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Twisted superfluid and supersolid phases of triplons in bilayer honeycomb magnets
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We demonstrate that low-lying triplon excitations in a bilayer Heisenberg antiferromagnet provide a promising
avenue to realize magnetic analogs of twisted superfluid and supersolid phases that were recently reported
for two-component ultracold atomic condensate in an optical lattice. Using a cluster Gutzwiller mean-field
theory, we establish that Dzyaloshinskii-Moriya interactions (DMI), that are common in many quantum magnets,
stabilize these phases in a magnetic system, in contrast to the pair hopping process that is necessary for
ultracold atoms. The critical value of DMI for transition to the twisted superfluid and twisted supersolid
phases depends on the strength of the (frustrated) interlayer interactions that can be tuned by applying ex-
ternal pressure on and / or shearing force between the layers. Furthermore, we show that the strength of
DMI can be controllably varied by coupling to tailored circularly polarized light. Our results provide crucial
guidance for the experimental search of twisted superfluid and supersolid phases of triplons in real quantum
magnets.
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I. INTRODUCTION

The observation of twisted, multiorbital superfluid in bi-
nary mixtures of ultracold 87Rb atoms in two different
hyperfine states on a honeycomb optical lattice has attracted
heightened interest in this quantum state of matter [1]. The
twisted superfluid (or twisted supersolid) state is character-
ized by a complex order parameter; the phase of the local
superfluid order parameter at each site changes continuously
forming a“twisting pattern”, thus breaking time reversal sym-
metry spontaneously. Interestingly, complex order parameters
have experimentally been shown to be associated with other
strongly correlated phases such as the superconducting states
of Sr2RuO4 [2,3] and UPt3 [4] and the pseudo-gap state
in the cuprate high-Tc superconductor, B-2212 [5,6]. A de-
tailed understanding of the twisted superfluid state can help
gain insight into these states as well. Subsequent theoret-
ical studies have shown that the extended Bose- Hubbard
model with an additional pair hopping term can stabilize a
twisted superfluid (TSF) ground state over a finite range of
parameters [7].

Quantum magnets have long served as a versatile plat-
form for realizing magnonic analogs of complex bosonic
phases, often under less extreme conditions. For example,
temperature needed for Bose-Einstein condensation (BEC) of
magnons varies from a few Kelvins in many quantum mag-
nets [8–10] to room temperature in yttrium iron garnet thin
films [11,12], in contrast to nano-Kelvin temperature scales
required for BEC in ultracold atoms [13,14]. In this work,
we show that twisted superfluid and twisted supersolid phases
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of magnons are realized in a bilayer honeycomb Heisenberg
model. Interestingly, the pair hopping process of magnons
is not essential for stabilizing these phases [7], in contrast
to ultracold atomic systems. Instead, a next nearest neighbor
(NNN) Dzyaloshinskii-Moriya interaction (DMI), which is
present in many quantum magnets, is sufficient to yield field
induced TSF and twisted supersolid (TSS) phases over wide
ranges of parameters.

Our paper is structured as follows. In Sec. II, we in-
troduce the microscopic spin Hamiltonian and describe the
physics in the noninteracting limit by deriving the tight-
binding triplon Hamiltonian and triplon band structure. The
cluster Gutzwiller mean field theory (CGMFT) is introduced
in Sec. III, which is used to calculate order parameters in
interacting limit. In Sec. IV we present the results of our study
in the form of the order parameters and phase diagram as a
function of magnetic field, DMI and Heisenberg interactions.
In Sec.V, we propose the possible materials in search of
the TSS and TSF phases. Finally, in Sec. V, we show that
circularly polarized light can be used to induce DMI greater
than the cutoff DMI required to realize TSS (TSF), whereas
the presence of frustration among interlayer and intralayer
interactions is helpful to lower the cutoff value of DMI (see
also Appendix C). The principal findings are summarized in
Sec. VI.

II. THE BILAYER HONEYCOMB MAGNET AND
EFFECTIVE TRIPLON MODEL

We start with a S = 1/2 Heisenberg antiferromagnet on
a bilayer honeycomb lattice with out-of- plane exchange
anisotropy and DMI, schematically shown in Fig. 1(a) and
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FIG. 1. (a) The spins on each lattice site interact via a strong
interlayer antiferromagnetic coupling, resulting in a ground state of
a honeycomb lattice of dimers on each interlayer nearest-neighbor
bonds (shown by the dashed -black line). (b) The ferromagnetic hon-
eycomb lattice. (c) Triplon band structure at D = 0.1J , (d) Triplon
band structure at D = 0.8J . The other parameters for the band struc-
ture are J⊥ = 10J , Bz = 0.0, Jz = 0.0.

described by the Hamiltonian

H = J⊥
∑

i, m ∈ A
n ∈ B

Si,m · Si,n − Bz

∑
i,m

Sz
i,m

+
∑

〈i, j〉,m

[
J
(
Sx

i,mSx
j,m + Sy

i,mSy
j,m

) + JzS
z
i,mSz

j,m

]

