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Micromagnetic description of twisted spin spirals in the B20 chiral magnet FeGe from first principles

S. Grytsiuk * and S. Blügel
Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany

(Received 5 April 2021; accepted 22 July 2021; published 10 August 2021)

Using the model of classical Heisenberg exchange and Dzyaloshinskii-Moriya (DM) interaction, we show
that the ground state of the B20 FeGe chiral magnet is a superposition of twisted helical spin-density waves
formed by different sublattices of the crystal. Such twisted spin-density waves propagate in the same direction
but with different phases and different directions of the rotation axes. We derive an advanced micromagnetic
expression describing the exchange and DM interaction for such magnetic structures. In particular, we show
that such magnetic order gives rise to new contributions to the micromagnetic energies of the exchange and
DM interactions. By employing first-principles calculations based on density functional theory and using our
micromagnetic model we show that the magnitude of the spin-spiral twist in B20 FeGe is of the same order as
global spiraling. While the energy difference between the ground state of twisted spirals and the ferromagnetic
state is in good agreement with the experimental results, for the spin spirals without a twist it is smaller by
a factor of 3. In addition, we verify our results by employing spin-dynamics simulations. This calls for new
experiments exploring the ground state properties of B20 chiral magnets.
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I. INTRODUCTION

Noncentrosymmetric B20 chiral magnets have been re-
ported to have the interesting property of breaking inversion
symmetry, leading to various types of magnetic structures,
ranging from spin spirals over skyrmions [1–4] and bobbers
[5,6] to the three-dimensional (3D) lattice of 3D magnetic
textures [7], and thus holding great potential for innovative
spintronic applications [8]. Due to the advent of different mag-
netic phases that can be tuned by temperature, magnetic fields,
and other material parameters [9–19], the B20 systems not
only host a rich phase diagram, but their complex magnetic
order and nontrivial topology in momentum space imprint
also on unique transport and optical phenomena [2,20–25].

Irrespective of the crucial relevance for explaining chiral
magnetism in B20 compounds, however, a complete under-
standing of the underlying magnetic structures and magnetic
interactions stabilizing them has been remarkably elusive.
While, for instance, the magnetic order at the ground state of
many B20 compounds is often interpreted as a homogeneous
helix [26,27] caused by relativistic Dzyaloshinskii-Moriya
(DM) interactions [28], such a model ignoring higher-order
magnetic interactions [29] and temperature effects [30] fails
to explain the 3D texture of a few nanometers observed in B20
MnGe. Furthermore, a now well-known and well-accepted
assumption made by Bak and Jensen 40 years ago [27] that
DM interaction stabilizes a homogeneous helix in B20 mate-
rials is incomplete. In particular, as shown by Chizhikov and
Dmitrienko [31–33], the DM vectors that are perpendicular to
the component responsible for helical spiralling gives rise to
intersublattice canting in B20 compounds. Such an effect can
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be viewed as the superposition of several helical spin-density
waves in each sublattice propagating in the same direction but
having different phases and different directions of the rotation
axes (see Fig. 1).

In this work, we derive an advanced micromagnetic energy
equation describing the exchange and DM interactions for the
spin spirals with twists formed by the magnetic moments of
different sublattices in a crystal. While the micromagnetic
energies of the exchange (E ex) and DM interaction (Edm)
for the trivial (without twist) spin spirals have well-known
dependencies on their wave vector q,

E ex = E ex(q0, q
⊗

2, . . . ),

Edm = Edm(q1, q
⊗

3, . . . ),

where q
⊗

p is the p-fold tensor product of q vector with itself,
we show that the coupling between different sublattices gives
rise to the twist of spin spirals with new contributions in q to
the energies of magnetic interactions:

E ex = E ex(q0, q1, q
⊗

2, q
⊗

3, . . . ),

Edm = Edm(q0, q1, q
⊗

2, q
⊗

3, . . . ).

Interestingly, the last expression implies also that even when
|q| = q = 0, the ground state magnetic order might not be
ferromagnetic (FM). To substantiate the importance of such an
effect in real materials, we employ density functional theory
calculations for B20 FeGe since the energies without and with
spin-orbit coupling in this compound are well described by
the exchange and DM interactions [34], in contrast to MnGe,
for which higher-order interactions are expected to be pivotal
[35]. We compute the atomistic interaction parameters via
multiple-scattering theory as implemented in the Korringa-
Kohn-Rostoker (KKR) Green’s function method [36–38], and
from them we determine the corresponding intersublattice
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FIG. 1. (a) Superposition of twisted spin-density waves formed
by different sublattices (A, B,C, . . . ) of the crystal. Such spirals
propagate in the same directions but with different (b) directions
of the rotation axes erot(β, α) and (c) cone angles θ and phases φ.
The magnetic moment S in (c) is defined by cone angle θ with
respect to erot = R(β, α)ez and by phase φ and q · R with respect to
e′

x = R(β, α)ex , where R(β, α) is a rotation matrix mapping the ez

axis to the rotation axis erot. A spin spiral with twist � = {β, α, θ, φ}
can be characterized by orthogonal vectors em(�), m = 1, 2, 3 [see
Eq. (1)].

micromagnetic parameters entering the advanced micromag-
netic energy equation. By minimization of the micromagnetic
energy, we determine the strength of global spiraling, as well
as local twist between helices in different sublattices. We
show that the magnitude of the spin-spiral twist in B20 FeGe
is of the same order as global spiraling and it reduces, by
three times, the energy difference between the helical ground
state and the FM state, resulting in good agreement with
the experimentally measured saturation magnetic field. Fi-
nally, we verify the results of our micromagnetic model by
employing spin-dynamics simulations that in addition to the
twist of the spin spiral in B20 structures, indicate their small
nonhomogeneity. However, since the energy gain due to the
nonhomogeneity of the spin waves is much smaller than that
due to their twist, for the sake of simplicity we ignore this
effect in our micromagnetic model.

II. SPIN-SPIRAL TWIST: MICROMAGNETIC MODEL

We consider a one-dimensional spin-wave formed by coni-
cal homogeneous spin spirals in each sublattice A of a crystal.
For each spin spiral we assume the same wave vector q but a
different rotation axis eA

rot(β
A, αA), cone angle θA, and phase

φA (see Fig. 1 and Appendix A). We define the orientation of
any classical spin SA

i of atom i in sublattice A as

SA
i = eA

1 cos
(
q · RA

i

) + eA
2 sin

(
q · RA

i

) + eA
3 , (1)

where orthogonal vectors eA
n = en(βA, αA, θA, φA) (n =

1, 2, 3) characterize the spin-spiral twist in sublattice A with
a condition that |SA

i | = 1 [see Fig. 1(c) and Appendix B].
The upper index A enumerates also the basis atom (i = 1)
with its atomic position rA = RA

1 in the chemical unit cell.
RA

i = rA + τ i defines the position of atom i in sublattice A,
where τ i is a translation vector.

We examine the effect of spin-spiral twist on the exchange
and DM interactions following the effective spin-lattice
Hamiltonian:

EAB = − 1

NA

NA∑
i=1

NB∑
j=1

SA
i J AB

i j SB
j , (2)

where the sum over i is restricted to the number of magnetic
atoms NA in sublattice A of the magnetic unit cell and j runs
over atoms in sublattice B of whole crystal structure. Tensor
J AB

i j represents the strength of the exchange JAB
i j and DM

interaction DAB
i j between two sites i and j of sublattices A and

B, respectively:

J AB
i j =

⎛
⎝ J Dz −Dy

−Dz J Dx

Dy −Dx J

⎞
⎠

AB

i j

. (3)

If the magnetic structure in each sublattice has character-
istic length scales much larger than the underlying crystal
lattice, then the sum over NA (over the magnetic unit cell)
in Eq. (2) can be approximated by the integral [39], and the
energy density of the magnetic interactions (between atoms in
the chemical unit cell rA and all other atoms RB

j ) has the form

EAB(q) ≈ − 1

2π

NB∑
j

∫ 2π

0
∂ω SA(q · rA + ω)

× J AB
1 j SB

(
q · RB

j + ω
)
. (4)

Considering the magnetic structure given by Eq. (1), the total
energy after taking an integral in Eq. (4) has the form

EAB(q) ≈ −
NB∑
j=1

J AB
1 j :

[
CAB + 1

2
CAB

+ cos
(
q · RAB

1 j

)

+ 1

2
CAB

− sin
(
q · RAB

1 j

)]
, (5)

where RAB
1 j = RB

j − rA, the notation “:” stands for the inner
product of tensors of the same rank, and tensors CAB

+ = eA
1 ⊗

eB
1 + eA

2 ⊗ eB
2 , CAB

− = eA
1 ⊗ eB

2 − eA
2 ⊗ eB

1 , and CAB = eA
3 ⊗ eB

3
characterize a twist between spin spirals in sublattices A and
B. By expanding cosine and sine functions in Tailor series
with respect to q · R (see Appendix C), we arrive at the fol-
lowing micromagnetic expression for the total energy of spin
spirals with twist:

EAB(q) ≈ M(0)AB : CAB

+ 1

2

∑
p=0

M(p)AB :
(
CAB

p ⊗ Q(p)
)
, (6)

where the sum over p defines the order of Tailor expansion,
CAB

2p = CAB
+ , CAB

2p+1 = CAB
− , and Q(p) = q

⊗
p is the p-fold tensor
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product of q vector with itself. The tensor M(p)AB of rank
(p + 1) characterizes the exchange and DM interactions be-
tween all sites of sublattices A and B:

M(p)AB =
⎛
⎝ A(p) D(p)

z −D(p)
y

−D(p)
z A(p) D(p)

x

D(p)
y −D(p)

x A(p)

⎞
⎠

AB

. (7)

The components of M(p)AB are tensors of rank (p), and they
are related to J AB

i j and RAB
i j :

M(2p)AB
kk′ = (−1)p+1

(2p)!

