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Parity-symmetry-breaking quantum phase transition via parametric drive
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We study the parity-symmetry-breaking quantum phase transition (QPT) in a cavity magnonic system driven
by a parametric field, where the magnons in a ferrimagnetic yttrium-iron-garnet sphere strongly couple to a
microwave cavity. With appropriate parameters, this cavity magnonic system can exhibit a rich phase diagram,
including the parity-symmetric phase, parity-symmetry-broken phase, and bistable phase. When increasing the
drive strength beyond a critical threshold, the cavity magnonic system undergoes either a first- or second-order
nonequilibrium QPT from the parity-symmetric phase with microscopic excitations to the parity-symmetry-
broken phase with macroscopic excitations, depending on the parameters of the system. Our work provides
an alternate way to engineer the QPT in a hybrid quantum system containing the spin ensemble in a ferri- or
ferromagnetic material with strong exchange interactions.
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I. INTRODUCTION

The light-matter interaction lies at the core of quantum
technologies and has been a topic of lasting interest [1–3]. A
class of light-matter interactions, namely, the collective cou-
pling between an ensemble of two-level systems and a single
bosonic mode, can be described by the standard Dicke (or
Tavis-Cummings) model [4], equivalent to the model of two
nonlinearly coupled harmonic oscillators [5,6]. When increas-
ing the coupling strength to exceed a critical threshold, the
Dicke model undergoes an equilibrium super-radiant quantum
phase transition (QPT) [5–8]. However, it is challenging to
experimentally achieve this equilibrium super-radiant QPT
due to the very large critical coupling strength. To circumvent
this difficulty, an effective Dicke model has been designed
or engineered with the assistance of external drive fields to
study a nonequilibrium super-radiant QPT, both theoretically
[9–12] and experimentally [13,14], where the critical coupling
strength is significantly reduced.

Among various systems composed of an ensemble of
two-level systems interacting with a single bosonic mode,
the cavity magnonic system has attracted much recent at-
tention [15–23], where magnons in, e.g., a single-crystal
sphere of yttrium iron garnet (YIG), are strongly coupled
to a microwave cavity mode [24,25]. With flexible con-
trollability and easily-engineered strong interactions, cavity
magnonic systems have become a good platform for ex-
ploring various intriguing phenomena, such as magnon dark
modes memory [26], exceptional point [27–31], dissipative
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magnon-photon coupling [32–35] and magnon-induced
nearly perfect absorption [36]. Very recently, approaches to
implement unconventional magnon excitations [37] and sta-
tionary one-way quantum steering [38] by driving the cavity
magnonic system with a quantum squeezed field (i.e., via a
parametric drive) were proposed.

In addition, magnon Kerr effect, i.e., a nonlinear effect
due to the magnetocrystalline anisotropy in the YIG [39],
was experimentally demonstrated [40]. By pumping the cavity
magnonic system with a coherent microwave field, bistability
of cavity magnon polaritons was observed [41] and trista-
bility was subsequently predicted [42,43]. Moreover, based
on the magnon Kerr effect, nonreciprocal transmission of a
microwave field [44] and the quantum entanglement between
two magnon modes [45] can be engineered in a ternary cav-
ity magnonic system. However, due to the strong exchange
interaction between nearest-neighbor spins, spin ensemble in
the ferrimagnetic YIG, even under a strong microwave drive,
remains in the low-lying excitations [46,47], and thus the
magnon mode becomes linearly coupled to the cavity mode
(i.e., the coupling strength between magnon and cavity modes
is nearly independent of the magnon occupation) [40,41]. This
hinders the occurrence of the QPT in this cavity magnonic
system embedding the spin ensemble in the ferrimagnetic
YIG, because two linearly coupled bosonic modes do not
exhibit any QPT. However, as shown below, we find that
by taking account of the magnon Kerr effect in the YIG,
the cavity magnonic system can resume the nonequilibrium
QPT by driving the system with a squeezed microwave field.
This provides a way to engineer the QPT in hybrid quantum
systems containing spin ensembles in ferri- and ferromagnetic
materials with strong exchange interactions.
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In the rotating-reference frame with respect to the fre-
quency of the drive field, the parametrically driven cavity
magnonic system has an effective Hamiltonian that preserves
the parity symmetry of the system in the absence of the
driving. This is in sharp contrast to the cavity magnonic
system with a coherent microwave driving [40,41], in which
the parity symmetry is not preserved. As a result, the para-
metrically driven cavity magnonic system can have a rich
phase diagram, including the parity-symmetric phase, parity-
symmetry-broken phase, and bistable phase. It can undergo
a nonequilibrium parity-symmetry-breaking QPT at a critical
drive strength (i.e., from a parity-symmetric phase with mi-
croscopic excitations to a parity-symmetry-broken phase with
macroscopic excitations). Moreover, we find that this tran-
sition can be either discontinuous (first-order) or continuous
(second-order), depending on the parameters of the system.

Our work provides an experimentally realizable scheme to
engineer QPT in a cavity magnonic system. In many-body
quantum systems, the QPT is of fundamental importance
in, e.g., understanding the semiclassical-to-quantum bound-
ary [48]. Moreover, owing to its close relation to quantum
entanglement, the QPT may have potential applications in
quantum information processing [49–51]. To experimentally
demonstrate the QPT, it requires a well-controlled quantum
system with tunable parameters. The cavity magnonic sys-
tem offers an ideal platform for this, because it has flexible
controllability in magnon frequency and coupling strength,
as well as a tunable frequency and power of the drive field
[27–29].

The paper is organized as follows. In Sec. II, we give
the Hamiltonian of the proposed system and then derive the
steady-state solutions of the cavity magnonic system via a
Heisenberg-Langevin approach. In Sec. III, by carrying out
standard stability analysis, the QPT behaviors of the cavity
magnonic system are shown in detail. Finally, discussions and
conclusions are given in Sec. IV.

II. THE MODEL

The cavity magnonic system, depicted in Fig. 1, consists
of a small YIG sphere and a parametrically driven microwave
cavity. Here we focus on the Kittel mode of the spin waves in
the YIG sphere, with all exchange-coupled spins precessing
in phase together. Without considering the nonlinearity of
magnons and the parametric drive on the cavity mode, the
Hamiltonian of the proposed hybrid system reads (setting
h̄ = 1)

Hs = ωca†a + ωmb†b + g(a†b + ab†), (1)

where a and a† (b and b†) are the annihilation and creation
operators, respectively, of the cavity (magnon) mode with
frequency ωc (ωm), and g is the coupling strength between
the cavity and magnon modes. In the YIG sphere, the mag-
netocrystalline anisotropy gives rise to the interaction among
magnons, described by the Kerr-nonlinearity Hamiltonian

HKerr = K

2
b†b†bb. (2)

The Kerr coefficient is positive (i.e., K > 0) when the crys-
tallographic axis [100] of the YIG sphere is parallel to the

