 0 analytically, we can do it numerically obtaining
V (0) ≈ 0.272.

b. T → Tc

In this limit, �0 becomes small and has the form [28]

�0(T ) =
√

8π2Tc(Tc − T )/7ζ (3). (B14)

Therefore, we keep only the leading orders in �0 in Eqs. (34)
and (42). Thus, we obtain

�1(k)

�0
= −2(1 − cos δϕ)

1

k2 + L3(k, T )/L2(k, T )
, (B15)

V (T ) = 2Tc

π2�0

∫ ∞

−∞
dk

L2(k, T )

k2 + L3(k, T )/L2(k, T )
. (B16)

In these formulas, we may neglect the k dependence in the
Ln sums putting k = 0. Indeed, in the T → Tc limit, we have
ω ∼ Tc and �0 � Tc, hence sin θ0 ≈ �0/ω � 1 and L3/L2 ∼
�0/Tc � 1. From Eq. (B15) we see that �1(k) varies on the
scale of k ∼ √

�0/Tc. At the same time, the Ln sums, Eq. (33),
vary on the scale of k ∼ √

Tc/�0 	 √
�0/Tc. We thus obtain

�1(k)

�0
= − 2(1 − cos δϕ)

k2 + 7ζ (3)�0/π3Tc
, (B17)

V (T ) =
√

π3Tc/28ζ (3)�0. (B18)

Substituting Eq. (B14) into the latter expression, we obtain
Eq. (43).

APPENDIX C: SECOND-ORDER PERTURBATION
THEORY FOR THE PHASES

In this Appendix, we calculate the second-order correc-
tions for the phases, χ2(z, ω) and ϕ2(z).

1. Calculation of χ2 and ϕ2

We start from finding the auxiliary quantities χ
(0)
2 (z, ω) and

ϕ
(0)
2 (z). By definition, these functions are continuous at any z

and vanish in the bulk. The equations for these functions have
the form

sin θ0
d2χ

(0)
2

dz2
+ 2

dθ1

dz
cos θ0 sin δϕ = χ

(0)
2 − ϕ

(0)
2 , (C1)∑

|ω|<ωD

(
χ

(0)
2 (z, ω) − ϕ

(0)
2 (z)

)
sin θ0 = 0. (C2)
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Fourier transformation of Eq. (C1) gives

χ
(0)
2 (k) = ϕ

(0)
2 (k) + 2ikθ1(k) cos θ0 sin δϕ

1 + k2 sin θ0
(C3)

(we omit the ω argument of χ2, χ
(0)
2 , θ1, and θ0 for brevity).

Substituting Eq. (C3) into Eq. (C2), we find

ϕ
(0)
2 (k) = 4π iT

�0

1

kL2(k)

∑
ω>0

θ1(k) sin θ0 cos θ0

1 + k2 sin θ0
sin δϕ. (C4)

Our actual problem for finding χ2 and ϕ2, defined by
Eqs. (47)–(49), is more complicated than the one for χ

(0)
2

and ϕ
(0)
2 due to two circumstances. First, current conservation

leads to nonzero correction to the velocity of the Cooper pairs
in the bulk, i.e., dϕ2/dz �= 0 at z → ∞, which leads to delta-
functional singularity in the Fourier transform of χ2 and ϕ2.
Since χ = ϕ in the bulk, it is possible to solve the system of
equations for φ2 = χ2 − ϕ2 from which the singularity drops
out. Second, χ2 can be discontinuous at z = 0, which leads to
a singularity in Eq. (47),

sin θ0
d2φ2

dz2
+ sin θ0

d2ϕ2

dz2
+ 2

dθ1

dz
cos θ0 sin δϕ

= φ2 + δχ2δ
′(z) sin θ0. (C5)

The Fourier transformation of Eq. (C5) gives Eq. (51).
Finally, due to discontinuity at z = 0, the derivative of

χ2 contains the delta-functional contribution δχ2δ(z). The
boundary condition (49) contains only one-sided limits at
z = 0, so in order to write Eq. (49) in the Fourier space, we
have to subtract from the Fourier transform the singularity due
to the phase jump δχ2δ(z).

From the self-consistency equation (52) we find the con-
nection between ϕ2(k) and δχ2,

k2ϕ2 = 4πTik

�0L2(k)

∑
ω>0

θ1 sin θ0 cos θ0 sin δϕ

1 + k2 sin θ0

− 2πTik

�0L2(k)

∑
ω>0

δχ2 sin2 θ0

1 + k2 sin θ0
. (C6)

Using Eqs. (51), (C3), (C4), and the definition of the phase
functional (56), we obtain

φ2(k) = χ
(0)
2 (k) − ϕ

(0)
2 (k)

+ ik sin θ0

1 + k2 sin θ0

�(k)

L2(k)
− ikδχ2 sin θ0

1 + k2 sin θ0
. (C7)

The next step is to use the boundary condition (53). Sub-
stituting there Eq. (C7), we obtain

δχ2

2
√

sin θ0
=

∫ ∞

−∞

dk

2π

[
ik

(
χ

(0)
2 − ϕ

(0)
2

) − k2 sin θ0

1 + k2 sin θ0

�

L2

]
.

