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Correlated nature of hybrid s-wave superconducting and Rashba lattices

L. Craco
Institute of Physics, Federal University of Mato Grosso, 78060-900, Cuiabá, MT, Brazil

and Leibniz Institute for Solid State and Materials Research Dresden, D-01069 Dresden, Germany

(Received 24 March 2021; revised 16 August 2021; accepted 16 August 2021; published 25 August 2021)

We elucidate the electronic state of a two-dimensional (2D) Rashba square lattice proximitized to a
square monolayer s-wave superconductor, analyzing the role played by dynamical electron-electron inter-
actions. The 2D+2D proximity effect induces sharp Bogoliubov and low-energy Andreev-reflected bound
states, suppressing the s-wave gap globally. Dynamical correlations strongly renormalize the Bogoliubov
quasiparticles and the Andreev levels, evolving the spin-resolved Andreev linewidths into a single bound
state. We explore the channel- and spin-resolved spectral functions and analyze the reconstructed supercon-
ducting state, showing that the Rashba spin-orbit coupling drives strong channel differentiation. The mutual
interplay between electron-electron and spin-orbit interactions, with proximity-induced electron pairing, lead
us to introduce a generally applicable mechanism for designing Majorana fermions in 2D superconducting
structures.
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I. INTRODUCTION

The coupling of a superconductor (conventional s-wave or
not) to a metal or a semiconductor results in the superconduct-
ing proximity effect in the normal system [1]. Relevant in this
context is the proximity effect between superconductors and
Rashba spin-split two-dimensional (2D) electron gases [2]:
Due to the Rashba spin-orbit interaction a 2D electron gas
shows broken inversion symmetry, manifesting itself in the
so-called Rashba splitting of the electronic states [3,4]. Being
proximitized to an s-wave superconductor, a semiconductor
thin film with Rashba spin splitting may undergo a peculiar
phase transition and turn into a topological superconductor
[5]. Here, the states with opposite spins at opposite momenta
can be paired via the proximity to an s-wave superconductor,
which would support zero-energy Majorana fermion modes
in hybrid systems [6,7]. Within the spin-orbit-coupled physics
context, attention has also been given to correlated metal-
lic and Mott insulating systems with lifted spin degeneracy,
where the interplay between the Mott-Hubbard and spin-orbit
interaction determines the nature of the low-energy elec-
tronic and magnetic excitations [8–11]. With this in place, in
this paper we explore the interplay between electron-electron
interactions, Rashba spin splitting, and s-wave superconduc-
tivity in a hybrid setup (see Fig. 1) composed of two correlated
monolayer square lattices.

It is now recognized that a large class of systems [12–15]
show coexisting symmetry-breaking phases and electron-
electron correlation effects [16,17]. Particularly relevant is
the discovery of materials featuring strong Rashba spin-orbit
coupling and strong electronic correlations, which raises ques-
tions about the interplay of Mott and Rashba physics [9],
including the emergence of superconducting (SC) phases
in Rashba-Hubbard-like models [10,13,14,16,18,19]. While

the effect of spin-orbit coupling in weakly interacting elec-
tron systems is well studied by now, much less is known
about the possible generic phases arising from the inter-
play between the spin-orbit and Coulomb interaction in
correlated electron systems [8,12]. Hence, despite extensive
investigations by theory and experiments, the interplay be-
tween these two effects and superconductivity still remains
an open question [20]. Motivated thereby, in this paper
we focus on dynamical electron-electron interactions in a
Rashba-Hubbard system [9,10] hybridized with a correlated
s-wave superconductor. Using the dynamical mean-field the-
ory (DMFT) approximation [21,22], we analyze how these
combined effects modify the correlated spectral functions
of the proximitized system, and characterize distinct elec-
tronic features emerging in a half-filled 2D+2D square lattice
structure.