+ D
∑

〈〈i, j〉〉,m
νi j ẑ · (Si,m × S j,m). (1)

Si,m denotes the spin operator at i-th interlayer bond at layer
m (m ∈ {A, B}). 〈. . .〉 and 〈〈. . .〉〉 denote the nearest-neighbor
(NN) and next-nearest-neighbor (NNN) interlayer bonds, re-
spectively. J⊥(> 0) is the strength of (isotropic) interlayer
Heisenberg interaction, while Jz (>0) and J (>0) denote the
Ising and XX type intralayer NN Heisenberg exchange in-
teractions, respectively. D is the DMI, which is constrained
by the symmetry of the lattice to intralayer NNN bonds;
νi j = +1, if i → j forms part of a counterclockwise closed
loop connecting the NNN sites in a hexagonal plaquette in
each layer [see counterclockwise circular arrows in Figs. 1(a)
and 1(b)] and νi j = −1 otherwise. Finally BzS

z
i,m describes

a Zeeman coupling between a local spin moment and an
external longitudinal magnetic field. It is noticeable that the
change in sign of J and D do not alter the magnetic ground
state as well as excitations above the ground state, whereas Jz

and J⊥ are strictly positive in this study.
For J⊥ � |J|, the ground state of the system is a product of

the singlet dimers on each interlayer NN bond. In this limit,
the lowest excitations of the system are triplons, which are
localized S = 1 quasipartices. An out-of-plane magnetic field
lowers the energy of the Sz = +1 triplons and at a critical
magnetic field, it crosses the energy of the singlet state, pop-

ulating the ground state with a finite density of triplons. The
other triplon branches (Sz = 0 and Sz = −1) are separated by
a large energy gap. At low temperatures, one can restrict the
local Hilbert space of the dimers to the singlet and Sz = +1
triplon. By treating the triplons as bosonic quasiparticles,
one can formulate a description of the low energy physics
of the system in terms of hard core bosons which is known
as bond-operator formalism (see also Appendix A). In this
formalism, the zero field ground state made of singlets on each
interlayer bonds is considered an empty lattice with number
of triplons ni = 0 ∀i. At the critical field, a finite density of
triplons is generated which increases with increasing field.
The interdimer exchange interactions induce an effective hop-
ping of the triplons. This delocalization induces a BEC of
Sz = +1 triplons in the ground state. In the spin language,
this corresponds to an canted antiferromagnetic order with a
spontaneously broken U(1) symmetry. Considering singlets
as a vacuum state in the system and triplon (Sz = +1) as
a hard-core bosonic quasiparticle excitations in vacuum of
singlets, we can use the bond operator formalism to express
the bilayer spin Hamiltonian Eq. (1) as an effective triplon
Hamiltonian on a single-layer honeycomb lattice [15–17] (see
Appendix A),

H = J

2

∑
〈i j〉

[t̂†
i t̂ j + H.c.] + iD

2

∑
〈〈i j〉〉

νi j[t̂
†
i t̂ j − H.c.]

+
(

J⊥
4

− Bz

) ∑
i

t̂†
i t̂i + Jz

2

∑
〈i j〉

n̂in̂ j, (2)

where, t̂i is the triplon annihilation operator, n̂i is the triplon
number operator and index i represents the site index of the
effective single-layer honeycomb lattice (which is equivalent
to interlayer bond index of the bilayer honeycomb lattice).
The first two terms represent hopping of triplons between NN
and NNN neighbor dimers, respectively, the third term is an
on-site potential (effectively a chemical potential) and the last
term describes the effects of NN interaction between triplons.
It is noticeable that the NNN hopping has a complex weight
which renders the Hamiltonian unsuitable for quantum Monte
Carlo simulations. When Jz ≈ 0, Eq. (2) reduces to a tight
binding model of noninteracting triplons. The Bloch Hamilto-
nian in the momentum basis, in terms of the momentum space
triplon operators, is determined via Fourier transformation as

H =
∑

k

�
†
k[g(k)σ0 + h · σ]�k, (3)

where �k = (âk, b̂k )T . âk (b̂k) denotes the k-space triplon
annihilation operator on sublattice a (b) as shown in Figs. 1(a)
and 1(b) and σ is the pseudovector of Pauli matrices
and σ0 is the two-dimensional identity matrix. The coef-
ficients of the σ matrices in the Bloch Hamiltonian are
g(k) = (J⊥/4) − Bz, hx(k) = (J/2)

∑
i cos(k · αi ), hy(k) =

(J/2)
∑

i sin(k · αi ), hz(k) = D
∑

i sin(k · βi ), where αi and
βi are the NN and NNN vectors for each layer, respectively.
βi’s are chosen such that they form a counterclockwise trian-
gular loop for sites in sublattice a in a hexagonal plaquette and
clockwise triangular loop for sites in sublattice b. The energy
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eigenvalues are given by