(C8)

This can be transformed as

δχ2

2
√

sin θ0
= dχ

(0)
2 (z = 0)

dz
− dϕ

(0)
2 (z = 0)

dz

+
∫ ∞

−∞

dk

2π

1

1 + k2 sin θ0

�(k)

L2(k)
−

∫ ∞

−∞

dk

2π

�(k)

L2(k)
. (C9)

Below for brevity we denote dχ
(0)
2 (z = 0)/dz by χ

′(0)
2 (0), and

similar notation is used for ϕ
(0)
2 .

Now, we multiply Eq. (C9) by 2πT sin2 θ0/�0 and sum
over ω > 0. Then by definition of L2, see Eq. (33), we have

πT

�0

∑
ω>0

δχ2 sin3/2 θ0 −
∫ ∞

−∞

dk

2π
�(k)

= 2πT

�0

∑
ω>0

sin2 θ0

(
χ

′(0)
2 (0)− ϕ

′(0)
2 (0)−

∫ ∞

−∞

dk

2π

�(k)

L2(k)

)
.

(C10)

The left-hand side turns to zero after integration of the phase
functional, Eq. (56), over k. At the same time, in the right-
hand side we have a contribution∫ ∞

−∞

dk

2π

�(k)

L2(k)
=

∑
ω>0 χ

′(0)
2 (0) sin2 θ0∑

ω>0 sin2 θ0
− ϕ

′(0)
2 (0). (C11)

We denote ∑
ω>0 χ

′(0)
2 (0) sin2 θ0∑

ω>0 sin2 θ0
≡ V0. (C12)

Substituting this result into Eq. (C9), we obtain

δχ2

2
√

sin θ0
= χ

′(0)
2 (0) − V0 +

∫ ∞

−∞

dk

2π

1

1 + k2 sin θ0

�(k)

L2(k)
.

(C13)
In order to calculate V0, we consider the Fourier transform of
ϕ′

2(z), and employing Eq. (C6), we get

ikϕ2(k) = ikϕ
(0)
2 (k) + �(k)/L2(k) + βδ(k), (C14)

where β is an unknown coefficient. Since ϕ2(z) is a continuous
function at z = 0 and ϕ′

2(0) = 0 due to the boundary condition
(49), we obtain

0 = ϕ
′(0)
2 (0) +

∫ ∞

−∞

dk

2π

�(k)

L2(k)
+ β

2π
. (C15)

From Eq. (C11), we find

β = −2πV0. (C16)

Finally, due to the current conservation, we can consider
the current in the bulk where θ1 = 0. Employing Eq. (40), we
obtain

J0 sin δϕ[1 − 4α(1 − cos δϕ)V ]

= J0

(
sin δϕ + α

dϕ2(z = ∞)

dz

)
. (C17)

Expressing dϕ2(z = ∞)/dz with the help of Eq. (C14), we
obtain

V0 = −dϕ2(z = ∞)

dz
= 4V (1 − cos δϕ) sin δϕ. (C18)

The answer for the phases χ2 and ϕ2 thus reads

ikχ2(k) = ikχ
(0)
2 (k) + 1

k2 sin θ0 + 1

�(k)

L2(k)

− 2πV0δ(k) + δχ2k2 sin θ0

k2 sin θ0 + 1
, (C19)

ikϕ2(k) = ikϕ
(0)
2 (k) + �(k)/L2(k) − 2πV0δ(k). (C20)
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The inverse Fourier transformation gives the derivatives
dχ2/dz and dϕ2/dz, from which we can find χ2(z, ω) and
ϕ2(z), respectively.

2. Bulk behavior

From Eqs. (C19) and (C20), one can see that in the bulk,
the phases χ2 and ϕ2 are equal and vary linearly as

χ2(z → ∞, ω) = a sgn z + bz, (C21)

with constant coefficients a and b. Our goal now is to find
them.

Since χ2(k) is an odd function, we can write

χ2(z) =
∫ ∞

−∞

dk

2π

sin kz

k
ikχ2(k). (C22)

Substituting here the relation

sin(kz)/πk −−−→
z→∞ sgn(z)δ(k) (C23)

and employing Eq. (C19), we find

a = 1

2
lim
k→0

(
ikχ

(0)
2 (k) + �(0)

L2(0)

)
, b = −V0. (C24)

The constant a can be found with the use of Eq. (C3), and in
terms of the sums defined in Eq. (33), it acquires the form

a = 2(1 − cos δϕ) sin δϕ

×
[

(L2 − L4)2 + L3(L3 − L5)

L2L3
+ �

L2

]
k=0

. (C25)

Both constants a and b do not depend on ω, which shows
that χ2 = ϕ2 in the bulk. Unlike the constant b = −V0, the
constant a at arbitrary temperatures cannot be found without
solving the integral equation (54), since it is determined by
the phase functional �(k). At the same time, in the limit
T = 0, its value can be found numerically and equals a ≈
0.544(1 − cos δϕ) sin δϕ.
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