NB∑
j=1

J AB
1 j(kk′ )R

(2p)AB
1 j ,

(8)

M(2p+1)AB
kk′ = (−1)p+1

(2p + 1)!

NB∑
j=1

J AB
1 j(kk′ )R

(2p+1)AB
1 j ,

where R(p)AB
1 j = (RAB

1 j )
⊗

p is the p-fold tensor product of
RAB

1 j with itself (see Appendix C). The micromagnetic ten-

sors A(p)AB and D(p)AB = (D(p)AB
x ,D(p)AB

y ,D(p)AB
z ) in Eq. (7)

describe the micromagnetic exchange and DM interactions,
respectively, between all ions of sublattices A and B. Also,
those tensors for different pairs of sublattices are related by
symmetries of the underlying crystal structure, and for B20
FeGe we list them in Appendix D.

The micromagnetic energy given by Eq. (6) is a central
equation of this work, and it can be decomposed into the
exchange and DM interactions (see Appendix E). From this
equation it is clear that the twist of the spin spirals gives rise to
the energies of the exchange and DM interactions, which are
both functions of Q(p) = q

⊗
p, where p = 0, 1, 2, . . . . This is

in sharp contrast to trivial spin spirals, for which the exchange
and DM interactions are functions of only Q(2p) and Q(2p+1),
respectively.

The main challenge is to find the twist tensors CAB
± and CAB

minimizing the total energy. Using this model, we examine
the twist of the spin-density waves in B20 FeGe, noting that
it becomes difficult to carry out with full rigor because of the
16 independent parameters (φA, βA, αA, θA) characterizing the
spin spiral’s twist in four sublattices (A = 1, 2, 3, 4) of the
crystal. On the other hand, the proposed micromagnetic model
has many attractive qualitative features since it gives solutions
in terms of a few micromagnetic multisublattice parameters
taking into account the symmetries of the crystal structure,
whereas the atomistic model becomes too difficult to carry out
for a large supercell in which the magnetic structure is com-
mensurate and due to the long-range character of the magnetic
interactions in the itinerant magnets. For our micromagnetic
model, we assume homogeneous spin-density waves in each
sublattice of the crystal; as we demonstrate by means of
spin-dynamics simulations (see Appendix A), the gain in total
energy due to the inhomogeneity of the spin-density waves is
much smaller than that due to the twist.

III. COMPUTATIONAL DETAILS

We compute the microscopic parameters of Heisenberg
exchange (Ji j) and DM (Di j) interactions for B20 FeGe by
employing first-principles calculations via multiple-scattering

FIG. 2. (a) Exchange interaction parameters Ji j and (b) absolute
values of DM interaction vectors |Di j | between Fe atoms as a func-
tion of the interatomic distance (between Fe atoms) |Ri j | (in units
of the lattice parameter a). (c) Micromagnetic spin stiffness A(2)

and (d) micromagnetic spiralization D(1) as a function of Rmax (in
units of the lattice parameter a), up to which contributions from the
atomistic parameters (Ji j and Di j corresponding to all |RAB

i j | < Rmax)
are included. Note that parameters Ji j and |Di j | in (a) and (b) are
multiplied by |Si||S j |. The inset in (b) presents cos θi j for the first
few shells, where θi j is the angle between Ri j and Di j .

theory as implemented in the KKR Green’s function method
[36–38]. In this framework, Ji j and Di j are obtained from
the collinear state by applying infinitesimal rotations of the
magnetic moments [40,41]. All electronic structure calcula-
tions are performed for the experimental lattice parameter
and atomic positions of FeGe [42,43] in the local density
approximation [44], using 72 × 72 × 72 k points in the full
Brillouin zone with Fermi broadening of 100 K. The micro-
magnetic parameters are computed using Eq. (8), for which
the summation is truncated above a maximal interaction radius
of Rmax = 12a, where a is the lattice parameter.

IV. FIRST-PRINCIPLES RESULTS AND DISCUSSION

The atomistic parameters of the exchange interaction Ji j

and the absolute values of the DM interaction vectors |Di j |
as a function of the distance |Ri j | between interacting pairs
in B20 FeGe are shown in Figs. 2(a) and 2(b). While both
atomistic interaction parameters decay fast with |Ri j |, their
corresponding micromagnetic parameters, A(2) = 1

2

∑
i j Ji jR2

i j

and D(1) = −∑
i j Ri j · Di j , respectively (for more details see

Sec. IV A), have diminishing oscillatory behavior with respect
to the summation cutoff |Ri j | < Rmax [see Figs. 2(c) and 2(d)].
The calculated value of the magnetic moment per Fe atom is
1.11μB [34], which is slightly larger than experimental value
of ∼1.0μB [18,26,42].

A. Spin wave formed by identical spirals

We first consider the simplest case in which the spin spirals
in all sublattices are flat (θA = π/2) and have the same phase
φ and the same direction of their rotation axes (eA

rot = erot ‖
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FIG. 3. (a) The total energy (per unit cell) of (b) the exchange and DM interactions, computed using the atomistic (circles) and
micromagnetic (solid lines) models for the superposition of helical spin-density waves in B20 FeGe without twist (in black) and with twist
(in blue and red) as a function of q = |q| [the energy difference between states with q ‖ (001) and q ‖ (111) is of the order of ∼ ± 0.1 μeV].
The twist parameters of the spirals in each sublattice A minimizing the total energy {φA} (blue curve) and {φA, βA, αA} (red curves) for (c) q001

and (d) q111. (e) Illustration showing the relative orientations of the rotation axes eA
rot of the spin spirals in each sublattice A for q001 and q111.

Vertical arrows in (a) show the energy difference between the helical ground state and the FM state, corresponding to saturation magnetic fields
of 0.04 and 0.12 T for spin spirals without and with twists, respectively. The solid green line stands for the experimental pitch |qexp| = 9 μm−1.
δE is the total energy difference of the spin spiral with twist at qmin (the theoretical pitch) and qexp.

q). In this case |eA
3 | = 0, eA

m ‖ eB
m ⊥ erot, and Eq. (6) after the

summation over all pairs of sublattices in the B20 structure
gives

EI(q) =
∑
p=0

A(2p) : Q(2p) + D(2p+1) :
[
êrot ⊗ Q(2p+1)

]
= A(0) + D(1)q + A(2)q2 + OI(q), (9)

where q = |q| and OI(q) depicts the anisotropic higher-
order contributions to the exchange and DM interaction
[see Eq. (12)]. Tensors A(2p) = ∑

AB A(2p)AB and D(2p+1) =∑
AB D(2p+1)AB characterize the micromagnetic exchange and

DM interactions of order p, respectively, between magnetic
ions in whole crystal. Note that since A(2p+1)AB = −A(2p+1)BA

and D(2p)AB = −D(2p)BA, these odd contributions to the to-
tal energy after the summation over all pairs of sublattices
for such trivial spin spirals cancel out. The energy contribu-
tions from the even terms A(2p)AB = A(2p)BA and D(2p+1)AB =
D(2p+1)BA for such magnetic order remain. and for p � 2
the obtained micromagnetic interactions tensors reduce to the
identity matrices (see Appendix D),

A(2) = 1

2
I2

∑
AB

∑
i �= j

JAB
i j |RAB

i j |2 = A(2)I2, (10)

D(1) = −I2

∑
AB

∑
i �= j

DAB
i j · RAB

i j = D(1)I2. (11)

As follows from Eq. (11), each bond RAB
i j has the largest

contribution to the spiralization parameter D(1) if DAB
i j ‖ RAB

i j ,
and it is zero if DAB

i j ⊥ RAB
i j . Note that while |Di j | are largest

for the first few nearest neighbors [see Fig. 2(b)], their con-
tribution to the total energy of the homogeneous flat spin
spiral ∼Ri j · Di j ∼ cos θi j , where θi j is an angle between Ri j

and Di j , is negligibly small [see the inset in Fig. 2(b) and
Fig. 2(d)]. In contrast, as demonstrated by Chizhikov and
Dmitrienko [31–33], such normal components of the DM
vectors, Di j ⊥ Ri j , might give rise to the twist between spin
spirals formed by different sublattices, which we discuss in
the following sections.

While the lower-order contributions to the total energy,
Eq. (9), of the exchange (p = 0, 2) and DM (p = 1) interac-
tions do not depend on the direction of the wave vector q [45],
the higher-order contributions are anisotropic,

OI(q) = D(3)
1

(
q2

x , q2
y , q2

z

) · q + D(3)
2

(
q2

z , q2
x , q2

y

) · q

+ D(3)
3

(
q2

y , q2
z , q2

x

) · q + A(4)
1

(
q4

x + q4
y + q4

z

)
+ A(4)

2

(
q2

x q2
y + q2

x q2
z + q2

y q2
z

) + · · · . (12)

The corresponding micromagnetic parameters for these
higher-order terms, D(3)

n and A(4)
n , are given in Appendix D.

