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Anomalous out-of-phase magnetic ac response in superconducting wires
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We describe and explain two competing regimes of ac magnetic response in current-carrying type-II super-
conducting wires which were observed experimentally. In the usual regime, voltage V (t ), induced by vortex
motion across the wire, is “in phase” with the external magnetic field H (t ) ∝ sin(ωt ). However, as frequency
ω grows up or transport current I decreases, an anomalous, “out-of-phase” peak in V (t ) appears. If these two
regimes coexist, then two peaks in voltage are observed per half period of H (t ) in both experiment and numerical
simulations. At certain combinations of ω, I and the amplitude of the external field, the out-of-phase mechanism
even overwhelms the usual, in-phase one. It is shown that the out-of-phase maximum in V (t ) is due to the
inhibition effect of zero-field (annihilation) lines on flux motion. Such lines, if present in the sample, significantly
decelerate magnetic relaxation and dramatically affect the induced voltage. A phase diagram enabling one to
distinguish between the in-phase and out-of-phase regimes is constructed.
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I. INTRODUCTION

This theoretical work was initiated by experimental studies
[1,2] of the magnetic ac response in industrial current-carrying
YBa2Cu3O7−x (YBCO) and Bi2Sr2Ca2Cu3O10+x (BSCCO)
wires (tapes). These tapes were embedded at T = 77 K into
an oscillating magnetic field H (t ) = Hmax sin(ωt ) directed
perpendicular to the tape’s surface, and voltage V (t ), which
results from the magnetic flux motion across the tape, was
measured along the direction of dc transport current I . De-
pending on the combination of three parameters, i.e., Hmax, ω,
and I , two different regimes in the magnetic response were
observed [1,2]. In the first regime, the maxima of voltage V (t )
are in phase with H (t ). Such a behavior is easily understand-
able since the voltage is expected to be proportional to the
number of moving vortices, which, in turn, should increase
along with H . Contrariwise, in the out-of-phase regime, found
at moderate ω and/or low enough I , a second maximum in
V (t ) surprisingly appears, competes with the in-phase one,
and even overwhelms it. This indicates the presence of a
different, competing mechanism for flux motion and energy
dissipation.

The description of the ac magnetic response in type-II
superconductors is commonly based on the Bean model [3] for
the critical state or its modifications, such as the Kim model
[4]; see, also, [5–8]. All these descriptions imply infinitely fast
flux flow at j > jc and extremely slow flux creep at j < jc,
where jc(B) is the critical density of the magnetization current
and B is the mean (averaged over scales much greater than
intervortex distance) magnetic field in the sample. Within such
an approach, the magnetization current j is considered to be
equal (by absolute value) to jc(B) everywhere. However, start-
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ing from the pioneer work on giant flux creep [9], it became
clear that the applicability of critical state models is rather lim-
ited in high-temperature superconductors (HTSC). Except for
the region of low temperatures, which varies from compound
to compound, say, T � 40 K in YBCO and T � 20 K in
BSCCO, the activation energy U associated with flux motion
is low (of the order of kT , where k is the Boltzmann constant)
or just vanishing. Therefore, vortices are almost unpinned,
not ordered in a regular lattice due to thermal fluctuations,
and, correspondingly, relaxation of the magnetization current
is very fast [9]. As a result, the experimentally measured j
appears to be a function of the sweeping rate of the external
magnetic field, experimental “time window,” history of the
sample (field cooled or zero-field cooled), and other param-
eters. Usually, j turns out to be significantly less than jc and
even less than the depinning current jdepin; see Refs. [10,11]
as reviews. The temperature T = 77 K used in experiments
[1,2] is high enough to rule out the applicability of Bean-like
critical state models.

In order to study flux dynamics in HTSC at high temper-
atures, one has to rule out Bean-like models and analyze the
vortex diffusion equation [12–15], which results directly from
Maxwell equations and laws of field transformation. The only
assumption concerns the particular type of U (B, j) depen-
dence. Our previous studies [15,16] based on this approach
demonstrate that vortex dynamics is strongly decelerated if
zero-field lines (B = 0) are present at the sample boundary or
in its vicinity. For instance, the “field-on” magnetic relaxation,
where H �= 0 at the boundary, is exponentially fast [16] in
the flux-flow (U = 0) regime: |m| ∝ exp(−t/τ ). Here, m is
the magnetic moment and τ is the characteristic time of the
flux flow in the sample which depends on its size and viscous
friction for flux motion [18]. Contrariwise, relaxation in the
remanent state (H = 0) is dramatically slower (in the same
flux-flow regime) and obeys the power-law dependence: m ∝
(τ/t ) [13,16]. In addition, it was shown [16] that B = 0 lines
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strongly affect the relaxation rate dm/dt and cause anomalies
in the m(t ) dependence in experiments where H is swept on
at a constant rate: H ∝ t .

