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Vortex propagation and phase transitions in a chiral antiferromagnetic nanostripe
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We study a vortex in a nanostripe of an antiferromagnet with easy-plane anisotropy and interfacial
Dzyaloshinskii-Moriya interaction. The vortex has hybrid chirality, being of Néel type close to its center and
of Bloch type away from it. Propagating vortices can acquire velocities up to a maximum value that is lower than
the spin wave velocity. Theoretical arguments lead to the general result that the velocity of localized excitations
in chiral antiferromagnets cannot reach the spin wave velocity. When the vortex is forced to exceed the maximum
velocity, phase transitions occur to a nonflat spiral, vortex chain, and flat spiral, successively. The vortex chain is
a topological configuration stabilized in the stripe geometry.
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I. INTRODUCTION

A wide range of materials present antiferromagnetic or-
der, where neighboring magnetic moments are coupled via a
strong exchange interaction and are aligned in an antiparallel
manner. Antiferromagnets (AFMs) exhibit features, such as
low magnetic susceptibility, robustness against external fields,
and lack of stray fields, that are favorable for the building
blocks of spintronic devices [1,2]. They receive renewed inter-
est because current techniques allow for the antiferromagnetic
order to be manipulated by spin currents and to be observed
despite the lack of net magnetization [3–8]. This opens the
way for a number of potential applications including stor-
age with picosecond switching [9–11], terahertz oscillators
[12–14], racetrack memory based on magnetic solitons such
as domain walls (DWs) [15–17], or skyrmions [18–21], which
can achieve velocities larger than 1 km/s [15,16,21].

Some AFM materials such as α-Fe2O3 and Ba2CuFe2O7
are characterized by easy-plane anisotropy, which supports
the formation of vortices. The latter have been discussed
theoretically in infinite films [22–26] and observed experi-
mentally by imprinting techniques [27,28] and, more recently,
by x-ray magnetic linear dichroism combined with photoe-
mission electron microscopy (XMLD-PEEM) [29]. Despite
this, they have received much less attention than DWs or
skyrmions or even than their ferromagnetic counterparts
[30–37].

An extensive experimental investigation of an easy-plane
AFM with the Dzyaloshinskii-Moriya interaction (DMI)
established spiral antiferromagnetic order [38,39], and a sub-
sequent theoretical analysis has shown the existence of two
spiral phases [40,41]. For weak DMI, the Néel state is the
ground state, but for stronger DMI the system enters a spiral
phase where all Néel vector components vary in space (nonflat
spiral). Only for strong enough DMI, the Néel vector lies in a
plane and rotates in space, thus giving a flat spiral. The nonflat
spiral gives an intermediate phase that is not there in the case
of an easy-axis magnet [42].

We study theoretically vortices in easy-plane AFMs with
an interfacial DMI. We consider a stripe geometry as this is the

most suitable for applications involving shifting of magnetic
information, while it will also give rise to interesting effects
on the magnetic structure. We calculate the magnetic ground
state and demonstrate that this induces a vortex with a mixed
chirality, i.e., Néel-type chirality near the vortex core and
Bloch-type chirality away from it. This unusual type of vortex
will be referred to as a hybrid vortex.

We subsequently study propagating vortices. Despite the
lack of Lorentz invariance due to the DMI, the propagat-
ing vortex exhibits Lorentz-like contraction in the direction
of propagation, similarly to AFM DWs [16], but it elon-
gates along the perpendicular direction, similarly to AFM
skyrmions [21,43]. The vortex can acquire a maximum
velocity beyond which it becomes unstable to periodic con-
figurations, thus giving rise successively to a nonflat spiral,
a vortex chain, and a flat spiral. The spirals are extensions
of states known within the one-dimensional model, but the
vortex chain is a feature of the stripe geometry. A theoretical
explanation for the dynamical behavior is obtained, and it
leads to the general result that the velocity of localized excita-
tions in chiral AFMs cannot reach the spin wave velocity. Our
results provide an understanding of the statics and dynamics
of vortices in chiral AFMs and could stimulate additional
studies, including the specific effect of spin torques, for the de-
sign of antiferromagnetic devices based on magnetic solitons.

