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Superconducting quantum interference devices (SQUIDs) that incorporate two superconduc-
tor/insulator/superconductor (SIS) Josephson junctions in a closed loop form the core of some of the
most sensitive detectors of magnetic and electric fields currently available. SQUIDs in these applications are
typically operated with a finite voltage which generates microwave radiation through the ac Josephson effect.
This radiation may impact the system being measured. We describe here a SQUID in which the Josephson
junctions are formed from strips of normal metal (N) in good electrical contact with the superconductor (S).
Such SNS SQUIDs can be operated under a finite voltage bias with performance comparable or potentially
better than conventional SIS SQUIDs. However, they also permit a mode of operation that is based on the
unusual interplay of quasiparticle currents and supercurrents in the normal metal of the Josephson junction.
The method allows measurements of the flux dependence of the critical current of the SNS SQUID without
applying a finite voltage bias across the SNS junction, enabling sensitive flux detection without generating
microwave radiation.
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I. INTRODUCTION

Superconducting quantum interference devices (SQUIDs)
are the most sensitive flux detectors available, and have found
widespread use in various fields. The most widely used type
of SQUID is the dc SQUID, consisting of two Josephson
junctions connected in parallel to form a loop [1–3], with
flux sensitivities better than 10−6�0/

√
Hz now fairly common

(�0 = h/2e = 2.07 × 10−15 T m2 is the superconducting flux
quantum) [2,4,5]. The dc SQUID is typically operated in the
finite voltage regime, biased with a current larger than the
critical current Ic of the SQUID. In this mode, the voltage
across the SQUID is a periodic function of the magnetic flux
� through the SQUID loop. However, using a dc SQUID with
a finite voltage bias not only generates a small amount of dis-
sipation, it also generates radiation through the ac Josephson
effect. This radiation may affect the sample, for example by
causing heating, or through the direct effect of microwaves on
quasiparticle excitations in the sample [6]. Thus, a SQUID
that can operate without a finite voltage bias across the
Josephson junctions is of interest. SQUIDs can be operated
in the so-called dispersive mode [7] without a finite voltage.
However, such devices still use microwaves for operation,
leaving the possibility that the microwave drive will affect the
sample being measured.

SQUIDs typically incorporate superconductor/insulator/
superconductor (SIS) junctions, where the two superconduc-
tors are separated by a thin (∼2 nm) insulating tunnel barrier.
A variety of different ‘weak links’ can replace the insulator
in a SIS junction to form different types of Josephson junc-
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tions [8], but with the exception of superconductor/normal-
metal/superconductor (SNS) junctions, it is difficult to fabri-
cate practical dc SQUIDs with these other technologies. SNS
dc SQUIDs can also be operated in a finite voltage bias mode
analogous to conventional SIS dc SQUIDs [9]. However, SNS
SQUIDs can be operated in modes where all superconducting
elements are at the same potential. For example, one can
detect the flux coupled into the SQUID loop by detecting the
modulation of the quasiparticle density of states in the normal
part of a SNS junction with the coupled flux [10,11]. We show
here that the unusual interplay of quasiparticles and supercur-
rents in the normal part of SNS junctions enables an entirely
different mode of operation, where Ic(�) can be detected
by a simple resistance measurement even when the voltage
between the two superconductors of the SQUID remains zero,
and thus no Josephson radiation is generated.

Supercurrent flow between the two superconductors in a
SNS junction is enabled by the superconducting proximity
effect induced in the normal metal [12]. In the diffusive limit
[13], the upper limit to the length L of the normal metal in
the SNS junction is set by two length scales: the electron
phase coherence length Lφ and the thermal diffusion length
LT = √

h̄D/kBT , where D is diffusion coefficient of electrons
in the normal metal and T is the temperature [14]. To obtain
a significant supercurrent, L should be much shorter than
both Lφ and LT . Since L� and LT can be many microns at
millikelvin, one can fabricate extended SNS junctions with
micron size dimensions.

II. PRINCIPLE OF OPERATION

The extended nature of the SNS junction allows one to
place additional normal metal contacts on the normal part
of the junction, enabling a mode of operation not possible
with conventional SIS dc SQUIDS. To see this, consider first
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FIG. 1. (a) Schematic of a symmetric SNS Josephson junction with multiple normal metal leads. Yellow (blue) represents normal metal
(superconductor). (b) Nonlocal SNS SQUID. (c) Total supercurrent Is1 = Ibs1 + Icirc in the multiterminal junction as a function of � and
injected current Ib. The critical current at Ib = 0 is given by the scale of the plot ∼5Ec/eRN . (d) Sum of the supercurrents in both junctions.
The superconducting gap � = 63.6Ec and temperature T = 0.8Ec/kB for these simulations.

