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Multiple field-induced phases in the frustrated triangular magnet Cs3Fe2Br9
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The recently discovered material Cs3Fe2Br9 contains Fe2Br9 bi-octahedra forming triangular layers with
hexagonal stacking along the c axis. In contrast to isostructural Cr-based compounds, the zero-field ground state
is not a nonmagnetic S = 0 singlet-dimer state. Instead, the Fe2Br9 bi-octahedra host semiclassical S = 5

2 Fe3+

spins with a pronounced easy-axis anisotropy along c, and interestingly, the intradimer spins are ordered
ferromagnetically. The high degree of magnetic frustration due to (various) competing intradimer and interdimer
couplings leads to a surprisingly rich magnetic phase diagram. The zero-field ground state is already reached
via an intermediate phase, and the high-field magnetization and thermal expansion data for H ‖ c identify 10
different ordered phases. Among them are phases with constant magnetization of 1

3 , respectively 1
2 , of the

saturation value, and several transitions are strongly hysteretic with pronounced length changes, reflecting strong
magnetoelastic coupling.

DOI: 10.1103/PhysRevB.104.064418

I. INTRODUCTION

Magnetic triangular lattices show a large variety of in-
teresting physics and have been intensively studied [1–5].
For example, the search for spin-liquid candidates caused
intense studies of hexagonal and triangular magnetic ma-
terials like Cs2CuX4 with X = Cl, Br, Na2IrO3, α-Li2IrO3,
and Ba3TiIr2O9 [6–10]. In contrast to the theoretical concept
of a spin liquid, all these materials show magnetic order at
low temperatures. While in the 5d materials spin-orbit cou-
pling plays an important role, the exchange interactions are
typically dominating in 3d transition-metal compounds. In
Cs3Cr2X9 with X = Cl, Br, which contain a hexagonal ar-
rangement of face-sharing Cr2X9 bi-octahedra, the magnetism
is dominated by a strong antiferromagnetic intradimer cou-
pling. This yields a singlet ground state and a field-induced
magnetic ordering which can be described as a Bose-Einstein
condensation (BEC) of magnons [11,12]. Two examples of
triangular magnets with rich phase diagrams are the S = 1

2
Heisenberg system Cs2CuBr4 that shows nine field-induced
phase transitions and a multitude of fractional magnetiza-
tion plateaus [13], and the semiclassical S = 5

2 material

*tl@ph2.uni-koeln.de, lorenz@ph2.uni-koeln.de

RbFe(MoO4)2 with five ordered phases [14]. In these trian-
gular lattices, magnetic moments lie within the plane, and the
interesting phase diagrams occur for in-plane applied fields.
Another example is CuFeO2, where the Fe3+ moments order
perpendicular to the triangular planes [15,16].

Recently, the material Cs3Fe2Br9 was discovered that is
isostructural to Cs3Cr2X9 and crystallizes in the hexago-
nal space group P63/mmc with a = 7.5427(8) Å and c =
18.5849(13) Å [17]. The structure consists of face-sharing
octahedra forming Fe2Br9 bi-octahedra in triangular layers.
The shortest Fe-Fe distance amounts to 3.585(3) Å within
the bi-octahedra. The in-plane Fe-Fep distance within the
triangular layers is about twice as large, 7.179(2) Å, and the
interlayer Fe-Fec distance of 7.543(1) Å is slightly larger.
Based on a study of powder samples, a band gap of 1.65 eV
and antiferromagnetic order at TN = 13 K were reported [17].
Here, we present a detailed study of the low-temperature or-
dered phases of Cs3Fe2Br9 single crystals up to the saturation
magnetization MS that is reached at 43 T (52 T) for a field
parallel (perpendicular) to the c axis.