E±(k) = g(k) ± |h(k)|. (4)

The band dispersion is shown in Figs. 1(c) and 1(d) for two
values of DMI. For D = 0, the energy spectrum is identical to
that of graphene, with a linear band crossing of the upper and
lower bands at the Dirac points K and K ′. A finite DMI breaks
time reversal symmetry and opens a band-gap 6

√
3D at these

points. The energy of the lower band at � and K (K ′) points
are, respectively, given by (at Bz = 0)

E� = J⊥
4

− 3|J|
2

, EK = J⊥
4

− 3
√

3

2
|D|. (5)

In the absence of DMI, the energy minimum is located at the
center of the Brillouin zone, the � point. For a finite but small
DMI, the band minimum remains at the � point [Fig. 1(c)]. In-
creasing DMI to |D| > |J|/√3 shifts the band minimum from
� point to two degenerate minima at the K and K ′ [Fig. 1(d)].
Thus with changing DMI, the ground state changes from a
one component BEC (condensation momentum k = 0) to a
two component BEC (condensation momenta at k = K and
K ′). The transition happens at |D| = |J|/√3 independent of
J⊥ and Bz for small Bz.

In presence of a repulsive interaction between triplons [ the
last term in Eq. (2 )] coexistence of triplons at K and K ′ points
costs no additional energy classically ( see Appendix B ), but
the quantum fluctuations around K and K′ points introduces
an energy cost [18]. Thus spontaneous breaking of valley
symmetry is energetically favored and the quantum fluctuation
will lead to a ground state with only single valley conden-
sation which is known as the “quantum order by disorder”
effect [18–20]. Thus, in the limit of weak interaction, the
superfluid order parameter at lattice site r is either |b|eiK·r+φ

or |b|eiK′ ·r+φ depending on the valley for the Bose-Einstein
condensate, where φ is a global phase independent of position
of lattice site. This spontaneous breaking of valley symmetry
transforms the superfluid order parameter from a real to a
complex value and the resultant BEC is known as twisted su-
perfluid [7]. Based on this, the ground state on the honeycomb
lattice is no longer a bipartite lattice in a twisted superfluid
phase, but becomes a lattice with six sublattices as shown in
re Fig. 2. Results based on CGMFT also support this scenario
as shown in Sec. III.

In absence of interaction Jz, Eq. (2) transforms into the
well-known bosonic topological Haldane model. At finite
temperatures due to nonzero magnetic excitations, this model
is known to exhibit a finite thermal Hall effect due to presence
of nonzero Berry curvature of the bands. On this basis it is
expected that the Bose-Einstein condensate at the � point or
K (K ′) point would provide a nonzero Hall conductance even
at zero temperature [18]. However, we find that the Berry
curvature at the condensation momenta � point when |D| <

|J|/√3 and K (K ′) point when |D| > |J|/√3 is zero. Since the
density of magnons is concentrated around the condensation
momentum, and is vanishingly small away from it, the thermal
Hall response of the Bose-Einstein condensate is vanishingly
small in our model.

An analogous bosonic model can also be observed in terms
of Matsubara-Matsuda bosons in magnetically ordered honey-
comb ferromagnets [see Fig. 1(b) ] or antiferromagnets. Thus

FIG. 2. The cluster construction for CGMFT. There are 18 sites
in the cluster which is located within the dashed black box. A pe-
riodic boundary condition is applied along the horizontal direction
and the mean-field boundary condition is applied along the vertical
direction. The background of the cluster sites is denoted by a pink
shade and the background of the mean-field sites are denoted by the
blue shading.

the nontrivial phases like TSF or TSS are also expected to
emerge in magnetically ordered systems. However, in prac-
tice, the presence of anisotropies in magnetically ordered
systems break the U (1) symmetries destroying conservation
of numbers of particles which in-turn preclude a long time
superfluidity response in this system [15,21]. Moreover due to
presence of strong exchange interactions [J, Jz in Eq. (2)] in
general, the phase transitions are also difficult to study varying
the external parameters in these systems [21]. That is why
the dimerized paramagnets are well suited to study superfluid
phases and superfluid-Mott transitions. Hence we focus on
bilayer dimerized honeycomb paramagnetic system to study
the TSF and TSS phases.