Since the contribution to the total energy of these terms
for small values of |q| is small, |OI(qmin)| < 0.1 (μeV) 	
|EI(qmin)| ≈ 9 (μeV), we neglect them. Also, as follows from
Fig. 3(a), energies obtained for q001 and q111 using Eq. (9)
without OI(q) contributions (black solid lines) are in good
agreement with the atomistic model (black symbols) given by
Eq. (2).

B. Spin spirals with a phase difference

Now we consider a case in which flat spirals (θA = π/2) in
each sublattice A are allowed to have different phases φA while
the directions of the rotation axes eA

rot = erot(β, α) = q/|q|
remain the same. For such a choice of the magnetic structure
the total energy of the magnetic interactions between atoms in
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FIG. 4. (a) and (b) Illustrations of the spin-density wave formed
by spin spirals in sublattices A and B. Spin spirals in (a) are iden-
tical, and those in (b) have phase difference φAB = δ · q due to the
displacement of atoms in sublattice B → B′ by δ such that SB

i = SB′
i .

(c) Displacements of Fe and Ge ions from high-symmetry sites of the
NaCl structure (smaller spheres) to lower-symmetry sites of the B20
structure (larger spheres) along cube diagonals nA, as shown in (d).

sublattices A and B, Eq. (6), has the form

EAB
II (q, φAB) = cos φAB

∑
p

(
A(2p)AB : Q(2p)

+ D(2p+1)AB : Q(2p+1) ⊗ erot
)

+ sin φAB
∑

p

( − A(2p+1)AB : Q(2p+1)

+ D(2p+1)AB : Q(2p+1) ⊗ erot
)
, (13)

where φAB = φB − φA is the phase difference between spin
spirals in sublattices A and B. Note that if φAB = 0, then
EAB

II (q) = EAB
I (q) [see Eq. (9)]. As follows from Eq. (13), the

phase difference φAB corresponding to the lowest total energy
of the magnetic interactions between two sublattices

φAB
min(q) = arctan

[D(0)AB · erot − A(1)AB · q + · · ·
A(0)AB + eT

rot · D(1)AB · q + · · ·
]

is nonzero if D(2p)AB or A(2p+1)AB are nonzero tensors.
To explain the emergence of the phase difference let us

assume first only two spin spirals formed by sublattices A and
B. When each atom i in sublattices A and B possesses an inver-
sion symmetry with respect to their relative positions, RAB

ii =
−RAB

ii−1, and magnetic interactions, J AB
i j = (J AB

ii−1)T , as shown
in Fig. 4(a), then the summation in Eq. (8) gives D(2p)AB =
A(2p+1)AB = 0I2p+1; therefore, φAB

min(q) = 0. However, when
atoms in one of the sublattices are displaced from their sym-
metric positions by δ [see Fig. 4(b)], then φAB

min(q) = δ · q if
J AB

ii = (J AB
ii−1)T and the magnetic moments remain the same

directions as before the displacement (SB
i = SB′

i ). If J AB
i j �=

(J AB
ii−1)T , then SB

i �= SB′
i , and φAB

min(q) �= δ · q in general.

Similarly, the emergence of the relative phases φAB be-
tween spin spirals in different sublattices of the B20 structure
is expected because atoms in this structure are displaced with
respect to the high-symmetry sites [given by space group
Fm3m; see Fig. 4(c)]. Such displacement of atoms in each
sublattice A can be defined as δA = nAuM , where the param-
eter uM stands for the Wyckoff positions of magnetic ions in
the B20 structure (space group P213) and nA is the symmetry
direction at each site in sublattice A (see Appendix D). Finding
phase φA for each spiral A in a B20 chiral magnet for a
given direction of q requires taking into account the magnetic
interactions between all pairs of sublattices. Since only a
phase difference φAB enters Eq. (13), we are allowed to choose
φ1 = 0. Assuming erot ‖ q and minimizing (numerically) the
total energy, Eq. (13), for q001 and q111 with respect to the
phases φA, we obtain

φ1 = φ2 = 0, φ3 = φ4 = ϕ001(q001),

φ1 = 0, φ2 = φ3 = φ4 = ϕ111(q111). (14)

Therefore, due to the symmetries of the B20 structure the only
unknown parameter ϕ(q) remains for the two cases of q. The
above equations indicate also that the phase difference φAB

between spirals in sublattices A and B can be defined in terms
of the relative atomic displacements from the high-symmetry
sites projected on erot ‖ q:

φAB
min(q) = erot · (nB − nA) ϕ(q).

Since, due to the symmetries, the only unknown parameter
ϕ(q) remains, the total energy in Eq. (13) can be easily min-
imized, and ϕmin(q) that includes the interactions between
magnetic atoms in all sublattices of the crystal can be com-
puted. The energies of the exchange and DM interactions as
a function of |q| and ϕmin(q) for q001 or q111 are shown as
blue circles (atomistic model) and blue lines (micromagnetic
model) in Figs. 3(a) and 3(b). The corresponding ϕmin(q) for
q001 and q111 are shown in Figs. 3(c) and 3(d), respectively. As
follows from Fig. 3, the energies corresponding to ϕmin(q) for
the two directions of q are almost the same (a small difference
is due to the higher-order contributions; see Sec. IV A). The
obtained energies are lower than in the case of ϕ(q) = 0,
EAB

II (qmin, ϕmin) < EAB
I (qmin), as the energy gain of the DM

interaction dominates the energy loss of the exchange con-
tribution [see Fig. 3(b)]. Also, the obtained phase difference
ϕmin(qmin) ≈ −0.8◦ is of the same order as the angle between
magnetic moments of nearest atoms formed due to the global
spiraling of ≈1.28◦ [46].

C. Spirals with different cones

Now we consider a case in which in addition to the phase
difference φAB between spin spirals each of them is allowed to
have a cone angle θA between each SA

i and eA
rot that might differ

from π/2 [see Fig. 5(a)]. The total energy of the magnetic
interactions for such magnetic structure has the form

EAB
III (q, φAB, θA, θB) = cos θA cos θBEAB

FM

+ sin θA sin θBEAB
II (q, φAB),

where EAB
FM = −∑

i j JAB
i j = A(0)AB and EAB

II (q, φAB) are the
total energies, respectively, of the FM state and spin-spiral
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FIG. 5. Illustration of the superposition of spin spirals A and B
with (a) different cone angles and (b) different orientations of the
rotation axes. The rainbow colors for the vectors represent different
orientations of the vector chirality χAB

i = SA
i × SB

i component normal
to q.

state with phase difference φAB [see Eq. (13)]. In such a
case the chirality vectors χAB

i j = SA
i × SB

j of the spin-spiral
state have components that are normal and parallel to the
direction of the wave vector q, χAB

i j = χAB
i j‖q + χAB

i j⊥q [see
Fig. 5(a)]. Case θA = θB = θ◦ (θA = θB = π/2) corresponds
to the FM (flat spin spiral) state. Any deviations of the cone
angles θA and θB from π/2 reduce the energy contribution of
EAB

II (q, φAB) and the total energy of such conical spin spirals is
in between the total energy of the FM state and the total energy
of the flat spin spirals. This is in particular because conical
spin spirals reduce the contribution to the total energy of the
DM vectors parallel to q, as Di j · χAB

i j‖q = sin θA sin θBDi j ·
χAB

i j . Also, the components of DM vectors normal to q on
average over the magnetic unit cell give zero contribution to
the total energy, as vector chirality components χAB

i j⊥q rotate
by 2π over the whole magnetic unit cell [see Fig. 5(a)]. From
this, we conclude that the competition between the exchange
and DM interactions favors the emergence of flat spin spirals
rather than those with θA �= π/2.

D. Spirals with different rotation axes

Finally, we consider a case in which flat spirals in each
sublattice in addition to the phase difference φAB are allowed
to have different orientations of their rotation axes eA

rot, char-
acterized by angles βA and αA, as illustrated in Fig. 1. Like in
the case discussed above, different orientations of the rotation
axes in two sublattices give rise to χAB

i j‖q and χAB
i j⊥q vector

chirality components [see Fig. 5(b)]. While the component
χAB

i j‖q caused by the DM interaction vectors parallel to q gives
rise to the global spiraling, the components χAB

i j⊥q might arise
due to the DM interaction vectors DAB

i j⊥q normal to q. Although
the contribution of DM interaction from χAB

i j⊥q varies over the
magnetic unit cell, it does not vanish completely as χAB

i j⊥q
rotates around q by only π .

The directions of the spin-spiral rotation axes formed by
different sublattices of the B20 structure can be obtained from
the minimization of the total energy [Eq. (6)] for a given
wave vector q. In this case the total energy of the magnetic

interactions is a function of 13 parameters (q, φA, βA, and
αA for A = 1, 2, 3, 4). As we will demonstrate, the number of
unknown parameters can be reduced due to symmetries, but
let us first briefly discuss the case |q| = 0, for which the total
energy given by Eq. (6) has the form

E (0)
IV = 1

2

∑
AB

(
eA

1 · eB
1 + eA

2 · eB
2

)
A(0)AB

+ 1

2

∑
AB

(
eA

1 × eB
1 + eA

2 × eB
2

)
· D(0)AB. (15)

From this equation it follows that the contribution from
the DM interaction takes maximal values when eA

m ⊥ eB
m ⊥

D(0)AB. Note that in the case with eA
rot = eB

rot we have (eA
m ×

eB
m) = eA

rot sin φAB, and only D(0)AB ‖ eA
rot contributes to the

total energy for |q| = 0 (see Sec. IV B). However, since
D(0)AB ∦ D(0)AC in B20 FeGe (see Table III in Appendix D),
the DM interaction, in addition to the phase φAB, might lead
to eB

rot ∦ eC
rot.

