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Fluctuation-induced ferrimagnetism in sublattice-imbalanced antiferromagnets
with application to SrCu2(BO3)2 under pressure
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We show that a collinear Heisenberg antiferromagnet, whose sublattice symmetry is broken at the Hamiltonian
level, becomes a fluctuation-induced ferrimagnet at any finite temperature T below the Néel temperature TN. We
demonstrate this using a layered variant of a square-lattice J1-J2 model. Linear spin-wave theory is used to deter-
mine the low-temperature behavior of the uniform magnetization, and nonlinear corrections are argued to yield a
temperature-induced qualitative change of the magnon spectrum. We then consider a layered Shastry-Sutherland
model, describing a frustrated arrangement of orthogonal dimers. This model displays an antiferromagnetic
phase for large intradimer couplings. A lattice distortion which breaks the glide symmetry between the two types
of dimers corresponds to broken sublattice symmetry and hence gives rise to ferrimagnetism. Given indications
that such a distortion is present in the material SrCu2(BO3)2 under hydrostatic pressure, we suggest the existence
of a fluctuation-induced ferrimagnetic phase in pressurized SrCu2(BO3)2. We predict a nonmonotonic behavior
of the uniform magnetization as function of temperature.
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I. INTRODUCTION

The field of quantum magnetism harbors a wealth of fas-
cinating phenomena which are driven by fluctuations [1].
These include quantum spin liquids [2,3]—stable states of
matter devoid of symmetry-breaking order, several types of
unconventional quantum phase transitions [4], as well as a
variety of symmetry-breaking states stabilized by fluctuations.
A large class of the latter are described as “order by disorder,”
a mechanism where a subset of states is selected from a
classically degenerate manifold by either quantum or thermal
fluctuations [5]. Order by disorder is prominent in strongly
frustrated magnets, one important example being the easy-
plane pyrochlore antiferromagnet where an ordered state is
chosen from a one-parameter degenerate manifold [6].

Among the various frustrated spin systems, the Shastry-
Sutherland model [7] plays a prominent role. It describes a
planar Heisenberg model of coupled pairs of spins 1/2 with a
particular orthogonal-dimer structure. Its ground-state phase
diagram features a dimer-singlet state, a symmetry-breaking
plaquette-singlet state, and a Néel antiferromagnet as func-
tion of increasing ratio of interdimer to intradimer couplings,
x = J ′/J [8–10]. Very recently, a narrow quantum spin-liquid
phase has been proposed in addition [11]. Local moments
arranged on the Shastry-Sutherland lattice appear in a number
of compounds, the most prominent one being the spin-1/2
Mott insulator SrCu2(BO3)2 [8,12]. Remarkably, hydrostatic
pressure can be used to tune x in SrCu2(BO3)2, and signatures
of magnetic transitions have been detected around 1.8 GPa
[13–19] and 4.5 GPa [14], with various experimental aspects
being under active debate [18,20]. NMR experiments [13]
yield evidence for two distinct Cu sites in the intermediate

phase, suggesting two types of inequivalent dimers. Antiferro-
magnetic (AF) order has been detected by neutron diffraction
in the high-pressure phase [21].

In this paper we discuss the phenomenon of fluctuation-
induced ferrimagnetism in antiferromagnets, and we propose
that SrCu2(BO3)2 at high pressure is in fact a ferrimagnet.
Ferrimagnetism refers to states which display both staggered
and uniform magnetizations, and it commonly occurs in sys-
tems with two different types of magnetic ions with unequal
spin sizes [22]. Here, we identify a distinct mechanism for
ferrimagnetism: In a system with equal-sized spins which
displays Néel antiferromagnetism in the ground state, a uni-
form magnetization is induced at finite temperature solely
by fluctuation effects. More precisely, we show that ther-
mal fluctuations generically produce a finite magnetization
in a Heisenberg antiferromagnet once the Z2 symmetry be-
tween the two sublattices is broken at the Hamiltonian level.
Remarkably, quantum fluctuations do not produce a finite
magnetization at T = 0 due to spin conservation, such that
the uniform magnetization becomes a nonmonotonic function
of temperature, as illustrated in Fig. 1. We exemplify this
in a layered toy model consisting of two interpenetrating
square-lattice ferromagnets, for which we employ spin-wave
theory to calculate the temperature-induced magnetization. In
addition, simple Landau theory is used to analyze the behavior
near the Néel temperature TN. We then consider a layered
version of the Shastry-Sutherland model, as appropriate for
the material SrCu2(BO3)2. We predict the existence of a uni-
form magnetization in its orthorhombic high-pressure phase
and provide a rough estimate for its amplitude.

The remainder of the paper is organized as follows. In
Sec. II we introduce the toy model and demonstrate the
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FIG. 1. Qualitative temperature dependence of the fluctuation-
induced uniform magnetization in sublattice-imbalanced Heisenberg
antiferromagnets, with the critical exponent β = 0.37 [23,24] in
d = 3 dimensions.

phenomenon of fluctuation-induced ferrimagnetism. We also
discuss temperature-induced corrections to spin-wave spec-
trum and link them to general hydrodynamics. Section III is
devoted to the layered Shastry-Sutherland model appropriate
for SrCu2(BO3)2, where we provide quantitative results of rel-
evance for its high-pressure phase. A discussion and outlook
close the paper.

II. FERRIMAGNETISM FROM THERMAL
FLUCTUATIONS: TOY MODEL

In this section we utilize a simple toy model to discuss
the emergence of ferrimagnetism from thermal fluctuations in
antiferromagnets with broken sublattice symmetry. We also
connect the results to general aspects from Landau theory and
hydrodynamics.