III. CLUSTER-GUTZWILLER MEAN FIELD THEORY
(CGMFT) AND OBSERVABLES

The cluster Gutzwiller mean field theory or CGMFT [7,22]
— equivalently, cluster mean-field theory [23–29], self-
consistent cluster mean-field theory [30], multisite mean-field
theory [31], hierarchical mean-field approach [32,33], com-
posite boson mean- field theory [34]—is a powerful technique
to study superfluid phases in bosonic many body systems
with complex hopping terms. CGMFT improves over the
conventional single-site mean field approach by taking into
account the short range correlations present within a small
lattice cluster using exact diagonalization. Furthermore it is
an alternative numerical method to study the quantum sys-
tems as we described in Sec. II, where sign problems arises
in quantum Monte Carlo methods due to complex hopping
terms or geometric frustration [35,36]. Whereas conventional
mean-field theories [37] and exact diagonalization of small
systems [38] fail to show existence of TSF and TSS phases,
density matrix renormalization group for one-dimensional
systems [39] and CGMFT for higher dimensional systems [7]
are better alternatives for searching these nontrivial phases.

We explore the ground state phases of the effective triplon
Hamiltonian with CGMFT by decomposing the system into
clusters (pink shaded region) and mean-field region (blue
shaded region) as shown in Fig. 2. The effective mean-field
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Hamiltonian of the cluster is given as

Heff
C = HC + HδC, (6)

where, HC is the Hamiltonian as in Eq. ( 2) within the cluster
and HδC is the Hamiltonian which takes into account the
interactions among the boundary sites of the cluster and the
mean-field region. The form of the boundary Hamiltonian is
given by

HδC = J

2

′∑
〈i, j〉

[t̂†
i 〈t̂ j〉 + H.c.] + iD

2

′∑
〈〈i, j〉〉

[t̂†
i 〈t̂ j〉 − H.c.]

+ Jz

2

′∑
〈i, j〉

n̂i〈n̂ j〉, (7)

where the primed summations are over the boundary site-i
connected to the mean-field site j. 〈t̂ j〉 and 〈n̂ j〉 are two
mean-field parameters denoting the superfluid order param-
eter and occupation number of triplons at site j, respectively.
We choose six inequivalent sites in each cluster (denoted by
different patterns in Fig. 2) to give a total of 12 mean-field pa-
rameters. The ground state in the different parameter regimes
are obtained by evaluating these mean-field parameters self-
consistently in the following manner:

(i) Choose an initial set of mean-field parameters
{〈t̂ j〉, 〈n̂ j〉}, j = 1, . . . , 6 and then exactly diagonalize the
effective Hamiltonian of the cluster Heff

C .
(ii) Calculate new mean-field parameters 〈t̂ ′

j〉 and 〈n̂′
j〉

from the sites within blue-dashed rectangle in Fig. 2 which
reside within the cluster. The periodic boundary condition is
chosen along the horizontal direction to eliminate any bound-
ary effect on the sites within the blue-dashed rectangle, so that
the mean-field parameters obtained from those sites are free
from boundary effects.

(iii) The initial and final set of mean-field parameters are
compared using the tolerance

ε =
∑

j

|〈t̂ ′
j〉 − 〈t̂ j〉| +

∑
j

|〈n̂′
j〉 − 〈n̂ j〉|. (8)

If the tolerance ε is less than a certain cutoff then the obtained
mean-field parameters correspond to the ground state of the
system. Otherwise step (i) is repeated with new values of
mean-field parameters 〈t̂ j〉 = 〈t̂ ′

j〉 and 〈n̂ j〉 = 〈n̂′
j〉.

We set the cutoff as 10−10 and start the simulation with
different initial mean-field parameter sets for a fixed set of
parameters J , D, J⊥, Bz, and Jz. In general, the simulations
with different initial mean-field parameter sets give different
ground states at the boundary of two phases and we selected
the phase with minimum energy as the ground state.

After obtaining the ground state via self-consistent deter-
mination of the mean-field parameters, four order-parameters
are calculated to identify the nature of the ground state phase
of the system. The magnitude of superfluid order parameter is
given by

|b| = max[|〈t̂ j〉|], (9)

where max denotes maximum value of the parameter obtained
out of six sites within the dashed blue border in Fig. 2. Ad-
ditioally, the average number of particles per site 〈n〉av and

difference in number of particles between NN sites 	n are
also enumerated. The superfluid order parameter is a complex
quantity and for twisted superfluid phases in our study the
phase difference of superfluid order parameter b among NNN
sites is obtained to be θ = 120◦ and otherwise θ = 0◦.

IV. NUMERICAL RESULTS

Using CGMFT, we determine the order parameters |b|,
〈b〉av,	n and θ as a function of magnetic field Bz for different
sets of the parameters (D, Jz ). The evolution of the order
parameters and the resulting field driven phases are shown
in Fig. 3 for four illustrative points of the (D, Jz ) parameter
space. In Fig. 3, the DMI increases from the left column of
figures to the right column of figures, whereas the interaction
Jz increases from upper row of figures towards the lower row
of figures.

