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We present an exhaustive study of Andreev crystals (ACs)—quasi-one-dimensional superconducting wires
with a periodic distribution of magnetic regions. The exchange field in these regions is assumed to be much
smaller than the Fermi energy. Hence, the transport through the magnetic region can be described within the
quasiclassical approximation. In the first part of the paper, by assuming that the separation between the magnetic
regions is larger than the coherence length, we derive the effective nearest-neighbor tight-binding equations for
ACs with a helical magnetic configuration. The spectrum within the gap of the host superconductor shows a pair
of energy-symmetric bands. By increasing the strength of the magnetic impurities in ferromagnetic ACs, these
bands cross without interacting. However, in any other helical configuration, there is a value of the magnetic
strength at which the bands touch each other, forming a Dirac point. Further increase of the magnetic strength
leads to a system with an inverted gap. We study junctions between ACs with inverted spectrum and show that
junctions between (anti)ferromagnetic ACs (always) never exhibit bound states at the interface. In the second
part, we extend our analysis beyond the nearest-neighbor approximation by solving the Eilenberger equation
for infinite ACs and junctions between semi-infinite ACs with collinear magnetization. From the obtained
quasiclassical Green functions, we compute the local density of states and the local spin polarization in anti- and
ferromagnetic ACs. We show that these junctions may exhibit bound states at the interface and fractionalization
of the surface spin polarization.
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I. INTRODUCTION

Magnetic defects and regions in a superconductor may
lead to bound states that strongly change the local spectrum
[1–12]. When the magnetic exchange coupling is larger than
the Fermi energy and the size of the magnetic region is
small compared to the superconducting coherence length, a
pair of non-degenerate states with opposite energies appear
inside the superconducting gap. These are the so-called Yu-
Shiba-Rusinov (YSR) states [1–3]. In contrast, if the exchange
coupling is small compared to the Fermi energy, μ, a pair
of degenerate bound states appear [4,12,13]. The origin of
such degeneracy can be understood from a semiclassical per-
spective: electrons at the Fermi level traveling through the
magnetic region are not back-scattered, but they accumulate a
phase, �. This phase has the opposite sign for electrons/holes
and spin up/down. This results in double-degenerate bound
states formed by electrons from the Fermi valleys at either
+kF or −kF [see Fig. 1(b)]. In a normal metal, the phase accu-
mulated can be gauged out. In contrast, if the host material is
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a superconductor, the Andreev reflection at the semiclassical
impurities leads to the coupling between electrons and holes
at the same Fermi valley. This mechanism leads to Andreev
bound states inside the superconducting gap. The crossover
from the YSR to Andreev limit has been studied in detail in
Ref. [12].

In a periodic arrangement of magnetic impurities, as, for
example, a chain, the single-impurity bound states hybridize
and form bands within the superconducting gap. Those bands
have been widely studied for atomic-sized magnetic impu-
rities[14–22]. The hybridization of YSR states can lead to
topological phases which host Majorana bound states at the
ends of the impurity chain. In Ref. [23], we studied the analog
of such atomic chains in a mesoscopic structure with lat-
eral dimensions smaller than the superconducting coherence
length, ξ0 ≡ h̄vF /� (here, vF is the Fermi velocity and � the
superconducting order parameter) and replaced the magnetic
impurities by semiclassical magnetic regions. [See the sketch
in Fig. 1(a)]. In that work, we only considered chains with
co-linear magnetization. Motivated by the appearance of a
topological state in atomic chains with a rotating magnetiza-
tion, we extend our previous work to the study of the spectrum
of semiclassical helical chains. Moreover, we use the quasi-
classical method to determine the local spectral properties of
such semiclassicla crystals, which we call Andreev crystals
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FIG. 1. (a) Sketch of a quasi-1D helical Andreev crystal formed
by a superconducting wire interrupted by magnetic regions of width
d separated by a constant distance a. It is assumed that k−1

F � d �
ξ0. The magnetization of the impurities rotates an angle 2α around
the x axis between subsequent impurities and has a strength given by
the magnetic phase �n [see Eq. (1)] in the nth impurity. (b) Sketch
of the superconducting spectrum with the two electron-hole (e-h)
valleys at ±kF . The semiclassical impurities forming the Andreev
crystal cause only small momentum transfer processes that couple
quasiparticles within the same e-h valley via Andreev scattering.
Because there is no normal reflection coupling quasiparticles from
opposite valleys the system presents a twofold degeneracy.

(ACs). Mesoscopic structures involving superconductors and
ferromagnetic materials have been extensively studied, in both
the diffusive [24–31] and ballistic limit [32–35]. Our focus
here is from a different perspective, more in line with those
works on Shiba chains.

Specifically, in this article we present the general theory
of ACs, including non-collinear magnetization orientation and
arbitrary separation between the magnetic impurities. In a
first part we consider chains of impurities with noncollinear
magnetization where the magnetic regions are separated by a
distance a � ξ0. We solve the nearest-neighbor tight-binding
equations of helical ACs, where the exchange field rotates a
constant angle 2α around a fixed axis between subsequent
magnetic impurities, whereas their strength remains constant,
�. The spectrum of helical ACs for energies within the su-
perconducting gap, |ε| < |�|, shows a pair of Andreev bands
with symmetric energy with respect to the Fermi level. In
ferromagnetic configurations (sin α = 0) the Andreev bands
cross without interacting, closing the gap in a finite range of
� values around half-integer values of �/π . Otherwise, the
Andreev bands touch each other only at half-integer values of
�/π forming a Dirac point. In junctions between semi-infinite
helical ACs where the rotation, α, remains constant all along
the chain and the magnetic phase changes from �L to �R

at the left and right sides of the junction, respectively, states
bounded to the interface may appear when sign(tan �L ) �=
sign(tan �R). We refer to the junctions fulfilling this condition
as inverted junctions of ACs and they maintain similarities
with Dirac system with a spatial mass inversion [36–39].
We show that inverted junctions of (anti)ferromagnetic ACs
(always) never support interfacial states and that the range of
parameters �L(R) for which the bound states appear increases

as the rotation approaches an antiferromagnetic ordering (i.e.,
with decreasing value of | cos α|).

In a second part, we present exact calculations of the
spectral properties of (anti)ferromagnetic ACs and junctions
beyond the tight-binding approximation used in previous
works [23]. Specifically, we solve the Eilenberger equa-
tion and obtain the quasiclassical Green’s functions (GFs)
in different situations. The magnetic regions are described
by effective boundary conditions that take into account the
spin-dependent jump of the phase, �. On the one hand, our
solution provides the exact energy and spatial distribution of
the density of states and spin polarization of the system. On
the other hand, our results demonstrate the validity of the
first neighbor tight-binding approximation regarding the gap
closing in infinite antiferromagnetic ACs at half-integer values
of �/π , the appearance of a pair of states bounded to the
interface between two antiferromagnetic ACs with inverted
gaps, and the fractionalization of the surface spin polarization
in such junctions [23].

