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Self-consistently renormalized spin-wave theory of layered ferromagnets on the honeycomb lattice
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We develop a self-consistently renormalized spin-wave theory, within a mean-field approximation, for the
two-dimensional Heisenberg ferromagnet with perpendicular easy-axis anisotropy on the honeycomb lattice, as
well as its few-layer and bulk extensions. In this method, the magnetization dependence on temperature is found
as the solution of the self-consistency equation. Furthermore, we account for the physical difference of surface
and bulk layers by treating the layers as separate sublattices. Thus the method can be readily generalized to study
various magnetic phenomena in a broad range of systems, including those comprising magnetically inequivalent
sublattices. Using our theory, we calculate the temperature-dependent magnetization for two chromium-based
layered van der Waals insulating magnets, Cr2Ge2Te6 and CrI3, employing various sets of Heisenberg exchange
and single-ion anisotropy values reported for these materials in the existing literature. As expected, we observe
a strong dimensionality effect where the ordering temperature is reduced and its sensitivity on the anisotropy is
enhanced with the decrease of dimensionality.
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I. INTRODUCTION

Two-dimensional (2D) materials are of great current inter-
est for next-generation devices due to their unique magnetic,
electronic, and optoelectronic properties [1–4]. Notably, 2D
magnetic materials are important for spintronics applications,
as these materials and their integration in various van der
Waals heterostructures open up new prospectives for the ob-
servation of novel exotic effects absent in 3D materials [1,5].
Recent experimental realizations of monolayer and few-layer
magnetic van der Waals crystals [6,7] have triggered a new
wave of interest in the field of (quasi-)2D magnets. In par-
ticular, the interplay of dimensionality and magnetism, which
can lead to useful magnetic properties, is now being tested
experimentally, calling for more efforts from the theory side.

Intrinsic ferromagnetic order has been shown to persist
in mechanically exfoliated bilayers of Cr2Ge2Te6 [6] and
monolayers of CrI3 [7]. The bulk crystals of these mate-
rials consist of weakly van der Waals coupled layers, in
which magnetic Cr3+ ions feature spins of magnitude 3/2
and form a honeycomb lattice with edge-sharing octahedral
coordination. Inspired by these experimental discoveries, here
we theoretically investigate the low-temperature properties of
a ferromagnetic monolayer consisting of exchange-coupled
spins forming a 2D honeycomb structure, as well as its
few-layer (quasi-2D) and bulk (3D) versions, with a weak
exchange coupling between the layers. In this way, we explore
the effect of dimensionality on the temperature dependence of
magnetic ordering.

The standard argument demonstrating the extraordinary
nature of magnetism in 2D is due to the Mermin-Wagner
theorem [8] excluding ferromagnetic order at any finite tem-
perature in a 2D isotropic Heisenberg model. However, even
a tiny interaction breaking the rotational symmetry may

stabilize ferromagnetic order in such a system at finite tem-
peratures. This argument testifies to the enhanced importance
of anisotropic interactions in 2D. In 3D, on the other hand, the
Mermin-Wagner restriction is lifted due to the larger phase
space, and the effect of anisotropic interactions is reduced.
Our prime interest here is the quantitative investigation of the
crossover from 2D to 3D realized by the few-layer magnetic
systems mentioned above.

Here we adopt the ferromagnetic Heisenberg model of
spins S on the honeycomb lattice, including a single-ion
anisotropy. We treat this model by employing a self-
consistently renormalized spin-wave theory (SRSWT) [9–14],
which is an extension of the standard spin-wave analysis of
the ferromagnet [15]. The SRSWT is derived from the non-
linear spin-wave theory, resulting from either applying the
Dyson-Maleev transformation [15,16] or using the Holstein-
Primakoff transformation [17] with the subsequent truncation
of the Hamiltonian up to quartic operator terms. After either
of these transformations, the quartic operator terms are treated
in a Hartree-Fock-like decoupling approximation. Within
the Hartree-Fock decoupling, the Dyson-Maleev and the
truncated Holstein-Primakoff transformation results coincide
[18], yielding a quadratic Hamiltonian involving renormal-
ization factors. These temperature-dependent renormalization
factors encapsulate the interaction-induced softening of the
spin-wave spectrum. The resulting quadratic Hamiltonian is
then solved self-consistently.

In the majority of previous work on quasi-2D layered sys-
tems, a 3D Fourier transform is employed, including along
the direction of layer stacking [13,18–20]. Even though the
3D Fourier transform facilitates the analytical treatment, it
implies periodic boundary conditions in the direction of layer
stacking, violating the difference between the surface and bulk
layers. However, for few-layer systems such treatment can
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be quite detrimental because these systems are intrinsically
inhomogeneous and should be described with parameters that
are different at the surface and the interior of the system. In
contrast, the SRSWT developed here is quite general and can
be applied to systems with inequivalent sublattices. This is
utilized in the analysis of few-layered compounds where the
layers are treated as separate sublattices [21]. Treating layers
as separate sublattices allows us to account for the difference
between the surface and bulk layers. Moreover, it provides
a natural way to resolve bulk magnon modes from the sur-
face ones, which are known to occur in thin magnetic films
[22]. The price we pay is the complication of dealing with a
2L × 2L spin-wave Hamiltonian, where L is the number of
layers. The 2L magnon eigenmodes of this Hamiltonian do
not seem to be attainable analytically because of the lack of
periodic boundary conditions along the layer-stacking direc-
tion. Therefore, we solve the eigenvalue problem numerically
at each point of the 2D momentum space. In this way, results
for systems involving up to seven intralayer and interlayer
exchange couplings are found. Although our approach is ap-
plicable to the general kind of inhomogeneity, we maintain a
simple picture where the magnetic exchange and single-ion
anisotropy parameters are the same throughout the system.
Even in this simplified picture, the surface layers are differ-
ent from the bulk ones because of the difference in lattice
coordination.

For Cr2Ge2Te6 and CrI3, different groups have calculated
the exchange and magnetocrystalline anisotropy values from
various ab initio methods [13,14,23–27]. Notably, for CrI3,
reported calculation results of the same quantities are quite
different. Using the reported exchange and anisotropy values,
we calculate the temperature-dependent magnetization M(T )
within our SRSWT and systematically compare the results.
We find that different parameter sets reported throughout the
literature lead to the very different behavior of M(T ) and
different Curie temperatures TC, at which M(T ) vanishes.
This result indicates that more reliable methods for calcu-
lating effective magnetic interaction, and particularly for its
anisotropic component, are desirable.