FIG. 1. Schematic of the proposed cavity magnonic system con-
sisting of a small YIG sphere and a microwave cavity. The parametric
drive on the cavity, with frequency ωd and amplitude G, is generated
by pumping a χ (2) nonlinear medium inside the cavity. Here, a is
the annihilation operator of the cavity mode with frequency ωc and
decay rate κ , and b is the annihilation operator of the magnon mode
with frequency ωm and damping rate γ .

external static magnetic field [41]. The microwave cavity con-
tains a χ (2) nonlinear medium pumped by an external field
with frequency ωd . The corresponding Hamiltonian is

Hd = G

2
(a†a†e−iωd t + aaeiωd t ), (3)

where the strength G of the parametric drive can be tuned by
varying the amplitude of the drive field. In a frame rotating
with ωd/2, the total Hamiltonian of the system, Htot = Hs +
HKerr + Hd , can be written as

Htot = �ca†a + �mb†b + K

2
b†b†bb + g(a†b + ab†)

+ G

2
(a†a† + aa), (4)

where �c(m) = ωc(m) − ωd/2 (>0) is the frequency detuning
of the cavity (magnon) mode relative to the drive field. With-
out the YIG sphere (i.e., g = 0), the parametrically driven
cavity can become unstable when G >

√
�2

c + κ2 [52], with
κ being the decay rate of the cavity mode. Hereafter, we only
focus on the case of K > 0 and G <

√
�2

c + κ2.
With the Hamiltonian in Eq. (4), the dynamics of the cavity

magnonic system can be described by the quantum Langevin
equations [52]:

ȧ = −i(�c − iκ )a − igb − iGa† +
√

2κain,

ḃ = −i(�m − iγ )b − iKb†bb − iga +
√

2γ bin, (5)

where γ is the damping rate of the magnon mode, and ain

(bin) is the noise operator for the cavity (magnon) mode. These
noise operators have zero mean values, i.e., 〈ain〉 = 〈bin〉 = 0.
Decoherence can arise from both energy relaxation (i.e., dis-
sipation) and pure dephasing. In the cavity magnonic system,
dephasing effects of the cavity and magnon modes can be
ignored (cf. Appendix A) and only dissipations are considered
in Eq. (5).

The equations of motion in Eq. (5) can be rewritten
as ȧ = −i[a, Heff ] + √

2κain and ḃ = −i[b, Heff ] + √
2γ bin,
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where

Heff = (�c − iκ )a†a + (�m − iγ )b†b + K

2
b†b†bb

+ g(a†b + ab†) + G

2
(a†a† + aa) (6)

is the effective non-Hermitian Hamiltonian of the cavity
magnonic system. In Eq. (6), −iκa†a and −iγ b†b describe
the dissipations of the cavity and magnon modes, respectively.
Note that the drive term proportional to a†a† (aa) corresponds
to the simultaneous creation (destruction) of two photons in
the cavity, which does not preserve the total number of excita-
tions in the system. However, the parity symmetry is preserved
in the non-Hermitian Hamiltonian (6), [Heff ,�] = 0, where
� = exp[iπ (a†a + b†b)] is the parity operator [5,6].

In our scheme, both the magnon Kerr effect and the
parametric drive play the key roles in engineering the parity-
symmetry-breaking QPT (cf. Sec. III). Usually, the QPT
results from the nonlinear interaction of the system. For
example, in the standard Dicke model (equivalent to two
nonlinearly coupled harmonic oscillators), the super-radiant
QPT is induced by the nonlinear coupling [5,6], which plays
a similar role as the magnon Kerr effect in our proposed
system. As shown in Ref. [37], the cavity magnonic system
with a parametric drive can exhibit unconventional magnon
excitations but no QPT occurs in the case without magnon
Kerr effect, which corresponds to K = 0 in Eq. (6). On the
other hand, if the cavity or the YIG sphere is pumped by a
coherent field instead of a squeezed field [corresponding to
Eq. (6) with a†a† + aa replaced by a† + a or b† + b], the
coherent drive will break the parity symmetry of the cavity
magnonic system, i.e., [Heff ,�] �= 0. In such a case, the cavity
magnonic system exhibits the nonlinear foldover effect rather
than the QPT in the steady state, which was demonstrated
experimentally in Refs. [41,53].

To analyze the steady-state properties of the system, we
write the operator a (b) as the sum of the expectation value and
its fluctuation: a = 〈a〉 + δa, and b = 〈b〉 + δb, where 〈δa〉 =
〈δb〉 = 0. From Eq. (5), it follows that

〈ȧ〉 = −i(�c − iκ )〈a〉 − ig〈b〉 − iG〈a†〉,
〈ḃ〉 = −i(�m + K〈b†〉〈b〉 − iγ )〈b〉 − ig〈a〉, (7)

and

δȧ = −i(�c − iκ )δa − igδb − iGδa† +
√

2κain,

δḃ = −i(�̃m − iγ )δb − igδa − iFδb† +
√

2γ bin, (8)

with �̃m = �m + 2K〈b†〉〈b〉 and F = K〈b〉2, where the high-
order terms of the fluctuations have been neglected. As shown
in Appendix A, the equations of motion for the expectation
values 〈a〉 and 〈b〉 in Eq. (7) can also be derived via a master
equation approach [52]. This mean-field approach can give ac-
curate results in the thermodynamic limit γ /K → +∞ [54].
Indeed, this is the case in our cavity magnonic system, because
K � γ [39,41].

At the steady state, i.e., 〈ȧ〉 = 〈ḃ〉 = 0 in Eq. (7), we obtain
one trivial solution 〈b†b〉0 and two nontrivial solutions 〈b†b〉±:

〈b†b〉0 = 0, 〈b†b〉± = (−�′
m ±

√
η2G2 − γ ′2)/K, (9)

FIG. 2. (a) Steady-state phase diagram of the cavity magnonic
system, where PSP, PSBP, and BP denote the parity-symmetric
phase, parity-symmetry-broken phase and bistable phase, respec-
tively. (b)–(d) Time evolution of the scaled magnon number
〈b†b〉/(γ /K ), obtained by numerically solving Eq. (7) at the points
indicated by red dots in (a), with (b) G/κ = 1.8, and �m/�c = 0.8,
(c) G/κ = 2.3, and �m/�c = 1.2, and (d) G/κ = 2.3, and �m/�c =
0.4. In (b)–(d), 〈a〉t=0/

√
γ /K = 2.1 + 1.1i, and 〈b〉t=0/

√
γ /K =

2.1 − 1.1i for the (black) solid curves, while 〈a〉t=0/
√

γ /K = 0.1 +
0.1i, and 〈b〉t=0/

√
γ /K = 0.1 − 0.1i for the (red) dashed curves.

Other parameters are �c/κ = 3, g/κ = 2.4, and γ /κ = 1.

where �′
m = �m − η�c, γ ′ = γ + ηκ , and η = g2/(�2

c +
κ2 − G2). Also, the mean-field approximation 〈b†b〉 ≈
〈b†〉〈b〉 has been used. Obviously, the drive strength G should
be in an appropriate regime to ensure 〈b†b〉+ > 0. Note that
because another nontrivial solution 〈b†b〉− is unstable [see
Fig. 2(a) and related discussions], we need not consider it
here.