This paper is organized as follows. In Sec. II, we introduce
the model and review the one-dimensional spiral phases. In
Sec. III we introduce vortex solutions in a stripe geometry. In
Sec. IV, we find numerically and discuss propagating vortices
and phase transitions to periodic states. Section V contains
our concluding remarks. In Appendix A, we give the ground
state of a one-dimensional chiral system with boundaries. The
results are used for the understanding of the form of the hybrid
vortex in Sec. III and of the phase transitions in Sec. IV. In Ap-
pendix B, we prove that a traveling domain wall cannot reach
the velocity of spin waves; the results of Sec. IV are based on
arguments similar to the argument developed in Appendix B.
In Appendix C we show the equivalence of open and natural
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boundary conditions for the chiral system. The results are used
to support the validity of our numerical simulations.

II. THE MODEL AND GROUND STATES

We consider an antiferromagnetic nanostripe with ex-
change, interfacial DMI, and easy-plane anisotropy. A con-
tinuum model is obtained for the normalized Néel vector
n = (n1, n2, n3), where 1, 2, 3 refer to the x, y, z directions,
respectively, with the potential energy [26,44]

V =
∫ [

1

2
(∂μn) · (∂μn) − λεμν êμ · (∂νn × n) + 1

2
n2

3

]
dxdy,

(1)

where μ, ν take the values 1,2, εμν is the totally antisymmetric
tensor, êμ denote the unit vectors in the respective directions,
and λ is a scaled DMI parameter. The equation of motion is

n × (n̈ − f ) = 0,

f = �n + 2λεμν êμ × ∂νn − n3ê3. (2)

The unit of length used in this equation is the domain wall
width. It is straightforward to check that Lorentz invariance is
broken due to the presence of the DMI in Eq. (2). This fact
underlies some of the main results discussed in this paper.

Let us review the results for a one-dimensional (1D) model
with the energy (1) and n = n(x). Phase transitions occur at
the two critical values of the parameter [40]

λNF = 1
2 , λF ≈ 0.705. (3)

We give schematically the three regimes separated by the
critical values of λ.

For weak DMI, λ < λNF , the Néel state is the ground state
(see Ref. [45] for a related model). The Néel vector lies in
the easy plane, and for definiteness we will assume n = ê2.
Increasing λ, we enter an intermediate phase in the form of
a nonflat spiral at λ = λNF . The spiral presents a continuous
rotation of the projection of n on the (13) plane as we move
along the x axis and, at the same time, the component n2

oscillates around a nonzero value. The period of the spiral
tends to infinity for λ → λNF , while the component n2 → 1
in the same limit. As λ increases, n2 decreases, and it vanishes
at λ = λF where a flat spiral is obtained with n lying fully and
rotating on the (13) plane. For λ > λF , the flat spiral remains
the ground state, and the period of the spiral decreases with
increasing λ [40,45].

III. VORTEX IN A STRIPE

Let us now assume a stripe geometry. This has a width w

in the y direction, −w/2 � y � w/2, and it is much longer in
the x direction. We focus on the regime λ < λNF , where we
expect a Néel state. Any solution of Eq. (2) should satisfy the
natural boundary condition

∂yn + λê1 × n = 0, y = ±w

2
. (4)

In the finite interval −w/2 < y < w/2, two degenerate
nontrivial ground states with negative energy can be found,
as shown in Appendix A. We denote these n = n±, and n is
primarily aligned along ±ê2. In the case of the stripe, we ex-
tend the previous 1D configuration in the x direction, and we
have two degenerate ground states where n does not depend
on x, that is, n(x, y) = n±(y). This is a quasiuniform state
where the Néel vector points primarily along ±ê2 and it tilts
out of the plane, in ê3, in the regions close to the boundaries
y = ±w/2. Effectively, the boundary condition (4) makes ê2
an energetically favorable axis.

We simulate the system numerically on a stripe domain
with a long x dimension, which typically contains 1000 grid
points with lattice spacing 0.1, giving a physical dimension
of 100. We vary the width of the stripe. We impose Neumann
boundary conditions at the ends of the numerical mesh in the x
direction. In the y direction, we use open boundary conditions
at y = ±w/2. (In Appendixes A and C, it is shown that these
give the same results as the natural boundary conditions). A
relaxation algorithm indeed converges to a quasiuniform state
of the form n = n±(y), which does not depend on x.