This article is organized as follows. In Sec. II, we intro-
duce the model Hamiltonian and the main equations used
for the nearest-neighbor tight-binding model (Sec. II A), and
the Eilenberger GFs (Sec. II B). In Sec. III, we solve the
nearest-neighbor tight-binding equations of infinite ACs and
junctions between semi-infinite helical ACs, i.e., ACs where
the exchange field of the semiclassical impurities form an
helix along the wire. In Sec. IV, we focus on ACs where the
exchange field of all the impurities is collinear. In particular,
we solve the Eilenberger equation to obtain the quasiclassical
GF of ACs with magnetic impurities following (Sec. IV A)
ferromagnetic and (Sec. IV B) antiferromagnetic ordering. In
Sec. IV C, we present the method to solve the Eilenberger
equation in junctions between semi-infinite collinear ACs and
we apply it to obtain the quasiclassical GFs in junctions
between antiferromagnetic ACs. Finally, in Sec. V, we sum-
marize the main results of the paper.

II. THE MODEL AND MAIN EQUATIONS

We consider a superconducting wire of lateral dimensions
much smaller than the superconducting coherence length, ξ0.
The wire contains magnetic regions located at the points
Xn = na, where a is the separation between the impurities
and n is the impurity index. We assume that the width of
the magnetic regions, d is larger than k−1

F and hence can be
considered within the semiclassical approach [12]. In addi-
tion, we also assume that d � ξ0 such that we can treat the
magnetic regions as pointlike impurities, in the semiclassical
scale, with a polarization strength and direction proportional
to the corresponding SU(2) magnetic phase [13,40],

σ̂ · �n ≡ 1

h̄vF

∫
dx σ̂ · hn(x). (1)

Here, vF is the Fermi velocity, and hn(x) is the exchange field
vector induced by the n-th impurity which is assumed to be
parallel to the local magnetization of the magnetic region. The
Bogoliubov-de Gennes (BdG) Hamiltonian [41] describing
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the AC in the Andreev limit reads,

Ȟη

BdG(x) = −iηh̄vF τ̂3∂x + τ̂1� − h̄vF

∑
n

σ̂ · �nδ(x − Xn),

(2)
where τ̂i are the Pauli matrices spanning the Nambu space
(i.e., the electron-hole space), σ̂ ≡ (σ̂1, σ̂2, σ̂3) stands for the
vector of Pauli matrices that span the spin space and η = ±
refers to the two electron-hole valleys at ±kF [see Fig. 1(b)].
A distinctive feature of semiclassical impurities is that they do
not trigger back-scattering processes. This allows us to treat
the two Fermi valleys separately and to drop the η index. In the
Andreev equations [42], Eq. (3), the delta functions describe
the boundary conditions within the semiclassical approach.
Namely, they describe the phase gained by a quasiparticle
when it traverses the magnetic region [see Eq. (6) below].

The solution of the BdG equations provides all the spectral
information about the crystal. As it will be shown in Sec. II A,
one can solve this problem analytically under the assumption
that magnetic impurities are weakly coupled to each other,
e−a/ξ0 � 1. In this limit the system can be described by an
effective tight-binding model which provide the spectrum of
this system. A drawback of this approach is that to compute
observable quantities, such as the local density of states or the
local spin density, one has to perform explicit summation over
the Bloch momentum. Indeed, for calculation of observables
it is more convenient to use the quasiclassical Eilenberger
equation [43]. This formalism is presented in Sec. II B. Specif-
ically, we show how to obtain exact analytical expressions for
the quasiclassical Green’s functions (GFs) of periodic ACs,
and how to access to observables in a rather simple way. Thus
both formalisms presented in Secs. II A and II B are comple-
mentary and provides a full description of ACs. Note that the
quasiclassical approach requires that the distance between the
impurities to be larger than the Fermi wave length, kF a � 1.
Moreover, in the ferromagnetic alignment, in order to avoid
the self-consistent computation of the superconducting gap,
we assume that a is larger (or of the same order of ξ0). In the
antiferromagnetic case, this restriction is relaxed due to the
smaller effective exchange field.

A. Tight-binding equations

To obtain the spectral properties of an AC one needs to
solve the Andreev equations,

ȞBdG(x)
̌(x) = ε
̌(x), (3)

where ȞBdG(x) is the Hamiltonian, Eq. (2), and 
̌(x) is a
four-component spinor in the Nambu×spin space. The general
solution of Eq. (3) in the region between two neighboring
impurities, Xn < x < Xn+1, reads


̌(x) = B+
n+1e

x−Xn+1
ξ |+〉 + B−

n e− x−Xn
ξ |−〉 . (4)

Here ξ ≡ h̄vF√
�2−ε2 is the energy-dependent superconducting

coherence length, B+(−)
n is a two-component spinor (covering

the spin space) that contains the amplitudes of the contribu-
tions to the wave function that decays from the nth impurity

into the left (right), and

|±〉 ≡ e±iθ/2

√
2 cos θ

(
1

±ie∓iθ

)
, (5)

are two-component spinors in the Nambu space, where eiθ ≡√
�2−ε2+iε

�
is the Andreev factor. Direct product is assumed

between the spinors in Nambu and spin spaces.
Within the semiclassical limit, quasiparticles traveling

through the nth semiclassical impurity do not back-scatter, but
pick up a phase according to


̌
(
X R

n

) = eiτ̂3σ̂·�n
̌
(
X L

n

)
(6)

because of τ̂3 and σ̂ · �n, the sign of the accumulated phase
is different for electron/holes and spin up/down quasiparti-
cles along the exchange field direction, respectively. Applying
these boundary conditions to the general wave function in
Eq. (4) we obtain the equations for the B± coefficients, which
can be recast into an effective tight-binding model by keeping
terms up to first order in e−a/ξ . In particular, in the limit where
e−a/ξ � 1, coefficients B−

n at each site n can be related to their
counterparts, B+

n , as follows:

B−
n = iσ̂n

� sin �n√
�2 − ε2

B+
n , (7)

where �n = |�n| is the strength of the magnetic phase vector,
and we define σ̂n ≡ σ̂·�n

�n
. It is convenient to introduce the

rescaled coefficients, b′
n ≡ σ̂n sin �nB+

n , which satisfy a tight-
binding-like equation

(ω − σ̂nω0n)b′
n = σ̂n+1tn+1b′

n+1 + σ̂ntnb′
n−1. (8)

Here ω ≡ ε√
�2−ε2 , t̂n ≡ − e−a/ξ

sin �n
is the hopping amplitude, and

ω0n = cos �n
sin �n

is the value of the function ω evaluated at the

bound state energy in the n-th impurity, ε0n = | sin �n|
tan �n

. In prin-
ciple, Eq. (8) describes an arbitrary AC with lattice constant
a. In Ref. [23], it was solved for collinear magnetization of
the impurities. In Sec. III, we analyze helical ACs composed
by identical magnetic impurities with an spatially rotating
magnetization, forming a helix in the y-z plane.

