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Magnetic phase diagram of rare-earth orthorhombic perovskite oxides
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Spin reorientation and magnetization reversal are two important features of the rare-earth orthorhombic
perovskites (RMO3) that have attracted a lot of attention, though their exact microscopic origin has eluded
researchers. Here, using density functional theory and classical atomistic spin dynamics we build a general
Heisenberg magnetic model that allows to explore the whole phase diagram of the chromite and ferrite
compounds and to scrutinize the microscopic mechanism responsible for spin reorientations and magnetization
reversals. We show that the occurrence of a magnetization reversal transition depends on the relative strength
and sign of two interactions between rare-earth and transition-metal atoms: superexchange and Dzyaloshinskii-
Moriya. We also conclude that the presence of a smooth spin reorientation transition between the so-called �4 and
the �2 phases through a coexisting region, and the temperature range in which it occurs, depends on subtle bal-
ance of metal-metal (superexchange and Dzyaloshinskii-Moriya) and metal–rare-earth (Dzyaloshinsky-Moriya)
couplings. In particular, we show that the intermediate coexistence region occurs because the spin sublattices
rotate at different rates.
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I. INTRODUCTION

Rare-earth orthorhombic perovskites (RMO3’s, where R is
an atom of the rare-earth family and M is a transition metal,
Fe or Cr in this work) have been studied for a long time
due to their unique magnetic properties [1], the two important
magnetic behaviors being the spin reorientation (SR) and the
magnetization reversal (MR). The SR involves the change of
the spin direction from one crystalline direction to another
as a function of temperature [see Fig. 1(a)] while MR refers
to the inversion of the net magnetization of the crystal as a
function of temperature [see Fig. 1(b)]. These materials are
also multiferroics (type II, i.e., the magnetic order induces a
polarization) [2,3] with strong magnetoelectric (ME) response
[2] surpassing most known ME materials. All of these unique
properties rely on the presence of two magnetic sublattices
R and M with very different Néel temperatures such that for a
wide range of temperatures the R spins are paramagnetic while
the M spins are ordered. The associated magnetic interactions
between these two sublattices have been proved to be the key
ingredients for the origin of the SR, MR, and multiferroic
properties [4–6], hence for their use in technological applica-
tions [7–9]. The SR can happen at high temperatures (480 K
in the case of SmFeO3) and this temperature can be lowered
by doping which makes it possible to have this behavior at
room temperature so that the SR could be used in exchange
bias devices [9–12].

Magnetic structures of these materials have been deter-
mined from symmetry analysis [13]. In this work we are
going to use Bertaut notation for symmetry-adapted magnetic

structures, namely, �1, �2, �3, and �4 (see Fig. 2) [14]. Two
types of SR are observed, namely, �4 to �2 (PrFeO3, NdFeO3,
SmFeO3, TbFeO3, HoFeO3, ErFeO3, TmFeO3, YbFeO3) and
�4 to �1 (CeFeO3, DyFeO3) [1].

During the �4 to �2 SR, the spin directions change from the
a crystallographic direction to the c direction, slowly rotating
as a function of temperature in ac plane. The �4 to �2 SR
can develop at different speeds: for some materials it is rather
fast (e.g., it spans through a 3-K temperature range [15] for
ErFeO3) while for others it can occur over a large temperature
range (e.g., 70 K for NdFeO3 [16]). Tsymbal et al. have shown
that a mean field model can describe the �4 to �2 SR and they
observe a sudden jump at the start of the reorientation and
a smooth evolution afterwards [15]. Studies on TbFeO3 show
that there are two phase transitions, from �4 to �2 below 8.5 K
and, then, at the ordering of Tb the Fe subsystem transforms
back to �4 [17] which shows the importance of the R site
ordering in this SR. It has also been shown that this SR is
of second order [18,19] and it could be associated to the
softening of a low-frequency magnon mode [20,21]. Bazaliy
et al. have measured the magnetization of Er in ErFeO3 in the
SR region and shown that there is 70% of change [5].

In the �4 to �1 transition, the SR is quite fast and the spins
change their directions from a to b crystallographic direction
sharply at a well-defined transition temperature. It has been
shown that the anisotropic symmetric exchange interactions
would be responsible for this SR transition [22].

Several authors built models to describe the magnetic in-
teractions in these materials. Moskvin [23] has made a model
to describe the magnetic interactions in RFeO3 and RCrO3
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FIG. 1. (a) Schematic representation of the SR from �4 (red
color) to �2 (blue color) as a function of temperature where the
transition is smooth by passing through an intermediate mixed phase
containing both states (�24). (b) Schematic plot of the evolution of
the total magnetization of the crystal and showing two possible cases:
(i) MR effect (red line) where the magnetization changes sign below
a critical temperature due to the fact that the paramagnetic rare-earth
atom magnetizes in opposite direction to the wFM of the transition-
metal atom. (ii) Absence of MR (blue line) where the magnetization
is amplified when temperature is reduced and corresponding to the
case where the rare-earth atom magnetizes in the same direction as
to the wFM of the transition-metal atom.

and has also made use of Anderson exchange model [24] to
study superexchange and Dzyaloshinskii-Moriya interaction
(DMI) in these materials [25]. Yamaguchi [6] used a mean
field theory model and was more complete than Moskvin. He
has shown that some of the SR present in these materials
can be explained by antisymmetric and anisotropic symmet-
ric exchange interactions between R and Fe. More recently,
Bellaiche et al. have given some simple laws to explain the ori-
gin of different cantings present in these structures [8]. In their
work they have shown that all the cantings on transition-metal
sites can be described using simple energy terms originating
from the DMI between transition metals. Regarding the in-
teractions between M and R spins, Zhao et al. have shown
that the DMI between M and R can polarize the R ion and
hence could explain the origin of the MR in these materials
[7]; according to this work, the MR is linked with a sign in
the interaction between the two sublattices that is material
dependent and not fully understood.

Hence, although there has been a great effort to explain the
magnetic properties of these materials, a solid and complete

FIG. 2. (a) Position of transition-metal ions (gray spheres) and
rare-earth elements (blue spheres) in Pnma structure, purple spheres
represent oxygen atoms. (b) Schematic representation of the G, A,
C, and F magnetic orders for transition-metal sites present in Pnma
structure as highlighted by the red box in (a). The arrows represent
the positive (red arrows) or negative (purple arrows) value of the
magnetic moment. (c) Symmetry-adapted representations �1, �2, �3,
and �4 present in perovskites.

understanding regarding SR and MR in these materials and
their origin is still missing.