Solving 〈b†b〉+ > 0, we obtain G > Gc1 in the case of
�m/�c < ζ , with

ζ = 2γ 2√
4(�2

c + κ2)γ 2 + (4κγ + g2)g2 − (2κγ + g2)
, (10)

where the critical drive strength is

Gc1 =
√

�2
c + κ2 + (4κγ + g2)g2/4γ 2 − g2/2γ . (11)

However, when �m/�c > ζ , to achieve the valid solution
〈b†b〉+ > 0, the constraint on the drive strength G becomes
G > Gc2, where

Gc2 =
√

�2
c + κ2 − (2�c�m − 2κγ − g2)g2

/(
�2

m + γ 2
)
(12)

corresponds to another critical drive strength. Here, Gc1 is
independent of �m, while Gc2 depends on �m. In particu-
lar, Gc1 = Gc2 at �m/�c = ζ . From the second equation in
Eq. (7), when 〈ḃ〉 = 0, it follows that the steady-state photon
occupation can be expressed as

〈a†a〉 = [(�m + K〈b†b〉)2 + γ 2]〈b†b〉/g2. (13)
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Therefore, we need only to focus on the magnon occupation
〈b†b〉, which can be defined as an order parameter of our
hybrid system.

III. QPT IN THE CAVITY MAGNONIC SYSTEM

To characterize the steady-state phase diagram of the
cavity magnonic system, we analyze the stability of the so-
lutions for 〈b†b〉 in Eq. (9). Defining a column vector δv =
(δa, δb, δa†, δb†)T of the fluctuations, we can write Eq. (8)
and its complex conjugate in a matrix form,

δv̇ = Mδv + δvin, (14)

where δvin = (
√

2κain,
√

2γ bin,
√

2κa†
in,

√
2γ b†

in )T is the
column vector of the noise operators, and

M =

⎛
⎜⎜⎝

−i�c − κ −ig −iG 0
−ig −i�̃m − γ 0 −iF
iG 0 i�c − κ ig
0 iF ∗ ig i�̃m − γ

⎞
⎟⎟⎠.

(15)

For a given solution of 〈b†b〉 in Eq. (9), it is stable only if the
real parts of all eigenvalues of the matrix M are negative [55].

By carrying out the standard stability analysis, we dis-
play in Fig. 2(a) the steady-state phase diagram versus the
reduced drive strength G/κ and the ratio �m/�c of the fre-
quency detunings of the cavity and magnon modes. There are
three different regions in the phase diagram, i.e., the parity-
symmetric phase (gray area), parity-symmetry-broken phase
(blue area), and bistable phase (red area), where the vertical
black solid line (G = Gc1) and the blue solid curve (G = Gc2)
are the boundaries between different phases. In the parity-
symmetric phase, there is no macroscopic magnon excitations
and the solution 〈b†b〉 = 0 is stable [see Fig. 2(b)]. The non-
trivial solution 〈b†b〉 = 〈b†b〉+ given in Eq. (9) becomes stable
in the parity-symmetry-broken phase [see Fig. 2(c)], which
has macroscopic magnon excitations (i.e., 〈b†b〉 �= 0). In the
bistable phase, both solutions 〈b†b〉 = 0 and 〈b†b〉 = 〈b†b〉+
are stable, and the initial condition determines the steady-state
magnon occupation [see Fig. 2(d)]. Moreover, we find that
the nontrivial solution 〈b†b〉 = 〈b†b〉− is unstable in the whole
parameter space, since the real parts of the four eigenvalues of
the related matrix M in Eq. (15) are not all negative. With
the parameters of the system used in Fig. 2(a), the coeffi-
cient ζ given in Eq. (10) is ζ = 0.976. When �m/�c > ζ

(�m/�c < ζ ), the boundary between parity-symmetric and
parity-symmetry-broken (bistable) phases is given by G =
Gc2 (G = Gc1).

In the case of �m/�c > ζ (e.g., �m/�c = 1), we plot
the scaled steady-state magnon number 〈b†b〉/(γ /K ) versus
the reduced drive strength G/κ in Fig. 3(a). Here the QPT
occurs at the critical drive strength Gc2/κ = 2.025, where
〈b†b〉/(γ /K ) changes continuously, indicating a second-order
QPT. When G < Gc2, the system is in the parity-symmetric
phase with 〈b†b〉 = 0. However, when G > Gc2, it is in the
parity-symmetry-broken phase with 〈b†b〉 = 〈b†b〉+ �= 0, as
given in Eq. (9). Around the critical point G = Gc2, it can be
obtained that (see Appendix B)

〈b†b〉 ∼ |G − Gc2|ν, (16)

FIG. 3. (a) The scaled steady-state magnon number 〈b†b〉/(γ /K )
and (b) the expectation value 〈δb†δb〉 versus the reduced drive
strength G/κ in the case of �m/�c = 1. In (a), the (black) solid
curve corresponds to the analytical results in Eq. (9), and the (red)
dashed curve corresponds to the numerical results obtained us-
ing Eq. (7) with initial conditions 〈a〉t=0/

√
γ /K = 〈b〉t=0/

√
γ /K =

0.001. Other parameters are the same as in Fig. 2(a).

with the critical exponent ν = 1. To further study the
nonequilibrium QPT, we also investigate the response of the
expectation value of the correlated fluctuation δb†δb. Here we
only give the main numerical results. The equations of motion
for this and other related correlated fluctuations can be found
in Appendix C. As shown in Fig. 3(b), the expectation value
〈δb†δb〉 approaches zero when the drive strength G is tuned
away from the critical value G = Gc2, but diverges when G is
close to G = Gc2 [10,56,57].

In Fig. 4(a), we display the steady-state magnon number
〈b†b〉/(γ /K ) versus the drive strength G/κ in the case of
�m/�c < ζ (e.g., �c/�m = 0.3). When varying the drive
strength G from G < Gc1 to G > Gc1, 〈b†b〉/(γ /K ) is dis-
continuous at the critical point Gc1/κ = 2.024. This indicates
that the cavity magnonic system undergoes a first-order QPT
from the parity-symmetric phase with 〈b†b〉 = 0 to the parity-
symmetry-broken phase with 〈b†b〉 = 〈b†b〉+ �= 0, as given in
Eq. (9). In such a case, the expectation value of the correlated
fluctuation δb†δb is also divergent around the critical point
G = Gc1 [see Fig. 4(b)].
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FIG. 4. (a) The scaled steady-state magnon number 〈b†b〉/(γ /K )
and (b) the expectation value 〈δb†δb〉 versus the reduced drive
strength G/κ in the case of �m/�c = 0.3, where BP (PSBP) denotes
the parity-symmetry-broken phase in the bistable region. In (a), the
(black) solid curve corresponds to the analytical results in Eq. (9),
and the (red) dashed curve corresponds to the numerical results
obtained using Eq. (17) with 0/κ

√
γ /K = 2, κτ = 10, and the

initial conditions 〈a〉t=0/
√

γ /K = 〈b〉t=0/
√

γ /K = 0. Other param-
eters are the same as in Fig. 2(a).