II. MODEL AND METHOD

In this multiparticle study we investigate the two-channel
electronic evolution of an extended Hubbard model under
layer-dependent Rashba and s-wave paring correlations rep-
resented, respectively, by the top and bottom layers in Fig. 1.
Our 2D+2D system is the basic building block towards re-
alistic heterostructures [23] or hybrid optical lattices of cold
atoms [24], allowing us to control the dimensionality of dif-
ferent building blocks and to modulate physical parameters
such as spin-orbit coupling, layer hybridization, SC gap sym-
metry, and many-particle electron-electron interactions. This
wide tunability is expected to be a great advantage to re-
alize novel phases of matter which might be absent in real
materials.

The hybrid 2D+2D Hamiltonian studied here is H =
∑

α Hα + HSC
d + Hhyb

cd , where α = c, d label, respectively, the
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FIG. 1. Half-filled, locally hybridized bilayer lattice system. Cir-
cles represent electrons, with those of opposite spins occupying the
same lattice site [24]. The arrows indicate the on-site hybridization V
between the two-dimensional layers and the intralayer hopping t . In
this 2D+2D layer structure all intra- and interlayer hopping elements
are assumed to be equal.

Rashba spin-split and the SC square lattice, with Hhyb
cd =

V
∑

i,σ (c†
i,σ di,σ + H.c.) being the local Anderson-like hy-

bridization term [25,26] between lattices c and d . In order
to keep our discussion general, and similar to Ref. [27], we
will make minimal assumptions on the SC state, and con-
sider the Rashba-Hubbard lattice in proximity with an s-wave
superconductor (respectively, the top and bottom layers in
Fig. 1), where the intraband interaction in the SC channel
reads HSC

d = �
∑

k (d†
k,↑d†

−k,↓ + H.c.), with � being the s-
wave pairing potential [26,28,29]. Moreover, consistent with
earlier studies [9,10,24,30] we write the normal one-band
and electron correlation terms as Hα = ∑

k,σ εα (k)nα,k,σ +
U

∑
i nα,i,↑nα,i,↓ + U ′ ∑

〈i j〉 nα,inα, j , where U (U ′) is the on-
site (intersite) [30] Coulomb interaction, and εα (k) are the
two-channel band dispersions, which encode details of the 2D
structures [9,10,24].

In a square lattice with nearest-neighbor hopping
t and Rashba spin-orbit coupling tSO, the one-band
dispersions can be written as [9,10] εd (k) = ε0(k) and
εc(k) = ε0(k) + γ tSO

√
sin2(kx ) + sin2(ky), with ε0(k) =

−t[cos(kx ) + cos(ky)]. Here, the index γ = ±1 indicates
the helicity [9,10] of the helical bands. These 2D band
structures are the one-particle inputs for correlated electronic
structure calculations within DMFT [31]. As shown below,
the two-fluid assumption made here, where one fluid is
an intrinsic SC and the other is a proximity-induced
superconductor, has profound effects in the low-energy
excitation spectrum of an hybrid system with coexisting
s-wave SC and electronic states with lifted spectral
degeneracy.

We evaluate the many-particle Green’s functions
Gα,σ (ω, k) = 1

ω−	α,σ (ω)−εα (k) of our two-channel Hamiltonian
at zero temperature and real frequencies using the one-band
iterated perturbation theory (IPT) impurity solver for DMFT.
The detailed formulation of IPT for correlated electron
systems at arbitrary fillings has already been described [32]
and used in the context of extended Hubbard and periodic
Anderson models [25,33] so we do not repeat the equations
here. Moreover, as in earlier works, we decouple the intersite
Coulomb correlation term in the Hartree approximation [34],
which is exact within DMFT [31].

FIG. 2. Local density of states (LDOS) for the hybrid (V = 0.5)
2D+2D Hubbard model in the paramagnetic (non-spin-split) phase
at half filling. Notice the emergent Hubbard bands with increasing
the on-site Coulomb interaction U , and the zero frequency pinning
of the LDOS to the bare (U = 0.0) value. The inset shows for
comparison the bare two- (2D) and three-dimensional (3D) LDOS
with the hybrid 2D+2D case.