B. Eilenberger equation

Because of its simplicity, the tight-binding formulation,
Eq. (8), is very useful for describing the spectral properties
of ACs. However, one should bear in mind that it has been
derived within first-neighbor approximation, and therefore it
is valid as long as ea/ξ � 1. To go beyond this approximation,
we introduce here the Eilenberger equation [43] from which
we can determine the quasiclassical Green’s functions (GFs).

We focus again on pointlike semiclassical magnetic impu-
rities. The Eilenberger equation in the regions between the
impurities has a simple form:

h̄vF ∂xǧ(x) − [iετ̂3 + �τ̂2, ǧ(x)] = 0. (9)

Here ǧ(x) is the quasiclassical Green’s function (GF), which
is a 4×4 matrix in the Nambu×spin space that satisfies the
normalization condition, ǧ2 = 1. The square brackets stand
for the commutation operation. � is the superconducting gap,
which is assumed to be constant along the superconducting
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wire. Solving Eq. (9), we obtain the propagation of the GF
along the superconducting region,

ǧ(x) = û(x − x0)ǧ(x0)û(x0 − x), (10)

where the propagator reads

û(x − x0) = P̂+e(x−x0 )/ξ + P̂−e−(x−x0 )/ξ . (11)

Here P̂± ≡ |±〉 〈±̃| = e±iτ̂3θ±τ̂2
2 cos θ

are two orthogonal projectors
that span the Nambu space, |±〉 are the basis column vectors
of Eq. (5), and

〈±̃| ≡ e±iθ/2

√
2 cos θ

(1 ∓ ie∓θ ), (12)

are the co-basis row vectors orthonormal to |±〉. The inverse
of the propagator in Eq (11) fulfills the relation [û(x̃)]−1 =
û(−x̃).

Additionally, the GF at the right and left sides of the nth
semiclassical impurity (X R

n and X L
n , respectively) are con-

nected by a propagationlike boundary conditions,

ǧ
(
X R

n

) = eiτ̂3σ̂·�n ǧ
(
X L

n

)
e−iτ̂3σ̂·�n . (13)

This expression together with Eq. (11), determines the GF at
any space point provided its value at a given point, ǧ(x0).

In an infinite periodic ACs we need to match the value of
the GF at equivalent points of different unit cells. For this sake,
it is useful to introduce the chain propagator, Š, that describes
the propagation of the quasiclassical GF from a given position
inside a unit cell to the equivalent position in the subsequent
unit cell, ǧ(x0 + l ) = Šǧ(x0)Š−1 (here l denotes the length of
the unit cell). The exact form of Š depends on the arrange of
impurities and the choice of the initial point inside the unit
cell, x0. Here we choose for x0 the left interface of one of the
magnetic impurities. Thus the chain propagator reads

Š ≡
J∏

j=1

û(a)eiτ̂3σ̂·� j , (14)

where J is the number of impurities forming the unit cell.
The value of the quasiclassical GF at x0 is obtained from the
periodicity along the unit cell, ǧ(x0) = Šǧ(x0)Š−1, together
with the normalization condition, [ǧ(x0)]2 = 1. Once ǧ(x0) is
determined the full quasiclassical GF, ǧ(x), is obtained after
propagation using Eqs. (11) and (13).

From the knowledge of the GF, we can obtain the local
density of states (LDOS),

ν(x, ε) = Re
{

1
4 Tr[τ̂3ǧ(x, ε)]

}
, (15)

and the local spin density,

s(x, ε) = h̄

2
Re

{
1

4
Tr[σ̂3τ̂3ǧ(x, ε)]

}
, (16)

where the traces run over the Nambu×spin space. In Sec. IV,
we use this approach to obtain the quasiclassical GFs of
ferromagnetic and antiferromagnetic ACs and we gener-
alized this method to study junctions between different
(anti)ferromagnetic ACs.

III. HELICAL ANDREEV CRYSTALS

In this section, we study the spectral properties of ACs
with a periodic rotation of the magnetization of the magnetic
impurities. For this sake, we use the tight-binding approach
introduced in Sec. II A. In particular, we focus on an AC
consisting of identical magnetic impurities whose magnetiza-
tion is in the y-z plane and rotates by a constant angle, 2α

around the x axis1 [see Fig. 1(a)]. The SU(2) magnetic phase
describing this situation is given by

σ̂n · �n = �e−iσ̂1αnσ̂3eiσ̂1αn, (17)

where � is the strength of the magnetic phase. Its strength is
the same in all the impurities. Substituting this expression into
Eq. (8), we obtain that

[ω − eiσ̂1ασ̂3ω0]bn = σ̂3t (bn+1 + bn−1), (18)

where we have defined the coefficients bn ≡ eiσ̂1α(n+ 1
2 )b′

n.
Here ω0 = cos �

sin �
stands for the energy of the single-impurity

levels and t = − e−a/ξ

sin �
is the hopping amplitude. Note the

hopping amplitude is energy dependent through the energy-
dependent superconducting coherence length, ξ , defined
below Eq. (4). After this redefinition of the coefficients,
Eq. (18) reduces to the typical tight-binding system of iden-
tical equations, whose solution reads bn = beikna and ω =
±

√
ω2

0 sin2 α + (ω0 cos α + 2t cos ka)2. Here, k is the Bloch
momentum, and the spinors b are obtained from Eq. (18). The
Andreev bands are defined by

ε

�
= ±

√
ω2

0 sin2 α + (ω0 cos α + 2t cos ka)2

1 + ω2
0 sin2 α + (ω0 cos α + 2t cos ka)2

, (19)

where t has to be evaluated at the energy of the single-impurity
level ω0. In Figs. 2(b) and 2(c), we show the subgap spectrum
of ACs with different values of � and α. At � = 0, no bound
states appear, and hence there are no Andreev bands. Increas-
ing �, a pair of bands emerge from the coherent peaks and
start moving towards the Fermi level, up to a point around
� = π/2 where they touch each other, forming a gapless
phase. Further increase of � leads to a gap reopening with
inverted Andreev bands. The latter merge with the continuum
spectrum at � = π . Interestingly, the bands’ inversion also
happens when they merge into the continuum and reenter
the superconducting gap at � = lπ , where l is an integer.
Consequently, the spectrum of these ACs is π periodic in �.