The energies (neglecting small higher-order anisotropic
contributions) of the magnetic interactions in B20 FeGe min-
imized numerically with respect to the twist angles (φA, βA,
and αA) as a function of q001 and q111 are shown as red lines
in Figs. 3(a) and 3(b). While the minimized total energy does
not depend on the direction of q, the corresponding twist’s
angles of the spirals in each sublattice A depend on it, such
that

4∑
A

nA · eA
rot = 0,

( 4∑
A

eA
rot

)
‖ q

φAB
min(q) = (

nB · eB
rot − nA · eA

rot

)
ϕ(q).

As the result, only three parameters ({φ, β, α}) out of 12
({φA, βA, αA}) remain independent. As an example, in the case
of q001 we obtain

φ1 = φ2 = 0, φ3 = φ4 = φ(q),

β1 = β2 = β3 = β4 = β(q),

α1 = α(q), α2 = α(q) + π,

α4 = −α(q), α3 = −α(q) − π. (16)

A similar result can be shown for q111. In this case e1
rot

‖q‖ n1, e2
rot · q = e3

rot · q = e4
rot · q, and e2

rot · n2 = e3
rot · n3 =

e4
rot · n4. The orientations of the rotation axes for the spin

spirals in each sublattice of B20 FeGe for q001 and q111 are
shown in Fig. 3(e). The energy difference of about 0.028 meV
between the helical ground state with twist and the FM state is
three times lower than in the case without twist, corresponding
to a saturation magnetic field of B = 0.12 T [47], which is
in good agreement with the experimental value obtained for
FeGe [18,26,48].

V. CONCLUSIONS

In this work, we studied the magnetic interactions be-
tween sublattices of noncentrosymmetric crystal using the
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micromagnetic model. In particular, we showed that due to
the exchange and DM interactions the ground state spin spirals
formed by sublattices of B20 FeGe have different phases and
different orientations of their rotation axis [see Eq. (1)]. We
developed a micromagnetic model describing the exchange
and DM interactions for such twisted spin-density waves
[Eq. (6)], which gives a solution in terms of a few micro-
magnetic multisublattice interaction parameters taking into
account symmetries of the crystal structure, whereas the atom-
istic model becomes too difficult to carry out due to the long
range of the magnetic interactions. To uncover the importance
of the spin-spiral twist for the energetics of the materials with
multisublattices without inversion symmetry we compute the
micromagnetic exchange and DM interaction parameters for
B20 FeGe, as other higher-order interactions in this compound
are expected to be small [34,35]. From the minimization of
the micromagnetic total energy, we obtain the ground state
parameters characterizing the twist of the spin-density waves
in each sublattice of the crystal. In particular, we show that
the magnitude of this effect in B20 FeGe is of the same order
as global spiraling and, it lowers the total energy (compare
to the FM state) three times compared to the case when it is
ignored.

While the twist of the spin spirals in B20 FeGe signif-
icantly reduces the total energy of the exchange and DM
interactions, the obtained period of the magnetic modula-
tions λDFT

min = 2π/qDFT
min remains two times larger than the

experimental observation λ
exp
min = 2π/qexp

min [see Fig. 3(a)]. A
possible reason for this discrepancy might stem from the
failure of density functional theory (DFT) to capture the ef-
fect of electronic correlations which can dramatically change
the overall behavior of the system, as was recently demon-
strated using dynamical mean-field theory [49]. While the
exchange interaction parameters Ji j obtained by DFT explain
the experimental Curie temperature of FeGe very well [34],
the electronic correlations might have a stronger impact on
the strength of the DM interaction. As shown in Fig. 7 in
Appendix A, not only does the period of the spin spiral
become shorter when the strength of the DM interaction
is increased, but also the corresponding twist angles φmin

and βmin become larger, lowering the total energy more
prominently compared with the case when the twist is
ignored. On the other hand, since the difference in to-
tal energy for qDFT

min and qexp
min due to the twist is small,

E (qDFT
min ,�) − E (qexp

min,�) = 8 μeV [see Fig. 3(a)], we spec-
ulate that it can be overtaken by higher-order magnetic
interactions [35] or by quantum fluctuations [50] shifting qDFT

min
towards qexp

min.
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spin spiral propagating along the (001) direction as a function of
λ = 2π/|q|. The black curve stands for the spin spirals without twist.
Blue and red curves represent twisted spin spirals characterized by
(ϕ) and (ϕ, αA, β ), respectively [see Eqs. (14) and (16)]. (c) Twist pa-
rameters ϕ, β, and αA minimizing the micromagnetic total energy as
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APPENDIX A: SPIN-DYNAMIC SIMULATIONS

Here, by employing atomistic spin-dynamics simulations
[51], we test whether the exchange and DM interactions in
B20 chiral magnets give rise to the twist of the spin-density
waves, as described by Eq. (1). To prove the concept and to
reduce the computational burden we consider first the mag-
netic interactions up to the fourth nearest neighbors, |RAB

i j | �
Rmax = a, where a is the lattice parameter. We use interaction
parameters obtained for B20 FeGe, and to reduce the size
of the magnetic unit cell we multiply the DM interaction
vectors by a factor of 10 [see Fig. 6(a)]. We perform atomistic
spin-dynamics simulations at zero temperature using cubic
supercells of size Nλ × Nλ × Nλ, where Nλ ∈ {30, . . . , 60}.
Our simulations confirm that the spin spirals form a twist at
the ground state in all chosen supercells. Also, no modulations
within the same sublattice in directions normal to the direction
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of q001 were observed; thus, a one-dimensional magnetic su-
percell 1 × 1 × Nλ is sufficient.

Figure 6(b) shows the total energies obtained from the min-
imization of the micromagnetic energy (solid lines), from the
atomistic model (circles), and from the spin-dynamics simu-
lations (diamonds) as a function of the period of the magnetic
modulation λ = 2π/|q| for the spin spirals propagating in the
z direction. Since the period of the magnetic modulations is
rather small, we include micromagnetic parameters M(p)AB

up to order p = 7, which results in perfect agreement with
an atomistic model. As shown in Fig. 6(b) the total energy
minimum of the spin spiral is reduced by a factor of 14 due
to the phase difference ϕ (blue curve) and by a factor of 32
due to the deviation of the rotation axes eA

rot(β
A, αA) from the

direction of q (red curve). The period of the magnetic modu-
lations λmin becomes shorter due to such a twist as well. The
corresponding twist angles ϕ(λ), β(λ), and α(λ) minimizing
the micromagnetic total energy as a function of λ are shown
in Fig. 6(c).

Energies obtained by spin-dynamics simulations are only
slightly lower than the energies predicted by our micromag-
netic model [see Fig. 6(b)]. This small difference is because in
the micromagnetic model we assume homogeneous spirals for
each sublattice, e.g., twist angles �A = {φA, βA, αA} = const
for any site RA

i . However, spin-dynamics simulations show
that �A

i = �A + �A
i (RA

i ), where �A
i = f (RA

i ) is a function
of the atomic position RA

i [52] [see Fig. 6(d)]. As can be seen
from Fig. 6, the energy gain due to such nonhomogeneity of
the spin spirals �A

i is much smaller than the energy gain due
to a twist �A, as well as �A

i 	 �A.
On the other hand, the computational burden in the spin-

dynamic simulations of the ground state properties of FeGe
due to the long range of the magnetic interactions can be
significantly reduced by replacing the larger number of the
realistic interaction parameters J AB

i j by a smaller number of

the atomistic effective interaction parameters J̃ AB
i j with the

condition that they both provide the same micromagnetic
interaction tensors M(p)AB (see Appendix D). Such atom-
istic effective interaction parameters J̃ AB

i j can be obtained
by solving the following system of equations with different
orders p:

(−1)p+1

(2p)!

Nsh∑
s=1

NBs∑
j=1

J̃ ABs

1 j(kk′ )R
(2p)ABs

1 j = M(2p)AB
kk′ ,

(−1)p+1

(2p + 1)!

Nsh∑
s=1

NBs∑
j=1

J̃ ABs

1 j(kk′ )R
(2p+1)ABs

1 j = M(2p+1)AB
kk′ ,

where the sum over s is restricted to the number of the interact-
ing (effective) shells Nsh with radii Rs = |RAB

i j | � Rmax (shell
index s represent all bonds of the same length connected by
symmetries) and j runs over sites of sublattice Bs within the
same Rs.