Vortices should be excited states on the quasiuniform state
in the regime λ < λNF . Due to the form of the DMI, a vortex
solution of model (2) is expected to be of Néel type in an
infinite film. The form of the ground state forces us to assume
in-plane domains oriented primarily along ±ê2 on the left and
right side of the stripe, respectively, i.e., n(x → ±∞, y) =
n±(y), separated by an out-of-plane domain wall in the center
of the stripe. This ansatz is used as an initial condition in our
numerical relaxation method. We run simulations for different
widths w and parameter values λ. The parameter is given as
λ = D/(2

√
AK ), where A, D, and K are the exchange, DMI,

and anisotropy constants in physical units. Considering A =
14 pJ/m [29] and K = 5 kJ/m3 [46], we obtain λ = 0.3 for
D = 0.16 mJ/m2. A vortex is obtained as an equilibrium state
for stripes with width larger than a critical width that depends
on λ. For w > 4, we obtain a vortex for all values of λ.

Figure 1 shows the results of simulations on a 1000 × 100
grid with lattice spacing 0.1, giving physical dimensions
100 × 10 (in domain wall width units). Figures 1(a), 1(b),
and 1(c) show vector plots of a static vortex in a stripe with
w = 10 for three values of the DMI parameter λ = 0.2, 0.3,
and 0.4, respectively. The vortex is of Néel type close to the
vortex core, and it gradually becomes of Bloch type as we
go away from the core, thus exhibiting a hybrid character.
Starting from the vortex core, the Néel vector goes towards
the in-plane direction by rotating in the (13) plane as well as
in the (23) plane. This results in a vortex configuration which
is between Néel and Bloch types near the vortex core, similar
to what happens with Dzyaloshinskii DWs [47] or skyrmions
with intermediate chirality [48,49]. The (13) rotation is a
consequence of the interfacial DMI, while the (23) rotation
is a consequence of the boundary conditions which force the
Néel vector to be oriented primarily along ê2 in the far field.
As we move farther from the vortex core, the magnetization
becomes aligned with ±ê2 in opposite directions on the left
and right sides of the stripe.

Figures 1(d), 1(e), and 1(f) show the Néel vector profiles
along the line in the center of the stripe, y = 0, correspond-
ing to the vortices in Figs. 1(a), 1(b), and 1(c), respectively.
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FIG. 1. Static hybrid vortex in a stripe that lies on the xy plane. The stripe width w is 10 (in the y direction) and the length L = 100 (in the
x direction) in domain wall width units. (a)–(c) Vector plots of the static hybrid vortex for three values of the DMI parameter. Vectors show the
projection of the Néel vector on the plane (n1, n2), while the component n3 is shown by a color scale. (d)–(f) The components of n along the
line in the center of the stripe (y = 0) for the configurations shown in (a)–(c). The vortex core width is shown by a green solid line.

Increasing the DMI parameter has two main effects: (i) an
increase of the vortex core width L0 defined as the distance
between the positions where n3 = 0.5, as also noted in the
Appendix of Ref. [40], and (ii) a faster rotation of the Néel
vector towards ê2.

The vortex energy is finite in a stripe, in contrast to the
logarithmically diverging vortex energy in infinite films. The
vortex energy above the ground state as a function of the stripe
width w is shown in Fig. 2. We find numerically a Néel-type
vortex in the same stripe geometries by starting our relaxation
simulations with a Néel vortex as an initial state. Its energy,
shown in Fig. 2, is higher than the energy of the hybrid vortex
for the whole range of stripe widths w.

IV. PROPAGATING VORTEX

We proceed to study the dynamics of the hybrid vortex.
Let us assume that a magnetic configuration is set into motion

FIG. 2. Energy V above the ground-state energy as a function of
the stripe width w for the hybrid vortex and for the Néel vortex for
λ = 0.3. The numerical results are given by symbols (rhombus, star)
connected by solid lines.

and we obtain a configuration n(ξ ), ξ = x − vt , propagating
along the axis of the stripe. This is substituted into Eq. (2),
which takes the form

n×[
(1 − v2)∂2

1 n + ∂2
2 n

+ 2λ(ê1 × ∂2n − ê2 × ∂1n) − n3ê3] = 0. (5)

Applying a rescaling ξ → ξ
√

1 − v2, we get

n×
[
∂2

1 n + ∂2
2 n

+ 2λ

(
ê1 × ∂2n − 1√

1 − v2
ê2 × ∂1n

)
− n3ê3

]
= 0.