For weak DMI (D = 0.2J), the field driven phase dia-
gram resembles that of the canonical extended Bose- Hubbard
model for hard core bosons [40] [see Figs. 3(a) and 3(c)]. The
zero field (Bz = 0) ground state corresponds to a singlet phase,
or equivalently an empty lattice in the bosonic language. All
the order parameters vanish in this limit. This remains true
at small values of the applied field reflecting a finite gap to
lowest excitations due to the singlet-triplet gap of the local
dimers. When the applied field exceeds a critical value, the
gap is closed and the ground state acquires a finite density of
triplons. These field induced triplons form a superfluid (SF)
driven by the NN triplon hopping and is characterized by
a finite SF order parameter, |b|. The mismatch between the
occupancy of the two sublattices (	n) remains zero, reflect-
ing the uniform nature of the SF phase. A vanishing twist
angle (θ = 0) completes the characterization of the phase as a
normal superfluid. In the weak interaction limit (Jz < 2J) with
increasing magnetic field, the density of triplons increases
monotonically until full saturation is reached at an upper
critical field when each dimer is occupied by a triplon. At
saturation, all the order parameters (except average density,
〈n〉av , of triplons) vanish denoting a lattice fully occupied by
triplons. In this weak interaction limit, the physics is similar
to the noninteracting limit as described in Sec. II and so the
qualitative feature can be well described using band structure
as in Fig. 1(c).

For strong interactions (Jz > 2J), an intervening charge
density wave (CDW) phase, driven by the strong NN inter-
action between triplons, appears in addition to the phases
discussed above [see Fig. 3(c)]. With increasing magnetic
field, when the density of triplons reaches 〈n〉av = 1/2, the
triplons form a staggered CDW pattern where one of the
sublattices is fully occupied, while the other remains empty.
The potential energy cost due to NN interaction is minimized
as there are no NN pairs. This is accompanied by a complete
quenching of superfluidity, since any hopping of triplons will
necessarily involve configurations with energetically costly
multiple NN pairs. The CDW phase has a finite gap to the
addition of any more triplons and the density remains constant
at 〈n〉av = 1/2 over a finite rage of applied field. This phase is
characterized by a vanishing superfluid order, and a nonzero
density mismatch between the two sublattices (	n), reflect-
ing the staggered order. When the increasing field strength
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FIG. 3. The order parameters are plotted for parameter values (a) D = 0.2J, Jz = J , (b) D = 0.9J, Jz = J , (c) D = 0.2J, Jz = 4J , (d) D =
0.9J, Jz = 4.5J . J⊥ is fixed at value 10J . Order parameters |b|, 〈n〉av and 	n are plotted as function of magnetic field Bz and denoted by red,
black, and blue dotted lines, respectively. The dots on the lines denote the points in parameter space where the CGMFT is performed and the
lines just connect the points. Moreover the phase difference of superfluid order parameter θ is shown in the right-side vertical axis and denoted
in green color. Different phases are indicated by different colored shades. “E” and “O” denote empty and fully occupied phase of the system,
respectively. All other phases are described in the main text.

reaches a critical value where the Zeeman energy gain due to
increasing magnetization (equivalently, adding more triplons)
exceeds the potential energy cost of NN repulsion, the den-
sity of triplons starts to increase again, resulting in another
normal SF phase. Finally, as the field is increased above
a saturation value, Bsat, the ground state enters the fully
polarized phase.

The above argument for the appearance of interaction
driven CDW phase at half-filling does not apply for weak to
moderate interaction strengths (Jz < 2J), as the kinetic energy
gain due to the delocalization of triplons exceeds the potential
energy cost of NN interactions.

The sequence of field-driven phase changes markedly for
strong DMI. As shown earlier in Sec. II, in the non-interacting
limit, the triplon band minimum shifts from the � point to
the K and K ′ [Fig. 1(d)] and the BEC of triplons occur at
finite momentum. A local minimum persists at the center of
the Brillouin zone, and the energy gap between the triplon
sector and the singlet dimer sector, EK in Eq. (5) decreases
with increasing DMI. This behavior persists in the presence
of weak to moderate interaction (Jz < 2J) and is reflected in
Fig. 3(b). For the present choice of parameters, the energy of
the lowest triplon excitation is vanishingly small. The triplon
density acquires a finite value for an infinitesimally small Bz,
and increases monotonically with the strength of the applied
field. In this regime, the triplons form a superfluid (|b| > 0).
More interestingly, the complex NNN hopping process im-

parts a complex phase to the superfluid order parameter, as
seen by a finite expectation value of the twist angle (θ 
= 0).
In other words, the ground state in this parameter range is
a TSF. The triplon density increases monotonically, with the
ground state remaining a TSF, until the fully polarized phase
is reached at a saturation field, Bsat.