A. Model

Our model is constructed from a bipartite square-lattice
Heisenberg model with nearest-neighbor AF coupling J be-
tween spins S, displaying collinear Néel order. The Z2

symmetry between the two sublattices is broken by adding
second-neighbor couplings which are different for the two
sublattices A and B; we label them J ′

a and J ′
b and choose

them to be ferromagnetic in order to stabilize Néel antiferro-
magnetism. Finally, we add a (small) ferromagnetic interlayer
interaction J⊥ such that magnetic order also appears at finite
temperatures. The model is depicted in Fig. 2; its Hamiltonian
reads

H = J
∑
〈i j〉m

�Si,m · �S j,m − J⊥
∑
im

�Si,m · �Si,m+1

− J ′
a

∑
〈〈ii′∈A〉〉

�Si,m · �Si′,m − J ′
b

∑
〈〈 j j′∈B〉〉

�S j,m · �S j′,m, (1)

where i, j denote in-plane lattice coordinates, m is the layer
index, and 〈i j〉 and 〈〈ii′〉〉 denote pairs of first and second
neighbors, respectively. The model displays a global SU(2)
spin symmetry. For J ′

a �= J ′
b it features a two-site unit cell, and

we will set the lattice constant of the underlying square lattice
to unity.

Various limiting cases are of interest. On one hand, for
J 	 J ′

a,b we have an antiferromagnet in which J ′
a �= J ′

b induces
weak sublattice symmetry breaking. On the other hand, J ′

a,b 	
J corresponds to two inequivalent ferromagnets on the two

FIG. 2. Layered square-lattice Heisenberg antiferromagnet with
two inequivalent second-neighbor couplings J ′

a (green) and J ′
b (red).

Thermal fluctuations induce a finite uniform magnetization for 0 <

T < TN once J ′
a �= J ′

b.

sublattices which are weakly coupled by J such that global
collinear AF order emerges.

For purposes of illustration, we will also discuss the model
with unequal spin sizes on the two sublattices, i.e., spins S and
ηS on sublattices A and B, respectively. For η �= 1, this then
corresponds to the standard setting of a ferrimagnet. Unless
noted otherwise, η = 1 is assumed below.

We note that a ferromagnetic interlayer coupling is cru-
cial for the broken sublattice symmetry: If, instead, J⊥ were
antiferromagnetic, the long-range order would feature a two-
layer periodicity, with J ′

a (as well as J ′
b) acting on different

sublattices in adjacent layers, such that, globally, the sublattice
symmetry would be unbroken.

B. Ground-state antiferromagnetism

In the classical limit, S → ∞, the ground state of the model
(1) is obviously a two-sublattice collinear antiferromagnet,
which has zero total magnetization M and displays a global
U(1) symmetry, as does the Hamiltonian. This shared symme-
try implies that all quantum fluctuation processes occurring at
finite S on top of the collinear state conserve the longitudinal
component of M. As a result, the magnetization remains zero
at any order of a 1/S expansion, as will be demonstrated
explicitly below. In fact, this argument holds beyond the semi-
classical limit: For infinitesimal J the ground state consists of
two saturated ferromagnets whose magnetizations are oppo-
site, resulting in M = 0. Since fluctuation processes on top of
this state arise from J only, M remains zero at any order in
perturbation theory in J/J ′ for all S. From this we conclude
that there is a stable AF quantum ground state which has zero
total magnetization, protected by U(1) symmetry, despite the
broken sublattice symmetry.

We note that these arguments do not exclude the existence
of phase transitions to other phases with nonzero mtot which
might exist for finite S, strongly broken sublattice symmetry,
and/or J, J ′ of similar magnitude. However, for the toy model
at hand such phases are not expected as long as the couplings
J ′

a,b remain ferromagnetic.
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C. Spin-wave spectrum at T = 0

The broken sublattice symmetry has influence on the
spin-wave spectrum. Since the ground state is a collinear
antiferromagnet, we expect two Goldstone modes which are
degenerate and linearly dispersing in the long-wavelength
limit. This is confirmed by an explicit spin-wave calculation
using the standard Holstein-Primakoff technique. The model
features a two-site magnetic unit cell, such that all results
can be obtained analytically; for details, see Appendix A.
At leading order in 1/S, i.e., by linear spin-wave theory, we
obtain the dispersion of the two spin-wave modes as

ω�k± = S
(√

P2
�k − Q2

�k ± R�k
)
, (2)

with

P�k = 2(J ′
a + ηJ ′

b)ξ�k + (η + 1)[2J + J⊥(1 − cos kz )],

Q�k = 4η1/2Jγ�k,

R�k = 2(J ′
a − ηJ ′

b)ξ�k + (η − 1)[2J − J⊥(1 − cos kz )],

ξ�k = 1 − cos kx cos ky,

γ�k = (cos kx + cos ky)/2. (3)

For η = 1 we find two modes which are degenerate for J ′
a =

J ′
b, but nondegenerate otherwise, i.e., the spectrum is split

by broken sublattice symmetry. However, while the modes
split at general �k, they have the same linear slope in the
hydrodynamic limit of small |�k|. Denoting the in-plane wave
vector as �k‖ = (kx, ky) and k‖ = |�k‖|, the mode energies can
be expanded as

ω�k± = 2S
√

2J
√

(J ′
a + J ′

b + J )k2
‖ + J⊥k2

z

± S(J ′
a − J ′

b)k2
‖ + O

(
k3) (4)

for J > 0. The mode dispersions are illustrated in Fig. 3 for
parameter sets with (a) J 	J ′

a,b and (b) J �J ′
a,b. Note that ω�k±

is symmetric with respect to rotations around the kz axis up to
O(k2). Moreover, the quadratic term in Eq. (4) vanishes when
J ′

a = J ′
b, i.e., for equivalent sublattices. We also see a vanish-

ing of the quadratic term for k‖ = 0 because the interlayer
coupling J⊥ does not distinguish sublattice A from B. Hence
spin waves with zero in-plane momentum do not experience
the sublattice symmetry breaking.