In an infinite slab geometry, B = 0 lines can also be called
annihilation lines since they divide vortices of different polari-
ties, which approach and annihilate each other. The dynamics
of vortices around an annihilation line is quite curious; see,
for instance, Ref. [17]. In this article, we show that annihi-
lation lines significantly affect vortex dynamics in oscillating
external field H (t ), giving rise to the appearance of the out-
of-phase regime in a magnetic response which competes with
the usual, in-phase regime, and even overwhelms it at certain
conditions. In the “coexistence ” region between these two
regimes, two maxima in voltage V (t ) per half period of H (t )
are found in our theoretical analysis, in complete agreement
with the experimental results [1,2]. Reducing three parame-
ters, i.e., Hmax, ω, and I , to two dimensionless ones, we build
up a phase diagram which allows one to predict where the
out-of-phase regime should be expected. This is important for
the design and application of current-carrying HTSC wires.
We also show that in the case where H (t ) does not change
sign and, correspondingly, B �= 0 everywhere in the sample,
the out-of-phase regime never appears.

The experiments we refer to (see Refs. [1,2]) were carried
out in industrial superconducting tapes (YBCO and BSCCO)
produced by the American Superconductor Corporation, ap-
proximately 4 mm wide and of thickness 0.2 mm. These tapes
are thin, and therefore magnetic field �B is strongly curved
around them. Nevertheless, here we confine ourselves by con-
sidering a simpler problem of an infinite (in the field direction)
slab. We show that even in this simplified and easily solvable
case, one gets two competing regimes in the ac magnetic
response very similar to those observed experimentally.

II. FLUX DYNAMICS IN A CURRENT-CARRYING
SUPERCONDUCTING SLAB EMBEDDED IN AN AC

MAGNETIC FIELD

Consider an infinite (along the y and z directions) su-
perconducting slab with −d/2 � x � d/2. The external
magnetic field H (t ) = Hmax sin(ωt ) is applied along the z
axis, and transport current I flows in the y direction, as shown
in Fig. 1. Of course, I is defined as the current per unit
“height” of the slab (in the z direction) and is measured in
A/m, whereas ∂I/∂x = j is a true current density. In such a
geometry, the spatial and temporal dependence of B(x, t ) on x
is determined by the one-dimensional flux-diffusion equation
[12–15]:

∂B

∂t
= −c

∂E

∂x
= ∂

∂x

[
Aφ0

cη
B j exp(−U/kT )

]
, (1)

where E = Bv/c is the induced electric field, v is the vortex
velocity, φ0 is the unit flux, η is the Bardeen-Stephen drag
(viscous friction) coefficient for flux flow [18], c is the speed
of light, and A � 1 is a numerical factor [14]. Note that Bv

is the flow of vortices. Magnetic field B and current density j
are related by a Maxwell equation,

j = ∂I

∂x
= c

4π

∂B

∂x
. (2)
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FIG. 1. Geometry of experiments [1,2] and of our theoretical
analysis. Transport current I (red arrow) flows in the y direction, and
voltage V is measured along the same axis. The external ac magnetic
field H is applied in the z direction. Vortices (shown as green dashed
lines) move along the x axis.

The displacement current (proportional to ∂E/∂t) is smaller
by a factor of ωvd/c2 and should be neglected in Eq. (2).