Finally, in the strong DMI and strong interaction limit [see
Fig. 3(d)],the twisted superfluid is replaced by a twisted
supersolid phase, in addition to the appearance of an
interaction-driven CDW phase at 〈n〉av = 1/2 over a finite
range of applied field. In the TSS phase, the ground state is
characterized by a finite 	n (density mismatch between the
two sublattices), in addition to a complex superfluid order
parameter (|b| 
= 0, θ 
= 0,). The finite density difference be-
tween two sublattices provide the diagonal order concurrently
with the finite (twisted) SF ordering. It is surprising that the
ground state exhibits TSS order even at low triplon densities.
This is understood by recalling that the primary delocalization
process in this parameter regime involves the DMI-induced
intra-sublattice complex next-nearest-neighbor hopping. The
strong NN repulsion between the triplons further suppresses
intersublattice hopping processes, resulting in a preferential
occupation of one of the two sublattices at small densities.

The phase diagram in Bz − D parameter space is shown in
Fig. 4 for two different values of interaction Jz = J and Jz =
4.5J . A comparison of the phase diagrams at moderate (Jz <

2J) and strong (Jz > 2J) interactions reveal
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FIG. 4. Phase diagram at two different interaction values (a) Jz =
J and (b) Jz = 4.5J . Each dot or circle denotes the parameter point
where the CGMFT is performed. Different colors denote different
phases in parameter space. The empty and dotted black circles rep-
resent the empty and fully occupied lattice phases, respectively.

(i) Appearance of the CDW phase at half-filling in the
strong interaction limit. The CDW phase appears at half filling
dividing the SF region which appear at weak to moderate Jz

into two SF regions.
(ii) In the strong interaction limit the TSF phase is re-

placed by a TSS phase.

V. MATERIAL REALIZATION

There are two main ingredients to realize TSF or TSS
phases; firstly, a bilayer honeycomb valence bond state is
required; secondly, a DMI greater than a critical value is
required. Although, to the best of our knowledge, there are
no materials described in the literature which satisfies our
model, a rough idea is sketched here to obtain TSS or TSF
phases based on the real materials Bi3Mn4O12(NO3) and
CrI3.

The material Bi3Mn4O12(NO3) consists of Mn4+ ions
carrying spin S = 3

2 arranged in a bilayer honeycomb lat-
tice with A-A stacking. No magnetic ordering is observed
down to the lowest temperatures. Theoretical studies indi-
cate that the disordered magnetic state may be an interlayer
dimer phase which is adiabatically connected to the direct
products of singlets [41–45], although a spin liquid phase
cannot be completely ruled out [46–57]. If the ground state
phase is a spin liquid, an interlayer dimer phase can be in-
duced by applying pressure along the perpendicular direction
[44,51].

On the other hand, the experimentally well studied van der
Waals material CrI3 is a honeycomb ferromagnet where Cr2+
ions carry spin- 1

2 momentum forming a honeycomb lattice.
This material has been well studied by tuning the number of
layers [58] as well as varying the pressure [59]. It is shown
that the interlayer antiferromagnetic Heisenberg exchange
interaction changes linearly with the distance between two
layers by application of pressure on the material and can be
achieved an interlayer coupling twice as compared with the
initial interlayer coupling [59]. Although a valence bond state
is not detected in CrI3 (and there are indications of structural
phase transition under pressure) [59], the pressure induced
high interlayer coupling in CrI3 motivates us to search pres-
sure induced valance bond states in a family of van der Waals
honeycomb magnets CrBr3 [60], CrGeTe3 [61], CrSiTe3 [62],
FePS3 [63], NiPS3 [64].

Another challenge for achieving the TSF and TSS phases
is to obtain a high DMI (|D| > J/

√
3). The materials

Bi3Mn4O12(NO3) and CrI3 are experimentally predicted to
possess DMI [65,66]. However the magnitude of DMI is small
for realizations of TSS and TSF states. This problem can
be overcome by application of circularly polarized light. A
circularly polarized light couples either to the charge [67] or
to the magnetic degrees of freedom [68] and it has been shown
theoretically that both kinds of mechanisms give rise to scalar
spin chiral interaction in a honeycomb magnetic insulator. The
synthetic scalar spin chiral interaction as in Ref. [67] given
by

Hχ = χ
∑

〈〈 j,k〉〉,m
ν jk Ŝi,m · (Ŝ j,m × Ŝk,m)

≈ 3iχ

4

∑
〈〈 j,k〉〉

ν jk〈n̂i〉[t̂†
j t̂k − H.c.], (10)

where the i-th site is the NNN of both j-th and k-th sites, χ is
synthetic scalar spin chirality. Comparing Eqs. (2) and (10),
the effective DMI for bond 〈〈 jk〉〉 due to circularly po-
larized light is D = 3χ〈ni〉

2 . The scalar spin chirality χ is
shown to have a resonance for the frequency of light near
ωn = 1

h̄
U
n , where U is the on-site interaction representing

electron-electron repulsion and n is a positive integer. Thus
the effective DMI can be tuned as high as possible tuning
the frequency of the light nearby ωn. However the results
in Ref. [67] are based on a single-band extended Hubbard
model; for a magnetic material which cannot be described
by a one band Hubbard model, one needs a more careful
theoretical treatment. On the other hand, application of light
may not be required for a real material if the cutoff of DMI
to realize TSF or TSS states is reduced due to presence of
frustration among interlayer and intralayer interactions (see
Appendix C).