an isolated SNS junction with two additional normal metal
probes, as shown in Fig. 1(a). A small transport current Ib is
sourced through one normal lead (I+) and drained through a
superconducting contact (I−). The two superconductors are
Josephson coupled and at the same potential. Consequently,
the injected quasiparticle current splits into two branches
(Iqp1, Iqp2), one branch going to each superconducting contact.
However, the second superconductor is a voltage probe (V −),
so that no net current can flow into it. The quasiparticle current
Iqp2 is therefore converted into a supercurrent Is at the NS
interface that counterflows back to the first superconductor
[15–18]. A nonlocal voltage Vnl develops between the second
normal contact (V +) and V − due to Iqp2 which is approxi-
mately Iqp2R, where R is the resistance of the normal metal
between V + and V −. A dissipationless supercurrent between
the two superconductors implies a phase difference �φ be-
tween them. This phase difference modifies the resistance of
the normal metal through the proximity effect [19,20], giving
rise to a variation of the differential resistance dVnl/dIb with
increasing Ib, with the maximum variation in resistance of or-
der 10% with perfectly transparent NS interfaces. Is increases
with Ib; at some point, Is exceeds Ic, the two superconduc-
tors are no longer at the same potential, and the nonlocal
resistance abruptly drops. This behavior has been verified
experimentally [21].

Now consider two such SNS junctions in a dc SQUID, with
additional normal metal leads attached to one, as shown in
Fig. 1(b). As before, for low bias currents, the source current
Ib will split into two quasiparticle currents Iqp1 and Iqp2. Iqp2

will again be converted to supercurrent at the NS interface.
However, there are now two possible paths for this supercur-
rent to return to the current drain I−. One path is through the
same junction (Is1) and the other path is through the second
junction (Is2) with the requirement that Iqp2 = Is1 + Is2. As
before, Is1 + Is2 will increase with increasing Ib, resulting in
an increasing phase difference between the two superconduc-
tors, and a consequent modulation of the nonlocal differential
resistance as in the linear structure. However, we can now
also thread a flux � through the SQUID loop; � will result
in an additional circulating supercurrent Icirc. The situation is

similar to a dc SQUID measured in the conventional manner
with Iqp2 taking the place of the bias current Ib, with the
important difference that we can measure a finite nonlocal dif-
ferential resistance even when the voltage difference between
the superconductors is still zero. As we shall see below, this
capability allows us to determine Ic of the device without a
voltage drop across the superconductors.

III. NUMERICAL SIMULATIONS

To visualize how the flow of supercurrents and the non-
local differential resistance varies as one changes �, we
have modeled the geometry of Fig. 1(b) using the qua-
siclassical equations of superconductivity in the diffusive
limit [13,14]. The simulations were done by solving the Us-
adel equations of quasiclassical superconductivity [13] in the
Riccati parametrization simultaneously with the kinetic equa-
tions for the quasiparticle distribution functions using open-
source code [22,23] using the geometry of Fig. 1(b). The
details of the parametrization and code can be found in Ap-
pendix A, following Ref. [24]. For the simulations, a voltage
Vb was applied to the current bias lead, and the gauge invariant
phase γ1 and the voltage on the nonlocal lead Vnl was varied
iteratively in a numerical solver to satisfy two conditions: (1)
the current into the nonlocal voltage probe vanished, and (2)
Iqp2 = Is1 + Is2. The gauge invariant phase difference across
the second SNS junction γ2 is related to γ1 by γ1 − γ2 =
2π�/�0. The calculation was repeated for different values of
Vb and �. Ib and dVnl/dIb were then calculated numerically.
In order to keep the calculations tractable, the simulations
assume perfect NS interface transparency and no voltage drop
between the two superconductors. Further details of the nu-
merical simulations can be found in Appendix A [25].

Figure 1(c) shows the total supercurrent Is1 = Ibs1 + Icirc

in the multiterminal junction as a function of � and Ib. Is1

oscillates with � with a fundamental period of �0, with the
amplitude of the oscillations being maximum for Ib = 0 and
decreasing with increasing |Ib|. The supercurrent through the
second junction Is2 has similar behavior (not shown), except
that the oscillations in Is2 are 180◦ out of phase with the
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FIG. 2. (a) False color SEM image of a SNS SQUID. Yellow represents the normal metal (Au) and blue represents the superconductor
(Al). Numbers identify contacts used in the four-terminal measurements. (b) Measured nonlocal differential resistance R21,35 (blue) and R21,76

(red) as a function of the bias current Ib applied between contacts 2 and 1. A perpendicular magnetic field corresponding to a flux −�0 through
the SQUID loop is applied. (c) R21,35 measured with a flux � = 0.45�0 through the SQUID loop. All data taken at 26 mK.

oscillations in Is1. The amplitude of the oscillations in Is1

and Is2 also differ slightly. This difference arises from the
difference in geometry between the two junctions, and the fact
that a quasiparticle current is injected into the first junction,
changing the quasiparticle distribution function and hence the
supercurrent [26].