In this paper, we shed some light into the magnetic prop-
erties of the RMO3. We have used density functional theory
(DFT) to fit a microscopic Heisenberg model that includes the
superexchange and the DMI interactions between the mag-
netic cations M-M and M-R (where M is Cr or Fe, and R is
Gd). This model is then used as starting point, and we tune the
different parameters to understand their specific role in mag-
netic behaviors of the material using classical spin dynamics.
The spin dynamics results are also compared with analytical
solutions to confirm their consistency. Our work allows to
explain the origin of the SR and the parameters determining
the SR temperature interval and how the R magnetism is
affected while in its paramagnetic regime. We find that the
occurrence of a slow SR comes from an original evolution
of the �4 and �2 orders due to the presence of two different
interacting magnetic cations; this allows to have two magnetic
phases coexisting while no coupling exists between them in
the Hamiltonian.
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II. TECHNICAL DETAILS

The main goal of this paper is to give a qualitative picture
of the magnetic properties of RMO3’s. We choose to work
with Gd because the DFT calculation results are more robust
and reliable for fully field f -electron channel (Gd- f 7) that
does not have many multiplets. However, the Gd ion is a
special case with a very small angular momentum compared
to the other rare-earth elements but, once the model is built
for Gd, we can tune the model parameter values, i.e., the
single-ion anisotropy and DMI, to reproduce the physics of
the other rare-earth atoms.

To understand these magnetic behaviors we have used DFT
calculations on GdFeO3 and GdCrO3, as reference materials,
to have an estimation of the the magnetic interactions in these
crystals. We then tuned these parameters to study how they
affect the overall magnetic behavior of the system. We build a
Heisenberg model containing M-M and M-R superexchange
and DMI interactions. Because we will focus on the tem-
perature range where the R sublattice is paramagnetic, we
will neglect the R-R interactions (these interactions are nev-
ertheless small as compared to the M-M and M-R couplings).
We fit this model against DFT calculations [26,27] done for
the orthorhombic Pnma phase of GdFeO3 and GdCrO3. We
used the VASP package [28,29] and its projected augmented-
wave implementation of DFT [30]. We used the so-called
PBEsol-GGA [31] functional for the exchange correlation part
of the density functional; a Hubbard U correction [32] on Fe,
Cr, and Gd of, respectively, 4, 2, and 5 eV has been used with
J parameter of 1 and 0.5 eV on Fe and Cr. All the calculations
were done with a 6 × 6 × 4 mesh of k points for sampling
the reciprocal space and a cutoff energy on the plane-wave
expansion of 700 eV to have a good convergence on single-ion
anisotropic and DMIs (less than 5 μeV convergence).

The calculations of the superexchange interactions were
done using the Green’s function method as implemented in
the TB2J [33] code. In this method the maximally localized
Wannier function [34] as implemented in WANNIER90 [35] are
calculated using DFT (VASP interface to maximally localized
Wannier functions) and using these Wannier functions and the
Green’s function method, the superexchange parameters are
calculated. Some of these superexchange interactions were
compared to the ones calculated using total energy to en-
sure the consistency of the method. To calculate the DMI
couplings, we calculated the energy of different spin con-
figurations and used the method given by Xiang et al. [36].
We have checked that the results are qualitatively the same
by using different Hubbard U and J corrections while we
have used the ones giving the best Néel temperature for both
sublattices. All of the fitted magnetic interaction parameters
were used to do spin dynamics with the VAMPIRE code [37].
In this code the Landau-Lifshitz-Gilbert (LLG) equation for
the spin dynamics [Eq. (1)] is solved numerically:

∂Si

∂t
= γ

1 + λ2

[
Si × Bi

eff + λSi × (
Si × Bi

eff

)]
. (1)

In the temperature-dependent spin dynamics simulations we
have used a simulation cell of 20 nanometers in each direction.
The thermalization step was done in 50 000 time steps of

TABLE I. Irreducible representation of magnetic states present
in the Pnma phase of RMO3 for both transition-metal M site
and R site [14].

Irrep M site R site

�1 (Ax, Ḡy,Cz) (0,0,Cz)
�2 (Fx,Cy, Ḡz) (Fx,Cy,0)
�3 (C̄x, Fy, Az) (Cx, Fy,0)
�4 (Ḡx, Ay, Fz) (0,0,Fz)

1.5 fs and the measurement is done in 90 000 time steps of
1.5 fs.

Before analyzing the fitted model, we start with an
analytical model of the magnetic interactions present in
RMO3 systems.

III. ANALYTICAL MODEL

To understand the mechanism behind SR and MR, we
develop in this section the Heisenberg model and solve it
analytically to understand the phase diagram of RMO3 versus
their microscopic magnetic interactions. This will also allow
to compare with the spin dynamics calculations to confirm that
both give consistent results.

A. Symmetry-adapted spin representation

We develop an analytical model of RMO3 using the
symmetry-adapted spin representation. For each of the sub-
lattices (M or R) in the Pnma unit cell, we have four magnetic
sites that result in four different magnetic orders: A, C, G, and
F type as presented in Fig. 2(b). Using these four magnetic
orderings, we can define four symmetry-adapted spin states,
namely, �1, �2, �3, �4 that are linear combination of the A,
G, C, and F orderings in different directions (Fig. 2) [14].
Because the ground state of the M spin sublattice is a robust
G-type antiferromagnetic ordering in the Pnma perovskite
phase, the most relevant � j states are those with j = 1, 2,
and 4, which present a dominant G type in one of the three
crystallographic directions with the presence of canted A-,
C-, and F -type magnetic orders in the other directions. We
summarize in Table I the different � j states where Ḡ shows
the main magnetic order and the components without a bar
are small spin cantings.

Using these notations, we can write the symmetry-adapted
magnetic states in terms of their modulation vectors for mag-
netic sublattice a as follows [Eq. (2) to Eq. (5)]:

S�1
i,a = Aa,x(−1)(ni

z ) + Ḡa,y(−1)(ni
x+ni

y+ni
z ) + Ca,z(−1)(ni

x+ni
y ),
(2)

S�2
i,a = Fa,x + Ca,y(−1)(ni

x+ni
z ) + Ḡa,z(−1)(ni

x+ni
y+ni

z ), (3)

S�3
i,a = Ca,x(−1)(ni

y+ni
z ) + Fa,y + Aa,z(−1)(ni

z ), (4)

S�4
i,a = Ḡa,x(−1)(ni

x+ni
y+ni

z ) + Aa,y(−1)(ni
z ) + Fa,z. (5)

Here S
� j

i,a is the spin of lattice site i for magnetic sublattice
a (M or R) in irreducible representation � j and the lattice site
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vector for lattice site i can be written as ni
xû1 + ni

yû2 + ni
zû3

where û1, û2, and û3 are unit-cell vectors while the coef-
ficients G, A, F , and C represent the magnitude of spin
canting in each direction, the G-type order being the main one.
From now on, we will use these spin representations in our
Heisenberg model.