VI. CONCLUSION

To summarize, we have shown that a magnetic analog
of the TSF state reported in recent experiments with ultra-
cold atoms in an optical lattice [1] can be realized in a
bilayer quantum antiferromagnet with realistic interactions.
We show that the TSF phase is induced by DMI greater
than a critical value. For Ising-like anisotropy of the intra-
plane Heisenberg interactions, the TSF phase is replaced by
a TSS phase. While the strength of DMI required for the
stabilization of the TSF and TSS phases (D/J � 0.5) is not
observed natively in most quantum magnets, recent exper-
iments have shown that a strong DMI can be induced in
thin films of insulating magnets, by forming heterostructures
with heavy metals (with strong spin-orbit coupling) [69–72].
Our results show that circularly polarized light can also in-
duce a large DMI by varying the frequency of light [67].
Finally, the presence of frustration among interlayer and
intralayer Heisenberg exchange interactions in a material
can lower the value of the critical DMI required to real-
ize TSF and TSS phases (Appendix C), thus facilitating
their experimental observation. We propose that the material
Bi3Mn4O12(NO3) [41–45] and family of honeycomb mag-
nets CrBr3 [60], CrGeTe3 [61], CrSiTe3 [62], FePS3 [63],
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NiPS3 [64] are promising candidate materials to realize TSF
and TSS phases.
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APPENDIX A: BOND-OPERATOR FORMALISM

The spin-operators in terms of bond operators are given
by [17]

Ŝ+
j,l = t̂†

1, j t̂0, j + t̂†
0, j t̂1̄, j√

2
± ŝ†

j t̂1̄ j − t̂†
1, j ŝ j√

2
,

Ŝ−
j,l =

t̂†
1̄, j

t̂0, j + t̂†
0, j t̂1, j√

2
∓

ŝ†
j t̂1, j − t̂†

1̄, j
ŝ j√

2
, (A1)

Ŝz
j,l =

t̂†
1, j t̂1, j − t̂†

1̄, j
t̂1̄, j

2
± ŝ†

j t̂0, j + t̂†
0, j ŝ j

2
,

where the upper sign is for layer l =A and the lower sign is
for the layer l =B. t̂†

1, j, t̂†
1̄, j

and t̂†
0, j create states |↑ ↑〉, |↓ ↓

〉 and (|↑ ↓〉 + |↓ ↑〉)/
√

2 on j-th bond, respectively. After
the bond operator transformation, the bilayer honeycomb spin
system transforms into an effective single layer honeycomb
lattice system with triplon and singlet operators on each site.
At low temperature, in the limit |J⊥| � |J|, it can be assumed
that the ground state is product of singlets on the interlayer
NN bonds. Assuming singlets form the empty or vacuum state
and taking advantage of the hardcore nature of the bosons, we
can simply transform the following quadratic operators into a
single triplon operators in Eq. (A1),

ŝ†
j t̂α j → t̂α j, t̂†

α j ŝ j → t̂†
α j .

Moreover application of magnetic field in the z direction low-
ers the energy of triplon correspond to the operator t̂†

1, j and so
neglecting all other triplon operators in equation Eq. (A1), we
get the following bond operator transformation [15]:

Ŝ+
j,l = ∓ 1√

2
t̂†

j , Ŝ−
j,l = ∓ 1√

2
t̂ j, Ŝz

j,l = 1

2
t̂†

j t̂ j,

where the subscript 1 is omitted from the operator t̂†
1, j .

APPENDIX B: INTERACTION TERM
IN RECIPROCAL SPACE

The last term in Eq. (2) represents the NN repulsive inter-
action and in reciprocal space it is given by

HV = Jz

2

∑
α

∑
k,k′,k′′

ei(k−k′ )·α t̂†
k t̂k′ t̂†

k′′ t̂k+k′′−k′ . (B1)

FIG. 5. (a) Intradimer and interlayer NN bonds are indicated
by red solid and red dotted lines, respectively. (b) The intralayer
and interlayer NNN bonds are indicated by green solid and green
dotted lines, respectively. (c) Triplon band structure at D = 0.1J ,
(b) Triplon band structure at D = 0.8J . The other parameters for the
band structures are J⊥ = 10J, J1 = 0.8J, J2⊥ = 3J, Bz = 0.0, Jz =
0.0, J3⊥ = 0.