It is instructive to discuss the limit J ′
a,b 	 J , which, as

mentioned earlier, describes two inequivalent and weakly cou-
pled ferromagnetic subsystems. In this setting, decreasing J
should restrict the linear portion of the spectrum to smaller
and smaller values of k as the Goldstone modes approach the
quadratic shape expected for decoupled ferromagnets. One
can track this transformation by computing the nonzero wave
number k∗(θ ), with tan θ = k‖/kz, at which the magnitudes
of the linear and quadratic terms in Eq. (4) become equal. A
simple calculation yields

k∗(θ ) = 2
√

2J

|J ′
a − J ′

b| sin θ

(
J ′

a + J ′
b + J + J⊥

tan2 θ

)1/2

, (5)

which confirms our expectation: For fixed J ′
a �= J ′

b and J⊥, k∗
indeed decreases with J .

FIG. 3. Spin-wave dispersion for the toy model (1) along a path
in the Brillouin zone and parameters (a) J = 100, J ′

a = 10, J⊥ = 2
and (b) J = 0.1, J ′

a = 10, J⊥ = 1 in units of J ′
b, both with η = 1.

Blue (red) curves correspond to ω�k+ (ω�k−), respectively. The inset
in (b) shows a zoom into the low-energy part of the dispersion near
�k = (0, 0, 0).

Inspecting the Bogoliubov coefficients, explicitly listed in
Eq. (A8), shows that the two modes have different weights on
the two sublattices once J ′

a �= J ′
b. More specifically, for J ′

a > J ′
b

the mode + (−) is primarily located on sublattice A (B).
We note that the low-energy behavior of the mode dis-

persion is qualitatively different for η �= 1, and we will get
back to this in Sec. II F below. This section will also discuss
corrections to the mode dispersion beyond linear spin-wave
theory.

D. Uniform magnetization at low temperatures

Spin-wave theory can be used to calculate fluctuation cor-
rections to the sublattice magnetizations via a 1/S expansion.
The next-to-leading order result, obtained from linear spin-
wave theory (see Appendix A for details), reads

mA = S − m0(T ) + 1

N

∑
�k

(
n�k−

BE − n�k+
BE

)
,

mB = −ηS + m0(T ) + 1

N

∑
�k

(
n�k−

BE − n�k+
BE

)
. (6)

Here, n�k±
BE = 1/(eω�k±/T − 1) is the Bose-Einstein distribution

function where we have set Boltzmann’s constant to unity,
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kB = 1, and

m0(T ) =
∑

�k

F�k
N

(
1 + n�k−

BE + n�k+
BE

) − 1

2
, (7)

with F�k being a temperature-independent coefficient speci-
fied in Eq. (A9). One can see that the quantum corrections,
m0(T = 0), are equal on both sublattices, leading to vanish-
ing total magnetization at T = 0 for η = 1, as announced in
Sec. II B above. The thermal corrections, however, are differ-
ent because the nondegenerate spin-wave modes experience
different thermal occupations. As a result, we obtain a uniform
magnetization per site,

mtot = (1 − η)

2
S + 1

N

∑
�k

(
n�k−

BE − n�k+
BE

)
, (8)

which is finite for nonzero temperature even if the spin sizes
on the two sublattices are equal, η = 1. This is a central result
of this paper.

We expect these expressions to yield reliable results for low
temperatures where the occupation of the spin-waves modes
remains small to validate the approximation of noninteracting
magnons. This corresponds to having small 1/S corrections in
Eq. (6) in comparison to the leading-order term.

The fluctuation-induced uniform magnetization emerges at
order S0 in the spin-wave expansion. Figure 4 depicts its tem-
perature dependence, together with the thermal corrections
to the sublattice magnetizations, at a fixed ratio J ′

a/J ′
b = 10

when (a) J 	J ′
a,b and (b) J �J ′

a,b. In both cases, the low-
temperature corrections to mA and mB scale as T 2, a feature
which is also observed in antiferromagnets without broken
sublattice symmetry [25]. This can be easily rationalized by
power counting: For linearly dispersing modes, F�k scales as
1/k, and hence the leading contribution to the T dependence
of the integral in Eq. (7) has the form

∫
dk kd−2nBE(k/T ) and

scales as T d−1.
In this low-temperature regime, the only accessible excited

states lie within the energy range where the magnon branches
are nearly degenerate, so that a difference in the occupation
of the spin-wave modes emerges as a subleading effect in T .
Expanding the dispersions in next-to-leading order in k and
noting that the diverging F�k factor is absent from Eq. (8),
we find that the uniform magnetization scales as T 4; see
Appendix A.

In Fig. 4(a), we see that for J 	J ′
a,b this low-T power

law continues well beyond the point where T/S matches the
smallest coupling in the system, J ′

b, and extends up to temper-
atures T ∼ JS, beyond which spin-wave theory is no longer
valid. The reason is that strong J yields both large spin-wave
velocities at small k (4) and large values of k∗(θ ) (5), such that
a significant difference in the occupations of the spin-wave
modes only appears at relatively high energies. As a result,
mtot only reaches values of 10−3 at the temperature where
thermal corrections to mA,B become significant, i.e., of order
10−1. The opposite limit, J �J ′

a,b, leads to a markedly differ-
ent behavior, shown in Fig. 4(b). The now weak coupling J
stabilizes approximately sublattice-symmetric AF order only
at very low temperatures. Thus, once T �JS, sublattice B
becomes much more susceptible to fluctuations than sublattice

FIG. 4. Fluctuation-induced uniform magnetization, mtot , as
function of temperature, together with the finite-temperature correc-
tions to the sublattice magnetizations, �mA,B = mA,B(T ) − mA,B(0).
The coupling constants were set to (a) J = 100, J ′

a = 10, J⊥ = 2
and (b) J = 0.1, J ′

a = 10, J⊥ = 1 in units of J ′
b. In both plots, the

horizontal grid line marks the value 1/2, whereas the vertical grid
line in (b) indicates the temperature T = JS.

A, which explains why mB (mA) starts growing faster (slower)
than T 2 around the vertical dashed line. The deviation from
the low-temperature scaling is then responsible for enhanc-
ing the uniform magnetization, which becomes as large as
5 × 10−2 when thermal corrections to mB reach 10−1.