II. THEORY

The two-dimensional honeycomb lattice can be viewed as
a triangular lattice of unit cells, with two sites per unit cell.
Consequently, we label the sites of the honeycomb lattice by
the pair, (rν), where r denotes the position of the unit cell
and ν = 1, 2 labels the magnetic Cr sites within the unit cell.
We consider a lattice of atomic spins S, interacting with the
Hamiltonian

H = 1

2

∑
rν

∑
r′ν ′

Jrr′
νν ′SrνSr′ν ′ −

∑
rν

[
A
(
Sz

rν

)2 + gμBBSz
rν

]
, (1)

where Srν = (Sx
rν, Sy

rν, Sz
rν ) is the spin operator at the site (rν),

Jrr′
νν ′ is the Heisenberg exchange coupling between atomic

spins at sites (rν) and (r′ν ′), A is the single-ion anisotropy
along the z direction (the direction normal to the plane of
the atomic layer), g is the Landé g factor, μB is the Bohr
magneton, and B is the external magnetic field along the z
direction. The ground state is the ferromagnetic state along

the z direction, implying positive A (easy-axis anisotropy) and
predominantly negative Jrr′

νν ′ .
A spin wave theory for the above model can be derived

by using either the Dyson-Maleev transformation [15,16], or
the Holstein-Primakoff transformation [17] followed by the
truncation of terms higher than quartic. In the approximation
that follows, the two transformations yield equivalent results.
These transformations map spin operators Srν onto bosonic
creation-annihilation operators a†

rν , arν , with commutation re-
lations, [arν, a†

r′ν ′] = δrr′δνν ′ , [arν, a′
r′ν] = [a†

rν, a†
r′ν ′ ] = 0, as

Sz
rν = S − a†

rνarν,

S+
rν =

√
2S

(
1 − a†

rνarν

2S

)ξ

arν, (2)

S−
rν =

√
2S a†

rν

(
1 − a†

rνarν

2S

)1−ξ

,

where ξ = 1 for the Dyson-Maleev and ξ = 1/2 for the
Holstein-Primakoff transformations. For a system of N unit
cells under periodic boundary condition, it is convenient to
introduce the Fourier transforms,

a†
rν = 1√

N

∑
k

e−ik·rb†
kν, arν = 1√

N

∑
k

eik·rbkν, (3)

where k runs over the first Brillouin zone of the triangular
lattice of unit cells and operators b†

kν , bkν satisfy the bosonic
commutation relations [bkν, b†

k′ν ′ ] = δkk′δνν ′ , [bkν, b′
k′ν] =

[b†
kν, b†

k′ν ′] = 0. The Bravais lattice structure of unit cells en-
sures the relation

∑
r ei(k−k′ )·r = Nδkk′ .

After applying the mapping Eq. (2) and expanding the
result with respect to large S, the ferromagnetic ground state
energy emerges as the term independent of the Bose operators,

E0 = 2N
(

1
2 J̃S2 − AS2 − gμBBS

)
, (4)

where J̃ = ∑
r′ν ′ Jrr′

νν ′ . The noninteracting magnon Hamilto-
nian, H2, is further found as the part quadratic in the Bose
operators. In terms of the Fourier representation of exchange
couplings

Jk
νν ′ =

∑
r′

e−ik·Rrr′
νν′ Jrr′

νν ′ , (5)

where Rrr′
νν ′ is the vector connecting sites (rν) and (r′ν ′) [e.g.,

Rrr′
νν = r − r′], the explicit form of H2 is

H2 = S

2

∑
kνν ′

(
Jk
νν ′b†

kνbkν ′ + J−k
νν ′ b†

kν ′bkν

)

−
∑
kν

(SJ̃ − 2SA − gμBB)b†
kνbkν . (6)

Note that Eq. (6), as well as the entire treatment that follows,
exploits the independence of Jk

νν ′ defined by Eq. (5) on r. This
property is due to the absence of boundaries resulting from
the periodic boundary condition. Otherwise, if the system has
boundaries, the sum in Eq. (5) depends on whether r is an
internal unit cell or it is located at a boundary, where some of
its neighboring sites are missing.

In the absence of dipolar interaction, the next terms
in the large-S expansion are the four-boson terms
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comprising the spin-wave interaction Hamiltonian, H4.
The form of H4 depends on what specific spin-boson
mapping is applied, one obvious difference being that

the Holstein-Primakoff result is Hermitian, unlike the
Dyson-Maleev one. The Holstein-Primakoff mapping
yields

H4 = 1

4N

∑
ki,ν

{∑
ν ′

[
2Jk1−k3

νν ′ b†
k1ν

b†
k2ν ′bk3νbk4ν ′ − Jk1

νν ′b
†
k1ν

b†
k2ν ′bk3ν ′bk4ν ′ − Jk4

νν ′b
†
k1ν

b†
k2ν

bk3νbk4ν ′
]

−4Ab†
k1ν

b†
k2ν

bk3νbk4ν

}
δk1+k2,k3+k4 −

∑
kν

Ab†
kν

bkν, (7)

where the last, linear in b†
kνbkν term, associated with the

single-ion anisotropy A, originates from the commutation
relations between the bosonic operators. Note that the Dyson-
Maleev mapping leads to Eq. (7) with the second, ∝Jk1

νν ′ term
doubled and the third, ∝Jk4

νν ′ term missing.
The essential approximation that leads to the renormalized

spin-wave theory is the Hartree-Fock-like decoupling of four-
boson terms,

b†
k1ν1

b†
k2ν2

bk3ν3 bk4ν4

≈ 〈
b†

k1ν1
bk3ν3

〉
b†

k2ν2
bk4ν4 + 〈

b†
k1ν1

bk4ν4

〉
b†

k2ν2
bk3ν3

+〈
b†

k2ν2
bk3ν3

〉
b†

k1ν1
bk4ν4 + 〈

b†
k2ν2

bk4ν4

〉
b†

k1ν1
bk3ν3 . (8)

Here we skip scalar terms which do not affect the spin-
wave dynamics. Furthermore, in Eq. (8) we keep only terms
containing averages with coinciding k indices (the so-called

diagonal terms [9,13]), i.e., we utilize

〈b†
kνbk′ν ′ 〉 = δkk′ 〈b†

kνbkν ′ 〉. (9)

This relation can be justified by noting that the resulting
magnon modes are diagonal in k, involving no k-k′ mixing.
Note, however, that both H2 and H4 are essentially nondi-
agonal in ν indices, and the resulting magnon modes are
coherent superpositions of bkν bosons with different ν indices.
Therefore, the two-boson average in Eq. (9) is essentially non-
diagonal in the ν indices. In Ref. [13] this fact is ignored, and
two-boson averages nondiagonal in ν indices are eliminated.