The effective interaction parameters J̃AB
i j and D̃AB

i j for FeGe
obtained as a fit to the micromagnetic tensors A(p)AB (p � 2)
and D(p)AB (p � 1) are given in Table I. As shown in Fig. 7(a),
the energies corresponding to these effective parameters ob-
tained by SD simulations are in excellent agreement with
the prediction of our micromagnetic model, as well as with

FIG. 7. (a) and (b) The total energy of the exchange and DM
interaction as a function of spin-spiral period λ, computed for q ‖
(001) using scaling factors ηDMI = 1 and ηDMI = 2, respectively, for
the length of the DM interaction vectors Di j of FeGe. The energies
of the SD simulations (large gray circles) and atomistic model (small
circles) are obtained using the effective J̃ AB

i j and real J AB
i j interaction

parameters, respectively. The micromagnetic energies are minimized
for spin spirals without twist (blue lines) and with a twist (red lines).
The diamonds indicate λmin corresponding to the minimum of the
total energy Emin. (c) Period λmin, (d) energy minimum Emin, and
(e) corresponding twist angles (φmin, βmin, αmin) of the spin spirals
with twist as a function of the scaling factor ηDMI for the length
of Di j .

the energies obtained by the atomistic model applied to the
predicted magnetic structure with realistic interaction param-
eters. However, while the prediction of our micromagnetic
model is in excellent agreement with the SD simulations,
showing a significant reduction of the total energy of the spin
spirals due to the twist, the obtained period of the magnetic
modulations λDFT

min ≈ 140 (nm) remains two times larger than
the experimental observation.

A possible reason for this discrepancy might stem from the
failure of DFT to capture the effect of electronic correlations,
which can have a more drastic effect on DM interaction than
on the exchange, which provides good agreement with the
experimental Curie temperature [34]. Therefore, we also study
(using the micromagnetic model and SD simulations) the
dependences of the spin-spiral total energies, corresponding
period, and twist angles on strength of the DM interaction
vectors ηDi j , where η = 0.9, · · · , 2.1. As shown in Fig. 7,
not only does the period λmin of the spin spiral become shorter
when the strength of the DM interaction is increased, reaching
the experimental λ = 70 (nm) at η ≈ 2, but also the corre-
sponding twist angles φmin and βmin become larger, lowering
the total energy Emin more prominently than in the case when
the twist of the spin spirals is ignored.
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TABLE I. The effective interaction parameters J̃ABs

i j and D̃ABs

i j (where s stands for the radius Rs of the shell with all bonds |RAB
i j | = Rs

connected by symmetries) between atoms of sublattices A = 1 and B = 1, 2 obtained as a fit to the micromagnetic parameters A(p)AB (p � 2)
and D(p)AB (p � 1). The effective interaction parameters between atoms of all other sublattices can be obtained by using symmetries (see
Appendix D).

s A-B Rs RAB
i j J̃AB

i j D̃AB
i j

1 1-2 0.613 (0.23, −0.27, −0.5) 3.311 (−0.013, −0.295, 1.226)
2 1-2 0.914 (0.23, 0.73, −0.5) 1.474 (0.183, 0.088, −0.481)
3 1-2 0.957 (−0.77, −0.27, −0.5) −0.006 (0.045, −0.175, −0.332)
4 1-2 1.173 (−0.77, 0.73, −0.5) −0.263
5 1-2 1.355 (1.23, −0.27, −0.5) 1.997
6 1-2 1.384 (0.23, −1.27, −0.5) −0.101
7 1-2 1.515 (1.23, 0.73, −0.5) −1.421
8 1-2 1.541 (0.23, −0.27, −1.5) 1.694
1 1-1 1.000 (−1, 0, 0) 4.733 (−0.127, 0.039, 0.108)
2 1-1 1.414 (−1,−1, 0) −1.904
3 1-1 1.414 (−1, 0, 1) −0.820

APPENDIX B: MAGNETIC STRUCTURE

We define the magnetic moment SA
i at site i of sublattice A

as

SA
i = R(βA, αA)

⎛
⎝sin θA cos[q · RA

i + φA]
sin θA sin[q · RA

i + φA]
cos θA

⎞
⎠

= eA
1 cos

(
q · RA

i

) + eA
2 sin

(
q · RA

i

) + eA
3 ,

where the parameter �A = {βA, αA, θA, φA} represents a set
of spin-spiral twist angles and R(βA, αA) is a rotation matrix
mapping the ez axis to the rotation axis eA

rot. Vectors eA
m =

eA
m(�A) characterizing the twist of the spin spiral in sublattice

A are defined as

eA
1 = sin θA R(βA, αA)(ex cos φA + ey sin φA),

eA
2 = sin θA R(βA, αA)(ey cos φA − ex sin φA),

eA
3 = cos θA R(βA, αA) ez = cos θA eA

rot.

APPENDIX C: TRIGONOMETRIC EXPANSION

Since (q · R)p = Q(p) : R(p), where Q(p) = q
⊗

p and

R(p) = R
⊗

p are the p-fold tensor products of q and R vectors
with themselves, respectively, we expand the cosine and sine
functions of q · R in the form

− cos q · R =
∑
p=0

(−1)p+1

(2p)!
Q(2p) : R(2p),

− sin q · R =
∑
p=0

(−1)p+1

(2p + 1)!
Q(2p+1) : R(2p+1),

where the sum over p defines the order of Tailor expansion
and the notation “:” denotes the inner product between two
tensors. Using this form for the expansion of the trigonomet-
ric functions, the atomistic interaction tensors J AB

1 j entering
the total energy expression [Eq. (5) in the main text] and
corresponding distance between interacting sites RAB

i j can be

combined in the micromagnetic interaction tensors M(p)AB:

−
∑
j=1

J AB
1 j : CAB

+ cos q · RAB
1 j

=
∑
p=0

∑
j=1

(−1)p+1

(2p)!

(
J AB

1 j : CAB
+

)(
Q(2p) : R(2p)AB

1 j

)

=
∑
p=0

(−1)p+1

(2p)!

∑
j=1

(
J AB

1 j ⊗ R(2p)AB
1 j

)
:
(
CAB

+ ⊗ Q(2p)
)

=
∑
p=0

M(2p)AB :
(
CAB

+ ⊗ Q(2p)
)
,

−
∑
j=1

J AB
1 j : CAB

− sin q · RAB
1 j

=
∑
p=0

∑
j=1

(−1)p+1

(2p + 1)!

(
J AB

1 j : CAB
−

)(
Q(2p+1) : R(2p+1)AB

1 j

)

=
∑
p=0

(−1)p+1

(2p + 1)!

∑
j=1

(
J AB

1 j ⊗ R(2p+1)AB
1 j

)
:
(
CAB

− ⊗ Q(2p+1))

=
∑
p=0

M(2p+1)AB :
(
CAB

− ⊗ Q(2p+1)
)
,

and

−
∑
j=1

J AB
1 j : CAB =

∑
j=1

(
J AB

1 j : CAB
)(
Q(0) : R(0)AB

1 j

)

= −1

0!

∑
j=1

(
J AB

1 j ⊗ R(0)AB
1 j

)
:
(
CAB ⊗ Q(0)

)
= M(0)AB : CAB,

where tensors CAB
+ = eA

1 ⊗ eB
1 + eA

2 ⊗ eB
2 , CAB

− = eA
1 ⊗ eB

2 −
eA

2 ⊗ eB
1 , and CAB = eA

3 ⊗ eB
3 characterize the twist between

spin spirals in sublattices A and B.

064420-9



S. GRYTSIUK AND S. BLÜGEL PHYSICAL REVIEW B 104, 064420 (2021)

FIG. 8. Nearest Fe (light red spheres) and Ge (blue spheres)
atoms at each Fe site (darker red spheres) of the B20 structure.
Red and blue lines indicate bonds connected by threefold rotation
symmetry with respect to the symmetry direction nA. All red (blue)
bonds RAB

i j (RAB′
i j ) are connected to R12

i j by T A
ωAB (−T B

ωAB ) symmetry.
Dashed arrows indicate bonds at site A = Fe1 that appear at other
sites B �= A.

APPENDIX D: SYMMETRIES AND MICROMAGNETIC
INTERACTION TENSORS

Magnetic and nonmagnetic atoms in B20 compounds are
located at the 4a Wyckoff positions, r1(u) = (u, u, u), r2(u) =
(0.5 − u, 1 − u, 0.5 + u), r4(u) = (0.5 + u, 0.5 − u, 1 − u),
and r3(u) = (1 − u, 0.5 + u, 0.5 − u), where the parameters
uFe = 0.135 and uGe = −0.158 stand, respectively, for Fe and
Ge atoms in the B20 FeGe compound. Each sublattice A
in B20 compounds has only one threefold rotation axis (see
Fig. 8), which can be defined as

nA = ∂rA(u)

∂u
∈ {(111), (1̄1̄1), (11̄1̄), (1̄11̄)}.

All symmetries at any site of any sublattice A in the B20 struc-
ture can be generalized by the following symmetry operation:

T AB = T A
ωAB = (nA ⊗ nA) ◦ R[111]

ωAB , (D1)

where R[111]
ωAB is a threefold rotation matrix around the n1 =

[1, 1, 1] axis on angle ωAB = 2π
3 k (k = 0, 1, 2), “◦” is the

elementwise (Hadamard) product, and operation (nA ⊗ nA)
maps sublattice 1 to any other sublattice A, such that any
bond RAB

i′ j′ between sites i′ and j′ of any sublattices A and
B, respectively, can be represented as RAB

i′ j′ = T AB · R12
i j or as

RAA
i′ j′ = T AA · R11

i j if A = B. Note that the successive threefold
rotations around nA give RAB

i j → RAC
ik → RAD

il , where the or-
der of sublattices B, C, D is such that nA · (RAB

i j × RAC
ik ) � 0

and nA · (RAC
ik × RAD

il ) � 0. Also, it is easy to show that the
operation −T B

ωAB at sublattice A gives RAB
i′ j′ = −T B

ωAB R12
i j =

−RBA
j′i′ . It represents double counting and therefore can be

omitted; otherwise, a factor of 1/2 has to be used in the energy
calculations. For instance, any site of sublattice A has six
nearest neighbors in total; however, only three of them are
related by threefold rotation symmetry nA, and the other three
appear at sites of other sublattices B, C, and D (see Fig. 8).
The symmetry operations T A

ωAB and −T B
ωAB for the bonds are

illustrated in Table II, and those for the micromagnetic vectors
D(0)AB and A(1)AB are given in Table III.