Figure 5 illustrates how the same quantities in Fig. 4 vary
with the ratio J ′

a/J ′
b at fixed T/(J ′

bS) when (a) J 	J ′
a,b and

(b) J �J ′
a,b. The uniform magnetization vanishes in the limit

J ′
a/J ′

b → 1, which corresponds to restoring sublattice symme-
try, while mtot ∝ (J ′

a/J ′
b − 1) for small imbalance. However,

the increase in mtot saturates at a point where J ′
a/J ′

b becomes
so large that the spin-wave velocities in Eq. (4) start growing
at the same rate that k∗(θ ) decreases in Eq. (5). Put more
simply, saturation occurs when increasing J ′

a/J ′
b only leads to

further splitting of the spin-wave bands at energies larger than
T/S. The main difference between Figs. 5(a) and 5(b) lies in
the order of magnitude of the fluctuation-induced effects: At
J ′

a/J ′
b = 10, mtot is two orders of magnitude larger in panel

(b) compared to panel (a). Once again, this difference follows
from the fact that the strong AF coupling J between the sub-
lattices in (a) balances how fluctuations act on each of them,
therefore diminishing the resulting uniform magnetization.
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FIG. 5. Fluctuation-induced magnetization as in Fig. 4, but now
as function of J ′

a/J ′
b at fixed finite temperature. Parameters were set

to (a) T/S = 50, J = 100, J⊥ = 2 and (b) T/S = 1, J = 0.1, J⊥ = 1,
all in units of J ′

b, and are such that the results with the ratio J ′
a/J ′

b =
10 correspond to data in Fig. 4 at the specified temperatures.

E. Uniform magnetization at elevated temperatures

To access elevated temperatures where spin-wave theory is
no longer reliable, we resort to arguments from Landau theory.
The sublattice-imbalanced antiferromagnet—equivalent to a
ferrimagnet—is described by two order parameters, a stag-
gered magnetization and a uniform magnetization, which are
linearly coupled [26]. As a result, there is a single transition
upon cooling at TN from the paramagnet to the ferrimagnet,
and both order parameters are zero (nonzero) above (below)
TN, respectively. The linear coupling also implies that the
onset of the uniform magnetization below TN is identical to
that of the staggered magnetization; hence mtot ∝ (TN − T )β ,
where β is the order-parameter exponent [27]. For the clas-
sical phase transition at hand, the universality class for the
Heisenberg magnet remains O(3) independent of whether the
transition is into an antiferromagnetic or ferrimagnetic state.
Hence β = 0.37 in d = 3 space dimensions [23,24]. Together
with the low-temperature result mtot ∝ T 4, we conclude that
the uniform magnetization displays a nonmonotonic tempera-
ture dependence as illustrated in Fig. 1.

Again, it is instructive to discuss the limit J � J ′
a,b. For

J ′
a > J ′

b, the transition at TN concerns primarily the onset
of ferromagnetism on the A sublattice. Weak J produces a

small opposite magnetization on the B sublattice, resulting
in a collinear ferrimagnet. (Note that the energy gained by
maintaining the collinearity of the global magnetic order is
extensive, whereas the entropy associated with directional
fluctuations of sublattice B is only intensive.) In the limit
of large sublattice imbalance, J ′

a 	 J, J ′
b, there is hence a

window of temperatures below TN where the uniform mag-
netization is large, mtot ≈ mA/2 as mB � mA. In this limit, it
is also easy to see that the sign of the uniform magnetization
is the same at low T and close to TN: It is the sublattice with
weaker magnetism that experiences stronger thermal fluctua-
tions, such that mtot aligns with the magnetization of the more
strongly ordered sublattice, i.e., the A sublattice if J ′

a > J ′
b.

F. Hydrodynamic modes and corrections to the
spin-wave spectrum

For a broader picture, we connect our findings to gen-
eral hydrodynamic considerations. A collinear two-sublattice
antiferromagnet, spontaneously breaking SU(2) symmetry, is
characterized by a nonconserved order parameter and displays
two linearly dispersing Goldstone modes which are degener-
ate in the long-wavelength limit. This is in agreement with the
spin-wave result (4) for η = 1.

A ferrimagnet, in contrast, has in addition a conserved
order parameter, namely uniform magnetization mtot. As a
result, it features a single quadratically dispersing Goldstone
mode [28,29]. This can be nicely seen in the explicit spin-
wave expressions (2) for η �= 1: Here ω�k− is gapless and
quadratic in k whereas ω�k+, though also quadratic, exhibits
a gap given by 4|η − 1|JS.

Together, this implies that the low-energy spectrum of the
model (1) must change qualitatively when going from T = 0
to T > 0: The system turns from an antiferromagnet to a fer-
rimagnet, such that one of the T = 0 Goldstone modes must
acquire a temperature-induced gap, and the other one must
change its dispersion from linear to quadratic at small k. This
change can be captured by nonlinear spin-wave theory, i.e.,
has the form of 1/S corrections at finite T . While it is straight-
forward to write down the quartic terms in the spin-wave
Hamiltonian, analyzing all terms at finite temperature turns
out to be rather laborious, and therefore we refrain from doing
so. However, as these corrections are suppressed as T → 0,
they have no influence on the leading low-temperature behav-
ior of the uniform magnetization, mtot ∝ T 4.

III. FERRIMAGNETISM IN A LAYERED DISTORTED
SHASTRY-SUTHERLAND MODEL

After having established that sublattice-imbalanced an-
tiferromagnets generically display fluctuation-induced fer-
rimagnetism, we now turn to an experimentally relevant
example, namely the Shastry-Sutherland lattice as realized in
the compound SrCu2(BO3)2.