By applying the above mean-field approximation to Eq. (7)
or its Dyson-Maleev counterpart and combining the result
with Eq. (6), for the interacting spin-wave Hamiltonian H2 +
H4 we get the mean-field expression (the renormalized spin-
wave Hamiltonian)

HR =
∑
kνν ′

Jνν ′ (k)b†
kνbkν ′ +

∑
kν

Lν (k)b†
kνbkν, (10)

with the coefficients given by

Jνν ′ (k) =
(

S − 1

2N

∑
k′

[nk′νν + nk′ν ′ν ′]

)
Jk
νν ′ + 1

N

∑
k′

Jk−k′
νν ′ nk′ν ′ν,

Lν (k) = gμBB −
(

1 − 2S + 4

N

∑
k′

nk′νν

)
A −

∑
ν ′

(
S − 1

N

∑
k′

nk′ν ′ν ′

)
Jk=0
νν ′

− 1

2N

∑
k′ν ′

(
J−k′
νν ′ nk′ν ′ν + J−k′

ν ′ν nk′νν ′
)
, (11)

where two-boson thermal averages, nkνν ′ = 〈b†
kνbkν ′ 〉, are

introduced. Through Eq. (11), these averages define the
temperature-dependent renormalization factors encapsulating
spin-wave interaction effects at the Hartree-Fock level.

At this point, we note that the Hamiltonian Eq. (10) is quite
universal in that it is suitable to any system of spins S on
a generic Bravais lattice of N unit cells under the periodic
boundary condition, with an arbitrary number of magnetic
sites, n, in the unit cell. To further retain the universal form,
we introduce the structure factors as

γ
ρ

νν ′ (k) = Jρ

∑
uρ

νν′

eik·uρ

νν′ , (12)

where ρ enumerates the nonzero exchange couplings and uρ

νν ′
run over the links between a given spin on the sublattice ν

and those spins on the sublattice ν ′ that are coupled to the
given one by the exchange Jρ . Then, for Fourier transforms of
exchange coupling Eq. (5) we get

Jk
νν ′ =

∑
ρ∈[νν ′]

γ
ρ

νν ′ (k), ν, ν ′ = 1, . . . , n, (13)

with ρ ∈ [νν ′] meaning that the spins on sublattices ν and
ν ′ are coupled by the exchange Jρ . Furthermore, by noting
that nkνν is the average number of bosonic excitations on the
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sublattice ν, we introduce the sublattice spin polarization,

S̄ν = S − 1

N

∑
k

nkνν, ν = 1, . . . , n. (14)

Additional thermodynamic quantities are introduced by the
relation,

f ρ

νν ′ = 1

N

∑
k

γ
ρ

νν ′ (−k)

γ
ρ

νν ′ (0)
nkν ′ν, ρ ∈ [νν ′]. (15)

The physical meaning of f ρ

νν ′ becomes apparent from the real-
space expression,

f ρ

νν ′ = 1

zρ

νν ′

∑
uρ

νν′

〈
a†

rνarν+uρ

νν′

〉
, ρ ∈ [νν ′], (16)

where zρ

νν ′ = ∑
uρ

νν′
1 is the number of uρ

νν ′ (the so-called

coordination number). Thus f ρ

νν ′ is the short-range bosonic
correlation between the sites on sublattices ν and ν ′ ex-
change coupled through Jρ . With these notations, we rewrite
Eq. (11) as

Jνν ′ (k) =
∑

ρ∈[νν ′]

{
1

2
(S̄ν + S̄ν ′ ) + f ρ

νν ′

}
γ

ρ

νν ′ (k),

Lν (k) = gμBB − (2S + 1 − 4S̄ν )A

−
∑
ν ′

∑
ρ∈[νν ′]

{
S̄ν ′ + Re

(
f ρ

νν ′
)}

γ
ρ

νν ′ (0). (17)

The self-consistency equations are found by expressing
the thermodynamic quantities S̄ν and f ρ

νν ′ through the Hamil-
tonian defined in Eq. (10). To this end, we consider the
creation-annihilation operators α

†
k,σ , αk,σ of magnon eigen-

modes of the Hamiltonian HR, where σ labels the n magnon
branches, and note that α

†
k,σ and αk,σ are linear combinations

of b†
k,ν and bk,ν , respectively. One has

bkν =
n∑

σ=1

[	k]νσ αkσ , (18)

and the corresponding complex conjugate relation between
b†

kν and α
†
kσ , where 	k is the eigenvector matrix that diag-

onalizes HR, and brackets meaning matrix elements. From
Eq. (18), its Hermitian conjugate, and the Bose-Einstein re-
lation 〈α†

kσαkσ 〉 = 1/(eβEσ (k) − 1), where β = 1/kBT is the
inverse temperature and Eσ (k) is the magnon dispersion of H ,
one finds

nkνν ′ ≡ 〈b†
kνbkν ′ 〉 =

∑
σ

[	∗
k]

νσ
[	k]ν ′σ

eβEσ (k) − 1
. (19)

Thus we arrive at the self-consistency equations,

S̄ν = S − 1

N

∑
k,σ

[	∗
k]

νσ
[	k]νσ

eβEσ (k) − 1
, (20)

f ρ

νν ′ = 1

N

∑
k,σ

γ
ρ

νν ′ (−k)

γ
ρ

νν ′ (0)

[	∗
k]

ν ′σ [	k]νσ

eβEσ (k) − 1
, (21)

which are to be solved numerically, for the average magneti-
zation S̄ = ∑

ν S̄ν/n. For systems considered below we find
that the self-consistency equations have solutions with real

FIG. 1. Schematic crystal structure of a layered system with
magnetic atoms forming a honeycomb structure in each 2D layer
and ABC-type layer stacking. The two in-plane sublattice sites are
depicted with green and purple balls. (a) The 2D honeycomb struc-
ture is characterized by the unit cell primitive vectors, a1 and a2.
The vectors δ1, δ2, and δ3 link the first nearest neighbor sites.
(b) Magnetic interaction in each layer is characterized by the three
nonzero exchange couplings between the first, second, and third
nearest neighbor spins, denoted by J1, J2, and J3, respectively (ma-
genta arrows). The vdW-bonded layers are displaced upon stacking
so that the magnetic ion in one layer is directly over the center of a
hexagon of one of the two adjacent layers, forming a rhombohedral
ABC stacking sequence. The interlayer exchange couplings, Jz1, Jz2,
Jz3, and Jz4, are illustrated with blue arrows.

f ρ

νν ′ , entailing the symmetry J ∗
νν ′ (k) = Jνν ′ (−k). While this

is natural for monolayer and bulk systems with equivalent
sublattices, for layered systems with inequivalent surface and
bulk sublattices it is less intuitive.

We note in passing that alternative to employing the
Hartree-Fock decoupling Eq. (8), the above SRSWT could
be derived from the Feynman-Peierls-Bogoliubov variational
principle [28], in exactly the same form. In addition, the
SRSWT is equivalent to the summation of all bubble diagrams
for the self-energy [10].

In what follows, we apply the above approach to layered
systems with magnetic atoms forming honeycomb structure
in each 2D layer, and ABC-type layer stacking. We begin our
consideration with the monolayer of intralayer exchange cou-
plings J1, J2, and J3 between the first, second, and third nearest
neighbor spins, respectively [see Fig. 1(a)]. Subsequently, we
address the bulk (3D) and the few-layer (quasi-2D) cases, with
up to four additional nonzero interlayer exchange couplings,
Jz1, Jz2, Jz3, and Jz4, specified in Fig. 1(b).