II. EXPERIMENTAL

Single-crystals were grown from aqueous solutions of
CsCl and FeBr3 in a molar ratio of ∼2 : 1 and a surplus of HBr
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FIG. 1. (a) The temperature dependence of the magnetic susceptibility χi for H‖c (red) and H⊥c (black). The green line stems from
a Curie-Weiss analysis of χ‖ for T > 100 K. (i) An expanded view around the two-step ordering transition, and (ii) χ‖/χ⊥ revealing an
essentially isotropic susceptibility in the high-temperature paramagnetic phase. (b) The zero-field specific heat with a huge anomaly ∼13.2 K
arising from the magnetic order, which actually evolves via a two-step transition with TN1 = 13.29 K and TN2 = 13.12 K, as shown in (iii).
(c) The thermal expansion in 0 T measured along the hexagonal c axis and along two perpendicular directions e1 and e2 within the ab plane.
(iii) The corresponding uniaxial thermal expansion coefficients α = 1/L0∂�Li/∂T , which again signal the two-step transition.

at room temperature during a period of 6 mo. Further studies
revealed that Cs3Fe2Br9 can be grown from solutions of CsBr
and FeBr3 in the range of 3:2–4:1 between room temperature
and 50 ◦C.

Using commercial setups [Quantum Design Physical Prop-
erty Measurement System (PPMS) and Magnetic Property
Measurement System (MPMS)], specific heat and magnetic
susceptibility were measured between 2 and 300 K, and the
low-temperature magnetization was measured up to 14 T.
High-field magnetization data were obtained using pickup
coils in pulsed magnetic fields up to 56 T at the high-field
center HLD, Dresden Rossendorf. Thermal expansion and
magnetostriction �L(T, H )/L0 were measured in a home-
built capacitance dilatometer down to 0.26 K in magnetic
fields up to 17 T [18,19]. The field was applied parallel
to the crystal direction whose length change �Li was mea-
sured. Here, L0 denotes the corresponding overall length of
the sample, and the uniaxial thermal expansion coefficient
α = 1/L0∂�Li/∂T was obtained numerically. Additonally,
high-field expansion data up to 37 T were taken at HFML
Nijmegen using commercial dilatometers [20,21].

The crystal structure of Cs3Fe2Br9 was investigated via an
APEX (Bruker) four-circle single crystal x-ray diffractome-
ter at 150 K [22]. The low-temperature crystal and magnetic
structure was studied on the single-crystal neutron diffrac-
tometer HEiDi [23] and on the KOMPASS instrument (both
at FRM-II, Munich). On HEiDi, a crystal of 48.680(14) mg
was mounted in a way that the (0 1 1) direction was ori-
ented along the ϕ axis of the four circle diffractometer,
and data were collected with wavelengths λ of 1.171 and
0.795 Å. On KOMPASS, the measurements were performed
in the (100)/(010) and (100)/(001) scattering planes. A
polarized beam was obtained through serial polarizing V-
shaped multichannel cavities and a highly oriented pyrolytic
graphite [HOPG(002)] monochromator, λ = 4 Å. An addi-
tional V-shaped multichannel cavity was used to analyze the
polarization of the scattered beam in the experiments with
the second scattering plane yielding a flipping ratio of 11.
Higher order contamination was suppressed with a velocity
selector.

III. RESULTS AND DISCUSSION

Figure 1(a) shows the temperature dependent magnetic
susceptibility for H ‖ c and H ⊥ c. In the high-temperature
regime; χi is isotropic and well described by a Curie-Weiss
law. Fixing the spin of the Fe3+ ions to S = 5

2 the Curie-
Weiss analysis of χ‖c yields a Curie temperature θ = −56 K
and a reasonable g factor of 2.09 [24]. Below 13 K, χ‖c

drops to zero, while χ⊥c remains almost constant, suggest-
ing nearly collinear antiferromagnetic order with moments
pointing essentially along c. The magnetic system is weakly
frustrated, as is indicated by the frustration factor |θ |/TN ≈
4.4. Figure 1(b) shows the specific heat, which reveals a huge
anomaly ∼13.2 K. As shown in the inset (iii) and discussed
in Appendix A 1, we resolve two distinct transitions at TN1 =
13.29 K and TN2 = 13.12 K. Note that the two-step transition
is visible in an expanded view of the susceptibility, see inset
(i).