A. Model and symmetries

Our starting point is the Heisenberg model on the Shastry-
Sutherland lattice, consisting of orthogonal dimers of spins
1/2 with intradimer coupling J and interdimer coupling J ′,
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FIG. 6. (a) Shastry-Sutherland model with intradimer couplings
Ja,b and interdimer coupling J ′. The dashed lines indicate the
unit cell. (b) Ground-state phase diagram of the S = 1/2 Shastry-
Sutherland model with Ja = Jb, as reported in Ref. [10]. An
intermediate spin-liquid (SL) phase (shaded) [30] has been recently
proposed in Ref. [11]. In the present work, the focus is on the
antiferromagnetic phase at large J ′/J shown in red.

Fig. 6(a). This model features a four-site unit cell, containing
two dimers, and displays, in addition to mirror symmetries
along the dimer axes, a nonsymmorphic glide symmetry
which maps the two types of dimers into each other.

The phase diagram of the Shastry-Sutherland model has
been determined numerically [9,10], Fig. 6(b): It contains a
paramagnetic dimer phase for x = J ′/J < 0.675, a bipartite
Néel antiferromagnet for x > 0.765, and a plaquette-ordered
singlet paramagnet, the so-called empty-plaquette phase, in
between [10]. In addition, a very recent numerical study [11]
has proposed that a gapless quantum spin-liquid phase is real-
ized in a narrow range, 0.79 < x < 0.82, intervening between
the plaquette-singlet and AF phases [30].

The ferrimagnetism discussed in this paper appears upon
breaking the glide symmetry, such that two different types of
(mutually parallel) dimers emerge. Such symmetry breaking
corresponds to an orthorhombic distortion where half of the
intradimer bonds elongate and the other half contract [31,32].
In the AF state, each of the intradimer couplings acts on
one AF sublattice only, such that the symmetry between the
two sublattices is broken. In the following we will therefore
consider a distorted Shastry-Sutherland model with intradimer
couplings Ja,b and interdimer coupling J ′. To meaningfully
discuss magnetic order at finite temperature, we work with
a layered version of the model. Guided by the structure of
SrCu2(BO3)2, we consider a stacking of the layers such that

FIG. 7. Layered Shastry-Sutherland model (9) used to describe
SrCu2(BO3)2. An orthorhombic distortion is assumed to generate
different intradimer couplings Ja, Jb.

orthogonal dimers are on top of each other, and include a
(small) antiferromagnetic Heisenberg interlayer coupling J⊥
which pairwise connects vertically stacked dimers [33]. The
model, illustrated in Fig. 7, is described by the Hamiltonian

H = Ja

∑
〈〈i j∈A〉〉m

�Si,m · �S j,m + Jb

∑
〈〈i j∈B〉〉m

�Si,m · �S j,m

+ J ′ ∑
〈i j〉

�Si,m · �S j,m

+ J⊥
∑
〈〈i j〉〉m

(�Si,m + �S j,m ) · (�Si,m+1 + �S j,m+1), (9)

where each term in the last sum represents four couplings
between the spins of neighboring dimers in z direction, and
we consider spins of general size S.

The ground states of the single-layer version of the dis-
torted Shastry-Sutherland model (9) with S = 1/2 have been
studied in Refs. [31,32]. While all phases of the original
Shastry-Sutherland model appear stable against a small dimer
imbalance, the main finding of Ref. [31] is the existence
of a Haldane-like phase for strongly imbalanced dimers and
weak interdimer coupling J ′. This phase is dominated by one-
dimensional correlations; it is adiabatically connected to a
so-called full-plaquette phase and has been argued [32] to be a
candidate for the intermediate phase observed experimentally
in SrCu2(BO3)2.

B. Spin-wave theory in the antiferromagnetic phase

As announced, we are interested in antiferromagnets with
broken sublattice symmetry. Hence we focus on the physics
of the model (9) in the regime of larger x = J ′/J , where one
encounters a clear connection to the toy model discussed in
Sec. II: Both systems display a collinear antiferromagnetic
classical ground state with two sublattices, each of which
experiences an independent internal coupling. Therefore, the
two models share the same mechanism for breaking sublattice
symmetry.
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FIG. 8. Spin-wave dispersion of the distorted Shastry-Sutherland
model (9) along a path in the Brillouin zone for parameters Ja =
0.97, Jb = 0.9, and J⊥ = 0.2 in units of J ′.

As in Sec. II, we perform a spin-wave calculation to de-
termine its properties in a 1/S expansion both at zero and
finite temperature. For the standard 2D Shastry-Sutherland
model, the linear-spin-wave theory description of the AF
phase breaks down for x < 1, signaling a transition to a differ-
ent phase at this level of the approximation. Hence we work
with parameter sets corresponding to x � 1.

In the AF phase of model (9), the symmetry-broken
state features four sites per unit cell, such that the Bogoli-
ubov transformation can only be performed numerically. For
convenience, we employ an in-plane coordinate system corre-
sponding to the square lattice shown in Fig. 6(a), such that
the basis vectors of the (magnetic) unit cell are given by
a1 = (2a, 0, 0), a2 = (0, 2a, 0), and a3 = (a, a, c), where a
and c are the in-plane and out-of-plane lattice constants which
we set to unity in the following. The relevant details of the
calculation are given in Appendix B; here we summarize the
key results.

The spin-wave spectrum along an exemplary path in the
BZ is illustrated in Fig. 8. Of the four spin-wave modes,
two are gapped at small momenta, while the two others are
linearly dispersing Goldstone modes. As with the toy model,
these modes are degenerate only for Ja = Jb, i.e., when the
sublattice symmetry is preserved; for Ja �= Jb they share the
same velocity, but differ at quadratic order except for k‖ = 0.
Notably, the Goldstone-mode velocity is highly anisotropic,
e.g., it is different even for different in-plane directions be-
cause Ja �= Jb leaves only mirror symmetries intact.