Also, in Figs. 3(a) and 4(a), we numerically simulate
the QPT behaviors of the system (the red dashed curves),
which agree well with the analytical results (the black solid
curves). When �m/�c > ζ , the numerical results related
to the second-order QPT in Fig. 3(a) can be easily ob-
tained by solving Eq. (7), where the initial conditions are
slightly deviated from 〈a〉t=0/

√
γ /K = 〈b〉t=0/

√
γ /K = 0.

Different from the case of �m/�c > ζ , when �m/�c < ζ ,
the steady-state magnon occupation depends on the initial
conditions in the bistable phase [see Fig. 2(d)]. To engi-
neer the first-order QPT in the experiment, one can use an
auxiliary microwave pulse with frequency ωd/2 and dura-
tion τ to drive the cavity. This corresponds to adding the
drive term (t )(a† + a) to the total Hamiltonian in Eq. (4),
where the Rabi frequency (t ) = �(τ − t )0 cos[πt/(2τ )]
describes the shape of the pulse, 0 is the Rabi frequency
at t = 0, and �(τ − t ) is the Heaviside function. When
including the effect of the auxiliary microwave pulse, the
dynamical equations of the expectation values 〈a〉 and 〈b〉

FIG. 5. Time evolution of the scaled magnon number
〈b†b〉/(γ /K ) in the (a) parity-symmetric phase with G/κ = 1.8 and
(b) bistable phase with G/κ = 2.3, where the (black) solid and (red)
dashed curves correspond to the numerical results obtained using
Eqs. (7) and (17), respectively. Other parameters are the same as in
Fig. 4(a).

in Eq. (7) becomes

〈ȧ〉 = −i(�c − iκ )〈a〉 − ig〈b〉 − iG〈a†〉 − i(t ),

〈ḃ〉 = −i(�m + K〈b†〉〈b〉 − iγ )〈b〉 − ig〈a〉. (17)

Note that in the region t > τ , Eq. (17) is reduced to Eq. (7)
due to (t ) = 0. With appropriate values of the parameters
0 and τ , the system evolves from the initial conditions
〈a〉t=0/

√
γ /K = 〈b〉t=0/

√
γ /K = 0 to the parity-symmetry-

broken phase instead of the parity-symmetric phase in the
bistable region (see Fig. 5). By solving Eq. (17), we ob-
tain the numerical results of the first-order QPT in Fig. 4(a)
(the red dashed curves).

IV. DISCUSSIONS AND CONCLUSIONS

For a practical implementation of the nonequilibrium QPT,
we can design a cavity magnonic system consisting of a small
YIG sphere and a coplanar waveguide resonator (CWR). In
the YIG sphere, the nonlinear interaction among magnons
resulting from the magnetocrystalline anisotropy can be
modeled by the Kerr-nonlinearity Hamiltonian [39–41]. Ex-
perimentally, strong coupling of magnons to a given mode of
the CWR has been demonstrated at tens of milli-Kelvin tem-
peratures [58–61]. With the magnon Kerr effect considered,
the cavity magnonic system can be equivalently described as
a harmonic oscillator linearly coupled to a Kerr-nonlinearity
oscillator. Typically, the decay rate κ of the CWR mode,
the damping rate γ of the magnon mode, and the coupling
strength g between the magnon and CWR modes can be taken
as [59] κ/2π = 2.04 MHz, γ /2π = 1.49 MHz, and g/2π =
8.17 MHz, respectively. In the parity-symmetry-broken phase,
the magnon occupation is of the order γ /K ∼ 1016 [see
Eq. (9)], which is much smaller than the number of spins in
the YIG sphere (∼1019) [39–41]. Therefore, only low-lying
excitations occur for the spin ensemble in the YIG sphere.
With the decay rate κ/2π = 2.04 MHz, the corresponding
critical strength of the parametric drive is G/2π ≈ 4.1 MHz
[cf. Figs. 3(a) and 4(a)]. The parametric drive on the CWR
can be provided by a flux-driven Josephson parametric am-
plifier with a pump field at frequency ωd [62–64], where
the amplitude G of the parametric drive can be controlled
(ranging from 0 to 6 MHz) by the strength of the flux
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drive [65]. Because the flux-driven Josephson parametric
amplifier is spatially separated from the YIG sphere, the para-
metric drive on the magnon mode can be screened. When
including the dissipations of the system and the parametric
drive, the hybrid system can be described by the effective
non-Hermitian Hamiltonian in Eq. (6). Then, with appropriate
parameters, the designed cavity magnonic system can display
the parity-symmetry-breaking QPT by varying the strength G
of the parametric drive [see Figs. 3(a) and 4(a)].

For an ideal flux-driven Josephson parametric amplifier,
there is no coherent drive on the cavity [62–64]. However,
in the experiment, the flux-driven Josephson parametric am-
plifier is not so ideal that an additional coherent drive on the
cavity may occur, except for the generated parametric drive
on the cavity. This corresponds to adding εa(a†e−iωd t + aeiωd t )
to the drive Hamiltonian Hd in Eq. (3), where εa is the Rabi
frequency related to the additional coherent drive. Here this
additional coherent drive is directly on the cavity, instead of
the YIG sphere, so its effect on the magnon mode can be
ignored.

When including this additional coherent drive on the cav-
ity, it follows from Eqs. (1)–(3) that the total Hamiltonian of
the system becomes

H = ωca†a + ωmb†b + K

2
b†b†bb + g(a†b + ab†)

+ G

2
(a†a†e−iωd t + aaeiωd t ) + εa(a†e−iωd t + aeiωd t ).

(18)

Transforming H into the interaction picture via the unitary
transformation R = exp(−iωca†at − iωmb†bt ), we can con-
vert the total Hamiltonian H to

H ′ = R†HR − iR† ∂R

∂t

= K

2
b†b†bb + g[a†be−i(ωm−ωc )t + ab†ei(ωm−ωc )t ]

+ G

2
[a†a†e−i(ωd −2ωc )t + aaei(ωd −2ωc )t ]

+ εa[a†e−i(ωd −ωc )t + aei(ωd −ωc )t ]. (19)

To engineer the parity-symmetry-breaking QPT, the param-
eters of the system are chosen to satisfy ωd ≈ 2ωc ≈ 2ωm

in our scheme. Under this condition, the two-photon pro-
cesses related to a†a† and aa dominate, owing to the
designed match of the drive-field frequency ωd with the two-
photon energy (i.e., ωd ≈ 2ωc). In contrast, εaa†e−i(ωd −ωc )t

and εaaei(ωd −ωc )t then become fast-oscillating terms, due to
the large frequency detuning ωd − ωc ≈ ωc. According to the
rotating-wave approximation [52], these fast-oscillating terms
can be neglected, even if εa is comparable to G.