(6)

In the following, we will find propagating vortices as solutions
of the latter equation. Equation (6) contains the velocity v in
one of the DMI terms, and it cannot be reduced to a static
form.

In order to make progress analytically, we initially neglect
the dependence on y, and Eq. (6) reduces to

n ×
(

∂2
1 n − 2

λ√
1 − v2

ê2 × ∂1n − n3ê3

)
= 0, (7)

where a single combination of parameters appears. The phases
of this 1D system were reviewed in Sec. II. We have the
following three cases: (a) the Néel state for

λ√
1 − v2

< λNF ⇒ v <

√
1 −

(
λ

λNF

)2

≡ vNF , (8)

(b) the nonflat spiral for

λNF <
λ√

1 − v2
< λF

⇒
√

1 −
(

λ

λNF

)2

< v <

√
1 −

(
λ

λF

)2

, (9)
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FIG. 3. (a) Vector plot for λ = 0.4 for the propagating hybrid
vortex for velocity v = 0.60. Plotting conventions are as in Fig. 1.
(b) Vortex core width Lx in the direction of propagation for a prop-
agating vortex as a function of velocity v, for various values of λ,
normalized to the width of a static vortex L0. The red solid line shows
the expected result for Lorentz-type contraction Lx = √

1 − v2. The
dashed lines mark the maximum obtained velocities for the respec-
tive λ values. (c) Vortex core width Ly in the y axis for the propagating
vortex as a function of velocity v, normalized to the width of a static
vortex L0.

and (c) the flat spiral for

λ√
1 − v2

> λF ⇒ v >

√
1 −

(
λ

λF

)2

≡ vF . (10)

Using a numerical relaxation method [43] applied to
Eq. (6), we find hybrid vortices in a steady-state motion prop-
agating along the axis of the stripe with a range of velocities v.
Figure 3(a) shows a propagating vortex with velocity v = 0.6.
Starting from the static hybrid vortex and increasing v, we find

that the propagating vortex is contracted along the x direction
and it is elongated along the y direction. A propagating vortex
(or soliton) has a nonzero local magnetization [43], in contrast
to a static one. This feature may prove crucial for applications
such as magnet-superconductor hybrids, where skyrmions and
vortices are found to serve as potential hosts to Majorana
bound states [50–52].

Figure 3(b) shows the width Lx of the propagating vortex
in the x axis as a function of velocity for various values of
λ, normalized to the width L0 of the static vortex. The width
Lx, in the direction of propagation, closely follows the law
of Lorentz-type contraction (shown by a solid line in the
figure) despite the fact that the model is not Lorentz invariant.
Lorentz contraction is exactly followed by a propagating DW
as reported in Ref. [16] and reviewed in Appendix B. For each
λ, the vortex achieves a maximum velocity (marked by dashed
lines) as we explain below. Therefore there is a minimum
achievable vortex width which decreases with decreasing λ.
Figure 3(c) shows the width Ly of the vortex core in the y
direction. It increases with the velocity, making the vortex
elongation increasingly pronounced.

When the velocity exceeds the value vNF (λ) in Eq. (8), we
expect a nonflat spiral to develop based on the reasoning given
following Eq. (7). The numerical simulations show that this
actually happens in the case of the stripe at a higher velocity.
Figure 4(a) shows the nonflat spiral that is nucleated, for λ =
0.4, when a single vortex is set into motion with a velocity
v = 0.78. The vortex has survived in the stripe center, and it
is strongly elongated in the y direction. Figure 4(d) shows line
plots of the Néel vector components along the line y = 0 in the
center of the stripe. The spiral configuration is obvious in the
n1 and n3 components. The component n2 oscillates around
nonzero values with opposite signs on the two sides of the
vortex. The configuration has the features of a DW on top of a
spiral state (or a defect in the periodic structure). Such a DW
is connecting two topologically distinct spatially modulated
ground states, and it has been reported in Ref. [53]. Apart from
the presence of a vortex in the center of the stripe, the structure
is different from the ideal 1D nonflat spiral in that (a) n tilts
out of plane close to the stripe boundaries and (b) the spiral
structure close to the stripe boundaries is different from that
in the stripe center as seen in the vector plot. Indeed, edge
(half) vortices are present at the boundaries of the stripe.