A. Monolayer (2D) system

For the honeycomb monolayer with two sublattices and
three nonzero exchange couplings J1, J2, and J3, shown in
Fig. 1(a), one has the index ρ running over the three values
1, 2, 3, and sublattice indices taking two values: ν, ν ′ = 1, 2.
Thus there are three structure factors,

γ1(k) ≡ γ 1
12(k), γ2(k) ≡ γ 2

νν (k), γ3(k) ≡ γ 3
12(k), (22)
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and, due to the equivalence of the sublattices, only four inde-
pendent thermodynamic quantities:

S̄ = S̄1 = S̄2,

f1 ≡ f 1
12, f2 ≡ f 2

νν, f3 ≡ f 3
12. (23)

Using Eqs. (10), (17), (22), and (23), we find the Hamiltonian
of the monolayer,

H2D =
∑

k

(b†
k1 b†

k2)

(
A(k) B(k)
B∗(k) A(k)

)(
bk1

bk2

)
, (24)

where

A(k) = gμBB − (2S + 1 − 4S̄)A

+(S̄ + f2)γ2(k) −
3∑

ρ=1

(S̄ + fρ )γρ (0),

B(k) = (S̄ + f1)γ1(k) + (S̄ + f3)γ3(k). (25)

The dispersion relation following from Eq. (24) reads

E±(k) = A(k) ± |B(k)|, (26)

with the in-phase acoustic (labeled by −) and out-of-phase
optical (labeled by +) branches. It is also straightforward to
find the explicit form of 	k diagonalizing the matrix Eq. (24),

	k = 1√
2

(
1 −eiφk

e−iφk 1

)
, (27)

with the phase φk = arg[B(k)]. Putting together Eqs. (20),
(21), and (27), we arrive at the self-consistency equations

S̄ = S − 1

2N

∑
σ=±

∑
k

1

eβEσ (k) − 1
, (28)

fρ = 1

2Nγρ (0)

∑
σ=±

∑
k

σγρ (k)e−iφk

eβEσ (k) − 1
, ρ = 1, 3, (29)

f2 = 1

2Nγ2(0)

∑
σ=±

∑
k

γ2(k)

eβEσ (k) − 1
. (30)

Equations (28)–(30) for S̄ and fρ , together with Eq. (26)
for E±(k), constitute a closed set of equations which is solved
for the average magnetization, S̄. This is done numerically, by
utilizing the following iterative algorithm. At the initial step,
the four input values S̄(0) = S and f (0)

ρ = 0 are plugged into

Eqs. (25) and (26) to find the initial spectrum E (0)
± (k) and

phase φ
(0)
k . Then, E (0)

± (k) and φ
(0)
k are used in the right-hand

sides of Eqs. (28)–(30) to calculate the next-order four values
S̄(1) and f (1)

ρ . Likewise, at the ith iteration step, four input
values S̄(i−1) and f (i−1)

ρ are fed to Eqs. (25) and (26), yield-

ing the next-order spectrum and phase, E (i−1)
± (k) and φ

(i−1)
k ,

which are subsequently used in Eqs. (28), (30), and (29) to
find the four output values, S̄(i) and f (i)

ρ . This procedure is
repeated until the four input and output values converge within
a desired accuracy, producing the value of S̄.

B. Bulk (3D) system

The SRSWT is easily generalized to the bulk system of
ABC-type layer stacking along the z direction, provided that
the periodic boundary condition is imposed in the z direction

and likewise the in-plane directions. This generalization is
facilitated by the fact that introducing the third component of
the wave vector, corresponding to the new spatial direction,
retains the two-sublattice structure independent of the number
of layers. Thus, for the bulk system with three intralayer
exchange couplings J1, J2, J3, and four interlayer exchange
couplings Jz1, Jz2, Jz3, Jz4, shown in Fig. 1, we have eight
inequivalent thermodynamic quantities: S̄ and fρ , ρ = 1, 2, 3,
z1, z2, z3, z4. The complete analysis of this case is presented
in Appendix A 2. Formally, this analysis follows the same
steps as that of the monolayer. A magnon dispersion relation,
consisting of two branches, is analytically found as a function
of thermodynamic quantities S̄ and fρ . In turn, these quantities
are expressed in terms of the magnon dispersion, much like
in Eqs. (28)–(30). This sets up a system of self-consistency
equations, which we solve numerically for S̄.

C. Few-layer (quasi-2D) system

The principal difference of the few-layer system with ABC-
type layer stacking along the z direction from the bulk case
discussed above is that the few-layer system has two surface
layers, which are not equivalent to the inner layers, simply
because magnetic atoms in surface layers have some missing
neighbors. Therefore, surface layers of the few-layer system
violate periodic boundary conditions in the stacking direc-
tion, making the formal extension of the Fourier transform
to the third direction inapplicable. As a matter of fact, the
physical difference of surface and bulk layers may even re-
sult in distinct values of exchange and single-ion anisotropy
parameters. The approach that follows is suitable for systems
with different exchange and single-ion anisotropy parameters
at different layers. However, for the sake of simplicity, in our
subsequent simulations we assume that interaction parameters
are the same throughout the system.

In line with the long-known approach [21], we consider the
few-layer system with L layers comprised of 2L sublattices,
two per layer. The corresponding Hamiltonian, HL, is given
by Eq. (10), with ν and ν ′ running over the values 1, . . . , 2L.
Utilizing the operator-valued vector,

ψ†(k) = (b†
k1, b†

k2, . . . , b†
k (2L−1), b†

k (2L) ), (31)

where k is the two-dimensional wave vector, we write the
Hamiltonian as

HL =
∑

k

ψ†(k)Ĥkψ (k). (32)

To visualize the underlying layered structure, we represent Ĥk
in the form of an L × L matrix of 2 × 2 entries,

Ĥk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ĥ1 b̂1 0 · · · 0 0 0
b̂†

1 ĥ2 b̂2 · · · 0 0 0
0 b̂†

2 ĥ3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · ĥL−2 b̂L−2 0
0 0 0 · · · b̂†

L−2 ĥL−1 b̂L−1

0 0 0 · · · 0 b̂†
L−1 ĥL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (33)

with ĥl corresponding to the lth layer, where the layers are
enumerated from bottom to top along the stacking direction.
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TABLE I. Exchange coupling and single-ion anisotropy values (in meV) used in our calculations, together with the source and the critical
temperature (in K) resulting from our SRSWT.