III. RESULTS

A. Role of hybridization and Coulomb interaction

To begin with we consider the hybrid 2D+2D many-
body Hamiltonian H within the � = tSO = 0.0 limit. In
Fig. 2 we show the correlated electronic behavior which
emerges in the local density of states (LDOS) [ρα,σ (ω) =
− 1

π
Im

∑
k Gα,σ (ω, k)] upon consideration of dynamical

electron-electron interactions in our planar 2D+2D system.
For the sake of simplicity we use fixed t = V = 0.5 and U ′ =
U
2 values [35]. The former implies equal nearest-neighbor
and interlayer hopping elements [36]. With this parameter
choice the hybrid structure lies in between the true 2D and
three-dimensional (3D) electron gas system, displaying the
same bare one-particle bandwidth as in the 3D case (see
the inset of Fig. 2). As shown in the inset of Fig. 2, due
to a sizable hybridization effect the van Hove singularity of
the 2D square lattice [21] splits into two [36,37], and their
energies coincide with those where the 3D LDOS achieves
its highest value. Remarkable as well are the changes in the
LDOS with increasing the on-site Coulomb interaction U .
Our results in the main panel of Fig. 2 correctly reproduce
the expected behavior for the correlated spectral functions
within the DMFT approximation. Particularly interesting in
this context are the emergent lower (LHB) and upper (UHB)
Hubbard bands, the crossing points at at energies close to
± 1.3, and the pinning of the correlated spectral function to
its bare value at the Fermi energy (EF = ω = 0.0) [21,31],
implying a regular Fermi liquid electronic behavior [21] in
this correlated 2D+2D system.

As shown in the main panel of Fig. 2, here we numerically
investigate, using the DMFT method, a simple realization of
a two-layer Hubbard model in which the tunneling between
layers V is equal to the single-particle hopping t . As visible
in the inset of Fig. 2, this model interpolates between the
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3D and 2D systems. Similar to Ref. [38], our proposal aims
to overcome the limitation of searching for suitable combi-
nations of crystal geometries, with inherent lattice-matched
symmetries, to describe the electronic reconstruction in a hy-
brid Rashba-Hubbard s-wave SC system. As a starting point
towards future studies, the present DMFT study is free from
any particular crystal geometry, and thus provides an interest-
ing playground for engineering heterostructures with distinct
normal state properties. Another advantage of the present case
(see our results below) as compared to other studies showing
the formation of a Majorana corner [39] or edge states [27] is
that here the Majorana zero modes emerge at each lattice site,
and thus are intrinsically not isolated from bulk states.

B. Effect of multiparticle interactions and s-wave pairing

Aiming to shine light on the changes induced by Rashba
spin-split and Coulomb interaction effects in the excitation
spectrum within the SC state, we have extended our normal
state electronic structure calculation to treat HMF

d above within
DMFT formalism for the SC state [29]. Using our assump-
tion for the s-wave SC pair field � the DMFT equations
are readily extendable to the SC regime. In this regime the
Green’s functions have normal and anomalous components
[40,41], yielding renormalized normal Gα,σ (ω, k) and anoma-
lous Fd,σ (ω, k) = Gd,σ (ω, k) �

ω+	∗
d,σ̄

(ω)+εd (k) propagators [42].

The former is solved by extending the normal state DMFT
treatment to include an explicit pair potential term. Including
the pair field � along with the interlayer hybridization V , the
DMFT propagators are written as

Gd,σ (ω, k) = 1

ω − 	d,σ (ω) − εd (k) − ξd,σ (ω, k)
,

and

Gc,σ (ω, k) = 1

ω − 	c,σ (ω) − εc(k) − ξc,σ (ω, k)
,

where

ξd,σ (ω, k) = �2

ω + 	∗
d,σ̄

(ω) + εd (k)
+ V 2

ω − 	c,σ (ω) − εc(k)
,

and

ξc,σ (ω, k) = V 2

ω − 	d,σ (ω) − εd (k) − �2

ω+�∗
d,σ̄

(ω)+εd (k)

.