Since symmetry-related bonds RAB
i′ j′ and symmetry-related

DM vectors DAB
i′ j′ can be defined via R12

i j or R11
i j and D12

i j or
D11

i j , respectively, all micromagnetic tensors M(p)AB can be
also defined in terms of M(p)12 or M(p)11:

A(0)AB = A(0)12, A(1)AB = T ABA(1)12,

A(2)AB = T ABA(2)12(T AB)T ,

A(3)AB = T AB(
T AB

(
A(3)12

)T )T
(T AB)T . (D2)

The same operations are valid for tensors D(p). Note if A =
B, the only symmetry operation T A

0 is required to transform
M(0)11 to M(0)AA. Below we list tensors M(p)12 and M(p)11

for B20 FeGe as well as the sum of M(p)AB over all pairs of
sublattices:

AB A(0)AB A(1)AB D(0)AB

11 −12.06 (0, 0, 0) (0, 0, 0)
12 −13.37 (−22.39, 17.99, 0) (−0.43, 0.76, 0)∑

AB −208.68 (0, 0, 0) (0, 0, 0)

AB A(2)AB D(1)AB

11

⎛
⎝−15.77 −23.96 −23.96

−23.96 −15.77 −23.96
−23.96 −23.96 −15.77

⎞
⎠

⎛
⎝−1.20 1.01 0.37

0.37 −1.20 1.01
1.01 0.37 −1.20

⎞
⎠

12

⎛
⎝ 23.15 −40.36 0.00

−40.36 5.19 0.00
0.00 0.00 111.78

⎞
⎠

⎛
⎝−0.04 −1.17 0.00

−0.82 −1.80 0.00
0.00 0.00 1.94

⎞
⎠

∑
AB 497.42I1 −4.38I1

A(3)12 D(2)12⎛
⎝−305.74 −14.10 0.00

−14.10 81.11 0.00
0.00 0.00 77.91

⎞
⎠

⎛
⎝ −14.10 81.11 0.00

81.11 345.57 0.00
0.00 0.00 −140.59

⎞
⎠

⎛
⎝ 0.00 0.00 77.91

0.00 0.00 −140.59
77.91 −140.59 0.00

⎞
⎠

⎛
⎝ 17.27 0.07 0.00

0.07 −4.89 0.00
0.00 0.00 −0.93

⎞
⎠

⎛
⎝ 5.42 −2.56 0.00

−2.56 −18.61 0.00
0.00 0.00 0.17

⎞
⎠

⎛
⎝ 0.00 0.00 −4.72

0.00 0.00 6.54
−4.72 6.54 0.00

⎞
⎠

A(3)11 = ∑
AB A(3)AB = 0I3 D(2)11 = ∑

AB D(2)AB = 0I3

Here, Ip is an identity tensor of rank p. As we can see, the sum of the above tensors M(p)AB over all pairs of sublattices of
B20 structure gives the scalar matrices due to the symmetry of the B20 structure characterized by the point group T . Similarly,
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TABLE II. Symmetry relations between bonds RAB
i′ j′ = T A

ωAB · R12
i j and RAA′

i′ j′ = T A
ωAB · R11′

i j in the B20 structure.

A-B T A
0◦ RAB A-B T A

120◦ RAB A-B T A
240◦ RAB A-A′ T A

0◦ RAA′ T A
120◦ RAA′ T A

240◦ RAA′

1-2 T 1
0◦ (x, y, z) 1-3 T 1

120◦ (z, x, y) 1-4 T 1
240◦ (y, z, x) 1-1 T 1

0◦ (x′, y′, z′) T 1
120◦ (z′, x′, y′) T 1

240◦ (y′, z′, x′)

−T 2
0◦ (x, y, z̄) −T 3

120◦ (z̄, x, y) −T 4
240◦ (y, z̄, x) −T 1

0◦ (x̄′, ȳ′, z̄′) −T 1
120◦ (z̄′, x̄′, ȳ′) −T 1

240◦ (ȳ′, z̄′, x̄′)

2-1 T 2
0◦ (x̄, ȳ, z) 2-4 T 2

120◦ (z̄, x̄, y) 2-3 T 2
240◦ (ȳ, z̄, x) 2-2 T 2

0◦ (x̄′, ȳ′, z′) T 2
120◦ (z̄′, x̄′, y′) T 2

240◦ (ȳ′, z̄′, x′)

−T 1
0◦ (x̄, ȳ, z̄) −T 4

1 (z, x̄, y) −T 3
240◦ (ȳ, z, x) −T 2

0◦ (x′, y′, z̄′) −T 2
120◦ (z′, x′, ȳ′) −T 2

240◦ (y′, z′, x̄′)

3-4 T 3
0◦ (x, ȳ, z̄) 3-1 T 3

120◦ (z, x̄, ȳ) 3-2 T 3
240◦ (y, z̄, x̄) 3-3 T 3

0◦ (x′, ȳ′, z̄′) T 3
120◦ (z′, x̄′, ȳ′) T 4

240◦ (y′, z̄′, x̄′)

−T 4
0◦ (x, ȳ, z) −T 1

120◦ (z̄, x̄, ȳ) −T 2
240◦ (y, z, x̄) −T 3

0◦ (x̄′, y′, z′) −T 3
120◦ (z̄′, x′, y′) −T 3

240◦ (ȳ′, z′, x′)

4-3 T 4
0◦ (x̄, y, z̄) 4-2 T 4

1 (z̄, x, ȳ) 4-1 T 4
240◦ (ȳ, z, x̄) 4-4 T 4

0◦ (x̄′, y′, z̄′) T 4
120◦ (z̄′, x′, ȳ′) T 4

240◦ (ȳ′, z′, x̄′)

−T 3
0◦ (x̄, y, z) −T 2

120◦ (z, x, ȳ) −T 1
240◦ (ȳ, z̄, x̄) −T 4

0◦ (x′, ȳ′, z′) −T 4
120◦ (z′, x̄′, y′) −T 4

240◦ (y′, z̄′, x′)

summing up the higher-order tensors D(3)AB and A(4)AB over all pairs of sublattices gives

D(3) =
∑
AB

D(3)AB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎝D(3)

1 0 0
0 D(3)

2 0
0 0 D(3)

3

⎞
⎠

⎛
⎝ 0 D(3)

2 0
D(3)

2 0 0
0 0 0

⎞
⎠

⎛
⎝ 0 0 D(3)

3
0 0 0

D(3)
3 0 0

⎞
⎠

⎛
⎝ 0 D(3)

3 0
D(3)

3 0 0
0 0 0

⎞
⎠

⎛
⎝D(3)

3 0 0
0 D(3)

1 0
0 0 D(3)

2

⎞
⎠

⎛
⎝0 0 0

0 0 D(3)
2

0 D(3)
2 0

⎞
⎠

⎛
⎝ 0 0 D(3)

2
0 0 0

D(3)
2 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 D(3)
3

0 D(3)
3 0

⎞
⎠

⎛
⎝D(3)

2 0 0
0 D(3)

3 0
0 0 D(3)

1

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A(4) =
∑
AB

A(4)AB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎝A(4)

1 0 0
0 A(4)

2 0
0 0 A(4)

2

⎞
⎠

⎛
⎝ 0 A(4)

2 0
A(4)

2 0 0
0 0 0

⎞
⎠

⎛
⎝ 0 0 A(4)

2
0 0 0

A(3)
2 0 0

⎞
⎠

⎛
⎝ 0 A(4)

2 0
A(4)

2 0 0
0 0 0

⎞
⎠

⎛
⎝A(4)

2 0 0
0 A(4)

1 0
0 0 A(4)

2

⎞
⎠

⎛
⎝0 0 0

0 0 A(4)
2

0 A(4)
2 0

⎞
⎠

⎛
⎝ 0 0 A(4)

2
0 0 0

A(4)
2 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 A(4)
2

0 A(4)
2 0

⎞
⎠

⎛
⎝A(4)

2 0 0
0 A(4)

2 0
0 0 A(4)

1

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D3)

where D(3)
1 = −140.86 meV Å3, D(3)

2 = 27.16 meV Å3, D(3)
3 = 27.92 meV Å3, A(4)

1 = −1195.94 meV Å4, and A(4)
2 =

−126.49 meV Å4.

TABLE III. Micromagnetic tensors D(0)AB and A(1)AB between different pairs of sublattices A and B of B20 FeGe.