Furthermore, in case these fast-oscillating terms cannot
be fully ignored, one can also introduce another coherent
drive on the cavity with the same frequency ωd but a dif-
ferent phase �φ, ε′

a[a†e−i(ωd t+�φ) + aei(ωd t+�φ)], where ε′
a

is the corresponding Rabi frequency. Experimentally, it can
be readily implemented by tuning ε′

a and �φ via the drive
power and a phase shifter, respectively [27]. When ε′

a and
�φ are tuned to have ε′

a = εa and �φ = π , this drive field

then cancels the fast-oscillating terms in Eq. (19) [i.e., cancels
εa(a†e−iωd t + aeiωd t ) in Eq. (18)], leaving only the parametric
drive on the cavity.

In our work, we focus on the YIG sphere, which is widely
used in experiments on cavity magnonics [24,25]. Compared
with YIG samples of other geometric shapes, the YIG sphere
has two advantages. First, the spherical YIG sample avoids
the effect of the magnetic dipole-dipole interaction [46,47],
since the part of the Hamiltonian contributed by the magnetic
dipole-dipole interaction becomes constant [39]. As shown in
Ref. [41], the Kerr-nonlinearity Hamiltonian in Eq. (2) is de-
rived for a YIG sphere, which describes the magnon-magnon
interaction. When the YIG sample is not spherical, the results
deviate, because the contribution of the dipole-dipole inter-
action to the Hamiltonian is not constant now. Second, the
magnon mode in the YIG sphere has a smaller damping rate
than the nonspherical YIG sample [58,59]. This means that a
stronger parametric drive is needed to realize the QPT for a
nonspherical YIG sample.

To summarize, we have proposed an experimentally fea-
sible scheme to engineer the nonequilibrium QPT in a
parametrically driven cavity magnonic system containing the
spin ensemble in a ferrimagnetic YIG sphere. By investi-
gating its steady state in the presence of decoherence, we
obtain the steady-state phase diagram of the system. With
appropriate parameters, it is found that the cavity magnonic
system can undergo both first- and second-order QPTs by
just varying the drive-field strength. Experimentally, the CWR
with a parametric drive has been achieved [62–64], and the
strong coupling between magnon and CWR modes is also
demonstrated [58–61]. Thus, our scheme is implementable
in a quantum circuit consisting of a YIG sphere and a CWR
using the parametric drive.
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APPENDIX A: MASTER EQUATION
OF THE CAVITY MAGNONIC SYSTEM

In the presence of decoherence, the evolution of the system
can be expressed using the Lindblad master equation [52]:

ρ̇ = i[ρ, Htot] + κr

2
D[a]ρ + κϕD[a†a]ρ

+ γr

2
D[b]ρ + γϕD[b†b]ρ, (A1)

where the total Hamiltonian Htot of the system is given in
Eq. (4), and the Lindblad dissipators are

D[O]ρ = (2OρO† − O†Oρ − ρO†O), (A2)
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with O = a, a†a, b, and b†b. In Eq. (A1), κr = 1/T (a)
r

(γr = 1/T (b)
r ) is the relaxation rate of the cavity (magnon)

mode, with T (a)
r (T (b)

r ) being the relaxation time, and κϕ =
1/T (a)

ϕ (γϕ = 1/T (b)
ϕ ) is the pure dephasing rate of the cavity

(magnon) mode, with T (a)
ϕ (T (b)

ϕ ) being the dephasing time.
With the master equation in Eq. (A1), we can obtain the

equation of motion for the expectation value 〈O〉 via the rela-
tion 〈Ȯ〉 = Tr(ρ̇O),

〈ȧ〉 = −i(�c − iκ )〈a〉 − ig〈b〉 − iG〈a†〉,
〈ḃ〉 = −i(�m − iγ )〈b〉 − iK〈b†bb〉 − ig〈a〉, (A3)

and

d

dt
〈a†a〉 = −κr〈a†a〉− ig(〈a†b〉 − 〈ab†〉) − iG(〈a†a†〉−〈aa〉),

d

dt
〈b†b〉 = −γr〈b†b〉 − ig(〈ab†〉 − 〈a†b〉), (A4)

where κ = 1
2κr + κϕ is the decoherence rate of the cav-

ity mode, and γ = 1
2γr + γϕ is the decoherence rate of the

magnon mode [66]. This is similar to the decoherence rate of
a two-level system (see, e.g., Ref. [67]). Under the mean-field
approximation 〈b†bb〉 ≈ 〈b†〉〈b〉〈b〉, Eq. (A3) is reduced to
Eq. (7) in the main text.

As discussed in Sec. IV, the proposed QPT can be im-
plemented in a CWR embedded with a YIG sphere. For the
CWR mode, its relaxation rate is 30 times larger than the
pure dephasing rate (i.e., κr/κϕ ≈ 30) at tens of milli-Kelvin
temperatures [66]. When the temperatures range from 0 to
1 K, the relaxation of the magnon mode in YIG dominates
(γr ∼ 1 MHz) and the pure dephasing can be ignored [15].
Thus, at low temperatures, we can use κ = 1

2κr + κϕ ≈ 1
2κr

and γ = 1
2γr + γϕ ≈ 1

2γr in Eq. (A3).

APPENDIX B: CRITICAL EXPONENT
OF THE MEAN MAGNON NUMBER

Around the critical point G = Gc2 given in Eq. (12), the
variation of the mean magnon number is

δn = 〈b†b〉 − 〈b†b〉∣∣G=Gc2

= 1

K
[−�′

m +
√

η2G2 − γ ′2]

= 1

K
[−(�m − η�c) +

√
η2G2 − (γ + ηκ )2]. (B1)

When keeping terms up to the first order ∼G − Gc2, η =
g2/(�2

c + κ2 − G2) can be approximatively expressed as

η = g2

�2
c + κ2 − [Gc2 + (G − Gc2)]2

≈ ηc + λ1(G − Gc2), (B2)

where ηc = g2/(�2
c + κ2 − G2

c2) and λ1 = 2η2
c Gc2/g2. With

the relation in the above equation, we obtain

�m − η�c ≈ �m − ηc�c − λ1�c(G − Gc2), (B3)
√

η2G2 − (γ + ηκ )2

≈
√

η2
c G2

c2 − (γ + ηcκ )2 + λ2(G − Gc2), (B4)

where

λ2 = ηcGc2(ηc + λ1Gc2) − λ1κ (γ + ηcκ )√
η2

c G2
c2 − (γ + ηcκ )2

. (B5)

Substituting the expressions in Eqs. (B3) and (B4) into
Eq. (B1), we obtain

lim
G→Gc2

δn = λ1�c + λ2

K
(G − Gc2) ∼ (G − Gc2)ν, (B6)

which has the critical exponent ν = 1.