Material Ref. J1 J2 J3 Jz1 Jz2 Jz3 Jz4 A T 2D
C T 3D

C

Cr2Ge2Te6 [6,13] −2.71 0.058 −0.115 0.036 −0.086 −0.27 0.05 27.8 68
[29] −2.01 −0.16 0.08 −0.59 0.22 33.3 51.4
[30] −2.13 −0.09 0.10 −0.59 0.20 29.7 48
[23]a −5.5 −1.82 0.2 0.2b 137.3

CrI3 [24]a −1.053 −0.373 0.116 −0.111 −0.204 −0.302 0.2b 31.6 67.4
[25] −3.24 −0.56 −0.001 0.056 56.3
[26] −2.86 −0.64 0.15 0.2b 62.3
[27]a −2.204 −0.356 0.062 −0.124 −0.116 −0.204 0.222 0.2b 44.9 69.6

aParameters from the references are rescaled, in order to account for the difference in the definitions of spin Hamiltonians.
bFor single-ion anisotropy, missing in the original paper, we take the value 0.2 meV extracted in the neutron scattering experiment [30].

As a consequence of the physical difference of surface and
bulk layers, ĥl with l = 2, . . . , L − 1 have identical structure,
different from that of ĥ1 and ĥL corresponding to the sur-
face layers. At the same time, all b̂ operators are structurally
identical, reflecting the fact that, in the approximation we
work, interlayer interactions between all successive layers are
uniform. Explicit forms of ĥ and b̂ operators are given in
Appendix A 3.

Altogether, Ĥk is a function of 2L sublattice spin polar-
izations S̄ν , 4L intralayer short-range correlations f ρ

νν ′ (ρ = 1,
2, 3), and (5L − 5) interlayer short-range correlations f ρ

νν ′
(ρ = z1, z2, z3, z4). However, sublattices labeled by the in-
dices ν and 2L + 1 − ν are equivalent, and it is reasonable to
expect that sublattice magnetizations on equivalent sublattices
as well as short-range correlations between the equivalent
pairs of sublattices are the same. This reduces the total num-
ber of independent variables to CL = (11L − 3)/2 or CL =
(11L − 2)/2 for odd or even L, respectively. Accordingly, the
self-consistency is a system of CL equations, which we solve
numerically.

Because of the number of sublattices larger than two, an-
alytical steps that followed Eqs. (20) and (21) in the two
previous cases of monolayer and bulk systems are inaccessible
for the quasi-2D system. In particular, for generic L, analytical
expressions are not available for magnon dispersion Eσ (k)
and transformation matrix 	k, which is the matrix of eigen-
vectors of Ĥk. Therefore, we extend the previous simulation
procedure and include an extra step for numerical diagonal-
ization of Ĥk, at each k point. In other words, we address the
self-consistency equations by solving the eigenvalue problem

Ĥk	k = 	k diag[E1(k), . . . , E2L(k)] (34)

numerically. Thus, at the ith numerical iteration step, CL in-
put parameters S̄(i−1)

ν and f ρ(i−1)
νν ′ are taken as arguments of

Ĥk to calculate the eigenmodes, E (i−1)
ν (k), 	

(i−1)
k , which are

subsequently used in Eqs. (20) and (21) to find the output
parameters, S̄(i)

ν and f ρ(i)
νν ′ , until the results converge. Because

of the extra numerical diagonalization step, the simulation
procedure for the quasi-2D system is much more demanding
than those for the two previous cases of monolayer and bulk
systems.

III. RESULTS

In the following, we apply the foregoing SRSWT formal-
ism to chromium-based layered compounds Cr2Ge2Te6 and
CrI3, and find the layer-dependent magnetization vs temper-
ature behavior, as well as the temperature dependence of
magnon dispersion. In these compounds, the oxidation state
of Cr is +3, with electronic configuration [Ar]4s03d3. From
Hund’s rules, one can expect that Cr3+ has a magnetic mo-
ment corresponding to the spin, S = 3/2. Material-specific
parameters used in our calculations, including values of ex-
change couplings Jμ and single-ion anisotropy A, are listed
in Table I. For Cr2Ge2Te6, we employ parameters evaluated
in Refs. [6,13] from first principles, using density functional
theory (DFT). For CrI3, we use several sets of parameters
reported in Refs. [23–27,29,30]. These parameters are ei-
ther deduced from inelastic neutron scattering experiments
[29,30] or evaluated from first principles, either in the frame-
work of DFT [23–26] or using more sophisticated ab initio
methods that incorporate electron correlation effects beyond
DFT [27].

We obtain our results by numerically solving the self-
consistency equations derived above. The self-consistency
equations contain summation over momentum. In our simula-
tions, we utilize a 100 × 100 k-point mesh for the monolayer
and few-layer systems and a 80 × 80 × 80 mesh for the 3D
system to ensure sufficient convergence. We check the sta-
bility of our results against the mesh size to exclude any
observable finite-size effect.

A. Cr2Ge2Te6

The SRSWT results for Cr2Ge2Te6 are summarized in
Fig. 2. As a hallmark of magnon self-interaction, the magnon
dispersion is temperature dependent. This temperature de-
pendence is illustrated in Fig. 2(a). Within the SRSWT, the
temperature dependence of magnon dispersion is the direct
consequence of the presence of temperature-dependent renor-
malization factors (S̄ + fρ ) in Eq. (26).

Consistent with previous theories [13,21,31], we observe a
strong dimensionality effect. This effect is formally related to
the momentum-space sums with Bose-Einstein factors [see,
e.g., Eq. (28)], which are divergent in lower dimensions,
unless a finite anisotropy and/or magnetic field is included.
The dimensionality effect is better seen in the dependence of
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FIG. 2. SRSWT results for Cr2Ge2Te6, calculated from magnetic
interaction parameters of Refs. [6,13] (first line in Table I). (a) Renor-
malized spin-wave spectrum of the monolayer at temperatures 0.1TC

and 0.99TC is plotted with black and green lines in the lower panel.
The difference of the black and green lines, E , is plotted in the
upper panel. (b) Layer dependence of the critical temperature. Strong
dimensionality effect is observed from 2D to bulk, with critical tem-
perature ranging from about 27.8 K to 68 K. (c) Single-ion anisotropy
dependence of the critical temperature at zero magnetic field. In low
dimensions, critical temperature sensitively depends on the value of
anisotropy. (d) Magnetic field dependence of the critical temperature,
at single-ion anisotropy A = 0.05 meV. The nonzero value of A cuts
off the sharp dependence of TC on B at the low-field side.

critical temperature on layer number, single-ion anisotropy,
and magnetic field, as shown in Figs. 2(b)–2(d), respectively.

Note, however, that our results are quantitatively different
from those of Ref. [13]. This is because in the self-consistent
approach of Ref. [13] the short-range boson correlations fρ ,
Eq. (16), are all neglected, except for the second nearest
neighbor f2 (see the Discussion section for more details).