Figure 1(d) shows the sum of the supercurrents in the
two junctions Is1 + Is2 as a function of Ib and �. The total
supercurrent at a specific bias current Ib oscillates as a function
of �, being in general larger when � ∼ n�0 and smaller when
� ∼ (n + 1/2)�0, where n is an integer. In contrast to a SIS
dc SQUID, the maxima and minima of the supercurrent do not
occur exactly at � = n�0 and � = (n + 1/2)�0 respectively.
For this SNS SQUID, there is an offset from these values that
increases with increasing |Ib| due to the aforementioned asym-
metry in the junctions. While the simulations are performed
assuming no voltage drop between the two superconductors
so that we cannot determine Ic directly, it can be seen that the
supercurrent and hence Ic oscillate as a function of �.

IV. EXPERIMENTAL RESULTS

To demonstrate that these oscillations in Ic can be detected
without generating a finite voltage drop between the two su-
perconductors, we fabricated and measured SNS loops with
different geometries with Al as the superconductor and Au as
the normal metal. The devices were patterned using standard
photolithography and multilevel electron-beam lithography
techniques. Prior to the Al deposition, the Au surface was
cleaned with an in situ argon ion etch to obtain clean interfaces
between the Au and the Al. The devices were loaded into
an Oxford dilution refrigerator and cooled to 77 K within a
few hours of the final deposition to preserve the quality of
the Au/Al interface. Four terminal resistance measurements in
perpendicular magnetic fields were carried out using custom-
built current sources that could provide both ac and dc currents
simultaneously. ac measurements were carried out using PAR
124 lock-in amplifiers at low frequencies (10s of Hz), with
inputs to the lock-in amplifiers provided by custom-built,
battery-operated low noise amplifiers housed in a mu-metal
shield to avoid line frequency interference. ac excitation cur-

rents of the order of 50 nA were used to avoid device heating
due to the measurement.

Figure 2(a) shows a false color SEM image of one of the
devices with a geometry similar to that of Fig. 1(b), except
that the normal sections of both SNS junctions have addi-
tional N leads attached and so are nominally identical. An
example of one of the other device geometries we fabricated
and measured is shown in Appendix C. The multiterminal
nature allows us to measure various four-terminal differential
resistances. Consequently, we use the common notation for
the four-terminal resistance Ri j,kl , where the notation Ri j,kl =
dVkl/dIi j indicates that i, j are the contacts where the ac
current I is sourced and drained, and k, l are the contacts
across which the resulting ac voltage drop is measured.

The blue curve in Fig. 2(b) shows the nonlocal differen-
tial resistance R21,35 as a function of Ib at T = 26 mK in a
magnetic field corresponding to a flux −�0 through the area
of the SQUID loop. As schematically presented in Fig. 1(b),
the nonlocal resistance arises from the quasiparticle current
Iqp2 flowing through the N part of the junction. R21,35 is
approximately 2 � at Ib = 0, rising symmetrically by about
10% as |Ib| is increased. The resistance increase is due to the
increasing phase difference between the two superconductors
induced by the fraction Is1 of the counterflowing supercur-
rent which modifies the resistance of the N part due to the
proximity effect. The remaining fraction Is2 of the counter-
flowing supercurrent flows through the second SNS junction.
Since there is no quasiparticle current through the second SNS
junction, there is no voltage drop between a N contact on this
junction and either superconductor as shown in the nonlocal
resistance R21,76 measured simultaneously.

As |Ib| is increased beyond ∼4 μA, R21,35 shows a sharp
decrease, going to negative values of differential resistance
when the counterflowing supercurrent in the device exceeds
Ic, at which point the two superconductors are no longer at
the same potential, so that the quasiparticle current Iqp2 drops.
Unlike the linear SNS junction Iqp2 does not vanish as there is
still a path for the current to flow to the drain contact through
the second SNS junction as a quasiparticle current [21]. Con-
sequently, R21,76 also shows a sharp drop at the same values
of Ib. As |Ib| is increased further, both nonlocal differential
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FIG. 3. (a) Measured nonlocal differential resistance R21;35 as a function of the bias current Ib at various values of the flux � through the
SQUID loop in the step of �/�0 = 0.1. The dashed vertical line at � = 0 is provided to emphasize the slight asymmetry of the modulation
with increasing Ib. (b) Expanded view of the data corresponding to the dashed yellow lines in (a). Data taken at 26 mK. (c) Numerical
simulations of the nonlocal differential resistance dVnl/dIB of the geometry of Fig. 1(b).

resistances approach their normal state values (modulated by
the current distribution of the quasiparticle currents), positive
for R21,35 and negative for R21,76 due to the relative orientation
of the their respective voltage leads. Thus the maximum in
R21,35 gives a measure of the critical current Ic of the SNS
SQUID [indicated by the dashed line in Fig. 2(b)] while it is
still in the zero voltage state.