M(p)AB A-B (x, y, z) A-B (x, y, z) A-B (x, y, z) A-A (x, y, z)

D(0)AB (meV) 1-2 (−0.43, 0.76, 0) 1-3 (0, −0.43, 0.76) 1-4 (0.76, 0, −0.43) 1-1 (0, 0, 0)
2-1 (0.43,−0.76, 0) 2-4 (0, 0.43, 0.76) 2-3 (−0.76, 0, −0.43) 2-2 (0, 0, 0)
3-4 (−0.43,−0.76, 0) 3-1 (0, 0.43, −0.76) 3-2 (0.76, 0, 0.43) 3-3 (0, 0, 0)
4-3 (0.43, 0.76, 0) 4-2 (0, −0.43, −0.76) 4-1 (−0.76, 0, 0.43) 4-4 (0, 0, 0)

A(1)AB (meVÅ) 1-2 (−22.39, 17.99, 0) 1-3 (0, −22.39, 17.99) 1-4 (17.99, 0,−22.39) 1-1 (0, 0, 0)
2-1 (22.39, −17.99, 0) 2-4 (0, 22.39, 17.99) 2-3 (−17.99, 0,−22.39) 2-2 (0, 0, 0)
3-4 (−22.39, −17.99, 0) 3-1 (0, 22.39, −17.99) 3-2 (17.99, 0, 22.39) 3-3 (0, 0, 0)
4-3 (22.39, 17.99, 0) 4-2 (0,−22.39, −17.99) 4-1 (−17.99, 0, 22.39) 4-4 (0, 0, 0)
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APPENDIX E: MICROMAGNETIC ENERGIES

The total energy of the spin spirals with twist, Eq. (6), can be unfolded into the exchange and DM contributions:

EAB
ex (q) = A(0)AB

(
eA

3 · eB
3

) + 1

2

2∑
mn

(
eA

m · eB
n

)[
δmnA(0)AB + εmnA(1)AB · q + δmnA(2)AB : q⊗2 + · · · ],

EAB
dm (q) = D(0)AB · (

eA
3 × eB

3

) + 1

2

∑
k

2∑
mn

(
eA

m × eB
n

)
k

[
δmnD(0)AB

k + εmnD(1)AB
k · q + δmnD(2)AB

k : q⊗2 + · · · ],
where indexes k = x, y, z represent the components of the micromagnetic DM tensor D(p)AB

k and symbols εmn and δmn are the
antisymmetric two-dimensional Levi-Civita tensor and Kronecker delta function, respectively, for which each index m, n takes
values 1, 2.

[1] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A.
Neubauer, R. Georgii, and P. Böni, Skyrmion lattice in a chiral
magnet, Science 323, 915 (2009).

[2] A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G.
Niklowitz, and P. Böni, Topological Hall Effect in the a Phase
of MnSi, Phys. Rev. Lett. 102, 186602 (2009).

[3] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y.
Matsui, N. Nagaosa, and Y. Tokura, Real-space observation of
a two-dimensional skyrmion crystal, Nature (London) 465, 901
(2010).

[4] X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang,
S. Ishiwata, Y. Matsui, and Y. Tokura, Near room-temperature
formation of a skyrmion crystal in thin-films of the helimagnet
FeGe., Nat. Mater. 10, 106 (2011).

[5] F. Zheng, F. N. Rybakov, A. B. Borisov, D. Song, S. Wang,
Z.-A. Li, H. Du, N. S. Kiselev, J. Caron, A. Kovács, M. Tian,
Y. Zhang, S. Blügel, and R. E. Dunin-Borkowski, Experimental
observation of chiral magnetic bobbers in B20-type FeGe, Nat.
Nanotechnol., 13, 451 (2018).

[6] F. N. Rybakov, A. B. Borisov, S. Blügel, and N. S. Kiselev, New
Type of Stable Particlelike States in Chiral Magnets, Phys. Rev.
Lett. 115, 117201 (2015).

[7] T. Tanigaki, K. Shibata, N. Kanazawa, X. Yu, Y. Onose, H. S.
Park, D. Shindo, and Y. Tokura, Real-space observation of
short-period cubic lattice of skyrmions in MnGe, Nano Lett. 15,
5438 (2015).

[8] A. Fert, V. Cros, and J. Sampaio, Skyrmions on the track, Nat.
Nanotechnol. 8, 152 (2013).

[9] H. Wilhelm, M. Baenitz, M. Schmidt, U. K. Rößler, A. A.
Leonov, and A. N. Bogdanov, Precursor Phenomena at the
Magnetic Ordering of the Cubic Helimagnet FeGe, Phys. Rev.
Lett. 107, 127203 (2011).

[10] P. Pedrazzini, H. Wilhelm, D. Jaccard, T. Jarlborg, M. Schmidt,
M. Hanfland, L. Akselrud, H. Q. Yuan, U. Schwarz, Y. Grin, and
F. Steglich, Metallic State in Cubic FeGe Beyond Its Quantum
Phase Transition, Phys. Rev. Lett. 98, 047204 (2007).

[11] K. Shibata, J. Iwasaki, N. Kanazawa, S. Aizawa, T. Tanigaki,
M. Shirai, T. Nakajima, M. Kubota, M. Kawasaki, H. S. Park,
D. Shindo, N. Nagaosa, and Y. Tokura, Large anisotropic defor-
mation of skyrmions in strained crystal, Nat. Nanotechnol. 10,
589 (2015).

[12] M. Lee, W. Kang, Y. Onose, Y. Tokura, and N. P. Ong, Unusual
Hall Effect Anomaly in MnSi under Pressure, Phys. Rev. Lett.
102, 186601 (2009).

[13] R. Ritz, M. Halder, C. Franz, A. Bauer, M. Wagner, R. Bamler,
A. Rosch, and C. Pfleiderer, Giant generic topological Hall
resistivity of MnSi under pressure, Phys. Rev. B 87, 134424
(2013).

[14] M. Deutsch, O. L. Makarova, T. C. Hansen, M. T. Fernandez-
Diaz, V. A. Sidorov, A. V. Tsvyashchenko, L. N. Fomicheva, F.
Porcher, S. Petit, K. Koepernik, U. K. Rößler, and I. Mirebeau,
Two-step pressure-induced collapse of magnetic order in the
MnGe chiral magnet, Phys. Rev. B 89, 180407(R) (2014).

[15] U. K. Rößler, Ab initio study on magnetism and pressure-
induced transitions in cubic MnGe, J. Phys.: Conf. Ser. 391,
012104 (2012).

[16] K. Shibata, X. Z. Yu, T. Hara, D. Morikawa, N. Kanazawa, K.
Kimoto, S. Ishiwata, Y. Matsui, and Y. Tokura, Towards control
of the size and helicity of skyrmions in helimagnetic alloys by
spin–orbit coupling, Nat. Nanotechnol. 8, 723 (2013).

[17] S. V. Grigoriev, N. M. Potapova, S.-A. Siegfried, V. A. Dyadkin,
E. V. Moskvin, V. Dmitriev, D. Menzel, C. D. Dewhurst,
D. Chernyshov, R. A. Sadykov, L. N. Fomicheva, and A. V.
Tsvyashchenko, Chiral Properties of Structure and Magnetism
in Mn1−xFexGe Compounds: When the Left and the Right Are
Fighting, Who Wins?, Phys. Rev. Lett. 110, 207201 (2013).

[18] C. S. Spencer, J. Gayles, N. A. Porter, S. Sugimoto, Z. Aslam,
C. J. Kinane, T. R. Charlton, F. Freimuth, S. Chadov, S.
Langridge, J. Sinova, C. Felser, S. Blügel, Y. Mokrousov, and
C. H. Marrows, Helical magnetic structure and the anomalous
and topological Hall effects in epitaxial B20 Fe1−yCoyGe films,
Phys. Rev. B 97, 214406 (2018).

[19] S. X. Huang and C. L. Chien, Extended Skyrmion Phase in
Epitaxial FeGe(111) Thin Films, Phys. Rev. Lett. 108, 267201
(2012).

[20] F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W.
Münzer, A. Bauer, T. Adams, R. Georgii, P. Böni, R. A. Duine,
K. Everschor, M. Garst, and A. Rosch, Spin transfer torques in
MnSi at ultralow current densities, Science, 330, 1648 (2011).

[21] N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama,
S. Wakimoto, K. Kakurai, S. Ishiwata, and Y. Tokura, Large
Topological Hall Effect in a Short-Period Helimagnet MnGe,
Phys. Rev. Lett. 106, 156603 (2011).

[22] G. Chang, S.-Y. Xu, B. J. Wieder, D. S. Sanchez, S.-M. Huang,
I. Belopolski, T.-R. Chang, S. Zhang, A. Bansil, H. Lin, and
M. Z. Hasan, Unconventional Chiral Fermions and Large Topo-
logical Fermi Arcs in RhSi, Phys. Rev. Lett. 119, 206401
(2017).

064420-12

https://doi.org/10.1126/science.1166767
https://doi.org/10.1103/PhysRevLett.102.186602
https://doi.org/10.1038/nature09124
https://doi.org/10.1038/nmat2916
https://doi.org/10.1038/s41565-018-0093-3
https://doi.org/10.1103/PhysRevLett.115.117201
https://doi.org/10.1021/acs.nanolett.5b02653
https://doi.org/10.1038/nnano.2013.29
https://doi.org/10.1103/PhysRevLett.107.127203
https://doi.org/10.1103/PhysRevLett.98.047204
https://doi.org/10.1038/nnano.2015.113
https://doi.org/10.1103/PhysRevLett.102.186601
https://doi.org/10.1103/PhysRevB.87.134424
https://doi.org/10.1103/PhysRevB.89.180407
https://doi.org/10.1088/1742-6596/391/1/012104
https://doi.org/10.1038/nnano.2013.174
https://doi.org/10.1103/PhysRevLett.110.207201
https://doi.org/10.1103/PhysRevB.97.214406
https://doi.org/10.1103/PhysRevLett.108.267201
https://science.sciencemag.org/content/330/6011/1648
https://doi.org/10.1103/PhysRevLett.106.156603
https://doi.org/10.1103/PhysRevLett.119.206401


MICROMAGNETIC DESCRIPTION OF TWISTED SPIN … PHYSICAL REVIEW B 104, 064420 (2021)

[23] D. Takane, Z. Wang, S. Souma, K. Nakayama, T. Nakamura, H.
Oinuma, Y. Nakata, H. Iwasawa, C. Cacho, T. Kim, K. Horiba,
H. Kumigashira, T. Takahashi, Y. Ando, and T. Sato, Observa-
tion of Chiral Fermions with a Large Topological Charge and
Associated Fermi-Arc Surface States in CoSi, Phys. Rev. Lett.
122, 076402 (2019).