Figure 1(c) shows thermal expansion data measured along
the hexagonal c axis and along the two in-plane directions e1

and e2, which are parallel and perpendicular to the hexagonal
in-plane axis a, respectively. At the transition, each dataset
shows a steplike relative length change with �Lc/L0 � 10−4

(blue) and �Lei/L0 � 3 × 10−4 for both e1‖a (red) and e2 ⊥
a (green). The enlarged view on the thermal expansion co-
efficients α in the inset (iv) reveals that each of them also
shows two distinct peaks [25]. As will be discussed below, the
magnetic transition breaks the threefold in-plane symmetry
and allows for three twin domains of orthorhombic symmetry.
Thus, a finite magnetoelastic coupling should induce different
thermal expansion anomalies of e1 and e2 in a single-domain
sample. However, in the capacitance dilatometer, the crystal is
fixed by CuBe springs, which apply a weak uniaxial pressure
along the measured �Li and may cause a partial or full de-
twinning at the symmetry-breaking phase transition [26,27].
In this case, the �Li/L0 measured along e1 and e2 result
from different orientations of twin domains, as is discussed
in Appendix A 2.

The crystal structure of Cs3Fe2Br9 is displayed in Fig. 2.
The fundamental building blocks are Fe2Br9 bi-octahedra
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FIG. 2. Crystal (left) and magnetic (right) structure of
Cs3Fe2Br9. The top panels are three-dimensional (3D) versions,
and the bottom panels show the respective projections to the ab
plane. In the lower left panel, the solid and open lines connect
the Fe2Br9 bi-octahedra of the lower and the upper triangular
planes, respectively. The magnetic structure was determined for
the zero-field phase P1 at 2.5 K, which shows essentially parallel
Fe spins within the bi-octahedra. The magnetic unit cell leaves c
unchanged, while the hexagonal in-plane axis a is doubled, which
results in an orthorhombic unit cell. This is illustrated by the dashed
rectangle in the projection to the ab plane, where the open (filled)
circles mark Fe ions from the upper (lower) Fe2Br9 layer, with their
magnetic moments pointing either along +c (red) or −c (blue). In
addition to the intradimer interaction J (not shown), we discuss
the interdimer interactions Jp (green) and J ′

p (yellow) acting on
nearest-neighbor (NN) dimers in the same layer, and the interlayer
interaction Jc (blue) coupling NN spins in adjacent dimer layers.
The photo shows a single crystal with pronounced facets reflecting
the hexagonal structure.

forming triangular planes, which are arranged in the usual
ABAB stacking of the hexagonal crystal structure. In the ab
projection of the crystal structure (Fig. 2, lower left panel), the
bi-octahedra of the different triangular planes are connected
by open and solid gray lines. The right panel of Fig. 2 shows
the Fe3+ magnetic moments, which are aligned parallel to
each other within the Fe2Br9 dimers for the zero-field ordered
phase (see below), and the most important interdimer mag-
netic exchange interactions are also indicated. Neglecting the
interlayer coupling Jc, the bi-octahedron dimers form frus-
trated triangular planes which have been long studied [28].
The triangular arrangement is depicted by using open (closed)
symbols for the Fe spins of the upper (lower) planes of the
three-dimensional (3D) unit cell in Fig. 2. When adding the
interlayer coupling Jc on an equal footing to Jp, and when
ignoring the intradimer coupling J as well as J ′

p, one can also
argue about a realization of staggered honeycomb magnetic
planes. Note that for antiferromagnetic Jp and Jc both are
frustrated, but Jp couples to six neighboring spins of the same

triangular plane, while Jc couples to three neighbors of the
next triangular plane.