B. Heisenberg model

In this section, we develop the Heisenberg Hamiltonian
for RMO3 in which we include the magnetic interactions
between all the magnetic species: transition-metal atoms (M)
and rare-earth atoms (R), which can be summarized as follows
if one stays at the second order of interactions (higher-order
spin interactions like biquadratic or four-spin couplings are
neglected):

H = HMM + HRM + HRR, (6)

where HMM is the Hamiltonian of M-M interactions, HRR the
Hamiltonian of R-R interactions, and HRM the Hamiltonian of
R-M interactions. HMM can be written as follows:

HMM = HMM
ex + HMM

DMI + HMM
SIA , (7)

where HMM
ex , HMM

DMI, and HMM
SIA represent the superexchange,

DMI, and single-ion anisotropy (SIA) interactions of the M
cations. In our simulations we have neglected anisotropic
symmetric exchange interactions since our DFT calculations
show that they are two orders of magnitude smaller than DMIs
(results not shown here).

For HRR we have neglected the HRR
ex and HRR

DMI since we are
interested in behaviors that take place at temperatures higher
than the Néel temperature of the R spin sublattice. We will
only keep the SIA interactions for this site:

HRR = HRR
SIA. (8)

The Hamiltonian taking care of the R-M interactions can be
written as follows:

HRM = HRM
ex + HRM

DMI. (9)

The superexchange, DMI, and SIA terms can be developed
as follows:

Hab
ex = 1

2

N∑

i j

(Jab,i jSi,a.S j,b), (10)

Hab
DMI = 1

2

∑

i, j

(Dab,i j × S j,a) · Si,b, (11)

Haa
SIA =

∑

i

Ka(Si,a · êi )
2, (12)

where ab could be a = b = M, a = b = R or a = M and b =
R, and êi is a unit vector pointing to the direction of the SIA
axis, which, according to our DFT calculation for GdFeO3 and
GdCrO3, is the easy axis.

We can show that there is no interaction between the differ-
ent � j magnetic orderings [see Supplemental Material (SM)
[38]] such that we can write the total energy of the system as
the sum of the energy of each state. In this case we can write
the total energy as

H = H�1 + H�2 + H�3 + H�4 . (13)

In our analytical derivations we have neglected the �3 state
since this state is much higher in energy than �1, �2, and �4.
This is related to the fact that the �3 state does not contain
G-type order, which is the order driving the lowest energy in
the crystal through the strongest superexchange interactions
between transition metals.

By putting the spin states in the Hamiltonian we can derive
the following expressions for each of the states (see SM [38]):

H�1 = HM
ex + HM

DMI + HRM
ex + HRM

DMI

= NJM (AM,x )2 − 3NJM (ḠM,y)2 − NJM (CM,z )2 − 6NdM
x ḠM,yCM,z − 6NdM

y CM,zAM,x − 6NdM
z AM,xḠM,y

− 8NdRM
x CR,zḠM,y − 8NdRM

y CR,zAM,x, (14)

H�2 = HM
ex + HM

DMI + HRM
ex + HRM

DMI

= 3NJM (FM,x )2 − NJM (CM,y)2 − 3NJM (ḠM,z )2 − 6NdM
x CM,yḠM,z − 6NdM

y ḠM,zFM,x − 6NdM
z FM,xCM,y

− 8NJRMFM,xFR,x − 8NdRM
x ḠM,zCR,y − 8NdRM

y FR,xḠM,z − 8NdRM
z FR,xCM,y − 8NdRM

z CR,yFM,x, (15)

H�4 = HM
ex + HM

DMI + HRM
ex + HRM

DMI + HR
SIA + HM

SIA

= −3NJM (ḠM,x )2 + NJM (AM,y)2 + 3NJM (FM,z )2 − 6NdM
x AM,yFM,z − 6NdM

y ḠM,xFM,z − 6NdM
z ḠM,xAM,y

− 8NJRMFM,zFR,z − 8NdRM
x Fz,RAM,y − 8NdRM

y FR,zḠM,x − NKM (ḠM,x )2 − NKR(ḠR,x )2, (16)

where JM and JRM are, respectively, the superexchange in-
teraction magnitude for M sublattice and between R and
M spins (Ja is considered as Jii for isotropic exchange inter-
action); da

i is the magnitude of ith component of DMI vector
for magnetic sublattice a; and N is the number of magnetic

atoms, while Ka represent the SIA magnitude of magnetic
sublattice a.

With Eqs. (14)–(16) we have decomposed the Hamiltonian
in terms of three independent representations �1, �2, and
�4, themselves decomposed into the superexchange, DMI,
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TABLE II. Calculated magnetic interactions from DFT of
GdFeO3 and GdCrO3. J (average values between nearest neighbors)
values are for the nearest neighbors and di are the DMI vector compo-
nents along i = x, y, and z. The units are meV multiplied by the spin
moment multiplication shown in the last column, which is convenient
for comparing different systems with different spin amplitudes. To
get the values in meV, the reported magnetic interactions should be
divided by the spin multiplication values reported in the last column.

dx dy dz J S1S2

Fe-Fe 0.000 −1.805 −1.104 38 25
4

Cr-Cr −0.001 −0.810 −0.600 7.2 9
4

Gd-Fe 0.008 −0.064 0.031 1.85 35
4

Gd-Cr −0.010 0.042 −0.019 2.15 21
4

Gd-Gd 0.19 49
4

and SIA of their constituent A, C, G, and F magnetic or-
derings. This form allows us to decompose the different
microscopic contributions of the magnetic energy of the
RMO3 systems.

IV. DFT CALCULATION OF THE MAGNETIC
INTERACTION PARAMETERS

In this section we will present the parameters that we
have calculated using DFT for GdFeO3 and GdCrO3, which
will serve as a reference starting point in our spin dynamics
simulations. These values will guide us to scan the magnetic
phase diagram in regions that are relevant for these materials.