As shown below, since these propagators are coupled via
the interlayer hybridization V , the emergence of a SC state
in the d band will induce remarkable SC fingerprints in the
proximitized c shell.

In order to understand how the different channels behave
regarding the SC proximity effect, we display in Fig. 3 the
channel-resolved spectral functions in the absence of the
Rashba spin-orbit interaction. As seen in the upper left-hand
inset of Fig. 3, in the zero hybrid interlayer limit the d chan-
nel is strongly reshaped by the s-wave pairing mechanism.
The clear appearance of an s-wave superconductor with a
gapped spectrum [28,43] followed by sharp singularities at
low energies is seen for � = 0.1 in the clean 2D limit. It
is worth mentioning that the appearance of sharp singular-
ities at low energies as in Fig. 3, the so-called Bogoliubov

FIG. 3. Evolution of the two-channel spectral functions across
the superconducting (SC) transition in the absence of Rashba spin
splitting. The upper left-hand inset displays the d-channel LDOS
for two pair-field values, showing conventional Bogoliubov quasi-
particles above the s-wave SC gap. The upper right-hand inset shows
the changes in the bare 2D+2D LDOS across the SC transition and
the emergence of sharp Andreev bound states in the true d- and the
proximitized c-channel superconductor. The main panels display the
changes in the SC spectral functions with increasing U , showing
how Bogoliubov- and Andreev-level linewidths are reshaped by local
dynamical correlations.

quasiparticles, is the one-particle fingerprint of conventional
s-wave superconductors [28]. Remarkable, however, are our
results for V = 0.5 and � = 0.2 in the upper right-hand inset
of Fig. 3, suggesting the emergence of a topological transition
within the bare SC state. Due to the proximity effect this state
is marked by a closure of the SC gap, and the appearance
of two low-energy modes symmetrically located around EF .
The latter suggests the emergence of Andreev-like bound
states, with electrons traveling the normal (non-SC) system
being Andreev reflected from the layer superconductor [6,43–
45]. Moreover, due to the sizable proximity effect, supercon-
ductivity with similar reflected Andreev bound states is also
induced in the c layer (see the lower right-hand inset of Fig. 3).
Additionally, in the main panels of Fig. 3 we display the
channel-selective evolution of the correlated SC state. From
our results, it is evident that the Bogoliubov quasiparticles
are strongly suppressed upon increasing the on-site Coulomb
interactions U , with a concomitant appearance of LHBs and
UHBs at high energies. Interesting as well is the evolution of
the Andreev levels, which is found to be channel selective with
those at the c channel being more stable against dynamical
electron-electron interactions. Taken together, our results in
the main panels of Fig. 3 suggest that the Bogoliubov- and
Andreev-level linewidths are strongly reshaped by dynamical
correlation effects and only SC kinks [40] are expected to be
seen in spectroscopy and tunneling experiments on similar
planar systems treated beyond the Hartree-Fock approxima-
tion [36].

It should be noted here that in the absence of disorder or
proximity to quantum criticality, a correlated Fermi sea can
be described in terms of well-defined, coherent Fermi liquid
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FIG. 4. 2D+2D spin-resolved spectral functions in the presence
of Rashba spin splitting. The lower left-hand inset displays the 2D
LDOS with lifted spectral degeneracy for fixed spin-orbit coupling
(tSO), showing particle-hole asymmetry and the emergence of van
Hove singularities at the band edges. The right-hand insets dis-
play the combined effect of 2D+2D hybridization and spin-orbit
coupling, showing less pronounced spin splitting within the bare
d channel. The main panels reveal the changes in the SC spectral
functions with increasing U , showing how the spin-resolved Andreev
levels in the d channel evolve towards a single peak. (The ↑-spin
normal state LDOS are also shown for comparison in the main
panels).