Further increasing the velocity, for large enough λ, we
obtain a periodic chain of vortices with opposite polarities, as
shown in Fig. 4(b). It appears that the edge vortices already
present in Fig. 4(a) enter the stripe and develop into full
vortices in Fig. 4(b). The transition from the nonflat spiral to
the chain of vortices appears to be a discontinuous one. For
example, in the transition between Figs. 4(a) and 4(b), one
can see the sudden change in the periodicity of the structure.
We have a phase transition to a lattice of topological solitons
induced by the dynamics.

When the velocity exceeds the value vF (λ) in Eq. (10), we
expect a flat spiral to develop. This actually happens close to
v = vF (λ) for small λ and for v larger than vF (λ) for large
λ. Figure 4(c) shows a flat spiral in the stripe. The vortex
gets elongated across the width of the stripe and disappears
from the configuration, while the component n2 is nearly zero.
As a result, the configuration is close to the 1D spiral, but
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FIG. 4. Vector plots for parameter value λ = 0.4 for (a) a nonflat spiral at velocity v = 0.78, (b) a vortex chain at v = 0.79, and (c) a flat
spiral at v = 0.90. Plotting conventions are as in Fig. 1. (d)–(f) The components of n along the line in the center of the stripe (y = 0) for the
configurations shown in (a)–(c). The numerical mesh boundary, seen at x = ±50 in (e) and (f), has a negligible effect on the configurations in
the lattice interior.

some dependence of n on y is seen in the region close to the
boundaries. The transition from the chain of vortices to the
spiral appears to be a continuous one.

The nonflat spiral in Fig. 4(a) and the vortex chain in
Fig. 4(b) are purely dynamical states, because they are so-
lutions of Eq. (6), which does not have an equivalent form
in the static case. This is confirmed also by the numerical
simulations. Indeed, if we use these states as initial conditions
and reduce the velocity to zero, they do not persist, and we
obtain again the hybrid vortex. By contrast, since the flat spiral
configuration does not depend on the y coordinate, Eq. (6)
reduces to Eq. (7), which is equivalent to the 1D static case.

Figure 5 shows the numerically found velocities for the
transitions to the nonflat spiral, the vortex chain, and the
flat spiral for various values of the DMI parameter λ. The
velocities vNF (λ) and vF (λ) are plotted with solid lines for
comparison.

FIG. 5. The points mark the numerically found velocities for the
transition to the nonflat spiral (red squares), to the vortex chain (black
triangles), and to the flat spiral (blue circles) for various values of λ.
The red solid line shows the velocity vNF (λ) of Eq. (8), and the blue
solid line shows vF (λ) of Eq. (10), for comparison with the numerical
results.

Regarding the transition to the nonflat spiral, we attribute
the deviations from the expected transition velocity to the 2D
nature of the structure explained in connection with Fig. 4(a).
In a more quantitative argument, the boundary conditions fa-
vor the orientation of n in the ê2 direction over the orientation
of n in the ê1 direction, and it is therefore expected that the
Néel state will persist longer, compared with the 1D model,
before it is destabilized to the nonflat spiral. Regarding the
transition to the flat spiral, this is happening at v larger than
vF clearly due to the appearance of an additional state, that
is, the vortex chain. For small λ, no vortex chain is formed
because the transition to the nonflat spiral occurs at a high
velocity v ≈ vNF , where the vortex is very elongated.

V. CONCLUDING REMARKS

We have studied vortices and their dynamics in an anti-
ferromagnet with easy-plane anisotropy and interfacial DMI.
We have considered a nanostripe geometry and applied a con-
tinuum model. The stripe boundary induces a quasiuniform
ground state with the Néel vector lying primarily perpendic-
ular to the boundary. The form of the ground state forces the
vortex to have a hybrid character with both Néel and Bloch
chirality.

A vortex may propagate freely up to a maximum velocity
that is smaller than the spin wave velocity. This is explained
by theoretical arguments that lead to the general result that the
velocity of localized excitations in chiral AFMs cannot reach
the spin wave velocity. When the vortex is forced beyond
the maximum velocity, it gives rise to phase transitions to a
nonflat spiral, a vortex chain, and a flat spiral successively as
the velocity increases. While the spiral phases are anticipated
by a study of the 1D model, the vortex chain is a feature of the
stripe geometry. This should be contrasted with the report that
no vortex lattice has been found in this system in an infinite
film [40].
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APPENDIX A: ONE-DIMENSIONAL SYSTEM WITH
BOUNDARIES