A. Superexchange and DMI parameters

The dominant interactions are the superexchange interac-
tion between transition metals. The DFT results for GdFeO3

and GdCrO3 show that the strongest superexchange inter-
actions are between the nearest-neighbor transition metals;
going further in distance gives very small values with respect
to the nearest neighbors such that they can be neglected. These
interactions are 38 and 7.2 meV for nearest neighbors (see
Table II), in GdFeO3 and GdCrO3, respectively, and 1 meV or
below for the next-nearest neighbors. The R-M superexchange
interactions are one order of magnitude smaller (approxi-
mately 2 meV) than the ones between transition metals. The
R-R superexchange interactions are two orders of magnitude
smaller than the transition-metal ones (around 0.2 meV) such
that we have neglected the R-R interactions in our spin dy-
namics simulations. Calculated SIA for both sublattices in
GdFeO3 shows that these parameters are small around 72 μeV
for Gd with easy axis along c direction and 75 μeV for Fe
with easy axis along the b in the Pnma structure; in GdCrO3

the SIA constant for Cr in along c direction and it is 25 μeV.
The most relevant parameters for our behaviors of interest

are the DMIs. Table II shows the obtained results, where the

relation dy > dz � dx always holds. It is the
−
a

−
a

+
c octahedral

rotation pattern that breaks the bond inversion center of sym-
metry and creates the DMI [39]. Hence, we will have the
biggest distortion in the [110] cubic direction (amplitude of
the rotations in the y direction of the Pnma structure) and the

FIG. 3. Schematic presentation of the cubic ([100] and [010])
and Pnma ([110] and [1̄10]) crystallographic directions with respect
to each other. The curved arrows represent the oxygen octahedra
rotations that are in the same direction when projected in the [110]
direction while they are in opposite direction when projected in the
[1̄10] direction.

smallest one will be in the [
−
110] cubic direction (x direction of

the Pnma structure) (as shown in Fig. 3 the oxygen octahedral
rotation has the same sign in the [110] direction and add
up while in the [1̄10] direction they have opposite sign and
subtract from each other), while the distortion in the [001]
cubic direction (c direction of Pnma) will be almost half of
the one in the [110] cubic direction. The ratio between these
distortions is close to be the same for any Pnma crystal and
this structural ratio also drives the key magnetic interactions
as we will show below.

At high temperatures there is no magnetic ordering on
R sites (paramagnetic phase) and the interactions between the
R spins are negligible. Hence, at high temperatures the SIA
and DMI interactions of the M sites determine the magnetic
equilibrium state. From the formulas (14)–(16) we can notice
that both dM

y and dM
z , which have the biggest components

compared to dM
x (see Table II) in the �4 state, are coupled

with the main magnetic order and spin direction (i.e., GM,x),
making the energy of this state lower compared to �1 and
�2. When comparing �1 and �2, we can observe that for
the �2 state we have the dM

y terms that couple with the
main spin direction, hence stronger than the dM

z component
present in �1. This implies that the �2 state is lower in energy
than the �1 state. Hence, we can have EMM,�4

DMI < EMM,�2
DMI <

EMM,�1
DMI , where E

MM,� j

DMI is the energy from DMI between M
atoms in the � j state, i.e., the DMI between M cations favor
the �4 state [23].

We can also see the effect of these interactions in RCrO3

structures. According to Table II the DMIs and superex-
changes in these structures are smaller than for RFeO3, which
makes the energy difference between different spin orders (�1,
�2, �4) smaller. This is consistent with the fact that the �2 and
�4 states are both present at high temperature for the RCrO3

crystal series [40].
Considering the DMIs between R and M, we notice

that in the �2 state we have HRM,�2
DMI = −8NdRM

x ḠM,zCR,y −
8NdRM

y FR,xḠM,z − 8NdRM
z FR,xCM,y − 8NdRM

z CR,yFM,x terms
in which dRM

y couples with the main spin directions and
also this state has more degrees of freedom compared to the
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other states making energy of this state lower. As for �4 we
have HRM,�4

DMI = −8NdRM
x Fz,RAM,y − 8NdRM

y FR,zḠM,x and for

�1 we have HRM,�1
DMI = −8NdRM

x CR,zḠM,y − 8NdRM
y CR,zAM,x

which again due to having the coupling 8NdRM
y FR,zḠM,x

compared to 8NdRM
x CR,zḠM,y terms the �4 state is lower

than that of �1 (dRM
y � dRM

x ). Hence, we can write the
order of the different energies due to DMI of R and M as
ERM,�2

DMI < ERM,�4
DMI < ERM,�1

DMI .
From this analysis, we can see why a SR transition is

possible when lowering the temperature.
Indeed, as the temperature is lowered, the interactions

between R and M cations become stronger due to the mag-
netization of the R site in the field created by the M spins, and
the �2 is more and more favored through the DMIs between
R and M sites. Hence, we can explain the �4 to �2 SR due to
the DMIs between R and M sites as discussed previously by
Yamaguchi [6].

B. Origin of ordering on R site

The MR observed in RMO3 is the change of sign in the net
magnetization of the material. This property has been related
to the polarization of the R site atoms as a result of interaction
with transition-metal atoms. In this interaction R site atoms
could polarize in the direction of the weak magnetic moment
of the transition metal or in opposite direction, which would
result in the presence or the absence of the magnetization
reversal respectively [see Fig. 1(b)]. The remaining question
is why the R paramagnetic atoms magnetize in the oppo-
site direction for some R elements (e.g., NdFeO3, SmFeO3,
DyFeO3, ErFeO3, TmFeO3, YbFeO3) and why they magne-
tize in the same direction for others (e.g., PrFeO3, EuFeO3,
GdFeO3, TbFeO3, HoFeO3) [41] and what is the microscopic
origin of this effect.

With our model we can have access to the detailed mi-
croscopic interaction between R and M cations. Equations
(14)–(16) show that there are two types of interactions act-
ing on R sites: (i) the superexchange interaction between the
weak ferromagnetic (wFM) order of the M and R sublattices
(JRMFMFR) and (ii) the DMI between the G-type orders on
the M and R sublattices (dRM

y FR,(z,x)ḠM,(x,z) and dRM
x CR,zḠM,y).

These interactions can induce either F - or C-type ordering on
R site. To check the validity of these possibilities, we have
used DFT calculations as computer experiments where we
have replaced the R site by Cr in GdFeO3’s Pnma structure
to allow the study of full noncollinear calculations and to
have stronger RM site interactions compared to the Gd case.
Our model is valid for two magnetic sublattices in perovskites
whatever the magnetic cations, such that replacing R by Cr
will show the same qualitative trend.