To show that Ic determined by this nonlocal measurement
oscillates with applied flux as one expects in a dc SQUID,
Fig. 3(a) shows R21,35 as a function of Ib and the normalized
flux �/�0 through the SQUID loop. Ic oscillates with � with
a period of �0, varying from ∼4 μA at � = 0 to ∼1 μA at
�/�0 = ±1/2. For an ideal SIS dc SQUID with identical
Josephson junctions, one expects complete suppression of
Ic at � = (n + 1/2)�0. In real SIS dc SQUIDs, differences
between the critical currents of the two junctions will reduce
the modulation in Ic [3]. While the two SNS junctions in
our device are nominally identical, the finite quasiparticle
current in one junction results in a small difference in critical
current between the two junctions [26], resulting in a slight
asymmetry in the interference pattern seen in Fig. 3(a) which
increases with increasing |Ib|. The asymmetry can be seen
more clearly if we focus on the low bias regime |Ib| < 2 μA,
shown in Fig. 3(b). Numerical simulations of the nonlocal dif-
ferential resistance of the schematic device of Fig. 1(b) shown
in Fig. 3(c) exhibit the same qualitative asymmetric behavior,
although the asymmetry is much more pronounced. This is
because the two SNS junctions in the simulated geometry of
Fig. 1(b) are quite dissimilar.

Operation of a dc SQUID in the conventional finite voltage
bias mode involves biasing the SQUID with a modulation
coil at a value of flux where the change in voltage V with
external flux (dV/d�) is maximum, typically at (n + 1/4)�0

[3]. In an open loop configuration, the flux sensitivity of the
SQUID has a lower limit determined by the intrinsic Johnson
voltage noise of the SQUID Sv = √

4kBT R volts per unit
bandwidth, i.e., S� = Sv/(dV/d�) [5]. For the operation of
our device as a flux sensor with no voltage drop between
the two superconductors, we need to current bias the de-
vice. The sensitivity of the device is then determined by the
variation of the critical current Ic with flux dIc/d� and the in-
trinsic Johnson current noise SI = √

4kBT/R (Hz)−1/2, S� =

SI/(dIc/d�). From Fig, 3(a), the maximum slope dIc/d�

occurs around �/�0 ∼ 0.45, where its value is ∼10 μA/�0.
Assuming a resistance R ∼ 2 � at T = 50 mK, the ex-
pected flux noise of our device operated in the zero-voltage
mode is ∼2 × 10−7 �0/

√
Hz. Of course, with amplifiers

and flux feedback schemes, the actual noise will be larger,
but these numbers are comparable to conventional dc SIS
SQUIDs [5].

To use the device as a flux sensor, we need to be able to
measure Ic in the zero voltage state. This can be done by using
a feedback mechanism to change Ib so that the nonlocal resis-
tance is a maximum. Referring to Fig. 2(b), this would be at
Ib ∼ 4 μA. One way to do this is to use the measured d2V/dI2

b
as the error signal for a current biasing feedback loop. At the
maximum in dV/dIb, d2V/dI2

b is zero and has opposite signs
on either side of the maximum, and hence can in principle
serve as an error signal. Unfortunately, the nonlocal resistance
trace in Fig. 2(b), which corresponds to an integral flux n�0

through the loop, has a rather broad maximum, making it
difficult to maintain the device at Ic. However, if we flux
bias the device so that dIc/d� is a maximum, as we would
do in any case for maximum flux sensitivity, the maximum
in the nonlocal resistance becomes much sharper, enhancing
its suitability for feedback purposes. This is demonstrated in
Fig. 2(c), which shows the nonlocal differential resistance
R21,35 of the same device at � = 0.45�0. While Ic is now
reduced, the peak in R21,35 is much more pronounced, and
d2V/dI2

b about this point will show a much sharper slope and
consequently serve as a much better error signal input to a
feedback circuit.