The crystal structure was refined in space group P63/mmc
at 150, 15, and 2.5 K, yielding no significant differences be-
tween the two lowest temperatures and only slight changes in
the Br positions when comparing 150 K with low-temperature
structures, see Appendix B 1. At 2.5 K, i.e., well in the mag-
netically ordered phase P1, we searched for magnetic Bragg
peaks. As is shown in Fig. 3(a), a mapping of the (hk0) plane
in reciprocal space yields additional magnetic Bragg peaks at
various half-indexed scattering vectors of type ( n+1

2 , k,0) de-
termining the magnetic propagation vector to ( 1

2 ,0,0). The star
of this propagation vector in the hexagonal structure contains
( 1

2 ,0,0), (0, 1
2 ,0), and (− 1

2 , 1
2 ,0), as can be seen in Fig. 3(a). All

observed magnetic Bragg peaks can be indexed with one of
these three propagation vectors. We also looked for magnetic
Bragg peaks appearing at a half-integer l component but did
not observe such intensities. The antiferromagnetic order with
these propagation vectors corresponds to the stripe order in a
single triangular layer that is illustrated in the lower right part
of Fig. 2. The different domains correspond to the propagation
vectors and to the stripes rotated by 0◦, 60◦, and 120◦.

Temperature-dependent neutron diffraction experiments
were performed on HEiDi and on KOMPASS. Figures 3(b)
and 3(c) show the amplitudes and the squares of the widths
obtained by fitting Gaussian profiles to the scans. The half-
indexed magnetic Bragg intensities show only moderate
temperature dependence in the ordered phase and abruptly
disappear at the lower transition temperature TN2 in accor-
dance with the first-order character of this phase transition.
The scan width only increases above TN2. To more deeply
study the phase transition, additional experiments using po-
larization analysis were performed on KOMPASS, Figs. 3(d)
and 3(e). These experiments reveal sizable diffuse scattering
above TN2 that persists also well above TN1. At the latter
higher transition temperature, we find no signature in the
temperature dependence of the diffuse scattering at the half-
indexed scattering vector positions. For the two reflections
studied ( 1

2 ,0,0) and ( 3
2 ,0,0), scans were performed in h and l

directions so that the correlations parallel and perpendicular
to the planes could be compared. First, the lower transi-
tion is not associated with an abrupt increase in the widths,
which points to the first-order character and partial coexis-
tence with another ordering scheme in phase P2. Second,
there is no indication for a qualitatively distinct behavior when
scanning parallel and perpendicular to the planes. In con-
trast, for a quasi-two-dimensional system, one would expect
two-dimensional correlations to survive above the Néel tem-
perature, while the correlation perpendicular to the planes will
broaden more rapidly. Therefore, Cs3Fe2Br9 is essentially a
3D magnetic system. With the polarization analysis, one may
directly determine the orientation of the magnetic moments.
We set the neutron polarization axis perpendicular to the
scattering plane defined by (1,0,0) and (0,0,1); therefore, the
spin-flip (SF) channel at ( 1

2 ,0,0) and ( 3
2 ,0,0) records magnetic

contributions parallel to c, while the non-SF (nSF) channel de-
tects contributions parallel to b. At the half-indexed position,
there are no nuclear contributions. The data in Figs. 3(f) and
3(g) are corrected for the finite flipping ratio and unambigu-
ously reveal that the magnetic intensities at the half-indexed
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FIG. 3. (a) The neutron diffraction intensity in the reciprocal
(hkl ) = (0) plane of Cs3Fe2Br9 observed on HEiDi at 2.5 K in
zero field. Magnetic superstructure reflections ( 3

2 ,0,0), (1, 1
2 ,0), and

( 1
2 , 1

2 ,0) as well as others are clearly visible. Nuclear Bragg re-
flections exist at the crossings of the red lines, and magnetic
peaks are indicated by yellow circles. (b) The peak amplitudes and
(c) quadratic widths obtained by fitting Gaussian profiles to the h, k
(KOMPASS) or rocking scans (HEiDi) across magnetic peaks. Only
for the KOMPASS data, quadratic widths are given after substraction
of the low-temperature values (data are vertically shifted for clarity).
(d) and (e) The same analysis for data obtained with polarization
analysis [spin-flip (SF) with neutron polarization axis along the
vertical direction] that focus on the temperature range close to the
transition. (f) and (g) The intensities at the magnetic Bragg positions
as a function of temperature for SF and non-SF (nSF) channels
(measurement with open and 20′ collimation before the sample). All
data were taken upon heating.

reflections completely arise from moments pointing along
c, which agrees with the vanishing magnetic susceptibility
χ⊥c(T → 0), Fig 1(a). The diffuse scattering visible between

TN2 and TN1 and above TN1 exhibits the same magnetic
anisotropy, so that also the short-range correlations are asso-
ciated with moments along c.