APPENDIX C: DYNAMICS OF THE CORRELATED FLUCTUATIONS

From Eq. (8), the equations of motion for the correlated fluctuations are obtained as

d

dt
(δaδb†) = −i[(�c − �̃m) − i(κ + γ )]δaδb† − ig(δb†δb − δa†δa)

− iGδa†δb† + iF ∗δaδb + (
√

2κainδb† +
√

2γ δab†
in ),

d

dt
(δaδb) = −i[(�c + �̃m) − i(κ + γ )]δaδb − ig(δaδa + δbδb)

− iGδa†δb − iFδaδb† + (
√

2κainδb +
√

2γ δabin ),

d

dt
(δaδa) = −2i(�c − iκ )δaδa − 2igδaδb − iG(2δa†δa + 1) +

√
2κ (ainδa + δaain ),

d

dt
(δbδb) = −2i(�̃m − iγ )δbδb − 2igδaδb − iF (2δb†δb + 1) +

√
2γ (binδb + δbbin ),

d

dt
(δa†δa) = −2κδa†δa − ig(δa†δb − δaδb†) − iGδa†δa† + iGδaδa +

√
2κ (δa†ain + a†

inδa),

d

dt
(δb†δb) = −2γ δb†δb − ig(δaδb† − δa†δb) − iFδb†δb† + iF ∗δbδb +

√
2γ (δb†bin + b†

inδb), (C1)
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where �̃m = �m + 2K〈b†〉〈b〉 and F = K〈b〉2. Then, it follows from Eq. (C1) that the expectation values A1 ≡ 〈δaδb†〉, A2 ≡
〈δaδb〉, A3 ≡ 〈δaδa〉, A4 ≡ 〈δbδb〉, A5 ≡ 〈δa†δa〉 and A6 ≡ 〈δb†δb〉 satisfy

Ȧ1 = −i[(�c − �̃m) − i(κ + γ )]A1 − ig(A6 − A5) − iGA∗
2 + iF ∗A2,

Ȧ2 = −i[(�c + �̃m) − i(κ + γ )]A2 − ig(A3 + A4) − iGA∗
1 − iFA1,

Ȧ3 = −2i(�c − iκ )A3 − 2igA2 − iG(2A5 + 1),

Ȧ4 = −2i(�̃m − iγ )A4 − 2igA2 − iF (2A6 + 1),

Ȧ5 = −2κA5 − ig(A∗
1 − A1) − iGA∗

3 + iGA3,

Ȧ6 = −2γ A6 − ig(A1 − A∗
1 ) − iFA∗

4 + iF ∗A4. (C2)

At the steady state, Ȧ j = 0, j = 1 to 6. We can investigate the expectation values of the correlated fluctuations δa†δa and δb†δb
for both cavity photons and magnons (i.e., A5 and A6) by numerically solving Eq. (C2).

[1] Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum
circuits: Superconducting circuits interacting with other quan-
tum systems, Rev. Mod. Phys. 85, 623 (2013).

[2] P. Forn-Díaz, L. Lamata, E. Rico, J. Kono, and E. Solano,
Ultrastrong coupling regimes of light-matter interaction,
Rev. Mod. Phys. 91, 025005 (2019).

[3] A. F. Kockum, A. Miranowicz, S. D. Liberato, S. Savasta, and F.
Nori, Ultrastrong coupling between light and matter, Nat. Rev.
Phys. 1, 19 (2019).

[4] R. H. Dicke, Coherence in spontaneous radiation processes,
Phys. Rev. 93, 99 (1954).

[5] C. Emary and T. Brandes, Chaos and the quantum phase
transition in the Dicke model, Phys. Rev. E 67, 066203
(2003).

[6] C. Emary and T. Brandes, Quantum Chaos Triggered by Pre-
cursors of a Quantum Phase Transition: The Dicke Model,
Phys. Rev. Lett. 90, 044101 (2003).

[7] K. Hepp and E. H. Lieb, On the superradiant phase transition
for molecules in a quantized radiation field: The Dicke maser
model, Ann. Phys. (NY) 76, 360 (1973).

[8] Y. K. Wang and F. T. Hioe, Phase transition in the dicke model
of superradiance, Phys. Rev. A 7, 831 (1973).

[9] F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael,
Proposed realization of the Dicke-model quantum phase transi-
tion in an optical cavity QED system, Phys. Rev. A 75, 013804
(2007).

[10] D. Nagy, G. Kónya, G. Szirmai, and P. Domokos, Dicke-Model
Phase Transition in the Quantum Motion of a Bose-Einstein
Condensate in an Optical Cavity, Phys. Rev. Lett. 104, 130401
(2010).

[11] G. Q. Zhang, Z. Chen, and J. Q. You, Experimentally accessible
quantum phase transition in a non-Hermitian Tavis-Cummings
model engineered with two drive fields, Phys. Rev. A 102,
032202 (2020).

[12] C. J. Zhu, L. L. Ping, Y. P. Yang, and G. S. Agarwal, Squeezed
Light Induced Symmetry Breaking Superradiant Phase Transi-
tion, Phys. Rev. Lett. 124, 073602 (2020).

[13] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Dicke
quantum phase transition with a superfluid gas in an optical
cavity, Nature (London) 464, 1301 (2010).

[14] M. P. Baden, K. J. Arnold, A. L. Grimsmo, S. Parkins, and
M. D. Barrett, Realization of the Dicke Model Using Cavity-
Assisted Raman Transitions, Phys. Rev. Lett. 113, 020408
(2014).

[15] Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami,
and Y. Nakamura, Hybridizing Ferromagnetic Magnons and
Microwave Photons in the Quantum Limit, Phys. Rev. Lett. 113,
083603 (2014).

[16] X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, Strongly Cou-
pled Magnons and Cavity Microwave Photons, Phys. Rev. Lett.
113, 156401 (2014).

[17] Ö. O. Soykal and M. E. Flatté, Strong Field Interactions be-
tween a Nanomagnet and a Photonic Cavity, Phys. Rev. Lett.
104, 077202 (2010).

[18] D. Zhang, X. M. Wang, T. F. Li, X. Q. Luo, W. Wu, F. Nori, and
J. Q. You, Cavity quantum electrodynamics with ferromagnetic
magnons in a small yttrium-iron-garnet sphere, npj Quantum
Inf. 1, 15014 (2015).

[19] Y. Cao, P. Yan, H. Huebl, S. T. B. Goennenwein, and G. E. W.
Bauer, Exchange magnon-polaritons in microwave cavities,
Phys. Rev. B 91, 094423 (2015).

[20] L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C.-M. Hu,
Spin Pumping in Electrodynamically Coupled Magnon-Photon
Systems, Phys. Rev. Lett. 114, 227201 (2015).

[21] Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki,
K. Usami, and Y. Nakamura, Coherent coupling between a
ferromagnetic magnon and a superconducting qubit, Science
349, 405 (2015).

[22] J. Li, S.-Y. Zhu, and G. S. Agarwal, Magnon-Photon-Phonon
Entanglement in Cavity Magnomechanics, Phys. Rev. Lett. 121,
203601 (2018).

[23] J. Shim, S.-J. Kim, S. K. Kim, and K.-J. Lee, Enhanced
Magnon-Photon Coupling at the Angular Momentum Com-
pensation Point of Ferrimagnets, Phys. Rev. Lett. 125, 027205
(2020).