As can be seen from the energy spectrum of the bands,
Eq. (19), the gap closes only at half-integer values of �/2
forming a Dirac point at ka = π/2 in ACs with any value of
α except in those where sin α = 0. This situation corresponds
to ferromagnetic ACs, where each of the Andreev bands corre-
sponds to opposite spin species, and hence they do not interact
while crossing.

In Ref. [23], it was shown that a junction between two anti-
ferromagnetic ACs with inverted gaps presents states bounded
do the interface. This corresponds to the situation where

1Because we do not include any spin-orbit interaction in our analy-
sis any other planar rotation choice will give equivalent results.
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FIG. 2. (a) Sketches of magnetic configurations in ACs for different values of α. (b) Andreev bands for α = π

4 and different values of �.
(c) Andreev bands for � = π

2 − e−a/ξ0 and different values of α. In both panels, we assumed a separation between impurities of a = 2ξ0.

cos α = 0 all along the structure and the sign of ω0 changes
across the junction. It becomes interesting, then, to study if
those bound states survive for arbitrary values of α. To do so,
we consider a junction between two different chains where the
rotation parameter between the impurities remains constant α,
but their magnetic phases change from the AC on the left, �L,
to the one on the right �R. The tight-binding equations of such
a system read[

ω − eiσ̂1ασ̂3ω0n
]
bn = σ̂3tn+1bn+1 + σ̂3tnbn−1, (20)

where ω0n and tn are defined below Eq. (8). The magnetic
phase is �L for n < 0 and �R for n � 0. We can write for the
left and right ACs, bn = bL+e−iqL+n + bL−e−iμLqL−n and bn =
bR+eiμRqR+n + bR−eiμRqR−n, respectively, where qL(R)± is deter-
mined by the solution of the eigenvalue equation, Eq. (20),
with positive imaginary part:

cos qL(R)± =
−ω0L(R) cos α ± i

√
ω2

0L(R) sin2 α − ω2

2tL(R)
. (21)

According to this expression, bound states can only appear at
energies with ω2 < ω2

0L(R) sin2 α, i.e., at energies within the
gap formed by the Andreev bands of both ACs [cf. Eq. (19)].
The corresponding eigenvectors are given by

bL(R)± =
(

1

ie±iγL(R)

)
, (22)

where

e±iγL(R) =
−ω ± i

√
ω2

0L(R) sin2 α − ω2

ω0L(R) sin α
. (23)

From the above results we find that bound states exist for those
energies satisfying following determinant equation:∣∣∣∣∣∣∣∣

tL tL tR tR
tLeiγL tLe−iγL tReiγR tRe−iγR

eiqL+ eiqL− e−iqR+ e−iqR−

eiqL+eiγL eiqL−e−iγL e−iqR+eiγR e−iqR−e−iγR

∣∣∣∣∣∣∣∣
= 0. (24)

One can check that this equation has solutions only when
sign(ω0L ) = −sign(ω0R). Therefore, the bound states can only
appear in junctions between ACs with inverted gaps. This is
a necessary but not sufficient condition. Namely, the presence
of the interfacial state in inverted junctions depends on the
magnetic rotation along the crystal described by α: whereas
for antiferromagnetic alignment of the impurities (cos α = 0)
the interfacial state appears in any inverted junction, for fer-
romagnetic ACs (sin α = 0) it never does. For any other value
of α the existence of the bound state depends on �L and �R

as explained below.
The determinant equation, Eq. (24), can be reduced to

a compact equation in the antisymmetric configuration with
�R = −�L. In this situation we can define γ ≡ γL = γR and
qL± = qR∓ ≡ ±κ + iλ, where κ and λ are real numbers deter-
mined by Eq.(21). For λ > 0, the condition for the existence
of the bound state reads

sin2 γ cosh2 λ − sin2 κ = 0. (25)

In Fig. 3, we show the dependence of the positive energy
bound states with α in antisymmetric inverted junctions of
ACs with fixed value of a = 2ξ0 and different strengths of the
magnetic impurities, � ≡ �R = −�L. With shaded areas we
show the energies within the positive-energy Andreev band
is situated in the infinite AC [Eq. (19)]. The dotted lines
correspond to energy values for which ω2 = ω2

0 sin2 α and
they indicate the maximum possible energy of a bound state
[Eq. (23)]. Close to the gap-closing point, cos � � 1, the
interfacial states are present at any value of α, excluding ferro-
magnetic ordering of the impurities, sin α = 0. As the size of
the gap between the Andreev bands increases, the range of α

values for which the pair of bound states exist shrinks around
those values corresponding to an antiferromagnetic ordering
of the magnetic impurities, cos α = 0.

The existence or not of the bound state in anti-symmetric
junctions of ACs can be understood from the relative position
of the maximum-energy condition for the bound state (the dot-
ted lines in Fig. 3) and the positive-energy solution of Eq. (25).
When cos α ≈ 0 the maximum-energy condition locates very
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FIG. 3. Energy of the (solid line) positive-energy interfacial state
in terms of α in anti-symmetric junctions between helical ACs with
� ≡ �R = −�L . Different colors correspond to different strengths
of the impurities, �, whereas their separation all along the junc-
tion is fixed to a = 2ξ0. The shaded areas indicate the position of
the (positive-energy) Andreev band in the respective infinite chains
[Eq. (19)] and the dotted lines show the energy values with ω2 =
ω2

0 sin2 α. This value determines the maximum possible energy of
the bound state [Eq. (23)].

close to the bottom of the Andreev band and, consequently,
the ω value that solves Eq. (25) almost always fulfills that
ω2 < ω2

0 sin2 α. When sin α ≈ 0, by contrast, the dotted lines
in Fig. 3 approach the center of the gap, ω = 0. Thus the
solution to Eq. (25) only meets the bound state existence
condition, ω2 < ω2

0 sin2 α, when the borders of the gap are
also very close to the Fermi energy, i.e., when cos � ≈ 0.
These considerations are also applicable in general junctions
between helical ACs, in which case the energy of the bound
state solves Eq. (24) and its existence condition is given by
ω2 < min(ω2

0L, ω2
0R) sin2 α.

As a summary of this section, for a given value of the
rotation angle α we can classify ACs in two groups depending
on whether an interfacial state appears upon the formation
of a junction between two chains with inverted gaps. These
two groups are best exemplified by (anti)ferromagnetic ACs
inverted junctions in which interfacial bound states (always)
never appear. In the next section, we focus on these two type
of junctions and study in more detail their spatial properties.