B. CrI3

Throughout the existing literature on CrI3, many reports
of exchange and single-ion anisotropy values, calculated from
first principles, are available. Critical temperatures resulting
from our SRSWT for these parameter values are listed in the
last two columns of Table I. These critical temperature values
are quite dispersed, with some of them largely deviating from
the experimentally observed ones.

For further analysis, we borrow the parameter set reported
in Ref. [27], which yields critical temperatures quite close to
the experimental values [7]. This parameter set includes four
interlayer exchange couplings, the strongest of which appears
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FIG. 3. SRSWT results for CrI3, calculated from magnetic in-
teraction parameters found in Ref. [27] (last line in Table I).
(a) Renormalized spin-wave spectrum of the monolayer at 0.1TC and
0.99TC . (b) Layer-resolved temperature-dependent magnetization of
the trilayer. Magnetization on surface layers is weaker than on the
bulk layer.

to be the antiferromagnetic exchange Jz4. For further details
of this unusual feature, we refer to Ref. [27].

Qualitatively, our results for CrI3 are quite similar to the
ones for Cr2Ge2Te6 in Fig. 2. We observe a strong dimen-
sionality effect, with the critical temperature growing from
about 45 K to 70 K as one goes from monolayer to bulk.
As in the previous case, critical temperatures sensitively de-
pend on the external magnetic field and single-ion anisotropy
in lower dimensions. A distinctive feature we encounter for
monolayer CrI3 is a stronger renormalization of the magnon
spectrum near TC, as shown in Fig. 3(a), than that of mono-
layer Cr2Ge2Te6, mainly due to the higher TC in the former.

Another remarkable difference from the previous case is
that the layer-resolved magnetization shows a larger deviation
of magnetization between the bulk and surface layers. This is
illustrated in Fig. 3(b), where the magnetization of the trilayer
CrI3 is plotted against temperature. The weaker magnetization
of surface layers in Fig. 3(b) is what we typically see in our
SRSWT simulations for few-layer systems with various num-
ber of layers, for both materials considered. This dependence
is consistent with the long-known results on magnetic thin
films [22] and can be traced back to the higher magnon density
on surface layers as compared to the bulk.

IV. DISCUSSION

Magnetic properties of Cr2Ge2Te6 have been recently in-
vestigated by Li et al. [13], using a self-consistent mean-field
scheme (see also Ref. [6]). The approach adopted in this
work is different from the theory of Refs. [6,13] in the fol-
lowing two ways. (1) The Hartree-Fock-like decoupling of
quartic terms in Refs. [6,13] is performed by keeping terms
diagonal in both momentum and sublattice spaces. Thus all
intersublattice correlations, which are diagonal in momentum
but nondiagonal in sublattice space, are ignored. This implies
that all short-range correlations f ρ

νν ′ with ν �= ν ′ are set to
zero. Here we keep terms diagonal in momentum space, in-
cluding those nondiagonal in sublattice indices. As a result,
our self-consistency equations contain at least one thermo-
dynamic quantity f ρ

νν ′ per each exchange coupling Jρ . (2)

064435-7



V. V. MKHITARYAN AND LIQIN KE PHYSICAL REVIEW B 104, 064435 (2021)

In Refs. [6,13], theoretical analysis of few-layer systems with
layer stacking along the z direction is based upon a Fourier
transform in the z direction. Thus it is assumed that the system
is periodic in that direction. However, this conflicts with the
very nature of few-layer systems where the surface layers are
physically different from the inner layers. In contrast, we treat
the layers as separate sublattices. This approach allows us to
account for the physical difference between surface and inner
layers.

In the model under consideration, we incorporate a uni-
axial single-ion anisotropy. Anisotropic interaction is crucial
in lower dimensions, where it opens up a spin-wave gap
rendering the magnetic ordering possible at nonzero temper-
atures. The single-ion anisotropy term in Eq. (25) and its 3D
and quasi-2D counterparts is ∝(4S̄ − 2S − 1). One drawback
related to this term is that it may turn to zero at a tempera-
ture lower than the true ordering temperature, resulting in a
spuriously vanishing spectral gap and destroying the theory’s
validity near TC. This issue is typical to renormalized spin-
wave theories [11,12,20,32] and, besides the error coming
from the Hartree-Fock approximation, it is related to the vi-
olation of kinematical restrictions while treating the bosonic
excitations as independent bosons and including unphysical
states with a high number of bosons.

One way of resolving this issue is by replacing the factor
(4S̄ − 2S − 1) with other forms, based on some physical ar-
guments. For example, a form of the single-ion anisotropy,
corresponding to the replacement

(4S̄ − 2S − 1) → [2S̄ + (S̄/S)2(2S̄ − 2S − 1)], (35)

emerges due to the Anderson-Callen decoupling [32], com-
monly used in the Green’s function approach to the Heisen-
berg model [33,34]. Unlike the left-hand side of Eq. (35), its
right-hand side vanishes only at S̄ = 0. In support of the above
replacement is also the fact that the right-hand side of Eq. (35)
converges to the left-hand side upon the large-S expansion.

Another consequence of the violation of kinematical re-
strictions is that the single-ion anisotropy does not vanish for
S = 1/2, as it should. In an effort to remedy this issue, the
replacement

(4S̄ − 2S − 1) → (2S − 1)(S̄/S)2 (36)

was suggested in Ref. [20], with the justification that the right-
hand side of Eq. (36) contains the necessary factor, (2S − 1),
and is equivalent to the left-hand side within the large-S
expansion. Note, however, that we have no mathematically
rigorous proof for either of Eqs. (35) and (36), and consider
these replacements as trial forms for the single-ion anisotropy
term, which must be checked additionally, e.g., by comparing
their results with the experimentally measured ones.

In the parametric domain considered in this work for the
two chromium-based materials, the factor (4S̄ − 2S − 1) does
not turn to zero at a temperature lower than TC. Nevertheless,
we have performed calculations using replacements Eqs. (35)
and (36) in Eq. (25) and its 3D and quasi-2D counterparts.
As expected, these replacements have very little effect on the
magnetization curve M(T ) at the lowest temperatures. Still,
they induce an appreciable increase of the critical temperature
by about 10 to 15% in a zero magnetic field.

The SRSWT presented above corresponds to the sum-
mation of all bubble graphs to approximate the one-particle
boson Green function [10]. This approximation does not cap-
ture the interaction-induced magnon lifetime. Although it is
beyond the scope of the present work, here we sketch a di-
rect way to calculate the interaction-induced magnon lifetime
[18,35]. To the leading order, the magnon lifetime may be
found from the spin-wave interaction Hamiltonian H4, Eq. (7),
by going beyond the Hartree-Fock approximation. This can be
done by representing the interacting spin-wave Hamiltonian,
H̄ = H2 + H4, as

H̄ = HR + V, (37)

where HR is the mean-field part (the renormalized Hamilto-
nian), Eq. (10), and V = H2 + H4 − HR is the interaction part
beyond the mean field. Furthermore, V can be represented
as the interaction between the renormalized magnons eigen-
modes of HR, and the corresponding interaction corrections
can be found by calculating the renormalized magnon self-
energy.