[24] D. Lachance-Quirion, Y. Tabuchi, A. Gloppe, K. Usami, and
Y. Nakamura, Hybrid quantum systems based on magnonics,
Appl. Phys. Express 12, 070101 (2019).

[25] B. Z. Rameshti, S. V. Kusminskiy, J. A. Haigh, K. Usami,
D. Lachance-Quirion, Y. Nakamura, C. M. Hu, H. X. Tang,
G. E. W. Bauer, and Y. M. Blanter, Cavity magnonics,
arXiv:2106.09312.

[26] X. Zhang, C.-L. Zou, N. Zhu, F. Marquardt, L. Jiang, and
H. X. Tang, Magnon dark modes and gradient memory,
Nat. Commun. 6, 8914 (2015).

[27] D. Zhang, X. Q. Luo, Y. P. Wang, T. F. Li, and J. Q. You, Ob-
servation of the exceptional point in cavity magnon-polaritons,
Nat. Commun. 8, 1368 (2017).

064423-8

https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1103/RevModPhys.91.025005
https://doi.org/10.1038/s42254-018-0006-2
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRevE.67.066203
https://doi.org/10.1103/PhysRevLett.90.044101
https://doi.org/10.1016/0003-4916(73)90039-0
https://doi.org/10.1103/PhysRevA.7.831
https://doi.org/10.1103/PhysRevA.75.013804
https://doi.org/10.1103/PhysRevLett.104.130401
https://doi.org/10.1103/PhysRevA.102.032202
https://doi.org/10.1103/PhysRevLett.124.073602
https://doi.org/10.1038/nature09009
https://doi.org/10.1103/PhysRevLett.113.020408
https://doi.org/10.1103/PhysRevLett.113.083603
https://doi.org/10.1103/PhysRevLett.113.156401
https://doi.org/10.1103/PhysRevLett.104.077202
https://doi.org/10.1038/npjqi.2015.14
https://doi.org/10.1103/PhysRevB.91.094423
https://doi.org/10.1103/PhysRevLett.114.227201
https://doi.org/10.1126/science.aaa3693
https://doi.org/10.1103/PhysRevLett.121.203601
https://doi.org/10.1103/PhysRevLett.125.027205
https://doi.org/10.7567/1882-0786/ab248d
http://arxiv.org/abs/arXiv:2106.09312
https://doi.org/10.1038/ncomms9914
https://doi.org/10.1038/s41467-017-01634-w


PARITY-SYMMETRY-BREAKING QUANTUM PHASE … PHYSICAL REVIEW B 104, 064423 (2021)

[28] X. Zhang, K. Ding, X. Zhou, J. Xu, and D. Jin, Experimental
Observation of an Exceptional Surface in Synthetic Dimen-
sions with Magnon Polaritons, Phys. Rev. Lett. 123, 237202
(2019).

[29] J. Zhao, Y. Liu, L. Wu, C. K. Duan, Y. Liu, and J. Du,
Observation of Anti-PT -Symmetry Phase Transition in the
Magnon-Cavity-Magnon Coupled System, Phys. Rev. Appl. 13,
014053 (2020).

[30] G. Q. Zhang and J. Q. You, Higher-order exceptional point in a
cavity magnonics system, Phys. Rev. B 99, 054404 (2019).

[31] Y. Cao and P. Yan, Exceptional magnetic sensitivity of PT -
symmetric cavity magnon polaritons, Phys. Rev. B 99, 214415
(2019).

[32] M. Harder, Y. Yang, B. M. Yao, C. H. Yu, J. W. Rao, Y. S.
Gui, R. L. Stamps, and C. M. Hu, Level Attraction Due to
Dissipative Magnon-Photon Coupling, Phys. Rev. Lett. 121,
137203 (2018).

[33] V. L. Grigoryan, K. Shen, and K. Xia, Synchronized spin-
photon coupling in a microwave cavity, Phys. Rev. B. 98,
024406 (2018).

[34] Y. P. Wang, J. W. Rao, Y. Yang, P. C. Xu, Y. S. Gui, B. M. Yao,
J. Q. You, and C.-M. Hu, Nonreciprocity and Unidirectional
Invisibility in Cavity Magnonics, Phys. Rev. Lett. 123, 127202
(2019).

[35] W. Yu, J. Wang, H. Y. Yuan, and J. Xiao, Prediction of Attractive
Level Crossing via a Dissipative Mode, Phys. Rev. Lett. 123,
227201 (2019).

[36] J. W. Rao, P. C. Xu, Y. S. Gui, Y. P. Wang, Y. Yang, B. Yao, J.
Dietrich, G. E. Bridges, X. L. Fan, D. S. Xue, and C. M. Hu,
Interferometric control of magnon-induced nearly perfect ab-
sorption in cavity magnonics, Nat. Commun. 12, 1933 (2021).

[37] H. Y. Yuan, S. Zheng, Q. Y. He, J. Xiao, and R. A. Duine, Un-
conventional magnon excitation by off-resonant microwaves,
Phys. Rev. B 103, 134409 (2021).

[38] Z. B. Yang, X. D. Liu, X. Y. Yin, Y. Ming, H. Y. Liu, and
R. C. Yang, Controlling Stationary One-Way Quantum Steering
in Cavity Magnonics, Phys. Rev. Appl. 15, 024042 (2021).

[39] G. Q. Zhang, Y. P. Wang, and J. Q. You, Theory of the
magnon Kerr effect in cavity magnonics, Sci. China-Phys.
Mech. Astron. 62, 987511 (2019).

[40] Y. P. Wang, G. Q. Zhang, D. Zhang, X. Q. Luo, W. Xiong, S. P.
Wang, T. F. Li, C. M. Hu, and J. Q. You, Magnon Kerr effect
in a strongly coupled cavity-magnon system, Phys. Rev. B 94,
224410 (2016).

[41] Y. P. Wang, G. Q. Zhang, D. Zhang, T. F. Li, C. M. Hu, and J. Q.
You, Bistability of Cavity Magnon-Polaritons, Phys. Rev. Lett.
120, 057202 (2018).

[42] J. M. P. Nair, Z. Zhang, M. O. Scully, and G. S. Agarwal,
Nonlinear spin currents, Phys. Rev. B 102, 104415 (2020).

[43] M. X. Bi, X. H. Yan, Y. Zhang, and Y. Xiao, Tristability of
cavity magnon polaritons, Phys. Rev. B 103, 104411 (2021).

[44] C. Kong, H. Xiong, and Y. Wu, Magnon-Induced Nonreciproc-
ity Based on the Magnon Kerr Effect, Phys. Rev. Appl. 12,
034001 (2019).

[45] Z. Zhang, M. O. Scully, and G. S. Agarwal, Quantum en-
tanglement between two magnon modes via Kerr nonlinearity
driven far from equilibrium, Phys. Rev. Res. 1, 023021
(2019).