Experiments [1,2] where an out-of-phase peak in voltage
was observed were performed at liquid nitrogen temperature
T = 77 K where vortices in both compounds, YBCO and
BSCCO, move in the regime of nonactivated flux flow [10,11]
with U = 0. Along with that, as shown in Ref. [16], the
decelerating effect of annihilation lines is most pronounced
also in the flux-flow regime. Therefore, assuming U = 0 in
Eq. (1), we get the flux-diffusion equation for the case of flux
flow,

∂B

∂t
= ∂

∂x

(
φ0

4πη
|B|∂B

∂x

)
, (3)

with the boundary conditions

B(x = ±d/2, t ) = Hmax sin(ωt ) ∓ 2π I/c. (4)

As was shown in Ref. [15], the characteristic time of the
relaxation of magnetization currents in this case is

τ = π

2

ηd2

φ0Hmax
. (5)

Choosing dimensionless variables, i.e., b = B/Hmax, ξ =
x/d , t̃ = t/τ , ω̃ = ωτ , h = H/Hmax = sin(ωt ), and Ĩ =
4π I/Hmaxc, we reduce Eq. (3) to the following form:

∂b

∂ t̃
= 1

8

∂

∂ξ

(
|b| ∂b

∂ξ

)
, (6)

where −1/2 � ξ � 1/2 and the boundary conditions are

b(ξ = ±1/2, t̃ ) = h(t̃ ) ∓ Ĩ/2 = sin(ωt ) ∓ Ĩ/2. (7)

Note that ω̃t̃ = ωt . Equations (6) and (7) contain two di-
mensionless parameters: ω̃ and Ĩ . It should be mentioned
that at Ĩ > 2 (high currents), we have b(ξ = −1/2, t̃ ) > 0 at
all t̃ and, correspondingly, b(ξ = −1/2, t̃ ) < 0; see Eq. (7).
Therefore, at Ĩ > 2, there always exists at least one b = 0
line inside the sample. At low currents, Ĩ < 2, annihilation
lines enter into or exit from the sample at b(ξ = ±1/2, t̃ ) = 0,
as shown in Fig. 2. Regarding frequency, the case ω̃ � 1 or,
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FIG. 2. Magnetic field profiles b(ξ ) at Ĩ = 0.3. Red dots show the
position of the annihilation (b = 0) lines. (a) Quasistatic case ω̃ � 1;
see Eqs. (8) and (9). (b) Numerical solution of Eq. (6) at moderate
frequency, ω̃ = 0.1.

the same, τ � 1/ω corresponds to the adiabatic (quasistatic)
limit ∂b/∂ t̃ � 1, where flux relaxation is very fast and b(ξ )
acquires its “static” (fully relaxed) shape at given H (t ). In this
case, the solution of Eq. (6) becomes

b(ξ ) =
√

h2 − 2Ĩhξ + Ĩ2

4
, (8)

provided Ĩ/2 < |h(t̃ )| = | sin(ωτ )|, which means that b �= 0
everywhere in the sample. In the case Ĩ/2 > |h(t̃ )|, the anni-
hilation line is inevitably present, and for Ĩ > 2, this condition
is fulfilled at all t̃ . If we denote the position of the b = 0 line
as ξ0, then the quasistatic solution of Eqs. (6) and (7) is

b(ξ ) =
√(

2h2 + Ĩ2

2

)
· |ξ − ξ0|. (9)

The adiabatic solutions described by Eqs. (8) and (9) are
shown in Fig. 2(a). The upper three curves are described by
Eq. (8), whereas the lower curve corresponds to Eq. (9). The
positions of the annihilation lines are shown by red dots.

On the contrary to the adiabatic (quasistatic) case, in the
limit ω̃ � 1 or, the same, τ � 1/ω, the dynamics of the
vortices is slow if compared with changes in H (t ) and, cor-
respondingly, b(ξ ) profiles are far from the “static” ones
described by Eqs. (8) and (9). Instead, they are strongly curved
[see Fig. 2(b)] and magnetization current j ∝ ∂b/∂ξ changes
sign as a function of both time and coordinate. The value
of τ , as follows from Eq. (5), depends on d , Hmax, and vis-
cous constant η, which, in turn, is a function of temperature.
Using the experimental data obtained in Ref. [19], we can
estimate η ≈ 2 × 10−6 g cm−1 s−1 at T = 77 K. According to
Refs. [1,2], we take d = 4 mm and Hmax � 300 G, and get
τ ≈ 8 × 10−3 s. Then the characteristic frequency ω0, which
“separates” the adiabatic regime and the high-frequency one,
is ωc = 1/τ � 125 Hz.