V. CONCLUSION

In summary, we have demonstrated the possibility of a
mode of operation of SNS dc SQUIDs that uses the non-
local resistance arising from the superconducting proximity
effect to detect Ic(�) with no voltage drop between the two
superconductors of the SQUID. The Al/Au devices here were
measured at millikelvin temperatures. The limiting factor for
higher temperature operation is the maximum possible length
L of the junction, whose value is determined by the condition
L > LT . LT can in principle be made sufficiently long with
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very clean normal metals. With Nb as the superconductor,
such a device could then be operated at 4 K.
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APPENDIX A: DETAILS OF NUMERICAL SIMULATIONS

1. Riccati parametrization of the quasiclassical equations
of superconductivity

The simulations in this paper numerically solve the quasi-
classical equations of superconductivity in the diffusive limit
in the Keldysh formulation, which gives both the Usadel
equation for the quasiclassical superconducting Green’s func-
tion as well as the equations for the quasiparticle distribution
functions. These are solved simultaneously for a network of
one-dimensional (1D) normal metal wires that are connected
to superconducting and normal metal “reservoirs,” where the
Green’s function and the distribution function have well de-
fined values.

The equation for the retarded superconducting Green’s
function ĝR

s , which is a solution of the Usadel equation, is
given by [

τ 3E + �̃, g̃R
s

] = iD∂ �R
(
g̃R

s ∂ �Rg̃R
s

)
, (A1)

where τ 3 is the usual Pauli spin matrix,

τ 3 =
(

1 0
0 −1

)
, (A2)

and �̃ is given by

�̃ =
(

0 �

−�∗ 0

)
. (A3)

The Green’s function can be parametrized in different
ways. The open-source code used in this work uses the
so-called Riccati parametrization, which is implemented in
slightly different ways by different authors [27–29]. The code
uses the formulation by Virtanen [22], in which the retarded
Green’s function is expressed in terms of the complex Riccati
parameters γ and γ̃ as

ĝR
s = 1

1 + γ γ̃

(
1 − γ γ̃ 2γ

2γ̃ γ γ̃ − 1)

)
(A4)

with the normalization condition (ĝR
s )2 = 1. Putting this into

the Usadel equation (A1), we obtain from the off-diagonal
components the following coupled equations for γ and γ̃ in
the normal metal wires (where � = 0):

D

[
∂2

�Rγ − 2γ̃

1 + γ γ̃
(∂ �Rγ )2

]
+ 2iEγ = 0 (A5a)

and

D

[
∂2

�Rγ̃ − 2γ

1 + γ γ̃
(∂ �Rγ̃ )2

]
+ 2iE γ̃ = 0. (A5b)

2. Spectral quantitites in terms of the Riccati parameters

In terms of the Riccati parameters, the spectral supercur-
rent Q is defined as

Q = 2Re

[
1

(1 + γ γ̃ )2
(γ ∂ �Rγ̃ − γ̃ ∂ �Rγ )

]
. (A6)

Here Re stands for the real part.
The modified diffusion coefficients Mi j are given by

M00 = 1

|1 + γ γ̃ |2 [(|γ |2 − 1)(|γ̃ |2 − 1)], (A7a)

M33 = 1

|1 + γ γ̃ |2 [(|γ |2 + 1)(|γ̃ |2 + 1)], (A7b)

M03 = 1

|1 + γ γ̃ |2 [|γ̃ |2 − |γ |2], (A7c)

and

M30 = − 1

|1 + γ γ̃ |2 [|γ̃ |2 − |γ |2] = −M03. (A7d)

The charge current j(R, T ) and thermal current jth(R, T )
are given in terms of these quantities by

j(R, T )

= eN0D
∫

dE [M33(∂RhT ) + QhL + M03(∂RhL )], (A8a)

jth(R, T )

= N0D
∫

dE E [M00(∂RhL ) + QhT + M30(∂RhT )]. (A8b)

Here D is the diffusion coefficient, N0 is the electronic
density of states, and hL and hT are the longitudinal and
transverse quasiparticle distribution functions. The terms in
the square brackets in the integrands in Eqs. (A8a) and (A8b)
are the spectral charge and thermal currents respectively.

3. Boundary conditions

The experimental geometries that we simulate consist of
a network quasi-1D wires connected to each other, and to
superconducting and normal metal contacts, which we model
as “reservoirs” with well-defined values of the Green’s func-
tion (and hence the Riccati parameters) at each reservoir.
On a normal reservoir, the Riccati parameters γ and γ̃ are
both zero. On a superconducting reservoir, they have the
following values:

γ0(E ) = �0

E +
√

E2 − |�0|2
, (A9a)

γ̃0(E ) = − �∗
0

E +
√

E2 − |�0|2
, (A9b)

where �0 is the complex gap in the superconductor. A mag-
netic flux is introduced by specifying the gauge-invariant
phase φ of this parameter, i.e., �0 = |�0|eiφ . The distribution
functions have the following equilibrium form in a supercon-
ducting or normal reservoir at a potential V :

hL,T = 1

2

[
tanh

(
E + eV

2kBT

)
± tanh

(
E − eV

2kBT

)]
. (A10)
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Typically, the interface between a normal wire and a su-
perconducting reservoir will not be perfectly transparent. The
boundary conditions of Kupriyanov and Lukichev are often
used [30], but these are only valid in the tunneling limit,
i.e., for small barrier transparency, although they also work
for perfectly transparent barriers. For arbitrary barrier trans-
parencies, Nazarov [31] has given a more general formula in
terms of an interface with N conducting channels, each with
an arbitrary transmission coefficient Tn,