Considering triplons are only present at K and K ′ points as
well as neglecting quantum fluctuations around these points,
the interaction Hamiltonian can be explicitly written as

HV = 3Jz

2
[t̂†

Kt̂Kt̂†
Kt̂K + t̂†

K′ t̂K′ t̂†
K′ t̂K′ + t̂†

Kt̂Kt̂†
K′ t̂K′ + t̂†

K′ t̂K′ t̂†
Kt̂K]

+ Jz

2

∑
α

[ei(K−K′ )·αt̂†
Kt̂K′ t̂†

K′ t̂K + ei(K′−K)·αt̂†
K′ t̂Kt̂†

Kt̂K′]

= 3Jz

2

[
n̂2

K + n̂2
K′ + 2n̂Kn̂K′

]

= 3Jz

2
(n̂K + n̂K′ )2, (B2)

thus coexistence of particles at K and K′ points does not
seem to increase the energy of the system. However, quantum
fluctuations around the points K and K′ increases the energy
due to presence of triplons at both K and K′ points as shown
in Ref. [18].

APPENDIX C: INTRODUCING MORE TERMS
IN THE SPIN HAMILTONIAN

In this Appendix, we have taken into account additional
interlayer bonds [see Figs. 5(a) and 5(b)]. We introduce in-
tralayer NNN Heisenberg-exchange interaction J1 as well as
interlayer NN Heisenberg exchange interaction J2⊥ in the
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spin Hamiltonian in equation Eq. (1):

H = J⊥
∑

i, m ∈ A
n ∈ B

Si,m · Si,n − Bz

∑
i,m

Sz
i,m +

∑
〈i, j〉,m

[
J
(
Sx

i,mSx
j,m + Sy

i,mSy
j,m

) + JzSz
i,mSz

j,m

]

+ D
∑

〈〈i, j〉〉,m
νi j ẑ · (Si,m × S j,m) + D⊥

∑
〈〈i, j〉〉

m ∈ A, B, n 
= m

νi j ẑ · (Si,m × S j,n)

+ J1

∑
〈〈i, j〉〉,m

Si,m · Si,m + J2,⊥
∑
〈i, j〉

m ∈ A, B, n 
= m

Si,m · Si,n + J3,⊥
∑

〈〈i, j〉〉
m ∈ A, B, n 
= m

Si,m · Si,n. (C1)

Moreover we have added symmetry allowed interlayer NNN DMI D⊥ and Heisenberg interaction J3⊥. The DMI on intradimer
and NN interlayer bonds are zero due to presence of inversion center at the middle of the bonds. The corresponding real space
triplon Hamiltonian is given as

H = J − J2⊥
2

∑
〈i j〉

[t̂†
i t̂ j + H.c.] + J1 − J3⊥

4

∑
〈〈i j〉〉

[t̂†
i t̂ j + H.c.] + i(D + D⊥)

2

∑
〈〈i j〉〉

νi j[t̂
†
i t̂ j − H.c.]

+
(

J⊥
4

− Bz

) ∑
i

t̂†
i t̂i + J2⊥ + Jz

2

∑
〈i j〉

n̂in̂ j + J1 + J3⊥
4

∑
〈〈i j〉〉

n̂in̂ j . (C2)

It is noticeable that the Heisenberg interaction J2⊥ renor-
malizes the interactions J and Jz, whereas J1 and J3⊥ add
additional NNN hopping term and NNN interaction term.
Moreover D⊥ renormalizes D by simply adding up and so
D⊥ is absorbed into D in the rest of this section. In this
Appendix, we investigate the triplon Hamiltonian, neglecting
the interaction terms. The noninteracting Hamiltonian in k
space is similar to Eq.( 3) and given by

H0 =
∑

k

�
†
k[g′(k)σ0 + h′ · σ]�k, (C3)

where,

g′(k) = (J⊥/4) − Bz + ((J1 − J3⊥)/2)
∑

i

cos(k · βi ),

h′
x(k) = ((J − J2⊥)/2)

∑
i

cos(k · αi ),

h′
y(k) = ((J − J2⊥)/2)

∑
i

sin(k · αi ),

h′
z(k) = D

∑
i

sin(k · βi ),

where αi and βi are the NN and NNN vectors for each
layer, respectively. The band structure for two different D
values are plotted in Figs. 5(c) and 5(d). The minima of
the bands are at the � point and K (or K ′) point for
D = 0.1J and D = 0.8J , respectively. The results are same
when J2⊥ = 0 and J1 = 0 as in the Figs. 1(c) and 1(d). The
condition for the band minima at K or K ′ point is given
as

|D| >
2|J − J2⊥| − 3(J1 − J3⊥)

2
√

3
. (C4)

We note that the critical DMI required to realize TSF
or TSS phases depends on various Heisenberg exchange
interactions. The conditions J ≈ J2⊥ and J1 ≈ J3⊥ low-
ers the critical value of the DMI to realize TSF or TSS
phases. Thus we can conclude that frustration among in-
terlayer and intralayer Heisenberg interactions can lower
the critical DMI required to realize TSF and TSS
phases.
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