C. Ferrimagnetism

The qualitative arguments for fluctuation-induced ferri-
magnetism brought forward in Sec. II apply unchanged to
the sublattice-imbalanced antiferromagnet of the Shastry-
Sutherland model. Our numerical evaluation of 1/S correc-
tions to the magnetizations on the individual sites of the unit
cell, as detailed in Appendix B, confirms this expectation.
The quantum corrections are equal on all sites, resulting in

FIG. 9. Uniform magnetization, mtot , and thermal corrections,
�mA,B, to the sublattice magnetization of the distorted Shastry-
Sutherland model, with parameters (a) Ja = 0.9, Jb = 0.8, J⊥ = 0.1
and (b) Ja = 0.97, Jb = 0.9, J⊥ = 0.01 in units of J ′.

a vanishing total magnetization at T = 0. In contrast, the
thermal corrections are different on the A (up) and B (down)
sublattices, while they are pairwise equal on the two unit-cell
sites belonging to the A and B sublattice, respectively. As
before, the thermal corrections to the sublattice magnetiza-
tions, �mA(T ) and �mB(T ), scale proportional to T 2 at low
temperature. The uniform magnetization, mtot = [mA(T ) +
mB(T )]/2, scales as T 4 because two mode dispersions differ
at quadratic order only.

Numerical results illustrating the variation of the magneti-
zation with temperature are shown in Fig. 9. The parameters in
panels (a) and (b) correspond to weaker (stronger) fluctuation
corrections, driven both by the different J⊥ and by Ja,b being
further away (closer) to the critical value Ja,b = J ′ within
spin-wave theory. Consequently, the uniform magnetization is
much larger in (b) compared to (a) at the same temperature,
even though the ratio Ja/Jb is similar in both cases. While the
extreme limit of two weakly coupled ferromagnets, discussed
for the toy model, cannot be realized in the Shastry-Sutherland
model, the magnetization nevertheless can get as large as
5 × 10−3 at the temperature where the largest �m is 10−1.

Figure 10 depicts the effect of varying the sublattice im-
balance at a fixed temperature while keeping J ′ as the largest
coupling in the system. Differently from the toy model, the
thermal corrections are now larger on the strongly coupled
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FIG. 10. Same quantities as in Fig. 9, but now as a function of
Ja/Jb at fixed temperature T = J ′S and with Ja = 0.9 (and varying
Jb) and J⊥ = 0.1 in units of J ′. The ratio Ja/Jb = 1.125 reproduces
the data in Fig. 9(a) at the specified temperature.

sublattice, since the AF couplings Ja,b are frustrated. Still,
the uniform magnetization shows the same trend as in Fig. 5,
growing with increasing sublattice imbalance until it saturates
at large Ja/Jb. For SrCu2(BO3)2, small orthorhombic distor-
tion likely implies that Ja/Jb remains close to unity.

D. Application to SrCu(BO3)2 under pressure

SrCu2(BO3)2 assumes a tetragonal structure at ambient
pressure and low temperatures, where its magnetic properties
are in very good agreement with those of the two-dimensional
Shastry-Sutherland model in the small-x dimer phase. The
magnetic couplings have been estimated to be J ≈ 85 K and
J ′ ≈ 54 K [8,33].

High-pressure studies of SrCu2(BO3)2 detected various
signatures of pressure-driven phase transitions. In particular,
indications for a different, but still paramagnetic, phase were
found above 2 GPa [13], and this transition was later located
more precisely to be around 1.8 GPa [14–19]. While it is
natural to assume that this paramagnetic phase represents the
empty-plaquette phase of the Shastry-Sutherland model, both
the NMR results of Ref. [13] and the neutron scattering results
of Ref. [16] appear to be incompatible with this idea: The
empty-plaquette phase displays equivalent magnetic sites and
C4 symmetry, while the NMR data indicate the existence of
two inequivalent magnetic sites. To resolve this contradiction,
it has been argued [32] that an orthorhombic distortion, stabi-
lizing a different plaquette phase in the intermediate regime,
is most compatible with the NMR [13] and neutron scattering
[16] data.

At higher pressures, a structural transition to a monoclinic
structure occurs around 4.5 GPa [14], and AF order with a
rather high Néel temperature of 120 K has been detected at
5.5 GPa via neutron scattering [21]. It has been suggested,
but not clarified beyond doubt, that this magnetic order in fact
emerges around 4 GPa before the structural transition [20]. In
addition, a recent low-temperature thermodynamic study [18]
found indications for a previously undetected AF state below
4 K occurring between 3 and 4.2 GPa. It has been suggested

[18] that it is this low-temperature AF state which should be
interpreted as the genuine AF state of the Shastry-Sutherland
model, given that the higher-pressure monoclinic system no
longer features the orthogonal dimers characteristic of the
Shastry-Sutherland model. The same study also presented
evidence for an additional phase transition occurring above
4.2 GP at 8 K and proposed that this transition is related to
the existence of yet another low-temperature magnetic state,
which is likely to display AF order as well. However, a
full characterization of this phase is still lacking. Apparently,
more work is needed to discern the fascinating high-pressure
physics of SrCu2(BO3)2.

For our purpose, we focus on the fact that pressure-induced
structural distortions lead to inequivalent dimers; this likely
applies to all pressures larger than 2 GPa [13,21,32]. AF
order in each layer will thus be sublattice imbalanced because
of the broken glide symmetry. Achieving a finite uniform
magnetization then relies on the uniform magnetization in
adjacent layers being parallel. Our model in Fig. 7 assumes
the established layer stacking, with orthogonal dimers on
top of each other [21,33], an antiferromagnetic interlayer
coupling [18,21,33], and an orthorhombic distortion of the
tetragonal structure as proposed in Ref. [32]. Together, this
yields a macroscopic uniform magnetization, which we can
estimate to reach up to 5 × 10−3μB per Cu atom at its temper-
ature maximum, i.e., slightly below the Néel temperature; see
Fig. 1. It would be very interesting to test this prediction in
future high-pressure magnetization measurements. For such
an experiment, one needs to keep in mind that ferrimagnets
generically form magnetization domains much like ferromag-
nets [22]; detecting a uniform magnetization might therefore
require cooling in an applied field.