ĝs1∂xĝs1 = α
e2

π

∑
n

2Tn
[ĝs1, ĝs2]

4 + Tn(ĝs1ĝs2 + ĝs2ĝs1 − 2)
. (A11)

Here, ĝs1,2 are the Green’s functions on either side of the
barrier, and α is a constant factor. Obviously, since we do not
know the individual transmission coefficients, this equation is
difficult to use in its current form. The open-source code that
we have used assumes the simplest case of perfectly transpar-
ent interfaces between the 1D wires and the superconducting
and normal reservoirs.

4. Solution procedure

To obtain a solution, the differential equations for the
Riccati parameters [Eq. (A5)] are first solved with the bound-
ary conditions at the normal metal and superconducting
reservoirs specified as a function of energy E . The gauge
invariant phase φ1 across one SNS junction is used as a fitting
parameter, with the phase φ2 across the second junction being
obtained from the usual SQUID relation φ2 = φ1 + 2π�/�0.
At nodes joining multiple 1D wires, the boundary conditions
are continuity of the Riccati parameters and a Kirchoff law for
their derivatives, e,g.,

∑
∂γ = 0, where the sum is over all the

1D wires joined at a node. Once the Riccati parameters are ob-
tained, the spectral currents can be calculated from Eqs. (A6)
and (A7). With this information, the kinetic equations can
be solved using the boundary conditions (A10) for the dis-
tribution function, and conservation of spectral currents at
each node.

To determine the nonlocal voltage at a specific temperature
and flux, the entire solution procedure described above is
integrated into a numerical solver using the nonlocal voltage
Vnl and the phase φ1 as fitting parameters. The conditions for
the solver are that the net current into the voltage probe V + in

Fig. 1(b) vanishes, and that the net current into the second
superconductor [the one with the V − contact in Fig. 1(b)]
from both normal metals attached to it also vanishes. Once the
solver converges, we can then calculate the current Ib through
the current injection contact, the nonlocal differential resis-
tance dVnl/dIb, as well as the supercurrents and quasiparticle
currents through any 1D wire.

Ec is nominally determined by the length L of the normal
part of the SNS junction, Ec = h̄D/kBT . However, this is for
a wire with no additional normal metal leads. Experimentally,
by measuring the saturation value of Ic at low temperatures,
we have found that Ec is reduced by a factor of about 20
from its expected value based on L [21,32]. This can be
thought of as an increase in the effective value of L due
to the increased probability of quasiparticle diffusion in the
leads. Consequently, while Ec ∼ 55 μeV for a length L =
450 nm and D = 170 cm2/s, we have used a value of 2.7 μeV,
adjusting the values of � and T which are specified in units
of Ec accordingly.

APPENDIX B: CHARACTERIZATION OF DEVICE

Figure 4(a) shows the local differential resistances R51,69

of the device presented in the main text at various temper-
atures. The critical current Ic is plotted in (b) as a function
of temperature, which shows a good agreement with the
functional form expected for a SNS junction in the long
junction limit [33]. However, while the local critical cur-
rent Ic of a simple diffusive SNS junction consisting of
1D normal metal wire between two superconducting reser-
voirs in the long junction at the lowest temperature is
given by

Ic = 10.82
( Ec

eRN

)
, (B1)

this relation is no longer correct in the multiterminal case,
where the multiple normal leads connected to normal contacts
increase the effective length of the device, and consequently
reduce the effective Ec. This was already mentioned in
Ref. [21] for linear devices. For the device studied for this
paper, the maximum value of the critical current Ic0 of 3.6 μA
corresponds to Ic0eRN/Ec ∼ 0.62 if we used the length L
of the normal metal between the two superconductors to

FIG. 4. (a) Local differential resistance of the device as a function of the dc bias current at 30, 100, 200, 300, and 400 mK. The critical
current Ic at the base temperature is Ic0 ∼ 3.6 μA, which results in the factor Ic0eRN/Ec ∼ 0.62. (b) Local critical current Ic as a function of
temperature. Solid line is a fit to the functional form expected for a SNS junction in the long junction limit.
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FIG. 5. (a) False color SEM image of another device that we
fabricated and measured. Yellow represents the normal metal (Au)
and blue the superconductor (Al). (b) Nonlocal differential resistance
of the device in (a) taken at 26 mK as a function of the dc bias current
Ib sourced through contact 2 and drained through contact 5. Numbers
refer to contacts in (a). For notation, see main text.

calculate Ec. Detailed numerical calculations showing that the
additional leads connected to the normal metal wire can result
in a reduction of Ic0 can be found in Ref. [32].