The symmetry analysis for the ( 1
2 ,0,0) propagation vector

in space group P63/mmc was performed with the FULLPROF

program package [29] and is discussed in Appendix B 2. The
four Fe ions in the primitive cell are all equivalent in the
magnetic phase. Furthermore, susceptibility and neutron po-
larization analysis reveal that the essential part of the magnetic
moment aligns along the c direction. Only 	2, 	3, 	6, and
	7 possess a finite c component, so that the other magnetic
models can be excluded. The four irreducible representations
correspond to antiferromagnetic or ferromagnetic dimers (two
spins in the bi-octahedron) combined with a ferromagnetic
or antiferromagnetic stacking within the unit cell. Refine-
ments were performed with these four magnetic structures
considering the three domain orientations. The data are only
compatible with 	3 yielding a weighted R value of 7.7%,
while 77, 73, and 80% are obtained for 	2, 	6, and 	7,
respectively. The parallel alignment of the moments within a
dimer can already be deduced from the fact that the strongest
magnetic peaks are found in the (hk0) plane, while for an
antiferromagnetic alignment, these intensities exactly cancel
(because the two Fe ions exhibit the same x and y coordinates).
Also, the antiferromagnetic stacking of the spins within the
cell that arises through Jc is unambiguous.

The symmetry analysis indicates that the c moments in
	3 can be accompanied by an in-plane moment, i.e., a weak
canting. Within a dimer, the ferromagnetic c moments are cou-
pled with antiferromagnetic in-plane moments arising from
Dzyaloshinski-Moriya interaction. The magnetic refinement
with the FULLPROF package only slightly improves with the
in-plane moment yielding a total moment of 3.954(5) μB, a
moment along c of 3.925(5) μB, and an in-plane component
of 0.47(14) μB. The three domains occupy similar volume
fractions of 39, 30, and 31%. The size of the in-plane mo-
ment is consistent with the small reduction of the in-plane
susceptibility in the ordered phase. The magnetic structure
is illustrated in Fig. 2, neglecting the in-plane component.
Here, the spin directions up and down are marked in red and
blue, respectively, while spins from the upper (lower) Fe3+

double layer are depicted by open (closed) symbols. Only
two-thirds of the in-plane nearest-neighbor (NN) spins show
antiparallel orientations, and analogously, only two-thirds
of the NN spins across the neighboring planes of the AB-
stacked bi-octahedra are antiparallel to each other. Thus, all
the NN interdimer couplings Jp, J ′

p, and Jc are geometrically
frustrated.

The stripe order described by the ( 1
2 ,0,0) propagation vec-

tor is one possible lowest-energy arrangement of the triangular
frustrated magnetic lattice [28]. It breaks rotational symmetry,
and the degeneracy can be lifted by magnetoelastic coupling,
as it is discussed in Appendix A 2. The magnetic structure and
the magnetoelastically distorted structure can be described in
the orthorhombic space group Cmcm (No. 63) which results
from P63/mmc by breaking the threefold axis. A refinement
of the additional structural parameters in the lower space
group improves the R values [30] only slightly [31], and a
similar improvement can be achieved for the data measured
at 15 K, so the structural symmetry reduction induced by the
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FIG. 4. (a) The pulsed-field magnetization and the differential susceptibility measured at 1.5 K up to 55 T. The data for H ‖ c (blue) reveal
seven phase transitions and two transitions for H ⊥ c (red), as marked by the vertical lines. Note that there are two plateau phases (P5 and P6)
with constant magnetization of, respectively, 1

3 and 1
2 of the saturation MS. (b) Magnetostriction curves �Lc(H )/L0 obtained with increasing