[46] A. G. Gurevich and G. A. Melkov, Magnetization Oscillations
and Waves (CRC Press, Boca Raton, FL, 1996).

[47] D. D. Stancil and A. Prabhakar, Spin Waves (Springer, Berlin,
2009).

[48] S. Sachdev, Quantum Phase Transitions (Cambridge University
Press, Cambridge, 1999).

[49] N. Lambert, C. Emary, and T. Brandes, Entanglement and the
Phase Transition in Single-Mode Superradiance, Phys. Rev.
Lett. 92, 073602 (2004).

[50] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Entanglement
in Quantum Critical Phenomena, Phys. Rev. Lett. 90, 227902
(2003).

[51] T. J. Osborne and M. A. Nielsen, Entanglement in a simple
quantum phase transition, Phys. Rev. A 66, 032110 (2002).

[52] D. F. Walls and G. J. Milburn, Quantum Optics (Springer,
Berlin, 2007).

[53] P. Hyde, B. M. Yao, Y. S. Gui, G. Q. Zhang, J. Q. You, and C. M.
Hu, Direct measurement of foldover in cavity magnon-polariton
systems, Phys. Rev. B 98, 174423 (2018).

[54] X. H. H. Zhang and H. U. Baranger, Driven-dissipative phase
transition in a Kerr oscillator: From semiclassical PT symme-
try to quantum fluctuations, Phys. Rev. A 103, 033711 (2021).

[55] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and
Products (Academic Press, Orlando, 1980).

[56] D. Nagy, G. Szirmai, and P. Domokos, Critical exponent of a
quantum-noise-driven phase transition: The open-system Dicke
model, Phys. Rev. A 84, 043637 (2011).

[57] S. B. Zheng, Dicke-like quantum phase transition and vacuum
entanglement with two coupled atomic ensembles, Phys. Rev.
A 84, 033817 (2011).

[58] H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein,
A. Marx, R. Gross, and S. T. B. Goennenwein, High Coopera-
tivity in Coupled Microwave Resonator Ferrimagnetic Insulator
Hybrids, Phys. Rev. Lett. 111, 127003 (2013).

[59] R. G. E. Morris, A. F. van Loo, S. Kosen, and A. D.
Karenowska, Strong coupling of magnons in a YIG sphere to
photons in a planar superconducting resonator in the quantum
limit, Sci. Rep. 7, 11511 (2017).

[60] J. T. Hou and L. Liu, Strong Coupling between Microwave Pho-
tons and Nanomagnet Magnons, Phys. Rev. Lett. 123, 107702
(2019).

[61] Y. Li, T. Polakovic, Y.-L. Wang, J. Xu, S. Lendinez, Z. Zhang,
J. Ding, T. Khaire, H. Saglam, R. Divan, J. Pearson, W. K.
Kwok, Z. Xiao, V. Novosad, A. Hoffmann, and W. Zhang,
Strong Coupling between Magnons and Microwave Photons
in On-Chip Ferromagnet-Superconductor Thin-Film Devices,
Phys. Rev. Lett. 123, 107701 (2019).

[62] T. Yamamoto, K. Inomata, M. Watanabe, K. Matsuba, T.
Miyazaki, W. D. Oliver, Y. Nakamura, and J. S. Tsai, Flux-
driven Josephson parametric amplifier, Appl. Phys. Lett. 93,
042510 (2008).

[63] L. Zhong, E. P. Menzel, R. D. Candia, P. Eder, M. Ihmig, A.
Baust, M. Haeberlein, E. Hoffmann, K. Inomata, T. Yamamoto,
Y. Nakamura, E. Solano, F. Deppe, A. Marx, and R. Gross,
Squeezing with a flux-driven Josephson parametric amplifer,
New J. Phys. 15, 125013 (2013).

[64] Z. R. Lin, K. Inomata, W. D. Oliver, K. Koshino, Y. Nakamura,
J. S. Tsai, and T. Yamamoto, Single-shot readout of a super-
conducting flux qubit with a flux-driven Josephson parametric
amplifier, Appl. Phys. Lett. 103, 132602 (2013).

[65] P. Krantz, A. Bengtsson, M. Simoen, S. Gustavsson, V.
Shumeiko, W. D. Oliver, C. M. Wilson, P. Delsing, and

064423-9

https://doi.org/10.1103/PhysRevLett.123.237202
https://doi.org/10.1103/PhysRevApplied.13.014053
https://doi.org/10.1103/PhysRevB.99.054404
https://doi.org/10.1103/PhysRevB.99.214415
https://doi.org/10.1103/PhysRevLett.121.137203
https://doi.org/10.1103/PhysRevB.98.024406
https://doi.org/10.1103/PhysRevLett.123.127202
https://doi.org/10.1103/PhysRevLett.123.227201
https://doi.org/10.1038/s41467-021-22171-7
https://doi.org/10.1103/PhysRevB.103.134409
https://doi.org/10.1103/PhysRevApplied.15.024042
https://doi.org/10.1007/s11433-018-9344-8
https://doi.org/10.1103/PhysRevB.94.224410
https://doi.org/10.1103/PhysRevLett.120.057202
https://doi.org/10.1103/PhysRevB.102.104415
https://doi.org/10.1103/PhysRevB.103.104411
https://doi.org/10.1103/PhysRevApplied.12.034001
https://doi.org/10.1103/PhysRevResearch.1.023021
https://doi.org/10.1103/PhysRevLett.92.073602
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1103/PhysRevA.66.032110
https://doi.org/10.1103/PhysRevB.98.174423
https://doi.org/10.1103/PhysRevA.103.033711
https://doi.org/10.1103/PhysRevA.84.043637
https://doi.org/10.1103/PhysRevA.84.033817
https://doi.org/10.1103/PhysRevLett.111.127003
https://doi.org/10.1038/s41598-017-11835-4
https://doi.org/10.1103/PhysRevLett.123.107702
https://doi.org/10.1103/PhysRevLett.123.107701
https://doi.org/10.1063/1.2964182
https://doi.org/10.1088/1367-2630/15/12/125013
https://doi.org/10.1063/1.4821822


ZHANG, CHEN, XIONG, LAM, AND YOU PHYSICAL REVIEW B 104, 064423 (2021)

J. Bylander, Single-shot read-out of a superconducting
qubit using a Josephson parametric oscillator, Nat. Commun.
7, 11417 (2016).

[66] H. Wang, M. Hofheinz, M. Ansmann, R. C. Bialczak, E.
Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides,

J. Wenner, A. N. Cleland, and J. M. Martinis, Decoherence Dy-
namics of Complex Photon States in a Superconducting Circuit,
Phys. Rev. Lett. 103, 200404 (2009).

[67] J. Q. You, X. Hu, S. Ashhab, and F. Nori, Low-decoherence flux
qubit, Phys. Rev. B 75, 140515(R) (2007).

064423-10

https://doi.org/10.1038/ncomms11417
https://doi.org/10.1103/PhysRevLett.103.200404
https://doi.org/10.1103/PhysRevB.75.140515