APPENDIX C: ALTERNATE DEVICE GEOMETRIES

Figure 5(a) shows a false color SEM image of one of
the other device geometries that we fabricated and mea-
sured. This device has three NS interfaces in contrast
to the four NS interfaces in the device discussed in the
main text. Nevertheless, it shows similar nonlocal behavior.
Figure 5(b) shows the nonlocal resistance R25,16 = dV16/dI25

as a function of the dc bias current Ib sourced in contact
2 and drained from contact 5. While the critical current
is larger than the device in the main text, the response is
nearly identical.

[1] J. Clarke and A. I. Braginski, The SQUID Handbook: Funda-
mentals and Technology of SQUIDs and SQUID Systems, 1st ed.
(Wiley-VCH, Weinheim, 2004).

[2] A. I. Braginski, Superconductor electronics: Status and outlook,
J. Supercond. Novel Magn. 32, 23 (2019).

[3] T. Van Duzer and C. W. Turner, Principles of Superconductive
Devices and Circuits (Elsevier, New York, 1981).

[4] P. Carelli and M. G. Castellano, High-sensitivity DC-SQUID
measurements, Physica B (Amsterdam, Neth.) 280, 537 (2000).

[5] R. L. Fagaly, Superconducting quantum interference devices
instruments and applications, Rev. Sci. Instrum. 77, 101101
(2006).

[6] See, for example, A. C. Bleszynski-Jayich, W. E. Shanks, B.
Peaudecerf, E. Ginossar, F. von Oppen, L. Glazman, and J. G. E.
Harris, Persistent currents in normal metal rings, Science 326,
272 (2009); V. E. Kravtsov and V. I. Yudson, Direct Current
in Mesoscopic Rings Induced by High-Frequency Electromag-
netic Field, Phys. Rev. Lett. 70, 210 (1993).

[7] M. Hatridge, R. Vijay, D. H. Slichter, J. Clarke, and I. Siddiqi,
Dispersive magnetometry with a quantum limited SQUID para-
metric amplifier, Phys. Rev. B 83, 134501 (2011).

[8] K. K. Likharev, Superconducting weak links, Rev. Mod. Phys.
51, 101 (1979).

[9] L. Angers, F. Chiodi, G. Montambaux, M. Ferrier, S. Guéron,
H. Bouchiat, and J. C. Cuevas Proximity dc squids in the long-
junction limit, Phys. Rev. B 77, 165408 (2008).

[10] F. Giazotto, J. T. Peltonen, M. Meschke, and J. P. Pekola,
Superconducting quantum interference proximity transistor,
Nat. Phys. 6, 254 (2010).

[11] R. N. Jabdaraghi, D. S. Golubev, J. P. Pekola, and J. T. Peltonen,
Noise of a superconducting magnetic flux sensor based on a
proximity Josephson junction, Sci. Rep. 7, 8011 (2017).

[12] G. Deutscher and P. G. de Gennes, Proximity effects, in
Superconductivity Vols. 1 and 2, edited by R. D. Parks (Marcel
Dekker, New York, 1969), pp. 1005–1034.

[13] K. D. Usadel, Generalized Diffusion Equation for Supercon-
ducting Alloys, Phys. Rev. Lett. 25, 507 (1970).

[14] See, for example, V. Chandrasekhar, in Conventional and
High Temperature Superconductivity, Superconductivity Vol. 1,

edited by K. H. Bennemann and J. B. Ketterson (Springer, New
York, 2008), pp. 279–313.

[15] M. S. Crosser, J. Huang, F. Pierre, P. Virtanen, T. T. Heikkilä,
F. K. Wilhelm, and N. O. Birge, Nonequilibrium transport
in mesoscopic multi-terminal SNS Josephson junctions, Phys.
Rev. B 77, 014528 (2008).

[16] J. Clarke, Experimental Observation of Pair-Quasiparticle Po-
tential Difference in Nonequilibrium Superconductors, Phys.
Rev. Lett. 28, 1363 (1972).

[17] M. Tinkham and J. Clarke, Theory of Pair-Quasiparticle Poten-
tial Difference in Nonequilibrium Superconductors, Phys. Rev.
Lett. 28, 1366 (1972).

[18] A. Schmid and G. Schön, Linearized kinetic equations and
relaxation processes of a superconductor near Tc, J. Low Temp.
Phys. 20, 207 (1975).