We have done different calculations in which we con-
strained the magnetic moments on the Fe site and relaxed the
magnetic order of the R site within two different settings. In
the first setting, we set the spin-orbit coupling (SOC) to zero
to suppress the DMI such that the resulting magnetic order
on R site would be due to superexchange interactions only. In
the second setting, we considered SOC, hence activating the
second term (dRM

y FR,(z,x)ḠM,(x,z)) that couples the G-type order
of the M sublattice to F order on R site. In Fig. 4 we show the

FIG. 4. Calculated magnetization of Cr as a function of magneti-
zation of Fe in CrFeO3 simulated at fixed atomic positions of relaxed
Pnma GdFeO3 (Gd is replaced by Cr). Orange points are without
spin-orbit coupling (with a linear fit orange line) and green points
are with spin-orbit coupling (with linear fit green line).

result of these two types of calculations where we can see that
the magnetization line jumps to higher values when the SOC
is present. This shows that the DMI can polarize the R site
as the superexchange, which is in agreement with the results
obtained by Zhao et al. [7] using DMI energetic expressions
between R and M sites.

We should also mention that in our simulations for R = Cr,
since the superexchange interaction is AFM, it polarizes the
R site in the opposite direction to the wFM direction of the
M, while the DMI polarizes the R site in the same direction
as the wFM of the M site (see Fig. 4). Our calculations for
GdFeO3 also show that these interactions are in competition
with each other such that the final magnetization direction
of the R site will be determined by the balance between
them.

Considering GdCrO3 we can see in Table II that the DMI
interactions between the Gd and Cr spins have opposite sign
compared to the DMI interaction between Gd and Fe spins.
This shows that we can also have the sign change of the
DMI depending on the electronic structure of the atoms in
the structure. In this case both the DMI and superexchange
induce a polarization in the same direction and, indeed, the
calculated magnetic ground state of the GdCrO3 shows that
the wFM of Cr and polarization of the Gd are in opposite
directions, while for GdFeO3 the wFM of the iron atoms and
the polarization direction of the Gd atoms are in the same
direction. Hence, depending on the electronic structure of the
atoms we can have the superexchange and DMI that compete
or cooperate that will result in the presence or the absence of
the MR. This shows that the DMI between the two sublattices
is the interaction that is responsible for polarizing the R site.
The calculated DMI interaction signs are in agreement with
experimental results which show that for GdFeO3 there is no
MR [41] while it is present in GdCrO3 [42,43].

V. SPIN DYNAMICS

In this section we present the spin dynamics results ob-
tained with the VAMPIRE code through the Heisenberg model
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FIG. 5. Temperature-dependent SR as obtained from our spin
dynamics calculations. (a) Shows the transition-metal M site spin
projections along the x and z directions. (b) Shows the evolution of
the x and z magnetic moment projection of the rare-earth R site in
the same temperature range as (a). The units on the y axis are spins
normalized with their moments ( 5

2 and 7
2 for Fe and Gd, respectively).

presented above (with R-R superexchange and DMI set to
zero). First, we worked with the magnetic interaction param-
eters obtained for GdFeO3. Then, we made additional spin
dynamics calculations by varying the values of these param-
eters (related to larger spin-orbit interaction present in other
rare-earth elements) to understand how the phase diagram and
associated SR transitions are affected by the change of the
magnetic interactions.

To verify that our model qualitatively respects the sym-
metry of the Pnma phase of RMO3 compounds, we first
simulated the ground state (0 K) of these structures by tuning
the SIA to obtain the magnetic moment direction along the
different x, y, and z crystallographic directions. By doing so,
we verified that the obtained cantings actually correspond to
the ones of the �4, �1, and �2 orders when magnetic moments
lie along x, y, and z directions, respectively (see Table I).

In the following we will analyze both �4 to �2 and �4 to
�1 SR transitions.

A. �4 to �2 reorientation

As a first step we have done temperature-dependent SR.
To have temperature-dependent SR, we have tuned the pa-
rameters obtained for GdFeO3 so as to induce such behavior
since this effect is not present in GdFeO3. More precisely,
we increase the DMI interaction between R and M by one
order of magnitude to have the SR. Figure 5(a) shows the
evolution of the magnetic moment directions with respect to
the temperature when there is a SR, as obtained from our spin
dynamics simulations.

We can see a slow rotation of the spins from x to z direction
as the temperature decreases and that this reorientation is
continuous in a range of temperature where the two orders
(associated to the �4 and �2 states) are present together.
Figure 5(b) shows the temperature evolution of the magnetic
ordering of the R spins due to its interaction with the M spins.
Here, we can see that the SR happens around 15 K when
the normalized magnetic moment of the rare-earth element is

FIG. 6. Temperature-dependent spin dynamics results for
GdFeO3: (a) normalized magnetic moment of the Fe site as
projected along z and x directions (Fz and Gx) and (b) normalized
magnetic moment of the Gd site (ferromagnetic order along the
z direction). We also show the fit of the magnetic order of Fe
sublattice against (1 − T

TN
)β as represented by the green dashed line.

about 0.3. Below this critical temperature, the R site magnetic
moment increases in a more pronounced way. The magnetiza-
tion of the R sites creates a torque that induces the rotation of
the M magnetic direction. Such an increase of the ferromag-
netic moment of the R site has been observed experimentally
for ErFeO3 in the SR region [5]. This result shows that we
need the ferromagnetic ordering on the R site to have this �4

to �2 SR transition. This is also observed experimentally in,
e.g., TbFeO3 where the crystal goes from the �2 state to the �4

state when the Tb atom orders into the AxGy magnetic phase
(no ferromagnetic order) at very low temperatures [17].

In Fig. 6(a) we report the evolution of the magnetic orders
at higher temperature. We obtain from it a Néel temperature of
654 K (using the M-M superexchange parameters as obtained
for GdFeO3) which is calculated by fitting the curve with
(1 − T

TN
)β with β = 0.44 (green dashed line). The wFM (Fz)

appears at temperatures below the Néel temperature and, after
a jump at the phase transition, stays constant (0.10 × 5

2μB).
In Fig. 6(b) we show the evolution of the R site magnetic
moments where we can see that the induced magnetization of
the rare-earth spins is visible at temperatures as high as 400 K.

To further understand the SR, we have studied how the
stability of the magnetic orders is affected by the value of the
DMI coupling between R and M. This allows us to determine
how the strength of the interaction between R and M spins
influences the SR. Figure 7 shows the equilibrium state of
the structure which is projected to the different irreducible
magnetic orders along x, y, and z directions versus dRM

z . (The
figure presents three components of the spin as projected to
different irreducible representations.)