quasiparticles at low energies as in Fig. 2. Having in mind
that in DMFT the self-energy is momentum independent, the
quasiparticle residue Z [31], which also defines the renor-
malized Fermi energies, characterizes the degree of electronic
correlations of the normal metallic state, establishing the en-
ergy above which the lifetime of quasiparticles becomes short
and many-particle coherence is lost. In the case of conven-
tional s-wave superconductors the coherent length is set by
the energy window of the Bogoliubov quasiparticles above the
s-wave SC gap. However, due to the proximity effect in the
hybrid 2D+2D system, this energy scale is further reduced
to an energy window defined by the Andreev level bound
states. Thus, from our results in Fig. 3, we conclude that in
our 2D+2D setup the coherence length of the proximitized
SC state is nearly similar to the normal state, since both are
bounded by the Andreev bound states.

In Fig. 4 we show the effect of Rashba spin splitting
in our hybrid 2D+2D system. To understand this, in the
lower left-hand panel we consider the spin-resolved LDOS
for tSO = 0.125 [18,28,46] within the nonhybrid limit. As
seen, the 2D spectral degeneracy is lifted, with a concomi-
tant appearance of von Hove singularities at the band edges.
Spin-dependent particle-hole asymmetry is also visible within
the hybrid 2D+2D bare case (see the right-hand insets of
Fig. 4), which as expected is more pronounced in the Rashba c
channel. Moreover, due to half-filling particle-hole symmetry
in the main panels of Fig. 4 we show only the evolution of the
multiparticle spectra for the majority spin-↑ (γ = −1) sector.
In spite of a clear spectral function differentiation, in both

channels the crossing points are visible at high energies with
the LHBs being more pronounced as compared to the UHBs.
Although upon increasing U the c channel develops a pseudo-
SC gap with the Andreev levels being transferred towards
the conduction band, the nearly symmetric d-band Andreev
bound states turn into a zero-energy mode approaching EF

and almost cross it at U = 2. It should be noted that a simi-
lar spin-resolved Andreev level evolution has been observed
in tunneling (dI/dV ) spectra of hybrid nanostructures [45],
revealing that the spin-split Andreev level crossing EF results
in a quantum phase transition to a spin-polarized state with
changes in the fermionic parity of the system.

C. Emergence of Majorana zero modes

Let us now discuss the implications of our results for
the emergence of Majorana modes in our hybrid bilayer
setup. From the theoretical standpoint, a similar zero-energy
crossing of the Andreev level as in the d channel of Fig. 4
has been reported in Refs. [45,47]. Importantly, according
to Ref. [45], such zero-energy crossing manifests itself as a
zero-bias conductance anomaly with properties that resemble
those expected for the emergence of the Majorana modes from
the Andreev bound states. Our results for U = 1.0 in the upper
panel of Fig. 4 are also consistent with spin-polarized Majo-
rana zero modes observed in the dI/dV spectra of magnetic
Fe clusters on Bi(111) thin films grown in a SC Nb substrate
[48], providing support for creating Majorana zero modes in
correlated electron systems [27]. Although this resemblance
is found here without evoking topological superconductivity
[4], the zero-energy mode at EF offers an electron-correlated
platform to realize and manipulate many-body Majorana zero
modes [49–51] in the hybrid 2D+2D limit.

To understand the changes in the electronic state which
might give rise to channel-selective Majorana bound states,
we show in Fig. 5 the total spectral functions ρα (ω) =∑

σ ρα,σ (ω) for U = 2.0 (main panels) and U = 1.5 (right
insets). This is motivated by the fact that the Majorana parti-
cles are their own antiparticles [52], implying that the spectral
weight of localized modes should be built on an equal foot-
ing from coherent scattering between the electron and hole
components [27] as described above. As seen in Fig. 5, while
the c-channel Hubbard bands are sensitive to changes in the
Rashba spin-orbit interaction due to Rashba-assisted dynam-
ical spectral weight transfer, the high in energy spectra of
the SC d channel is almost insensitive to changes in tSO.
However, the electronic reconstruction of the d channel at
lower energies is found to be surprisingly dependent on tSO.
From our results in the upper panel of Fig. 5, it is visible that
the zero-energy mode of the normal [ρd (ω)] and anomalous
[Fd (ω)] DMFT components is enhanced by the combined
effects of multiparticle interactions and s-wave pairing sym-
metry, suggesting that the emergent Majorana modes are
stable excitations in correlated s-wave superconductors lo-
cally proximitized to Rashba-Hubbard lattices.