III. VOLTAGE AND PHASE DIAGRAM FOR AC
MAGNETIC RESPONSE

The value measured in experiments [1,2] was voltage V in
the y direction (along the dc current I); see Fig. 1. According
to the Kirchhoff rule, the voltage (per unit length) is

V = E (x) − j(x)ρ(x), (10)

where E (x) is the induced electric field determined by Eq. (1)
and ρ = φ0|B|/ηc2 is the resistivity associated with flux flow
[18,20]. Though E , j, and ρ depend on x, the voltage V is, of
course, independent of x: One can easily check that ∂V/∂x =
0 immediately follows from Eq. (3). The value of V can be
derived by integration of Eq. (3),

Ex=d/2 − Ex=−d/2 = −
∫ d/2

−d/2

∂B

∂t
dx

= − φ0

4πcη

(
|B|∂B

∂x

)x=d/2

x=−d/2

. (11)

Taking into account that |E (x = d/2)| = |E (x = −d/2)| due
to symmetry requirements and using Eqs. (10) and (11), we
get dimensionless voltage (per unit length in the y direction):

Ṽ = 8cτV

Hmaxd
=

(
|b| ∂b

∂ξ

)
ξ=1/2

+
(

|b| ∂b

∂ξ

)
ξ=−1/2

. (12)

In Fig. 3, we plot Ṽ as a function of ωt , at Ĩ = 0.3 and
different frequencies ω̃. As ω̃ grows up, the shape of the
Ṽ (ωt ) curves changes dramatically. At small ω̃ � 1, the time
dependence of Ṽ is almost in-phase with h(t̃ ) = sin(ωt ), i.e.,
the voltage reaches a maximum at |h| = 1 and becomes min-
imal at h = 0 ; see Fig. 3(a). This agrees, of course, with the
expression for voltage,

Ṽ (t̃ ) =
{

2 sin2(ωt ) + Ĩ2/2 if b = 0 line exists
2Ĩ · |sin(ωt )| if b �= 0 everywhere,

(13)

which results from the adiabatic solutions [see Eqs. (8) and
(9), combined with Eq. (12)]. Nonetheless, a small kink (out-
of-phase maximum) appears in Ṽ (ωt ), as we see in the left
part of Fig. 3(a). As ω̃ increases, the out-of-phase peak starts
to grow up; see Fig. 3(b). At moderate frequencies, this second
peak becomes larger and overwhelms the in-phase maximum;
see Figs. 3(c) and 3(d). Our numerical results are in qual-
itative accordance with the experimental data presented in
Refs. [1,2], in spite of the fact that in our theoretical analy-
sis, we consider an infinite slab whereas the experiment was
carried out in thin tapes. For low currents Ĩ < 0.5, the in-phase
maximum disappears completely at ω̃ > 0.6; see Fig. 3(e). It
is quite curious that Ṽ becomes negative in a certain range of
phase ωt , as shown in Figs. 3(b)–3(e). As ω̃ increases, this
effect becomes more pronounced. It means that the supercon-
ducting sample periodically stores and releases energy, and
this effect requires further investigation.

In order to explain the appearance of an out-of-phase peak
in V (t ) and its domination at high frequencies, let us note
that as follows from Eq. (12) and was mentioned in Ref. [7],
voltage is determined by the amount of vortices which cross
the sample boundaries at ξ = ±1/2. As shown in Ref. [16],
if b = 0 at the boundary, it appears to be effectively “locked
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FIG. 3. Voltage Ṽ induced by the motion of vortices at Ĩ = 0.3
and various frequencies: (a) ω̃ = 0.05, (b) ω̃ = 0.25, (c) ω̃ = 0.35,
(d) ω̃ = 0.4, and (e) ω̃ = 0.6.