IV. COLLINEAR ANDREEV CRYSTALS

In this section, we extend the study of (anti-)ferromagnetic
ACs beyond the first neighbor tight-binding approximation
used in previous sections. To do so, we solve the Eilenberger
equation to obtain the quasiclassical GFs, ǧ(x), following the
procedure discussed in Sec. II B. From the knowledge of ǧ(x),
we can obtain the local density of states and magnetization of
ACs and junctions.

Specifically, we consider chains of magnetic impurities
located at Xn = na, with an arbitrary separation between the
impurities a. Here, n is an integer. We assume that all mag-
netizations, and hence the exchange fields, are aligned along
the z axis. Because of the collinear alignment of the exchange
field we can treat the two spin degrees of freedom separately,

σ = ±, thus reducing the size of the GFs involved from 4 × 4
(in Nambu×spin space) to 2 × 2 matrices in Nambu space.
It follows from Eq. (10) and the normalization condition,
[ǧ(x)]2 = 1, that within the region between two subsequent
impurities, Xn < x < Xn+1, the quasiclassical GF for a single
spin projection, σ , can be written in terms of two independent
constants, bσn and cσn:

ĝσ (x) =
√

1 − e−2a/ξ bσncσnĝ0 + bσne2(x−Xn+1 )/ξ |+〉 〈−̃|
+ cσne−2(x−Xn )/ξ |−〉 〈+̃| . (26)

Here ĝ0 ≡ P̂+ − P̂− = �τ̂2+iετ̂3√
�2−ε2 is the GF of an homogeneous

BCS superconductor. Equation (26) is the representation of
the GF in the basis where the BCS propagator, Eq. (11), is
diagonal.

According to Eq. (13), the GFs at the left and right sides of
the nth impurity are connected by the boundary condition

ĝσ

(
X R

n

) = eiσ τ̂3�n ĝσ

(
X L

n

)
e−iσ τ̂3�n , (27)

where the direction to which the exchange field is pointing
along the quantization axis is determined by the sign of the
magnetic phase �n. Ferromagnetic ACs are described by a
sequence of identical magnetic impurities with associated
magnetic phases of �n = �, whereas in antiferromagnetic
ACs �n = (−1)n�. In the next sections, we study these two
types of ACs and junctions between them.

A. Ferromagnetic ACs

In a ferromagnetic AC, the unit cell contains a single
magnetic impurity, so the σ -spin projection of the chain prop-
agator, Eq (14), reads

ŜFσ ≡ û(a)eiσ τ̂3�. (28)

Here û(a) is the BCS propagator given in Eq. (11). The op-
erator ŜFσ describes the propagation of the quasiclassical GF
from the left side of impurity n to the left side of impurity
n + 1, ĝσ (X L

n+1) = ŜFσ gσ (X L
n )Ŝ−1

Fσ .
To determine the quasiclassical GF, we need to obtain the

parameters b and c in Eq. (26). The periodicity of ĝσ over the
unit cell, leads to bσn = bσ and cσn = cσ . These expressions
together with ŜFσ ĝ(X L

n )Ŝ−1
Fσ = ĝ(X L

n ) result in

bσ = cσ = e
a
ξ 〈+̃| eiσ τ̂3� |−〉√(

e
a
ξ 〈+̃|eiσ τ̂3�|+〉+e

− a
ξ 〈−̃|eiσ τ̂3�|−〉

2

)2

− 1

. (29)

After substitution of these values in Eq. (26) one obtains the
quasiclassical GF in the magnetic regions all along the chain
and, with it, the local density of states (LDOS) and the local
spin density [Eqs. (15) and (16), respectively].

In Fig. 4, we show the LDOS for a single spin species of
different ferromagnetic ACs, ν↑(ε). The LDOS of the oppo-
site spin species can be obtained from the relation ν↓(ε) =
ν↑(−ε). The different panels in Fig. 4, correspond to different
values of separation and strength of the magnetic impurities,
a and �, respectively. Within the superconducting gap, |ε| <

|�|, the position of the Andreev band depends on � and its
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(a) (b) (c)

FIG. 4. Local density of states (LDOS), ν↑, of spin-up quasiparticles in ferromagnetic ACs with different separation between and strengths
of the magnetic impurities, a and �, respectively (see the title above each panel). A spin-polarized Andreev band, whose width increases with
decreasing a, moves from the lower edge of the superconducting gap to the top one with increasing value of �, crossing zero energy around
sin � = 0 values. The LDOS of spin-down quasiparticles fulfills the relation ν↓(ε) = ν↑(−ε).

width increases by decreasing a. For energies larger than �

the continuum gets split by small gaps whose widths depend
on �, a and the energy at which they lay. The origin of the
gaps lay on the lifting of degeneracies between electronic
states that differ by the reciprocal lattice vector in periodic
crystals, studied in many textbooks [44–46]. At integer values
of �/π , the small gaps at the continuum close, whereas their
width is maximum for half-integer values of �/π . In the same
way as it happens with the Andreev band, the width of these
small gaps increases with decreasing a. The size of the gaps
reduces by increasing the energy with respect to the Fermi
level.

B. Antiferromagnetic ACs

In antiferromagnetic ACs, the unit cell contains two iden-
tical magnetic impurities pointing in opposite directions. The
chain propagator [Eq. (14)] that describes the evolution of the
GF from the left interface of one magnetic impurity to the left
interface of the equivalent impurity in the next unit cell reads,

ŜAσ ≡ û(a)e−iσ τ̂3�û(a)eiσ τ̂3�. (30)

The unit cell consists now of two superconducting regions
with two different sets of independent parameters, namely,
bσ0 = bσ (2n), cσ0 = cσ (2n) and bσ1 = bσ (2n+1), cσ1 = cσ (2n+1).
Here n is the impurity index. The boundary condition for the
impurity located between these two superconducting sections,
Eq. (27), leads to the following relation between the set of
parameters:

bσ1 = cσ0, cσ1 = bσ0. (31)

Additionally, from the periodicity of the GF,
ŜAσ ĝσ (X L

2n)Ŝ−1
Aσ = ĝσ (X L

2n), we obtain the expressions for

bσ0 = 〈−̃| eiσ τ̂3� |−〉Dσ , (32)

cσ0 = −〈+̃| eiσ τ̂3� |+〉Dσ , (33)

where

Dσ ≡ e
a
ξ 〈+̃| eiσ τ̂3� |−〉√

〈+̃| eiσ τ̂3� |+〉 〈−̃| eiσ τ̂3� |−〉 + (〈+̃| eiσ τ̂3� |+〉 〈−̃| eiσ τ̂3� |−〉 sinh a
ξ

)2
. (34)