We note that the type of dimer distortion suggested to exist
at 5.5 GPa at elevated T in Ref. [21], see their Figs. 5 and 6,
would lead to a vanishing total magnetization instead, because
a strong up-spin dimer in one layer would couple to a strong
(instead of weak) down-spin dimer in the next layer. The
resulting finite magnetization per layer may still be detectable
as a surface effect.

Finally, we comment on the effect of small Dzyaloshinskii-
Moriya (DM) interactions, which break SU(2) symmetry
at the Hamiltonian level and are known to be present in
SrCu2(BO3)2 [21,34]. In the AF phase of interest here, DM
interactions may lead to a small, but finite, uniform mag-
netization at T = 0 and alter its leading low-temperature
corrections as the spin-wave spectrum may acquire a gap at
T = 0. Nonetheless, the conclusion that inequivalent sublat-
tices experience different thermal fluctuations remains, and
for small DM interactions the nonmonotonic temperature de-
pendence of the magnetization will be preserved.

IV. CONCLUSIONS AND OUTLOOK

In summary, we have shown that collinear Néel antifer-
romagnets, whose Z2 symmetry between the two sublattices
is broken in the Hamiltonian, become ferrimagnets at finite
temperature. Interestingly, this is an effect driven by thermal
fluctuations but not by quantum fluctuations, constituting an
interesting example where both types of fluctuations produce
different physics—in contrast to many instances of order
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by disorder where thermal and quantum fluctuations lead
to very similar state selection [5]. We have proposed that
such a fluctuation-induced ferrimagnetic phase is realized in
SrCu2(BO3)2 under high pressure, where a lattice distortion
breaks the glide symmetry of the Shastry-Sutherland lattice.

Our work suggests a number of future directions. First, it
is conceivable that similar thermal fluctuation effects occur
in antiferromagnets with more complicated ground-state spin
structures. Second, while we have argued that the antiferro-
magnetic phase with mtot = 0 is a stable state of matter at T =
0 despite sublattice imbalance, it is interesting to ask whether
quantum fluctuations can generate additional, more nontrivial,
zero-temperature phases in sublattice-imbalanced antiferro-
magnets. Finally, considering the same phenomenology in the
presence of charge carriers will lead to a fluctuation-induced
anomalous Hall effect.
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APPENDIX A: SPIN-WAVE CALCULATIONS
FOR TOY MODEL

The starting point for our analysis of the toy model pro-
posed in Sec. II was to expand the Hamiltonian in Eq. (1) in
powers of 1/

√
S around a collinear Néel state. Since we allow

the two magnetic sublattices to have, at least in principle, spins
of unequal sizes, the Holstein-Primakoff transformation reads

Sz
i = S − a†

i ai,

S+
i =

√
2S − a†

i ai ai =
√

2S ai + O(1/
√

S), (A1)

S−
i = a†

i

√
2S − a†

i ai =
√

2S a†
i + O(1/

√
S),

for sites i located on sublattice A and

Sz
i = −ηS + b†

i bi,

S+
i = b†

i

√
2ηS − b†

i bi =
√

2ηS b†
i + O(1/

√
ηS), (A2)

S−
i =

√
2ηS − b†

i bi bi =
√

2ηS bi + O(1/
√

ηS),

for sites belonging to sublattice B. As usual, a†
i and b†

i are
bosonic creation operators with corresponding annihilation
operators ai and bi.

After substituting Eqs. (A1) and (A2) into the Hamilto-
nian, applying a Fourier transform to the bosonic operators,
and neglecting terms beyond O(S), one arrives at a quadratic
Hamiltonian of the form

HLSW = S2Ecl + S

2

∑
�k

[	†
�kM�k	�k − (A�k + B�k )], (A3)

where

S2Ecl = −NS2

[
2ηJ + J ′

a + η2J ′
b + (1 + η2)

2
J⊥

]
(A4)

is the classical ground-state energy for a system with N sites,
	�k = (a�k, b�k, a†

−�k, b†
−�k )T, and

M�k =

⎛
⎜⎝

A�k 0 0 C�k
0 B�k C�k 0
0 C�k A�k 0

C�k 0 0 B�k

⎞
⎟⎠, (A5)

with

A�k = 4(ηJ + J ′
aξ�k ) + 2J⊥(1 − cos kz ),

B�k = 4(J + ηJ ′
bξ�k ) + 2ηJ⊥(1 − cos kz ),

C�k = 4η1/2Jγ�k . (A6)

The linear spin-wave Hamiltonian in Eq. (A3) can be diag-
onalized by means of a Bogoliubov transformation

a�k = u�kα�k − v�kβ
†
−�k, b�k = u�kβ�k − v�kα

†
−�k, (A7)

with coefficients

u�k = sgn(C�k )

√
F�k + 1

2
, v�k =

√
F�k − 1

2
(A8)

given in terms of the function

F�k = A�k + B�k√
(A�k + B�k )2 − 4C2

�k

. (A9)

When expressed in terms of the Bogoliubov operators,
Eq. (A3) takes on the diagonal form

HLSW = S2Ecl + 1

2

∑
�k

[ω�k− + ω�k+ − S(A�k + B�k )]

+
∑

�k
(ω�k+α

†
�k α�k + ω�k−β

†
�k β�k ). (A10)

The resulting mode dispersions ω�k± are specified in Eq. (4) of
the main text, with the abbreviations being related to the terms
defined in Eq. (A6) as P�k = (A�k + B�k )/2, R�k = (A�k − B�k )/2,
and Q�k = C�k .