[19] V. T. Petrashov, V. N. Antonov, P. Delsing, and T. Claeson,
Phase Controlled Conductance of Mesoscopic Structures with
Superconducting “Mirrors”, Phys. Rev. Lett. 74, 5268 (1995).

[20] Yu. V. Nazarov and T. H. Stoof, Diffusive Conductors as An-
dreev Interferometers, Phys. Rev. Lett. 76, 823 (1996).

[21] T. Noh, S. Davis, and V. Chandrasekhar, Nonlocal correlations
in a proximity-coupled normal-metal, Phys. Rev. B 88, 024502
(2013).

[22] The code is currently available at http://ltl.tkk.fi/∼theory/
usadel1/.

[23] P. Virtanen and T. Heikkilä, Thermoelectric effects in supercon-
ducting proximity structures, Appl. Phys. A 89, 625 (2007).

[24] P. Virtanen, Nonequilibrium and transport in proximity of
superconductors, Ph.D. dissertation, Helsinki University of
Technology, 2009.

[25] Calculations for a linear geometry have also been performed
by P. E. Dolgirev, M. S. Kalenkov, and A. D. Zaikin, Interplay
between Josephson and Aharonov-Bohm effects in Andreev
interferometers, Sci. Rep. 9, 1301 (2019).

[26] J. J. A. Baselmans, A. F. Morpurgo, B. J. van Wees, and T. M.
Klapwijk, Reversing the direction of the supercurrent in a con-
trollable Josephson junction, Nature (London) 397, 43 (1999).

[27] M. Eschrig, Distribution functions in nonequilibrium the-
ory of superconductivity and Andreev spectroscopy in

064503-7

https://doi.org/10.1007/s10948-018-4884-4
https://doi.org/10.1016/S0921-4526(99)01855-4
https://doi.org/10.1063/1.2354545
https://doi.org/10.1126/science.1178139
https://doi.org/10.1103/PhysRevLett.70.210
https://doi.org/10.1103/PhysRevB.83.134501
https://doi.org/10.1103/RevModPhys.51.101
https://doi.org/10.1103/PhysRevB.77.165408
https://doi.org/10.1038/nphys1537
https://doi.org/10.1038/s41598-017-08710-7
https://doi.org/10.1103/PhysRevLett.25.507
https://doi.org/10.1103/PhysRevB.77.014528
https://doi.org/10.1103/PhysRevLett.28.1363
https://doi.org/10.1103/PhysRevLett.28.1366
https://doi.org/10.1007/BF00115264
https://doi.org/10.1103/PhysRevLett.74.5268
https://doi.org/10.1103/PhysRevLett.76.823
https://doi.org/10.1103/PhysRevB.88.024502
http://ltl.tkk.fi/~theory/usadel1/
https://doi.org/10.1007/s00339-007-4189-0
https://doi.org/10.1038/s41598-018-37653-w
https://doi.org/10.1038/16204


NOH, KINDSETH, AND CHANDRASEKHAR PHYSICAL REVIEW B 104, 064503 (2021)

unconventional superconductors, Phys. Rev. B 61, 9061
(2000).

[28] J. C. Hammer, J. C. Cuevas, F. S. Bergeret, and W. Belzig,
Density of states and supercurrent in diffusive SNS junctions:
Roles of nonideal interfaces and spin-flip scattering, Phys. Rev.
B 76, 064514 (2007).

[29] V. Cherkez, J. C. Cuevas, C. Brun, T. Cren, G. Ménard, F.
Debontridder, V. S. Stolyarov, and D. Roditchev, Proximity
Effect between Two Superconductors Spatially Resolved by
Scanning Tunneling Spectroscopy, Phys. Rev. X 4, 011033
(2014).

[30] M. Yu. Kupriyanov and V. F. Lukichev, Influence of boundary
transparency on the critical current of “dirty” SS’S structures,
Zh. Eksp. Teor. Fiz. 94, 139 (1988) [Sov. Phys. JETP 67, 1163
(1988)].

[31] Yu. V. Nazarov, Novel circuit theory of Andreev reflection,
Superlattices Microstruct. 25, 1221 (1999).

[32] T. Noh, Nonlocal correlations in a proximity-coupled normal
metal, Ph. D. dissertation, Northwestern University, 2019.

[33] P. Dubos, H. Courtois, B. Pannetier, F. K. Wilhelm, A. D.
Zaikin, and G. Schön, Josephson critical current in a long meso-
scopic SNS junction, Phys. Rev. B 63, 064502 (2001).

064503-8

https://doi.org/10.1103/PhysRevB.61.9061
https://doi.org/10.1103/PhysRevB.76.064514
https://doi.org/10.1103/PhysRevX.4.011033
https://doi.org/10.1006/spmi.1999.0738
https://doi.org/10.1103/PhysRevB.63.064502