Substitution of these expressions into Eq. (26) determines
the quasiclassical GF. From it we obtain the LDOS for a
single spin specie shown in Fig. 5 for different values of
� around the gap closing point, � = π/2. The separation
between impurities is set to a = 2ξ0. For energies within
the superconducting gap, a pair of Andreev bands appear at
symmetric energy ranges with respect to the Fermi level. As it
was predicted in previous calculations under the first-neighbor
tight-binding approximation (Ref. [23] and Sec. III), these two
bands touch each other only at half-integer values of �/π

closing the gap around the Fermi level (see Fig. 5). Moreover,
the Andreev bands touch the continuum only when �/π is an

integer: situations where the LDOS of the antiferromagnetic
AC coincides with that of a pristine superconductor because
the phase difference obtained by electrons and holes after
propagation across an impurity is a multiple of 2π . Within
the Andreev bands, the LDOS is larger around the position of
the magnetic impurities and around the energies of the single-
impurity level. For energies larger than the superconducting
gap, |ε| > |�|, we observe an interference pattern and the
splitting of the continuum due to the opening of small gaps.
The dependence of the width of the small gaps on �, a, and ε

is the same as the one observed in ferromagnetic ACs (see the
last paragraph of Sec. IV A).
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(a) (b) (c)

FIG. 5. Local density of states, ν↑, of spin-up electrons in an antiferromagnetic AC close to the gap closing event, cos � � 1. The
separation between impurities is a = 2ξ0 and different panels correspond to different values of �. The gap between the Andreev bands closes
only at values of cos � = 0.

C. Junctions of collinear ACs

As discussed in Sec. III, inverted junctions of antiferro-
magnetic ACs host a pair of states bounded to the interface.
Moreover, inverted junctions of antiferromagnetic ACs may
present fractionalization of the surface spin polarization per
Fermi valley[23]. In this section we show that this result holds
beyond the tight-binding approximation used above, by solv-
ing the Eilenberger equation in junctions of ACs. Although
we focus our analysis on junctions between antiferromagnetic
ACs, the mathematical procedure presented here is general
and it can be applied to obtain the quasiclassical GFs in
junctions between any type of collinear ACs.

We start by defining the σ -spin projection of the chain
propagators of the left(right) ACs, ŜL(R)σ , as the operator that
propagates the GFs through a unit cell of the crystal, Eq. (14).
The chain propagator is given by Eq. (28) in ferromagnetic
and by Eq. (30) in antiferromagnetic ACs. Solving the eigen-
value problem of these operators we find a set of vectors for
which the chain propagator is diagonal,

ŜL(R)σ |λ±
L(R)σ 〉 = e±λL(R)σ |λ±

L(R)σ 〉 . (35)

Because ŜL(R)σ is, in general, not Hermitian, the left eigenvec-
tors that form the co-basis

〈λ̃±
L(R)σ | ŜL(R)σ = e±λL(R)σ 〈λ̃±

L(R)σ | , (36)

are not related by Hermitian conjugation to the right eigen-
vectors in Eq. (35). The eigenvectors can be represented
as exponentials with arguments of opposite sign because
det(ŜL(R)σ ) = 1. In ferromagnetic and antiferromagnetic ACs,
λσ is purely imaginary (real) for energies where the infinite
chain’s spectrum shows (does not show) states. Similarly to
the description of the propagation within the superconducting
region between two subsequent impurities, Eq. (10), the prop-
agation of the spin-polarized GFs through the reference points
of different unit cells reads

ĝσ (ml ) =
√

1 − vsσ wsσ (|λ+
sσ 〉 〈λ̃+

sσ | − |λ−
sσ 〉 〈λ̃−

sσ |)
+ vsσ e2λsσ m |λ+

sσ 〉 〈λ̃−
sσ | + wsσ e−2λsσ m |λ−

sσ 〉 〈λ̃+
sσ | .
(37)

Here s is substituted by L and R on the left and right ACs,
respectively, l is the length of the unit cell, m is the unit cell
index and we set the reference point inside the unit cell to
x0 = 0. The square root multiplying the first term on the right-
hand side (r.h.s.) of Eq. (37) comes from the normalization
condition of the GF and the substraction of projectors that it
multiplies corresponds to the quasiclassical GF of the infinite
AC at the left interface of the reference impurity.

Equation (37) provides the quasiclassical GFs for a single
spin, σ , at the reference points of each unit cell in terms of
four parameters (two parameters per side of the junction):
vsσ and wsσ . Commensurability of ǧ(x) at x → ±∞ requires
that at each side of the junction one of these parameters
has to be zero. Which one of the parameters is set to zero
depends on the sign of λsσ : for s = L (s = R), we set wsσ = 0
(vsσ = 0) when λsσ > 0, whereas we set vsσ = 0 (wsσ = 0)
otherwise. The value of the remaining two parameters is ob-
tained from the continuity of the quasiclassical GFs through
the junction. Having obtained the four parameters we next
propagate ĝσ (ml ) according to Eqs. (10) and (13) to obtain the
quasiclassical GFs in any position of the chain, x. This method
leads to analytic expressions of the quasiclassical GFs for
any junction configuration. In particular, in App. A we apply
this method in junctions between antiferromagnetic ACs and
obtain the analytic expression of the quasiclassical GF, ǧ(x)
[Eqs. (A9)–(A18)].

In Fig. 6, we show the obtained LDOS for a single spin
species around the interface between two antiferromagnetic
ACs for different values of �L and fixed values of �R = 0.4π

and a = ξ0. The left panel of Fig. 6 shows the situation where
the function of the energy of the single-impurity Andreev
states, ω0, has the same sign at both sides of the junction.
The spectrum exhibits a transition area around the interface
where the size of the gap between the Andreev bands changes,
but no bound states appear. When �L = π/2 (middle panel of
Fig. 6) the gap on the left side of the junction closes, whereas
the gap on the right remains open. Further increasing of �L

leads to a reopening of the left gap, as shown on the right
panel of Fig. 6. One can clearly see how spin-polarized bound
states appear around the interface as a consequence of the gap
inversion. Interestingly, these bound states are not restricted
to the gap between the low-energy Andreev bands, but appear
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FIG. 6. Local density of states of spin-up electrons, ν↑(x, ε), in a junction between two different antiferromagnetic ACs. Inversion of the
gap across the junction leads to the appearance of states bounded to the interface at every gap in the spectrum. These states move from one
edge of the gap to the opposite one with increasing �L . The closer the energy of the states are to the gap edge of one chain, the more they
penetrate into that chain.

inside all gaps in the spectrum, indicating that the inversion of
the central gap carry the invertion of all the remaining gaps.