From our results in Figs. 4 and 5, it is evident the
many competing energy scales induced by multiparticle cor-
relation effects present in our hybrid 2D+2D system lead
to an emergent phenomenon for designing Majorana zero
modes at low energies. Differently from the other proposed
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FIG. 5. Evolution of the total LDOS across the SC transition
for U = 2.0 (main panels) [U = 1.5 (insets)] and two tSO values.
Notice the enhancement of the single Andreev peak for tSO = 0.125
as compared to the Rashba free case within the normal [ρd (ω)] SC
component, inducing a sharp low-energy line shape in the anoma-
lous [Fd (ω)] component of the d-channel spectral functions. Also
noteworthy is the tSO dependence of the c channel.

candidate setups [24,36], our scheme does not require real
space spin correlations [24] or Kondo exchange coupling [36].
All ingredients needed for the emergence Majorana fermions
appear as a consequence of collective multiparticle quantum
correlations induced by proximity and Coulomb interaction
effects. Notwithstanding, apart from the cold atoms [24,53]
and the heterostructure [23,54] perspectives, there are only
a few candidate systems [38,45,47,48] that may exhibit the
behavior found here due to their intrinsic multiband and mul-
tiorbital quantum nature. Nonetheless, promising alternative
approaches to realize Majorana fermions are thin films of
iridium [55] covered by conventional BCS superconductors
or chains of magnetic atoms on the surface of an s-wave
superconductor [56]. Finally, due to sizable bulk quantum cor-
relations in Bi2Se3 topological insulators [57], an additional
efficient route for designing Majorana zero modes would be
to make use of ultrafast optical excitation and manipulate the
Rashba-induced spin splitting of a two-dimensional electron

gas [58] engineered at the surface of Cu-doped Bi2Se3 super-
conductor [59].

IV. CONCLUSION

In summary, in this paper we explore the physical proper-
ties of a two-dimensional Rashba-Hubbard lattice hybridized
with a correlated s-wave superconductor. Our setup allows
spin degeneracy to be lifted without destroying superconduc-
tivity, and suggests that the spin-split Andreev level linewidth
crossing the Fermi energy results in an electronic state
which changes the fermionic parity due to strong electron-
electron interactions. We show how the resulting zero-energy
line shape of the normal and anomalous superconducting
components increase with increasing the Rashba spin-orbit in-
teraction. This manifests itself as a low-energy anomaly with
properties that resemble those expected for the emergence
of many-body Majorana modes in topological superconduc-
tors [45,46,49,50]. Although the emergent low-energy mode
is understood without evoking topological superconductivity
[60], the resulting anomalous proximity effect is important
for the ongoing discussion on the mechanisms for designing
Majorana fermions [53] in correlated quantum gases [61].

Our work highlights the role of dynamical electronic
correlations for understanding the emergence of an ex-
otic electronic state which might host Majorana bound
states in hybrid s-wave superconducting/Rashba-Hubbard
two-dimensional lattices. Our approach can be expanded to
cover other lattice systems and heterostructures to facilitate
the prediction of material properties in accord with their
device-level implementations. A natural extension to the study
presented here is to generalize the model and method to in-
clude multiorbital degrees of freedom. However, the extension
to multiorbital physics, especially for real materials, must take
into account various processes that arise from band structures,
interorbital Coulomb interactions, and Hund’s coupling. Nev-
ertheless, we expect that our present results will stimulate
future studies in this direction, and ultimately complement the
ongoing research efforts to devise novel routes for creating
Majorana zero modes.
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Vranić, J. Vučičević, J. Kokalj, J. Skolimowski, R. Žitko, J.
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