We can then use the previous relations to derive the sub-
lattice magnetizations to next-to-leading order in 1/S. For
sublattice A, we have

mA = 2

N

∑
i∈A

〈
Sz

i

〉 = S − 2

N

∑
�k

〈a†
�ka�k〉

= S − 2

N

∑
�k

(
u2

�k〈α
†
�k α�k〉 + v2

�k 〈1 + β
†
�k β�k〉

)

= S − 1

N

∑
�k

[
(F�k + 1)n�k+

BE + (F�k − 1)
(
1 + n�k−

BE

)]
,

(A11)

which is equal to the first expression in Eq. (6). One recov-
ers the second expression straightforwardly after a similar
sequence of steps for sublattice B.
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The low-temperature behavior of the uniform magnetiza-
tion can in fact be predicted analytically by expanding the
spin-wave dispersion up to quadratic order in k and retaining
the leading contribution in T to Eq. (8). Let us focus on the
case η = 1 for concreteness. After rewriting Eq. (4) in the
form

ω�k± ≈ ω1(θ )k ± ω2(θ )k2, (A12)

we find

n�k−
BE − n�k+

BE ≈ 2 e−βω1k sinh (βω2k2)

1 − 2 e−βω1k cosh (βω2k2) + e−2βω1k

≈ 2 e−βω1kβω2k2. (A13)

The approximation made in the last step of (A13) is justified
by the fact that we are dealing with momenta k �1/(βω1), and
hence βω2k2 � ω2/(βω2

1 )�1. We then substitute Eq. (A13)
into Eq. (8) to obtain

mtot ∝ β

∫ π

0
dθ sin θ ω2(θ )

∫ ∞

0
dk k4e−βω1(θ )k

∝ |J ′
a − J ′

b|
(βS)4J5

∫ π

0
dθ sin θ

[
ω2(θ )

|J ′
a − J ′

b|S
] [

JS

ω1(θ )

]5

.

(A14)

Since the integral in the last line above is expressed solely
in terms of dimensionless quantities, we conclude that in the
low-temperature limit

mtot ∝ |J ′
a − J ′

b|
J

( T

JS

)4

, (A15)

which is precisely what our numerical results indicate.

APPENDIX B: SPIN-WAVE CALCULATIONS
FOR SHASTRY-SUTHERLAND MODEL

The spin-wave calculations for the Shastry-Sutherland
model are based on a Holstein-Primakoff representation of the
spin operators as above. Since the unit cell consists of four
spins which exhibit collinear Néel order in the classical limit,
we assign the transformations given by Eqs. (A1) and (A2)
to two spins each, with spin size S on all sublattices. Here,
the spins on sublattice A (B) correspond to Holstein-Primakoff
operators ai and ci (bi and di), respectively; see Fig. 6(a).

As noted in the main text, for calculation purposes we
choose a coordinate system where the Shastry-Sutherland
plane is located on a square lattice along the J ′ bonds. More-
over, the planes are stacked such that inequivalent dimers are
positioned on top of each other. With lattice constants set
to unity, this yields real-space basis vectors a1 = (2, 0, 0),
a2 = (0, 2, 0), a3 = (1, 1, 1) and reciprocal-space basis vec-
tors b1 = π (1, 0,−1), b2 = π (0, 1,−1), b3 = 2π (0, 0, 1).

Substitution of the Holstein-Primakoff operators into the
Hamiltonian given by Eq. (9) and a subsequent Fourier trans-
form yields the quadratic Hamiltonian

HLSW = S2Ecl + S

2

∑
�k

[	†
�kM�k	�k − 2B�k], (B1)

where

S2Ecl = NS2

[
Ja + Jb

4
− 2J ′ − 2J⊥

]
(B2)

is again the classical ground state energy for a system consist-
ing of N spins, 	�k = (a�k, c�k, b†

−�k, d†
−�k )T and

M�k =

⎛
⎜⎜⎝

A�k C�k E�k F�k
C∗

�k A�k F ∗
�k E∗

�k
E∗

�k F�k B�k D�k
F ∗

�k E�k D∗
�k B�k

⎞
⎟⎟⎠, (B3)

where ∗ denotes the complex conjugate and

A�k = 4J ′ − Ja + 4J⊥,

B�k = 4J ′ − Jb + 4J⊥,

C�k = Jaei(−kx+ky ),

D�k = Jbei(kx+ky ),

E�k = 2J ′ cos ky + J⊥(ei(−kx+kz ) + ei(−kx−kz ) ),

F�k = 2J ′ cos kx + J⊥(ei(ky+kz ) + ei(ky−kz ) ). (B4)

The Hamiltonian in Eq. (B1) can now be diagonalized by
means of a generalized Bogoliubov transformation [35]

	�k = T (�k)��k, (B5)

with ��k = (α�k, γ�k, β
†
�k , δ

†
�k )T being the normal mode spinor.

The columns of T (�k) correspond to the eigenvectors of �M�k
with

� =
(
I 0
0 −I

)
, (B6)

where I denotes the 2 × 2 unit matrix. Solving the eigenvalue
problem for �M�k yields two positive eigenvalues λ�k1,2 and
two negative eigenvalues λ�k3,4. The normal modes of the
Hamiltonian are then given by

ω�k1,2 = Sλ�k1,2,

ω�k3,4 = −Sλ�k3,4. (B7)

Importantly, the positive and negative eigenvalues are not of
pairwise equal magnitude. With Eqs. (B5) and (B7) the linear
spin-wave Hamiltonian then takes the diagonal form

HLSW = S2Ecl +
∑

�k

[ω�k3 + ω�k4

2
− SB�k

]
+

∑
�k

[ω�k1α
†
�k α�k + ω�k2γ

†
�k γ�k + ω�k3β

†
�k β�k + ω�k4δ

†
�k δ�k]. (B8)

The sublattice magnetization can then be derived from the Holstein-Primakoff operators using the respective Bogoli-
ubov coefficients and Eq. (B5). The magnetizations on the a and c sites, both belonging to sublattice A, are equal and
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read

mA = 2

N

∑
i∈A

〈Sz
i 〉 = S − 4

N

∑
�k

〈a†
�ka�k〉

= S − 4

N

∑
�k

(|T11(�k)|2〈α†
�k α�k〉 + |T12(�k)|2〈γ †

�k γ�k〉 + |T13(�k)|2〈1 + β
†
�k β�k〉 + |T14(�k)|2〈1 + δ

†
�k δ�k〉), (B9)

from which the zero-temperature magnetization mA(T =0) and its temperature correction can be calculated; expressions for the
B sublattice follow analogously.
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