We assume a one-dimensional system of length w; specifi-
cally, we consider a time-independent Néel vector n = n(y) in
the interval −w/2 � y � w/2. This satisfies a reduced form
of Eq. (2) of the main text,

n × (n′′ + 2λê1 × n′ − n3ê3) = 0, (A1)

where the prime denotes differentiation with respect to y. The
equation is supplemented with the boundary condition

n′ + λê1 × n = 0, y = ±w

2
. (A2)

We are looking for the ground state of this system.
An obvious solution of Eq. (A1) is n = ê1, and this also

satisfies the boundary condition. Its energy is E = 0.
A state with negative energy can be found if we write

n1 = 0, n2 = cos 	, n3 = sin 	, (A3)

where we use the parametrization with the polar angle 	

measured from the ê2 direction. Equation (1) of the main text
for the energy reduces to the form

V = 1

2

∫
(	′)2 dy + 1

2

∫
sin2 	 dy + λ

∫
	′ dy, (A4)

where the integrations extend over the interval −w/2 � y �
w/2.

Energy minimization, δE/δ	 = 0, gives

(	′)2 = sin2 	 + γ 2, (A5)

where γ is a constant. The boundary condition is

δV

δ	′ = 0 ⇒ 	′ = −λ, y = ±w

2
, (A6)

and coincides with (A2). In the present problem, we will
assume n(y = 0) = ±ê2 in the center of the interval (the so-
lution will be symmetric with respect to the center). Thus we
confine the problem in the interval 0 � y � w/2, and we are
seeking solutions with the boundary conditions

	(y = 0) = 0, π, 	′(y = ±w
2

) = −λ. (A7)

For the case 	(y = 0) = 0, Eq. (A5) has the implicit solu-
tion

y = −
∫ 	

0

dθ√
sin2 θ + γ 2

, (A8)

where we have chosen the case 	′ < 0 and thus 	(y) is a
monotonically decreasing function of y. Figure 6 shows the
components of n found numerically by solving Eq. (A1), for
two values of the system length w. We have a tilting of the
Néel vector out of plane near the edges of the system. The
system is symmetric with respect to the transformation n →
−n. The two equivalent solutions will be denoted by n±.

FIG. 6. The ground state obtained as the solution of Eq. (A1) for
the boundary conditions in Eq. (A2) for system lengths (a) w = 4 and
(b) w = 10. A second solution is obtained by n → −n. We denote
these two states by n±.

A remark of significant practical importance regarding the
numerical application of the boundary conditions is the fol-
lowing. We have found the solutions of (A1) by using the
boundary conditions (A2) and also by using open boundary
conditions inspired by the physical problem. In the latter case,
the edge spins have only one neighbor. The result for the states
n± is the same in both cases indicating that the two boundary
conditions are equivalent (as shown in Appendix C). This
could be anticipated as the natural boundary conditions are
indeed derived in order to describe free edges of the material.

We further denote

	′(y = 0) = γ , 	
(
y = ±w

2

) = ∓	w, π ∓ 	w. (A9)

At the boundaries, y = ±w/2, Eq. (A5) gives the tilting angle
	w,

sin2 	w = λ2 − γ 2. (A10)

This also implies that |γ | < λ.
In the case of a narrow stripe, the angle is |	| 
 1 for all

y [assume the case 	(y = 0) = 0]. Equation (A8) gives

	(y) = −γ y + O(y3).

To the same order of approximation, we have γ ≈ λ and

	(y) ≈ −λy. (A11)
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The maximum angle, attained at the boundary, is 	w = λw/2.
The condition for the validity of the result is λw 
 γ ⇒ w 

1. The energy (A4) has the value

V = −λ2

2
w, w 
 1. (A12)

In the case of a wide stripe, we assume that the configura-
tion is almost uniform in the center, sin 	 = 0, 	′ = 0. We
set γ = 0 in Eq. (A5), and this reduces to

(	′)2 = sin2 	. (A13)

Equation (A13) has the domain wall solution

tan
	

2
= −ey−y0 , (A14)

where y0 is a constant. The Néel vector components are

n2 = − tanh(y − y0), n3 = −sech(y − y0). (A15)

The constant y0 is determined by the boundary conditions
(A6),

	′(y = ±w
2 ) = −λ ⇒ sech

(±w
2 − y0

) = λ. (A16)

At the boundaries, 	′(±w/2) = −λ < 1/2; thus |y0| > w/2
(that is, the center of the domain wall solution is beyond the
boundary). The form (A15) applies to Fig. 6 for w = 10.