H ‖ c up to 15 T for representative temperatures from 0.26 to 10 K, and (i) contains an additional curve up to 37 T. The kinks or jumplike
changes in �Lc(H ) signal, respectively, second- or first-order phase transitions with 10 ordered phases (P1 to P10) and the paramagnetic (PM)
state. The existence regions of the various phases are marked via the changing colors of �Lc(H, T ). Strong hysteresis effects occur at 0.26 K,
as is shown in (ii). (iii) and (iv) Corresponding thermal-expansion �Lc(T ) curves in the field range from 15.5 to 19.5 T. (c) and (d) The phase
diagrams for H ‖ c and H ⊥ c, respectively. Here, the phases are colored as in (b), and the vertical lines mark the critical fields HC1−7 as in (a).

magnetoelastic coupling cannot be resolved in the neutron
diffraction study.

As discussed in Appendix C, we mapped the density
functional theory plus Hubbard U correction (DFT + U)
total energies of several magnetic configurations onto the
Heisenberg model written as

∑
i> j Ji jSiS j , and from these

calculations the intradimer and the interdimer couplings
were determined, see Fig. 2. The intradimer J results from
the Fe-Br-Fe exchange paths via the common Br ions of the
face-sharing bi-octahedron with bond angles of 83.5◦ and is
found to be weakly ferromagnetic with J = −1 and −1.4 K
for U = 5.8 and 6.5 eV, respectively. Interestingly, this cou-
pling is smaller (by absolute magnitude) than the interdimer
couplings Jp and Jc, which both result from two Fe-Br-Br-Fe
exchange paths. Here, we obtain values Jp = 2.8(3.2) K and
Jc = 3.0(2.8) K for U = 5.8(6.5) eV, whereas for both U, a
significantly smaller J ′

p = 0.2 K is obtained for the diagonal
interdimer couplings, which result from single Fe-Br-Br-Fe
exchange paths. These parameters are in perfect agreement
with the magnetic structure determined at zero field and 2.5 K.
Based on these couplings, one can consider Cs3Fe2Br9 as a

system of frustrated S = 5
2 triangular layers, which are mod-

erately coupled along c. Due to the hexagonal AABB stacking
of the single Fe3+ layers, the interlayer coupling alternates
between the weakly ferromagnetic J for AA and BB and the
larger but frustrated antiferromagnetic Jc for AB. On a mean-
field level, the Weiss temperature is given by

θ = −
∑

i

ziJiS(S + 1)

3
� −2.92

∑

i

ziJi, (1)

with S = 5
2 , and the coordination numbers zi = 1, 6, 6, and 3

for the couplings J , Jp, J ′
p, and Jc, respectively. Depending

on U, the ab initio values yield θ � −76(−80) K. In view
of the fact that mean-field theory typically overestimates |θ |
and only near-neighbor couplings are considered, these values
agree well with the experimentally observed θ � −56 K. Due
to the inherent frustration of the triangular arrangement of the
Fe spins, one may expect that relatively small magnetic fields
can already induce variations of the magnetic structure.

Pulsed high-field magnetization data of Cs3Fe2Br9 at
1.5 K are shown in Fig. 4(a). For H ⊥ c, M(H ) is almost
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linear up to the saturation field of 52 T, and the saturation
magnetization MS of 10 μB/f.u. agrees well with two S =
5
2 Fe3+ ions per formula unit. The differential susceptibility
χ = ∂M/∂H reveals two peaks at 39 and 52 T, indicating
phase transitions. Based on additional data, we derive the
phase diagram in Fig. 4(d), containing two ordered phases P1
and P2, which continuously evolve from the two zero-field
transitions.