For values of dRM
z < 1.6 (meV) we can see that we have

the �4 state with the main direction of the spin along x
with G-type AFM order (Gx) and small components (canting)
of the spins along the y and z directions with A-AFM (Ay)
and FM (Fz) ordering, respectively. For 4.3 (meV) > dRM

z >

1.6 (meV) we have a coexisting region that we denote �24,
where mostly �2 and �4 states are present. The system enters
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FIG. 7. Decomposition of magnetic ordering on different irreducible representations (� j) for x, y, and z directions of the spins in the �4

to �2 SR phase transition case. The calculations are done at 0 K (ground state). The horizontal axis shows the magnitude of the z component
DMI between R and M sites in the units of meV times the multiplication of the spin amplitudes (see Table II) and the vertical axis shows the
normalized order-parameter magnitude.

to this state through a sudden jump in magnetic order (we also
have a discontinuity in the energy of the system). As we move
towards higher values of dRM

z the �4 contribution is reduced
while �2 contribution increases up to dRM

z > 4.3 (meV) where
only the �2 is present, the SR being completed. The transition
from �2 + �4 to �2 at dRM

z = 4.3 (meV) is continuous.
To get further insight into this transition, in Fig. 8 we

show the evolution of the atomic site projection of the spins
in x, y, and z components. Since the SR transition is due to
the dRM

z FR,xCM,y term in the Hamiltonian, we can observe
an increase of the C-type canted order along the y direction
as the interaction between R and M becomes stronger. Ad-
ditionally, since the magnitude of the canted ferromagnetic
order on M is constant (FM order along the x and z directions
before and after SR), this increase in C-type order can only
come from a reduction of the G-type order component of the
spin.

In Fig. 9 we show how the different energy contributions of
the system (superexchange and DMI) evolve with respect to
the dRM

z parameter. We can see that the contributions coming
from dM

z and superexchange interactions between transition
metals are positive and increase as we go from �4 to �2

state, which means that they are against the SR. In fact, these
interactions are determinant for how fast the SR happens.
The superexchange interaction is the main interaction that
resists against the SR and this is due to the fact that the SR
involves an increase of the C-type ordering on M sites (via
dRM

z FR,xCM,y, as mentioned above) and the reduction of the
G-type order, which costs some energy. Therefore, to over-
come this energy penalty we need larger interaction between R
and M to complete the SR which is provided by more ordering
of the R site atoms.

1. Parameters affecting the �4 to �2 SR

One of the properties that is important to understand is the
temperature range in which the spins start and complete their
reorientation. From our model, we found that three parame-
ters affect how fast the SR happens: the DMI dRM

z between
R and M cations (related to the ordering amplitude of the

R sites), the DMI dM
z between M cations, and the superex-

change interaction JM between M cations. The ratios between
these three parameters drive and determine the energy differ-
ence between the �4 and �2 states and hence the temperature
range where the SR takes place.

To highlight these parameter effects we report in Figs. 10
and 11 a two-dimensional (2D) plot showing the presence of
the �4, �2, and �24 regions with respect to dM

z and dRM
z values

at fixed JM as calculated for GdFeO3. Figure 11 shows the
same but for a fixed value of JM corresponding to the one
calculated for GdCrO3. As we can see, for too small values
of dM

z the system only experiences an abrupt transition (first
order) between �4 and �2 without any coexisting region and
the ratio between dM

z and dRM
z at which the transition appears

is rather constant. However, beyond a critical value of dM
z a

�24 coexisting region appears and grows with the amplitude
of dM

z . This means that, for a given value of JM , if dM
z is

not large enough the system will never experience a slow
SR. Once the coexistence region opens, it grows very fast
with dM such that for large enough dM

z and dRM
z values a

slow SR transition is always guaranteed. On the other side, in
Figs. 10(b) and 11 we can see how the coexisting region area is
affected by the value of JM at a fixed value of dM

z . Here we can
remark that if JM is too large or too small, then the �24 area is
strongly reduced.

In Figs. 10 and 11 we also draw the maximum and mini-
mum values of dM

z and JM as obtained for RFeO3 and RCrO3,
respectively, for the whole series of lanthanides R = La to Lu
(horizontal dashed lines). We can see that the range of these
parameters is not too large and that they cross small areas of
the coexistence region where SR is possible. We can remark
that the SR area for M = Cr is particularly small while it is
potentially larger for Fe.

These phase diagrams help if one wants to design engineer-
ing of SR speed in these crystals. For example, if a slower SR
is desired, the Fe case will be more interesting through doping
with atoms that will reduce the superexchange interactions
between irons and/or that will increase the DMI between
irons (increase of the wFM).
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FIG. 8. Plot of the evolution of the x, y, and z projections of the
local M cation spin components versus the DMI strength between R
and M cations. A schematic representation of how the M spins look
like is also given for the three main phases �4, �24, and �2. The x axis
is in the units of meV times the multiplication of the spin amplitudes
(see Table II).

2. Origin of the slow �4 to �2 rotation

As we show in the analytical part of our model, there is no
interaction between �2 and �4, and we have 〈�2|H |�4〉 = 0.
This would mean that the transition should be fast from our
model since, without interaction between the two states, there

FIG. 9. Decomposition of the total energy from spin dynamics to
its components, i.e., energy from superexchange interaction (exch),
energy from y componenet of the DMI between M and RM in
(dM

y , dRM
y ), and energy from the z component of the DMI between

M and RM (dM
z , dRM

z ). The x axis is in the units of meV times the
multiplication of the spin amplitudes (see Table II).

is apparently no reason why their coexistence will reduce
the energy, and we should have a sharp transition between
them. However, our simulations based on this noninteracting
Hamiltonian show that a coexisting region exists where both
�2 and �4 are present together.

To figure out what is happening, we plot in Fig. 12(a) the
energy change with respect to the dRM

z as decomposed into a
pure �4, pure �2, the sum of the energy of �2 and �4, and
total energy from our simulations Etot . To understand if there
is hidden coupling between �2 and �4 states, we have plotted
the sum of energies of �2 and �4 (�2 + �4) and total energy
from our simulations Etot and, as we can see, the two energies
match exactly which proves that although there is no coupling
between the two states, the SR is slow.