From the quasiclassical GF of the junction, we can also
compute the spin of the system by integrating Eq. (16) over x.
We consider the zero-temperature case. As it is well know,
quasiclassical GFs only describes the physics close to the
Fermi surface and, hence, to obtain the total spin density one
has to add the Pauli paramagnetic term [45,47]. Namely, the
Pauli paramagnetic contribution of each magnetic impurity is
given by �/π in units of h̄/2 [12]. The resulting total value
depends on the way the ACs terminate. As we are dealing
with an infinite system, it is calculated from the average over
all possible ending configurations of the chains [23]. This is
equivalent to the so-called sliding window average method
(see, for example, Sec. 4.5 of Ref. [48]) and it results in a
Pauli paramagnetic contribution of �L−�R

2π
that has to be added

to the integrated magnetization density of Eq. (16).
In Fig. 7, we show the contribution of a single Fermi

valley to the surface spin polarization at T = 0 of a junction
between two antiferromagnetic ACs as a function of �L.
We set a = ξ0 and �R = 0.4π , although other values of a
and −π/2 < �R < π/2 give the same results, as long as the
separation between the impurities is large enough such that
the regions in-between remain in the superconducting phase.
The magnetization per Fermi valley can only take half-integer
values of the electronic spin, which indicates fractionalization
of the surface spin per electron-hole valley. The contribution

FIG. 7. Contribution of a single Fermi valley to the surface spin
polarization at T = 0 of a junction between antiferromagnetic ACs
in terms of �L for fixed values of �R = 0.4π and a = ξ0. The
transition between plateaus is rounded due to the Dynes parameter,
� = 10−3�, used to avoid numerical convergence problems.

from both Fermi valleys are equal and, hence, the total surface
magnetization equals to an integer value of h̄/2. Choice of �R

outside the range −π/2 < �R < π/2 would shift the ladder-
like curve in Fig. 7 some steps up or down due to the Pauli
paramagnetic contribution (see previous paragraph). Finding
the value of a below which superconductivity breaks down
would require self-consistent calculation of �. However, we
can make an upper-bound estimation of the critical value of
a by demanding that the mean value of the exchange field
along the wire does not exceed the value of �. In ferro-
magnetic ACs this condition requires that a > ξ0, whereas in
antiferromagnetic ACs the exchange field averages to zero and
superconductivity may survive even at a < ξ0. In Fig. 7, the
smooth transition between plateaus is a consequence of the
small imaginary positive number that we add to the energy,
ε + i�, with � = 10−3�, in order to avoid numerical prob-
lems. � is known as Dynes parameter [49] and models the
effect of inelastic scattering which leads to a broadening of
the coherent peaks in the spectrum. In absence of inelastic
processes, � = 0 and the magnetization shows sharp steps.

V. CONCLUSIONS

In conclusion, we have presented an exhaustive study of
ACs. We have studied the spectral properties of infinite helical
ACs and junctions between them. For energies within the su-
perconducting gap, the spectrum of helical ACs exhibits a pair
of energy-symmetric Andreev bands with respect to the Fermi
level. In ferromagnetic ACs (sin α = 0) the gap between the
Andreev bands close in a finite range of � values around
half-integer values of �/π . The range of � values for which
the gap remains closed increasing with decreasing separation
between impurities, a. Otherwise, sin α �= 0, the gap closes
only at half-integer values of �/π , forming a Dirac point.
Inverted junctions of helical ACs may present a pair of states
bounded to the interface. These states (always) never appear
in inverted junctions of (anti)ferromagnetic ACs, whereas they
more likely appear as the rotation of the ACs forming the in-
verted junction approaches an antiferromagnetic configuration
(i.e., with decreasing value of | cos α|).

On the other hand, we show a method to solve the
Eilenberger equation of infinite ACs and junctions between
semi-infinite ACs. Because (anti)ferromagnetic ACs best ex-
emplify the (existence) absence of interfacial states in inverted
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junctions between them, we apply this method to compute the
full quasiclassical GFs of chains and junctions with collinear
magnetization of the impurities. Our calculations are exact
and generalizes the results of Ref. [23] for arbitrary distance
between the impurities, namely, that the gap around the Fermi
level in antiferromagnetic ACs only closes at half-integer
values of �/π and that junctions between different antiferro-
magnetic ACs exhibit states bounded to the interface when the
gap gets inverted through the junction. From the quasiclassical
GFs we calculate the surface spin polarization and show that
such inverted junctions show fractionalization of the surface
spin. The method that we present to solve the Eilenberger
equation of collinear ACs and junctions between them can be
generalized for more complex magnetic configurations.

Overall, our results suggest the use of superconductor-
ferromagnetic structures to realize crystals of a mesoscopic
scale. We predict a diversity of properties of such Andreev

Crystals, as gap inversion and edge states, that can be proved
by state-of-the-art spectroscopic techniques. Given the ballis-
tic nature of the studied system, experimental observation of
the predicted properties requires the use of clean materials
where the mean free path is larger than the superconducting
coherence length, � > ξ0.

ACKNOWLEDGMENTS

M.R. and F.S.B. acknowledge funding by the Spanish Min-
isterio de Ciencia, Innovación y Universidades (MICINN)
(Project FIS2017-82804-P), and EU’s Horizon 2020 re-
search and innovation program under Grant Agreement No.
800923 (SUPERTED). I.V.T. acknowledges support by Gru-
pos Consolidados UPV/EHU del Gobierno Vasco (Grant No.
IT1249-19).

APPENDIX: QUASICLASSICAL GF IN A JUNCTION BETWEEN ANTIFERROMAGNETIC ACS

We consider a junction between two antiferromagnetic ACs, where the separation between impurities, a, remains constant,
but their strength changes from one chain to the other one (�L and �R in the left and right AC, respectively). Both chains
meet at x = 0. The chain propagator of each chain is given by Eq. (30), substituting � by �L and �R in the left and right AC,
respectively. The set of eigenvalues and left and right eigenvectors of the chain propagator in the left (right) AC that fulfill,

ŜL(R)σ |λ±
L(R)σ 〉 = e±λL(R)σ |λ±

L(R)σ 〉 , 〈λ̃±
L(R)σ | ŜL(R)σ = e±λL(R)σ 〈λ̃±

L(R)σ | , (A1)

read

e±λL(R)σ = 1 + 2 〈+̃|eiσ τ̂3�L(R) |+〉 〈−̃|eiσ τ̂3�L(R) |−〉 sinh2 a

ξ
± 2

[
〈+̃|eiσ τ̂3�L(R) |+〉

× 〈−̃|eiσ τ̂3�L(R) |−〉 sinh2 a

ξ
+

(
〈+̃|eiσ τ̂3�L(R) |+〉 〈−̃|eiσ τ̂3�L(R) |−〉 sinh2 a

ξ

)2
]1/2

, (A2)

and

〈λ̃±
L(R)σ | = c±

L(R)σ

(
d̃±

L(R)σ 1
)
, |λ±

L(R)σ 〉 = c±
L(R)σ

(
1

d±
L(R)σ

)
, (A3)