V. CONCLUSION

We developed a self-consistently renormalized spin-wave
theory for the ferromagnetic Heisenberg model with perpen-
dicular easy-axis single-ion anisotropy, defined on monolayer,
few-layer, and bulk systems with a honeycomb in-plane ar-
rangement of spins. We treat the layers of a few-layer system
as sublattices. This approach allows us to account for the
difference of surface and bulk layers and pinpoint the different
strengths of average magnetization on the surface and bulk
layers. In addition, our approach can be directly generalized
to study systems with magnetically inequivalent sublattices.

We have applied the developed theory to chromium-based
layered ferromagnetic compounds Cr2Ge2Te6 and CrI3, for
which experimental results are available for bulk and mechan-
ically exfoliated few-layer samples (down to the monolayer
in the case of CrI3). We have calculated the magnetization
dependence on the temperature, M(T ), and the Curie temper-
ature TC for these materials. Our calculations have used sets
of reported magnetic interaction values for the two materials
obtained from first principles, and for CrI3, also from neutron
scattering experiments. For different sets of exchange param-
eters, we find quite different values of TC, both for monolayer
and bulk configurations, also deviating from the experimental
TC values. Despite the quantitative discrepancy, we encounter
a strong dimensionality effect with the critical temperature
sensitively depending on the number of layers, and enhanced
sensitivity to the magnetic field and single-ion anisotropy
strength in lower dimensions, consistent with experimental
observations.
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APPENDIX: DETAILS OF DERIVATIONS

In this Appendix we present basic details of our derivations
and discuss specific features of the theory for the monolayer,
bulk, and few-layer (quasi-2D) systems.

The derivation of Eq. (10) from either the Holstein-
Primakoff or the Dyson-Maleev transformation followed by
the Hartree-Fock decoupling Eq. (8) is quite straightforward,
so we skip this part and start with the derivation of Eq. (17).

Consider the sum, N−1 ∑
k′ Jk−k′

νν ′ nk′ν ′ν , which appears in
the first line of Eq. (11), as well as in the last line of the same
equation, with k = 0. Using Eqs. (12) and (13), this sum may
be cast in the form

∑
ρ∈[νν ′]

Jρ

∑
uρ

νν′

eik·uρ

νν′

(
1

N

∑
k′

e−ik′ ·uρ

νν′ nk′ν ′ν

)
. (A1)

The sum over k′ in Eq. (A1) is independent of uρ

νν ′ by sym-
metry, so the term in the parentheses is equivalent to the
right-hand side of Eq. (15). Using Eq. (12) for the remaining
terms of Eq. (A1), one gets

1

N

∑
k′

Jk−k′
νν ′ nk′ν ′ν =

∑
ρ∈[νν ′]

γ
ρ

νν ′ (k) f ρ

νν ′ . (A2)

Utilizing Eqs. (12)–(14) and (A2) in Eq. (11), one encounters
the relation Eq. (17). Furthermore, alternative to the steps
succeeding Eq. (17), the self-consistency could be formulated
as the condition of the saddle point for

� = 1

βN

∑
k,σ

ln(1 − e−βEσ (k) ) + 2A
∑

ν

(S̄ν − S)2

−
∑
ν,ν ′

∑
ρ∈[νν ′]

γ
ρ

νν ′ (0)

2

(
S̄ν + f ρ

νν ′ − S
)(

S̄ν ′ + f ρ

ν ′ν − S
)
,

(A3)

which is closely related to the Helmholtz free energy of the
system per unit cell.

Further details of the SRSWT for the three different con-
figurations discussed in the main text follow from the specific
structure factors which in turn are determined by the nonzero
exchange couplings.

1. Monolayer

For the monolayer, we distinguish three nonzero intraplane
exchange couplings J1, J2, and J3, indicated in Fig. 1, and two
sublattices labeled by ν, ν ′ = 1, 2. The corresponding linking
vectors uρ

νν ′ are

{
u1

} ≡ {
u1

12

} = δ1, δ2, δ3,{
u2

} ≡ {
u2

νν

} = ±a1, ±a2, ±(a1 − a2),{
u3

} ≡ {
u3

12

} = −2δ1, −2δ2, −2δ3, (A4)

with δi and ai shown in Fig. 1. Vectors Eq. (A4) lead to
the structure factors and thermodynamic quantities given by
Eqs. (22) and (23).

2. Bulk

The bulk system considered here involves three intralayer,
J1, J2, J3, and up to four interlayer exchange couplings, Jz1,
Jz2, Jz3, and Jz4, specified in Fig. 1. The crystal structure is
spanned by the sublattice primitive vectors,

a1 = a

2
(3,

√
3, 0),

a2 = a

2
(3,−

√
3, 0), (A5)

a3 = a
(

1, 0,
c

a

)
,

where a is the intralayer magnetic atom separation and c is the
layer spacing. The subsequent analysis is customarily based
on the introduction of the reciprocal momentum space. Note,
however, that the 3D Fourier transform to the momentum
space implies periodic boundary conditions in all, including
the out-of-plane, directions.

The bulk system is readily described by Eqs. (10) and (17),
with properly specified structure factors and thermodynamic
quantities. Importantly, the system is still comprised of only
two equivalent sublattices. This leaves us with the total of
seven structure factors (one per each exchange coupling) in-
cluding the three intralayer structure factors given by Eq. (22),
and four interlayer ones,

γρ (k) = Jρ

∑
uρ

eik·uρ , ρ = z1, z2, z3, z4, (A6)

with uρ running over the interlayer links coupled by the ex-
change Jρ ,

uz1 ≡ uz1
12 = a3 + δ3,{

uz2
} ≡ {

uz2
νν

} = ±a3, ±(a3 − a1), ±(a3 − a2),{
uz3

} ≡ {
uz3

12

} = (δ1 − a3), (δ2 − a3), −(a3 + 2δ3), (A7){
uz4

} ≡ {
uz4

12

} = (a3 + δ1), (a3 − a1 + δ2),

(a3 − a2 + δ3).