In Fig. 12(b) we report the energy decomposition to M
sublattice only (M�4 , M�2 ) and interaction between R and M
in each state (RM�4

int, RM�2
int,). We can see that the M sublattice

energy of the �2 state (M�2 , blue line) is higher than the
energy of the M sublattice in the �4 state (M�4 , green line)
as expected since the �4 phase is the ground state when only
the M sublattice is considered. The two RM�4

int (red line) and
RM�2

int (orange line) interaction terms clearly show that RM�2
int

lowers the energy of the �2 phase with an amplitude that can
compensate the energy difference between M�4 and M�2 , such
that the �2 phase can be lower in energy than the �4 phase.
This also proves that the M sublattice alone prefers to stay
in the �4 state while the R sublattice pushes the M sublattice
to be in the �2 state (the RM�2

int energy is stronger and more
negative than the RM�4

int energy).
In Fig. 13 we show the evolution of the order parameters

but decomposed into sublattice contributions (�4-M, �4-R,
�2-M, and �2-R). We can observe that in the SR region, when
going from �4 to �2 the R spins start to rotate first and they
drag the M sublattice afterward (highlighted in the inset).
Since the M sublattice prefers to stay in the �4 state while
the R-M interaction favors the �2 state, the system ends up
in a mixed state even if no �2-�4 interaction is present in
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FIG. 10. Phase diagrams for �4 to �2 SR as a function of dRM
z

(a) and dM
z with constant superexchange of 38 meV (corresponding

to the ferrites) and between dRM
z and superexchange interaction of

the transition metals (b) with constant value of 1.1 meV for dRM
z

interaction. The dashed lines with green background showing the
DMI (a) and superexchange (b) of iron for the whole range of La
family (La to Lu) in RFeO3. The units in x and y axes are in the units
of meV times the multiplication of the spin amplitudes (see Table II).

the Hamiltonian. To understand this better, note that in this
problem we do no really have two competing orders (�2 and
�4), but four [�4(M ), �4(R), �2(M ), and �2(R)]. As we vary
the key Hamiltonian parameter in Fig. 13, the �2(R) order be-
comes favorable over �4(R); we thus have a �4 → �2 rotation
of the R sublattice [accompanied by a relatively tiny �2(M )
component] that yields a reduction of the energy as compared
to a pure �4 state. Eventually, the �2(R) order grows and
drags the M spins to rotate as well, the final result being a
pure �2 state.

3. Effect of SIA on �4 to �2 SR

Although the SIA amplitude on the M site is not very large,
we can probe it from our model and have an estimate of its

FIG. 11. Phase diagrams for �4 to �2 SR as a function of dRM
z

(a) and dM
z with constant superexchange of 9 meV (corresponding to

Cr) and between dRM
z and superexchange interaction of the transition

metals (b) with constant value of 0.6 meV for dRM
z interaction.

The dashed lines with green background showing the DMI (a) and
superexchange (b) of Cr for the whole range of La family (La to Lu)
in RCrO3. The units in x and y axes are in the units of meV times the
multiplication of the spin amplitudes (see Table II).

effect on SR. To that end, we report in Fig. 14 the phase
diagram of the �4, �2, and �24 presence with respect to dRM

and SIA of M. We can see on this plot that the SIA does not
change the �4 to �24 transition position; in contrast, when the
SIA increases, it has the tendency to increase the �24 SR area
at the expense of the �2 state. However, the effect of the SIA
is much smaller than the ones of JM , dM , or dRM .

4. Summary for the �4 to �2 transition

In summary, in this section we have shown that our model
well reproduces the temperature-dependent SR. This behavior
shows that the SR is directly linked to the ordering of the rare
earth in ferromagnetic order and proves that the mechanism
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FIG. 12. Decomposition of the energy of the �2 and �4 as a
function of dRM

z . (a) Shows the energy of �2 and �4 and �2 + �4

which is the sum of the energies of the two states and Etot which is
the total energy from simulations. In (b), the energy of each state is
decomposed into its pure M sublattice contributions and the interac-
tion contribution between R and M, the pure R-R interactions being
neglected. In (b), the zero-energy reference of M and R interactions
is taken to be the one of M�2 . We can notice that the RM interacting
term is the one that lowers the energy of �2 by becoming larger
than the energy difference between pure M�4 and M�2 . The units
in x axis are in the units of meV times the multiplication of the spin
amplitudes (see Table II).

behind the SR in RMO3 compounds is not related to the SIA
[44], but it is the DMI between R and M that drives this SR.

A study by Vibhakar et al. [45] on triple A-site columnar-
ordered quadruple perovskites has shown that the mechanism
behind SR in these structures is the competition between DMI
and SIA, which is similar to the mechanism that we found to
be at play in RMO3’s SR.

In our simulations, we have also studied how different pa-
rameters affect the speed of SR. We can say that the presence
of a smooth transition between �4 and �2 phases through
a coexisting region �24 is very subtle and depends on the
ratio between JM , dM

z , and dRM
z interactions. If dM

z is zero,
a transition between �4 and �2 can exist but only through a
first-order abrupt change; the dM

z interaction is mandatory to
have a smooth SR transition.

B. �4 to �1 reorientation

To explain the �4 to �1 SR we need a strong interaction
between the R and M sites within the �1 state to allow the
M site order to go from its energetically favorable state �4

FIG. 13. Order-parameter (�2 with orange color and �4 with blue
color) decomposition into M and R sublattices when crossing a SR
region (here as a function of dRM

z ). The inset shows the area where
the SR starts and we can notice the change of order of the R site
first that drags the M site order afterward. The units in x axis are
in the units of meV times the multiplication of the spin amplitudes
(see Table II).

to the less energetically favorable state �1. If not, we would
have each sublattice ordering in different direction like what is
observed experimentally in TbFeO3 [17]. However, according
to our model, the sole interactions between R and M atoms
in the �1 state are −8NdRM

x CR,zḠM,y and −8NdRM
y CR,zAM,x.

The second term is the coupling between AM,x and CR,z, which

FIG. 14. Effect of SIA on the �4/�2 SR phase diagram. Horizon-
tal axis shows the amplitude of z component of the DMI between R
and M sites while the vertical axis shows the amplitude of the SIA
of the M site. The units in x axis are in the units of meV times the
multiplication of the spin amplitudes (see Table II).
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TABLE III. Calculated ASE components from DFT of GdFeO3

and GdCrO3 (units are in meV multiplied by spin amplitude shown
in Table II). εi are the ASE vector components along i = x, y, and z.

εx εy εz

Fe-Fe −0.015 0.000 0.000
Cr-Cr 0.051 0.000 0.003
Gd-Fe 0.006 −0.016 0.007
Gd-Cr −0.030 0.010 −0.009

is small since the AM,x canting is very small compared to
ḠM,y. Hence, the only remaining term which can make this
SR possible is −8NdRM

x CR,zḠM,y. From our DFT calcula-
tions and from symmetry analysis (since these parameters are

originating from
−
a

−
a

+
c oxygen octahedra rotations as discussed

in previous section) we know that dRM
x is very small (see

Table II) such that it is not possible to explain the �4 to �1

SR using this interaction.
So far we have neglected the anisotropic spin-exchange

interactions (ASE) in our model because the effects from these
interactions are often negligible with respect to the superex-
change or DMI. Now that we have the DMI small too, we
will consider the ASE to check whether it can take some
importance while the DMI is small. The definitions of DMIs
and ASE vector components are as follows:

dab
x = 1

2

(
Jab

yz − Jzb
zy

)
, (17)

εab
x = 1

2

(
Jab

yz + Jab
zy

)
, (18)

where εab
x (dab

x ) represents the ASE (DMI) vector component
in the x direction between atom a and atom b and Jyz is
the superexchange interaction between spins directing in the
y direction on atom a and in z direction on atom b (another
component, i.e., in y and z directions, can be obtained by
cyclic permutation of the xyz directions). We can see that
when a component of the DMI vector is small it is proba-
ble to have the ASE vector for that component to be bigger
depending on the magnitude.