[24] M. Yao, K. Manna, Q. Yang, A. Fedorov, V. Voroshnin, B.
Valentin Schwarze, J. Hornung, S. Chattopadhyay, Z. Sun, S. N.
Guin, J. Wosnitza, H. Borrmann, C. Shekhar, N. Kumar, J. Fink,
Y. Sun, and C. Felser, Observation of giant spin-split Fermi-arc
with maximal Chern number in the chiral topological semimetal
PtGa, Nat. Commun. 11, 2033 (2020).

[25] D. S. Sanchez et al., Topological chiral crystals with helicoid-
arc quantum states, Nature (London) 567, 500 (2019).

[26] L. Ludgren, O. Beckman, V. Attia, S. P. Bhattacheriee, and M.
Richardson, Helical spin arrangement in cubic FeGe, Phys. Scr.
1, 69 (1970).

[27] P. Bak and M. H. Jensen, Theory of helical magnetic structures
and phase transitions in MnSi and FeGe, J. Phys. C 13, L881
(1980).

[28] I. E. Dzyaloshinskii, Theory of helical structures in antiferro-
magnets I: Nonmetals, Sov. Phys. JETP 19, 960 (1964).

[29] S. Okumura, S. Hayami, Y. Kato, and Y. Motome, Magnetic
hedgehog lattices in noncentrosymmetric metals, Phys. Rev. B
101, 144416 (2020).

[30] E. Mendive-Tapia, M. dos Santos Dias, S. Grytsiuk, J. B.
Staunton, S. Blügel, and S. Lounis, Short period magnetization
texture of B20-MnGe explained by thermally fluctuating local
moments, Phys. Rev. B 103, 024410 (2021).

[31] V. E. Dmitrienko and V. A. Chizhikov, Weak Antiferromagnetic
Ordering Induced by Dzyaloshinskii-Moriya Interaction and
Pure Magnetic Reflections in Mnsi-Type Crystals, Phys. Rev.
Lett. 108, 187203 (2012).

[32] V. A. Chizhikov and V. E. Dmitrienko, Frustrated magnetic
helices in MnSi-type crystals, Phys. Rev. B 85, 014421 (2012).

[33] V. A. Chizhikov and V. E. Dmitrienko, Multishell contribution
to the Dzyaloshinskii-Moriya spiraling in MnSi-type crystals,
Phys. Rev. B 88, 214402 (2013).

[34] S. Grytsiuk, M. Hoffmann, J.-P. Hanke, P. Mavropoulos, Y.
Mokrousov, G. Bihlmayer, and S. Blügel, Ab initio analysis of
magnetic properties of the prototype B20 chiral magnet FeGe,
Phys. Rev. B 100, 214406 (2019).

[35] S. Grytsiuk, J.-P. Hanke, M. Hoffmann, J. Bouaziz, O.
Gomonay, G. Bihlmayer, S. Lounis, Y. Mokrousov, and S.
Blügel, Topological-chiral magnetic interactions driven by
emergent orbital magnetism, Nat. Commun. 11, 511 (2020).

[36] https://jukkr.fz-juelich.de.
[37] D. S. G. Bauer, Development of a relativistic full-potential first-

principles multiple scattering Green function method applied to
complex magnetic textures of nano structures at surfaces, Ph.D.
thesis, Rheinisch-Westfälische Technische Hochschule Aachen,
2013.

[38] N. Papanikolaou, R. Zeller, and P. H. Dederichs, Conceptual
improvements of the KKR method, J. Phys.: Condens. Matter
14, 2799 (2002).

[39] Since q · RA
i = q · (rA + τ i ) = q · rA + ωi and q · RB

j = q ·
(RB

j′ + τ i ) = q · RB
j′ + ωi, where RB

j′ = RB
j + τ i, τ i is the

translation vector (along the magnetic unit cell), and ωi is
the angle between two spins separated by τ i, the summation
over the magnetic unit cell can be approximated by an integral
≈1/(2π )

∫
∂ωS(q · rA + ω)J AB

1 j
S(q · RB

j + ω), assuming that

ωi 	 2π .
[40] A. Liechtenstein, M. Katsnelson, V. Antropov, and V. Gubanov,

Local spin density functional approach to the theory of
exchange interactions in ferromagnetic metals and alloys,
J. Magn. Magn. Mater. 67, 65 (1987).

[41] H. Ebert and S. Mankovsky, Anisotropic exchange coupling in
diluted magnetic semiconductors: Ab initio spin-density func-
tional theory, Phys. Rev. B 79, 045209 (2009).

[42] R. Wäppling and L. Häggström, Mössbauer study of cubic
FeGe, Phys. Lett. A 28, 173 (1968).

[43] B. Lebech, J. Bernhard, and T. Freltoft, Magnetic structures of
cubic FeGe studied by small-angle neutron scattering, J. Phys.:
Condens. Matter 1, 6105 (1989).

[44] J. P. Perdew and Y. Wang, Pair-distribution function and its
coupling-constant average for the spin-polarized electron gas,
Phys. Rev. B 46, 12947 (1992).

[45] Note that A(2) : Q(2) = A(2)I2 : Q(2) = A(2)q2 for erot ‖ qD(1) :
Q(1) ⊗ erot = D(1)I2 : Q(1) ⊗ erot = D(1)q, where I p are iden-
tity matrices of rank p.

[46] The angle between magnetic moments of the nearest atoms
formed due to the global spiraling can be defined as
≈2πa/(4λ) = 1.28◦, where a is the lattice parameter, λ ≈ 70a
is the experimental period of the spin-spiral modulation, and the
factor 4 counts four magnetic ions in the unit cell.

[47] The saturation magnetic field B ‖ q corresponds to the
Zeeman energy EZ(qmin) = −m · B = E (qmin) − EFM, where
|m| = 4μB = 4 × 57.8838(μeV T−1) is the total magnetic mo-
ment in the unit cell. Since the saturation magnetic filed leads
to mB, we get |B| = −EZ (qmin)/|m|.

[48] A. Bauer and C. Pfleiderer, Generic aspects of skyrmion lattices
in chiral magnets, in Topological Structures in Ferroic Materi-
als: Domain Walls, Vortices and Skyrmions, edited by J. Seidel
(Springer, Cham, 2016), pp. 1–28.

[49] V. Borisov, Y. O. Kvashnin, N. Ntallis, D. Thonig, P.
Thunström, M. Pereiro, A. Bergman, E. Sjöqvist, A. Delin,
L. Nordström, and O. Eriksson, Heisenberg and anisotropic
exchange interactions in magnetic materials with correlated
electronic structure and significant spin-orbit coupling, Phys.
Rev. B 103, 174422 (2021).

[50] A. A. Povzner, A. G. Volkov, T. A. Nogovitsyna, and S. A.
Bessonov, Spin Fluctuations and Concentration Magnetic Tran-
sitions in Chiral Helical Ferromagnets Fe1−xCoxSi, Phys. Solid
State 62, 92 (2020).

[51] https://github.com/spirit-code/spirit.
[52] The twist angles of the spirals in each sublattice A are defined

locally between the nearest magnetic sites RA
i and RA

i−1 of the
same sublattice: φA

i = arccos(SA
i · SA

i−1) − q · RAA
i,i−1, and αA

i and
βA

i are polar coordinates of the rotation axis eA
rot(α

A
i , βA

i ) =
SA

i × SA
i−1.

064420-13

https://doi.org/10.1103/PhysRevLett.122.076402
https://doi.org/10.1038/s41467-020-15865-x
https://doi.org/10.1038/s41586-019-1037-2
https://doi.org/10.1088/0031-8949/1/1/012
https://doi.org/10.1088/0022-3719/13/31/002
https://doi.org/10.1103/PhysRevB.101.144416
https://doi.org/10.1103/PhysRevB.103.024410
https://doi.org/10.1103/PhysRevLett.108.187203
https://doi.org/10.1103/PhysRevB.85.014421
https://doi.org/10.1103/PhysRevB.88.214402
https://doi.org/10.1103/PhysRevB.100.214406
https://doi.org/10.1038/s41467-019-14030-3
https://jukkr.fz-juelich.de
https://doi.org/10.1088/0953-8984/14/11/304
https://doi.org/10.1016/0304-8853(87)90721-9
https://doi.org/10.1103/PhysRevB.79.045209
https://doi.org/10.1016/0375-9601(68)90183-7
https://doi.org/10.1088/0953-8984/1/35/010
https://doi.org/10.1103/PhysRevB.46.12947
https://doi.org/10.1103/PhysRevB.103.174422
https://doi.org/10.1134/S1063783420010266
https://github.com/spirit-code/spirit