up” for the exit of vortices. Therefore, when annihilation line
appears at a boundary, i.e., b ξ=−1/2 = 0 or b ξ=1/2 = 0, the
corresponding term in Eq. (12) gets suppressed. It should be
clearly emphasized that the condition b = 0 does not mean
that the flow of vortices, Bv ∝ b ∂b/∂ξ , vanishes at the same
point. As shown in Ref. [16], it remains finite due to diverging
∂b/∂ξ . However, the flux dynamics in the vicinity of the
sample boundary gets strongly inhibited. In the quasistatic
regime [see Fig. 2(a)], this effect is not prominent on the
background of very slow changes in H (t ). As ω̃ grows up,
a dramatic slow down of flux motion results in significant
changes in the magnetic response and, in turn, in V (t ). At
moderate ω̃, the current density j(ξ ) ∝ ∂b/∂ξ is of different
signs at ξ = ±1/2; see the field profiles with red dots in
Fig. 2(b). So two contributions to Ṽ [see Eq. (12)] become
large by absolute value, but of different sign. Suppression of
the negative term [out of two in the right-hand side of Eq. (12)]
results in a dramatic increase of V . Therefore, at low currents
Ĩ < 2, the second peak in Ṽ (t̃ ) appears exactly where the
b = 0 line enters the sample; see the black dashed lines in
Fig. 3.
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FIG. 4. Phase diagram for the type of magnetic ac response. Two
peaks (in-phase and out-of-phase) coexist in the area between the
red and blue lines. The “median” line where sout = sin (see Fig. 3) is
shown in black.

Let us define the height of in-phase and out-of-phase volt-
age peaks, sin and sout, as shown in Figs. 3(b) and 3(d),
and summarize our results in a “phase diagram”; see Fig. 4.
The red and blue lines confine the area where two peaks
in V (t ) are observed, and the black line correspond to the
“median” where sin = sout. The two peak area is finite and
does not stretch over Ĩ > 5.5 or ω̃ > 0.9. This fact is in line
with our explanation for the origin of the out-of-phase peak.
At high currents Ĩ > 2, no b = 0 lines appear at the sample
boundaries. But as such a line, which always exists at high
currents since b ξ=−1/2 = 0 and b ξ=1/2 = 0 are of opposite
signs, approaches a boundary, the lock-up effect partially
takes place. Therefore, at Ĩ � 2, the two peak area gets nar-
row; see Fig. 4. As Ĩ grows up further, the two peak area
vanishes and disappears completely at Ĩ ≈ 5.4, since now the
annihilation line stays “deep” inside the sample and does not
approach its boundaries; correspondingly, the lock-up effect
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FIG. 5. Voltage Ṽ (t ) during one cycle of external dc+ac mag-

netic field h determined by Eq. (14), which is shown as a black line.
No annihilation lines are present and no two peak phase is observed.
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fades out. However, if we “bend around” the two peak area
in the way from the in-phase area under the red curve towards
the out-of-phase area above the blue curve (see Fig. 4), we find
a single maximum in Ṽ (ωt ) all the way, but it will gradually
drift away from ωt = π/2. The black dotted line, which is a
natural extrapolation of the solid black median, shows where
the maximum has passed one-half distance between its in-
phase and out-of-phase positions.

IV. THE ROLE OF ANNIHILATION LINES - DISCUSSION

In order to prove and emphasize the crucial role of annihi-
lation (B = 0) lines in the appearance of the out-of-phase peak
in V (t ), we analyzed the case where H (t ) has a dc component,

H (t ) = H0 + H1 sin(ωt ) where H0 > H1. (14)

Here, H (t ) does not change sign and B = 0 lines are absent. In
Fig. 5, we show the results of the numerical solution of Eq. (3)
at h0 = 1.3, h1 = 1, Ĩ = 0.3, and various ω̃. Note that H1

substitutes Hmax in the definitions of dimensionless h0, Ĩ , and
ω̃. We found no trace of the second peak in contrast to “pure”
ac H (t ) with H0 = 0, whereas a clear coexistence of in-phase
and out-of-phase maxima was found at the same values of

Ĩ and ω̃; see Figs. 3 and 4. A single maximum in V (t ) was
observed in the case of alternating, but not changing sign H (t )
at any frequencies and transport currents. This confirms that
annihilation lines are particularly responsible for the appear-
ance of the out-of-phase magnetic response regime. However,
as ω̃ grows up, we observe another interesting phenomenon:
the maximum of V (t ) drifts away from the maximal value of
|H (t )|; see Fig. 5. This effect requires further study.

To conclude, we described and explained the experi-
mentally observed out-of-phase regime in the ac magnetic
response of current-carrying type-II superconducting wires. It
was proved that its appearance is conditioned by the presence
of annihilation (B = 0) lines in the sample (wire). We found
that in a wide area of the current-frequency phase diagram,
the out-of-phase regime coexists with the usual in-phase one
and even overwhelms the latter.
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