We will now prove that the energy for all n± is V < 0. For
0 � 	 � π/2, Eq. (A5) gives that |	′| is an increasing func-
tion of 	 and thus also an increasing function of y. We have
|	′(y)| � λ with the maximum value attained at the boundary,
|	′(y = w/2)| = λ. We insert Eq. (A5) into Eq. (A4) and
then use the inequality for |	′| to find that the energy of the
configuration is negative,

V �
∫

(	′)2 dy + λ

∫
	′ dy < 0, (A17)

where we take into account that 	′ < 0. Equation (A17) es-
tablishes that the nonuniform states n± have an energy lower
than any uniform state in the system. They are found numeri-
cally to be the lowest energy states.

Figure 7 shows the energy of the ground states n± as a
function of the system length w. The dependence is linear for
small w, following Eq. (A12), and it saturates to a negative
value for larger w.

APPENDIX B: PROPAGATING DOMAIN WALL

Let us consider the 1D system that results from Eq. (2) of
the main text when we assume n = n(x, t ),

n × (n̈ − n′′ + 2λê2 × n′ + n3ê3), (B1)

where the prime denotes differentiation with respect to x.
Denote by

nDW(x) = (sech(x), 0, tanh(x))

the static domain wall solution. This is stable for λ < λNF =
1
2 , while for λ > λNF it is destabilized to the nonflat spiral.

A domain wall propagating with velocity v satisfies

n × [(1 − v2)n′′ − 2λê2 × n′ − n3ê3] = 0. (B2)

FIG. 7. Energy V of the ground states n± as a function of the
system length w for λ = 0.3. Symbols show numerical results con-
nected by a solid line. The slope of the curve for small w is given by
Eq. (A12).

The solution of the equation is obtained by a Lorentz transfor-
mation of the static wall

n(x, t ; v) = nDW

(
x − vt√
1 − v2

)
.

Note that the DM term vanishes for the static or propagating
domain wall solutions and thus Lorentz invariance is pre-
served. The propagating solution is valid for the range of
parameter values where the Néel state is stable,

λ√
1 − v2

< λNF ⇒ v <

√
1 −

(
λ

λNF

)2

≡ v0. (B3)

As the velocity increases, the domain wall is contracted by
a factor

√
1 − v2, and it has a minimum width at v = v0.

For v > v0 the propagating domain wall is unstable, and the
system should turn into a propagating spiral state.

APPENDIX C: OPEN AND NATURAL BOUNDARY
CONDITIONS

We consider a vector field n = n(x, t ) with components
n = (n1, n2, n3) and a constant length |n| = 1. It satisfies the
equation

n × (n′′ + 2λê2 × n′ − n3ê3) = 0, (C1)

where λ is a parameter. The problem is defined in an interval
−w/2 � x � w/2, and the boundary conditions (so-called
natural boundary conditions) are

n′ + λê2 × n = 0, x = ±w

2
. (C2)

We discretize space and have a lattice of points xi, i =
1, . . . , N with lattice spacing a. On the lattice, the discrete
version of Eq. (C1) reads

ni ×
(ni+1 + ni−1

a2
+ λê2 × ni+1 − ni−1

a
− ni,3ê3

)
= 0

(C3)
for any site i = 1, . . . , N of the lattice with lattice spacing a.
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We consider the following two approaches for implement-
ing the boundary conditions.

(a) Open boundary conditions. Motivated by the physical
problem, we use open boundary conditions (that is, we assume
that there is no interaction to the right of the last site, i = N),
and thus Eq. (C3) gives at the last site, i = N ,

nN ×
(nN−1

a2
− λê2 × nN−1

a
− nN,3ê3

)
= 0. (C4)

A similar equation is obtained for the first site, i = 1.

(b) Applying boundary conditions to order O(a). The dis-
crete form of (C2) at i = N reads

nN+1 − nN

a
+ λê2 × nN+1 = 0

⇒ nN+1

a
+ λê2 × nN+1 = nN

a
, (C5)

correct to order O(a). The latter can be used in Eq. (C3) to
give (C4). This proves the equivalence of the open boundary
conditions with the natural boundary conditions.
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