In contrast, multiple transitions occur for H ‖ c. Both
χ‖ and M(H ) remain almost zero up to HC1 = 5.6 T, where
M(H ) starts to increase linearly up to HC2 = 12 T. At HC2,
χ‖ shows a peak corresponding to a steplike increase of
M(HC2), followed by another region of constant χ‖. At HC3 =
14 T, M shows another step to an approximately constant
M(H > HC3) � 3.33 μB/f.u., which equals 1

3 of MS. Another
steplike increase occurs at HC4 = 20 T, followed by a wide
plateau with M � 1

2 MS up to HC5 ≈ 32 T. Above this field,
χ‖ becomes significantly enhanced again up to HC7 ≈ 41.5 T
with an intermediate peak at HC6 = 38 T, and MS is finally
reached above ∼43 T. This yields an easy-axis anisotropy δ =
Han/Hex = 2(H⊥

S − H‖
S )/(H⊥

S + H‖
S ) ≈ 0.2, which is a rather

large value for a S = 5
2 material. For comparison, δ ≈ 0.1 is

found for RbFe(MoO4)2 [14], and for CuFeO2, an almost
isotropic δ ≈ 0.02 is reported [32,33]. Note that, from our
ab initio values of the exchange parameters, a saturation field
HS = 4[(Jp + J ′

p) + 2Jc]kBS/gμB � 33 T would be expected.
This value is below the experimental results for both field
directions, indicating that, apart from an anisotropy term,
additional exchange couplings between more distant spins
should be considered.

Figure 4(b) summarizes representative expansion data
�Lc(T, H ‖ c) measured in static fields up to 37 T. At
0.26 K, there is a kink in �Lc(HC1 = 5.2 T), signaling a
second-order phase transition. At HC2 = 11.2 T, the length
increases discontinuously by about 1.7 × 10−4, followed by
another slightly smaller discontinuity at HC3 = 13.2 T. The
inset (ii) resolves the pronounced hysteresis between
the field-increasing and the field-decreasing run. Because
the respective critical fields are shifted by ∼3 T, the hys-
teresis regions of the two field-induced transitions overlap,
and consequently, at ∼10.6 T and 0.26 K, each of the three
phases can be realized depending on the field-sweep protocol.
Typical first-order solid-state transitions are quasidiscontinu-
ous, resulting, e.g., in more or less S-shaped length changes
due to a finite transition width and/or phase coexistence.
In contrast, the low-temperature transitions in Cs3Fe2Br9

are extraordinarily sharp with discontinuous relative length
changes of ∼10−4, which systematically change toward con-
tinuous variations in �Lc(H ) upon increasing temperature.
The insets (i), (iii), and (iv) display further magnetostriction
�Lc(H ) and thermal expansion �Lc(T ) measurements, which
signal different sequences of field- or temperature-induced
magnetoelastic transitions in different regions of the phase
diagram.

Combining all anomalies of the thermal-expansion, mag-
netostriction, and magnetization data reveals the phase
diagram in Fig. 4(c). In zero field, there is a two-step transi-
tion with an intermediate phase P2 between the paramagnetic
phase and the ground state P1. Below 5 K, P1 shows a second-
order transition to P3 at 5–7 T, which is followed by a cascade

of very sharp first-order transitions at ∼9, 13, and 20 T to
the phases P4, P5, and P6, respectively. Below 4 K, these
first-order transitions become strongly hysteretic. On further
increasing field, phase P7 is reached through a second-order
transition at 32 T, followed by another first-order transition to
P8 at ∼38 T, and MS is finally reached at 43 T. The phases P1,
P5, and P6 are characterized by essentially constant magneti-
zation plateau values of M = 0, 1

3 MS, and 1
2 MS, respectively,

while the other low-temperature phases P3, P4, P7, and P8
show more or less linear M(H ) behavior with similar slopes
χ‖. Above ∼7 K and below ∼18 T, three other phases are
stabilized. The intermediate phase P2, which covers only a
small temperature interval of 0.2 K between TN1 and TN2 in
zero field, continuously grows with increasing field until it
finally dominates the intermediate field range from ∼8 to 18 T
at elevated temperature. The additional phases P9 and P10
only form comparatively small pockets. Phase P9 separates
P2 from the low-temperature 1