where

d±
L(R)σ = e±λL(R)σ − 1 − (

e
2a
ξ − 1

) 〈+̃|eiσ τ̂3�L(R) |+〉 〈−̃|eiσ τ̂3�L(R) |−〉
(e

2a
ξ − 1) 〈−̃|eiσ τ̂3�L(R) |−〉 〈+̃|eiσ τ̂3�L(R) |−〉

, (A4)

d̃±
L(R)σ = e±λL(R)σ − 1 + (

1 − e− 2a
ξ

) 〈+̃|eiσ τ̂3�L(R) |+〉 〈−̃|eiσ τ̂3�L(R) |−〉
(e

2a
ξ − 1) 〈−̃|eiσ τ̂3�L(R) |−〉 〈+̃|eiσ τ̂3�L(R) |−〉

, (A5)

c±
L(R)σ =

√√√√±
(
e

2a
ξ − 1

) 〈−̃|eiσ τ̂3�L(R) |−〉 〈+̃|eiσ τ̂3�L(R) |−〉
2 sinh λL(R)σ

. (A6)

Here ξ = h̄vF√
�2−ε2 is the energy-dependent superconducting coherence length. Note that d̃±

L(R)σ = d∓
L(R)σ .

We can parametrize the value of the quasiclassical GF at the equivalent points of the chain in terms of the eigenvectors of the
chain propagator, Eq. (A3), as follows:

ĝσ

(
X L

2m

) =
√

1 − vsσ wsσ (|λ+
sσ 〉 〈λ̃+

sσ | − |λ−
sσ 〉 〈λ̃−

sσ |) + vsσ e2λsσ m |λ+
sσ 〉 〈λ̃−

sσ | + wsσ e−2λsσ m |λ−
sσ 〉 〈λ̃+

sσ | . (A7)

Here, m is the unit cell index, X L
2m stands for the left interface of the magnetic impurity located at X2m = 2ma and the subindex

s label the left (L) and right (R) crystal. The unit cells forming the left and right AC are those labeled by n � 0 and m > 0,
respectively.

For energies at which |e±λL(R)σ | = 1, Eq. (A7) describes modes that propagate all along the structure. Otherwise, it describes
exponentially decaying states by setting either vL(R)σ or wL(R)σ to zero to ensure commensurability of ĝσ at the infinities.
Which one is set to zero depends on whether |e±λL(R)σ | > 1 or |e±λL(R)σ | < 1. Indeed, numerical analysis of Eq. (A2) shows that
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|e±λL(R)σ | � 1 and, therefore, we can set vLσ = 0 and wRσ = 0. To obtain the remaining two parameters, we require continuity of
Eq. (A7) across the junction, which yields

wLσ = 2i
d+

Rσ − d+
Lσ

d+
Rσ − d−

Lσ

, vRσ = 2i
d−

Rσ − d−
Lσ

d+
Rσ − d−

Lσ

. (A8)

Here d±
L(R)σ is given by Eq. (A4).

Substituting Eq. (A8) into Eq. (A7), we get the value of the quasiclassical GF at the left interface of every second magnetic
impurity, X L

2n. To obtain ĝσ (x) at every point inside the unit cell, hence, we have to propagate it from X L
2n to x by means of

the BCS propagator, Eq. (10), when the propagation is across the superconducting regions, and the propagation-like boundary
conditions, (13), to connect the GFs at the left and right interfaces of each impurity. Such a propagation allows us writing the
quasiclassical GF all along the space as follows:

ĝσ (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

B0
mσ (|−〉 〈−̃| − |+〉 〈+̃|) + B+−

mσ e2
x−X2m−1

ξ |+〉 〈−̃| + B−+
mσ e−2

x−X2m−1
ξ |−〉 〈+̃|

if X2n−2 < x < X2n−1,

A0
mσ (|−〉 〈−̃| − |+〉 〈+̃|) + A+−

mσ e2 x−X2m
ξ |+〉 〈−̃| + A−+

mσ e−2 x−X2m
ξ |−〉 〈+̃|

if X2n−1 < x < X2n,

, (A9)

where |±〉 and 〈±̃| are the right- and left-eigenvectors of the BCS propagator given by Eqs. (5) and (12), respectively. The
expressions of the remaining constants depend on the side of the juction. The A constants in the AC on the left (m � 0) read

A0
mσ = (c+

Lσ )2[d+
Lσ + d−

Lσ + iwLσ e−2λLσ md−
Lσ ], (A10)

A+−
mσ = (c+

Lσ )2[2 + iwLσ e−2λLσ n], (A11)

A−+
mσ = −(c+

Lσ )2d−
Lσ [2d+

Lσ + iwLσ e−2λLσ md−
Lσ ], (A12)

whereas in the right chain (m > 0), they read

A0
mσ = (c+

Rσ )2[d+
Rσ + d−

Rσ + ivRσ e2λRσ md+
Rσ ], (A13)

A+−
mσ = (c+

Rσ )2[2 + ivRσ e2λRσ n], (A14)

A−+
mσ = −(c+

Rσ )2d+
Rσ [2d−

Rσ + ivRσ e2λRσ md+
Rσ ]. (A15)

The remaining expressions for the B-s are given in terms of the A-s shown in Eqs. (A10)–(A15) and read

B0
mσ = (1 + 2 〈+̃|eiσ τ̂3�s |−〉)A0

mσ + e− 2a
ξ 〈+̃|eiσ τ̂3�s |+〉 〈+̃|eiσ τ̂3�s |−〉A+−

mσ − e
2a
ξ 〈−̃|eiσ τ̂3�s |−〉 〈+̃|eiσ τ̂3�s |−〉A−+

mσ , (A16)

B+−
mσ = 2 〈+̃|eiσ τ̂3�s |+〉 〈+̃|eiσ τ̂3�s |−〉A0

mσ + e− 2a
ξ 〈+̃|eiσ τ̂3�s |+〉2 A+−

mσ − e
2a
ξ 〈+̃|eiσ τ̂3�s |−〉2 A−+

mσ , (A17)

B−+
mσ = −2 〈−̃|eiσ τ̂3�s |−〉 〈+̃|eiσ τ̂3�s |−〉A0

mσ − e− 2a
ξ 〈+̃|eiσ τ̂3�s |−〉2 A+−

mσ + e
2a
ξ 〈−̃|eiσ τ̂3�s |−〉2 A−+

mσ , (A18)

where �s = �L when m � 0 (i.e., in the left side of the junction) and �s = �R otherwise. Equations (A9)–(A18) provide the
quasiclassical GF for the σ spin component of a junction between two antiferromagnetic ACs at any position, x, from which we
can directly calculate observables like the local density of states, Eq. (15), or the local spin density, Eq. (16).
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