In Table III we show the calculated ASE between Fe and
Cr sites. The calculated results show that the x component of
the ASE vector is the largest with respect to the y and z com-
ponents for Fe-Fe and Cr-Cr atom pairs. In Table III we also
report the calculated ASE vector for Fe-Gd and Cr-Gd pairs.
The biggest component of the ASE vector is in the y direction
for Gd-Fe while it is along the x direction for the Gd-Cr case.
We note that the ASE interaction in the Hamiltonian takes the
same place as the DMI does, i.e., for the �1 state we have

−8NεRM
x CR,zḠM,y, (19)

8NεRM
y CR,zAM,x. (20)

Considering these ASE interactions, we can say that the �4

to �1 SR can happen through the x component of the ASE
(through −8NεRM

x CR,zḠM,y interaction), which will take the
place of the DMI when the latter is small. This conclusion is
in agreement with Zvezdin [22] who explained the origin of
the �4 to �1 SR to originate from ASE.

We will now study this SR by tuning the εRM
x ASE coupling

in our model. In Figs. 15 and 16 we report how the relative
�4 and �1 stability evolves with respect to the εRM

x parameter
at 0 K (ground state). In contrast to the �4 to �2 transition
we can see that there is no coexisting region between �4 and
�1 states, the transition is always abrupt with respect to the
εRM

x amplitude. To confirm this, we also explore in Fig. 15
how the superexchange parameter JM affects the �4 to �1

SR transition. We can clearly see that whatever value of JM

we considered, the �4 to �1 SR is always abrupt without
any coexisting region. We can also remark that JM favors the
�1 state with respect to the �4 state, which can be logically
understood by the fact that in the �1 phase all the directions
are AFM and, since the torque creating this SR is acting on
GM,y (in contrast to �4 to �2 SR where the torque is acting
on CM,y), the cantings are smaller than in the �4 state. Hence,
unlike the �4 to �2 case, the SR involving �1 happens as soon
as the system overcomes the energy difference due to ASE and
SIA between the two states, making this transition abrupt.

FIG. 15. Magnetic structure for �4 to �1 SR decomposed to different irreducible representations for different components of the spin in
x, y, and z directions. The horizontal axis showing the magnitude of ASE in the x direction between R and M and vertical axis showing the
order-parameter magnitude normalized. The units in x and y axes are in the units of meV times the multiplication of the spin amplitudes
(see Table II).
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FIG. 16. Phase diagrams of �4 to �1 transition by plotting
superexchange on transition-metal sites (JM ) vs the anisotropic ex-
change εRM

x . We can see that the SR transition is abrupt for the whole
range of superexchange. The units in x and y axes are in the units of
meV times the multiplication of the spin amplitudes (see Table II).

We also need to mention that this mechanism explains
the Ising-type (strongly collinear) nature of the �1 state
[22]. Since the force creating this SR is acting between
G-type order of M site and C-type order of R site (i.e.,
−8NεRM

x CR,zḠM,y), the M atoms in �1 state will have a
very small canting compared to other states and the spins
will mainly order in the Gy type, hence closer to an
Ising-type nature.

VI. CONCLUSION

We have studied in this paper the microscopic mech-
anism behind the SR and MR magnetic behaviors of the
RMO3’s through a Heisenberg model where we consid-
ered the superexchange interactions and DMI between the
transition-metal sites, as well as between the rare-earth (R)
and transition-metal sites (M), and we neglected the superex-
change and the DMI between the R spins as they are much
smaller than the other interaction parameters.

We conclude that there are two interactions polarizing the R
atom site, i.e., (i) the superexchange between M sites (through
its wFM) and R sites and (ii) the DMI between R and M,
which can result into two effects. Indeed, we can have that
both interactions polarize the R element parallel to the M
wFM canting direction such that there will be no MR but
an amplification of the total magnetization of the crystal [see
Fig. 1(b), blue curve]. We can also have that both interactions
polarize the R element in the opposite direction to the wFM of
the M cation such that the total magnetization amplitude can
be reduced up to a critical temperature below which its sign

changes [see Fig. 1(b), red curve]. The change of sign appears
when the negative R cation magnetization compensates the
positive one of the M site (wFM).

Our analysis of the SR transitions has shown that the �4

to �2 transition similarly comes mainly from the DMI in-
teractions between the M and R site but it can be weighted
by the superexchange between the M sites. We found that
within a relatively wide range of these three interactions
this SR transition is smooth and happens through a mixed
state where the �4 and the �2 phases coexist even though
they do not interact in our Hamiltonian. How broad is the
temperature range in which the SR takes place through the
�24 mixed state depends on a subtle ratio between DMI and
superexchange interactions between M sites, which can vary
depending on the rare-earth and transition-metal cations that
are present in the Pnma perovskite structure. We also found
that the �4 to �1 SR transition depends on even more sub-
tle interactions (anisotropic superexchange that acts as the
DMI) but, contrary to the �4 to �2 SR, it never presents
a coexisting region, i.e., it always proceeds through an
abrupt change.

The model we have presented can help in designing the
strength and amplitude of SR and MR in RMO3 through, e.g.,
doping, strain, or pressure that would tune the ratio between
the key interactions as desired. Our model can also be easily
extended by including the interactions between the rare-earth
spins to study the complex magnetic phase diagrams below
the Néel temperature of the rare-earth sublattice. It can be
enlarged too with the anisotropic exchanges (important for the
�4 to �1 SR) [22] or with a four-spin interaction term, which
has been shown to be important in rare-earth manganites
[46]. Because it contains all the key interactions that allow to
describe most of the important magnetic properties of RMO3

compounds, the model can be used to study dynamically mag-
netic domain walls. Going beyond, the model can be coupled
with a lattice model (second principles [47,48]) to have access
to a full atom plus spin dynamics for the simulations of, e.g.,
recent ultrafast laser excitation experiments made on these
crystals [49–51].
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