Due to the equivalence of the two sublattices, the average
magnetization is expected to be the same on both sublattices;
see the first line of Eq. (23). The remaining seven thermody-
namic quantities are the three intralayer fi, i = 1, 2, 3, given
in Eq. (23), and four more, inter-layer ones,

fz1 ≡ f z1
12 , fz2 ≡ f z2

νν , fz3 ≡ f z3
12 , fz4 ≡ f z4

12 . (A8)

Furthermore, the renormalized Hamiltonian of the bulk sys-
tem is given by Eq. (24), with

A(k) = gμBB + (S̄ + f2)γ2(k) + (S̄ + fz2)γz2(k)

−
∑

ρ

(S̄ + fρ )γρ (0) − (2S + 1 − 4S̄)A,

B(k) =
∑

μ

(S̄ + fμ)γμ(k), (A9)

where the index ρ runs over the seven values 1, 2, 3, z1, z2,
z3, z4 and μ runs over the five intersublattice values 1, 3, z1,
z3, z4. Similar to that in 2D, the magnon dispersion is

E±(k) = A(k) ± |B(k)|, (A10)
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the average magnetization is given by Eq. (28), and fμ are
given by

fμ = 1

2Nγμ(0)

∑
σ=±

∑
k

γμ(k)

exp [βEσ (k)] − 1
, (A11)

for μ = 2, z2 (intrasublattice f ’s) and

fμ = 1

2Nγμ(0)

∑
σ=±

∑
k

σγμ(k)e−iφk

exp [βEσ (k)] − 1
, (A12)

for μ = 1, 3, z1, z3, z4 (intersublattice f ’s), where

φk = arg [B(k)]. (A13)

Equations (28) and (A9)–(A13) form a closed set of
self-consistency equations from which the average magne-
tization S̄ is found for the bulk 3D system, at a given
temperature.

3. Few-layer system

The L-layer system is treated as a system of 2L sub-
lattices. The matrix elements of Ĥk, Eq. (33), may be
read off of Eq. (17). The diagonal ĥ operators are of the
form

ĥl =
(
A2l−1(k) Bl (k)
B∗

l (k) A2l (k)

)
, (A14)

where

A2l−1(k) = gμBB − (2S + 1 − 4S̄2l−1)A

−(
S̄2l−1 + f 2

(2l−1)(2l−1)

)
[γ2(0) − γ2(k)]

−(
S̄2l + Re

[
f 1
(2l−1)(2l )

])
γ1(0)

−(
S̄2l + Re

[
f 3
(2l−1)(2l )

])
γ3(0)

−(
S̄2l+2 + Re

[
f z1
(2l−1)(2l+2)

])
γz1(0)

−(
S̄2l+1 + Re

[
f z2
(2l−1)(2l+1)

])
γz2(0)

−(
S̄2l−3 + Re

[
f z2
(2l−1)(2l−3)

])
γz2(0)

−(
S̄2l−2 + Re

[
f z3
(2l−1)(2l−2)

])
γz3(0)

−(
S̄2l+2 + Re

[
f z4
(2l−1)(2l+2)

])
γz4(0), (A15)

A2l (k) = gμBB − (2S + 1 − 4S̄2l )A

−(
S̄2l + f 2

(2l )(2l )

)
[γ2(0) − γ2(k)]

−(
S̄2l−1 + Re

[
f 1
(2l )(2l−1)

])
γ1(0)

−(
S̄2l−1 + Re

[
f 3
(2l )(2l−1)

])
γ3(0)

−(
S̄2l−3 + Re

[
f z1
(2l )(2l−3)

])
γz1(0)

−(
S̄2l+2 + Re

[
f z2
(2l )(2l+2)

])
γz2(0)

−(
S̄2l−2 + Re

[
f z2
(2l )(2l−2)

])
γz2(0)

−(
S̄2l+1 + Re

[
f z3
(2l )(2l+1)

])
γz3(0)

−(
S̄2l−3 + Re

[
f z4
(2l )(2l−3)

])
γz4(0), (A16)

for the bulk layers with l = 2, . . . , 2L − 1, whereas for the
surface layers (l = 1 and 2L) the lines containing subscripts

less than 1 or greater than 2L in Eqs. (A15) and (A16) are
omitted. The off diagonals of Eq. (A14) are given by

Bl (k) =
(

S̄2l−1 + S̄2l

2
+ f 1

(2l−1)(2l )

)
γ1(k)

+
(

S̄2l−1 + S̄2l

2
+ f 3

(2l−1)(2l )

)
γ3(k). (A17)

The off-diagonal elements of Ĥk describing the interlayer
couplings have the matrix form

b̂l =
(B1

l (k) B2
l (k)

B3
l (k) B4

l (k)

)
, l = 1, . . . , L − 1, (A18)

with

B1
l (k) =

(
S̄2l−1 + S̄2l+1

2
+ f z2

(2l−1)(2l+1)

)
γz2(k),

B2
l (k) =

(
S̄2l−1 + S̄2l+2

2
+ f z1

(2l−1)(2l+2)

)
γz1(k)

+
(

S̄2l−1 + S̄2l+2

2
+ f z4

(2l−1)(2l+2)

)
γz4(k),

B3
l (k) =

(
S̄2l + S̄2l+1

2
+ f z3

(2l )(2l+1)

)
γz3(k),

B4
l (k) =

(
S̄2l + S̄2l+2

2
+ f z2

(2l )(2l+2)

)
γz2(k). (A19)

By noting that, similar to Eqs. (22) and (A6), γ
ρ

νν ′ (k)
with ν � ν ′ is completely specified by the single index ρ,
in Eqs. (A15)–(A19) we have only seven structure factors, as
before. The intralayer structure factors γ1(k), γ2(k), and γ3(k)
are the same as in the two previous cases of the monolayer
and bulk systems, given by Eq. (22). However, the interlayer
structure factors are somewhat different from those for the
bulk 3D case, Eq. (A6), because the layers are treated as
separate 2D sublattices. We have

γρ (k) = Jρ

∑
vρ

eik·vρ , ρ = z1, z2, z3, z4, (A20)

where the notation vρ is used instead of the more general uρ

νν ′
for the vectors running over the intersublattice links coupled
by the exchange Jρ . The relation between vρ and uρ

νν ′ and their
explicit forms are

vz1 ≡ uz1
(2l−1)(2l+2) = δ3,

{vz2} ≡ {
uz2

(2l−1)(2l+1)

} ≡ {
uz2

(2l )(2l+2)

} = 0, −a1, −a2,

{vz3} ≡ {
uz3

(2l )(2l+1)

} = −δ1, −δ2, 2δ3,

{vz4} ≡ {
uz4

(2l−1)(2l+2)

} = δ1, (−a1 + δ2), (−a2 + δ3),

independent of l , for l = 1, . . . , L − 1. The short-range cor-
relators in Eqs. (A15)–(A19) are defined by Eq. (15), and
the self-consistency is established by solving the eigen-
value problem Eq. (34) and utilizing 	k in Eqs. (20) and
(21). Thus the self-consistency relates a total of 11L − 5
unknown thermodynamic quantities: 2L sublattice magneti-
zations S̄ν and 9L − 5 short-range correlations f ρ

νν ′ , occurring
in Eqs. (A15)–(A19). Furthermore, as mentioned in the text,
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sublattices with subscripts ν and 2L + 1 − ν are equiva-
lent, reducing the total number of independent variables to

CL = (11L − 3)/2 or CL = (11L − 2)/2 for odd or even L,
respectively.
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