2 MS plateau phase P5, and P10
is located between P2 and the high-temperature paramagnetic
phase from 10 to 19 T.

In a first attempt, we consider Cs3Fe2Br9 with S = 5
2

as stacked triangular layers of classical spins, which al-
lows us to compare our data with numerical studies of the
field-temperature phase diagram obtained via Monte Carlo
simulations [34,35]. The simulations considered triangular
layers with antiferromagnetic in-plane NN and next-NN in-
teractions J1/2 for a moderate frustration ratio J2/J1 = 0.15
that is sufficient to suppress the so-called 120◦ zero-field
ground state of pure Heisenberg spins [36]. Along c, a simple
AA stacking with ferromagnetic interlayer coupling J⊥/J1 =
−0.15 was kept constant, while the single-ion anisotropy en-
ergy −DS2

z was varied from zero up to the strong Ising case
D/J1 = 1.5. Interestingly, the simulation for D/J1 = 0.5 [34]
reproduces several basic aspects of the experimental phase di-
agram of Cs3Fe2Br9 surprisingly well. The obtained zero-field
ground state corresponds to P1, and a first field-induced tran-
sition of second order is expected at hc1 � hS/8, in agreement
with the transition from P1 to P3 at HC1 = 5.2 T . Moreover,
fractional magnetization-plateau states with 1

3 MS and 1
2 MS

are predicted, which are entered via first-order transitions,
as it is observed for the phases P5 and P6. Upon increasing
field, the plateau phases are expected to alternate with inter-
mediate states of finite χ‖, which correspond to Bose-Einstein
condensates of magnons and are entered via second-order
transitions. Based on these numerical results [34], one may
suspect the experimentally observed phases P3 and P7 to be
Bose-Einstein condensates.

The additional phases P2, P4, P8, P9, and P10 have no
counterparts in the model calculations. Of course, this is not
very surprising because the model used in Refs. [34,35] does
not capture the specific aspects of Cs3Fe2Br9. The AABB
stacking of Cs3Fe2Br9 with frustrated antiferromagnetic cou-
pling via Jc may induce additional phases. With increasing
longitudinal field H ‖ c, we can anticipate, e.g., the formation
of partial SF phases or incommensurate phases. Indeed, pre-
liminary neutron data indicate that the intermediate zero-field
phase P2 is incommensurate, and as shown in Fig. 4, this
phase P2 is stabilized for both field directions H ‖ c and H ⊥ c,
but different microscopic spin structures are expected in longi-
tudinal and transverse fields. Thus, further diffraction studies
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on the field-induced magnetic phases appear very promising
to understand this extremely rich phase diagram.

IV. CONCLUSIONS

In summary, we have identified the material Cs3Fe2Br9

as a frustrated triangular antiferromagnet with surprisingly
rich properties. The magnetic ordering occurs with a strong
magnetoelastic distortion. In contrast to some Cr-based
isostructural materials, the spins of the Fe2Br9 bi-octahedra
do not form a dimer singlet ground state but are in fact
ferromagnetically aligned. This agrees with our ab initio
DFT + U calculations, which yield a weak ferromagnetic
intradimer coupling J between the Fe spins within the Fe2Br9

bi-octahedra. In contrast, the interdimer coupling Jp within
the triangular planes is antiferromagnetic and frustrated. A
similar antiferromagnetic exchange is obtained for the inter-
layer coupling Jc, which acts between spins of neighboring AB
layers and is frustrated as well. As a consequence, Cs3Fe2Br9

consists of AABB-stacked triangular layers with alternating
ferromagnetic and antiferromagnetic coupling along c, which
adds to the complexity. The magnetic anisotropy δ = 0.19,
derived from the saturation fields H⊥

S and H‖
S , appears ex-

traordinarily large for spin- 5
2 moments of the Fe3+ ions with

half-filled 3d shells. The strongly different saturation fields
are also remarkable because the magnetic susceptibility in the
paramagnetic high-temperature phase is essentially isotropic.
The origin of the enhanced magnetic anisotropy in the or-
dered phases is currently unclear. Possibly, it may arise from
anisotropic exchange couplings which manifest more strongly
in the ordered phases, or the pronounced structural changes
upon entering the ordered phase can enhance the single-ion
anisotropy. The phase diagram with the magnetic field along
the easy axis is very complex and shows a plethora of field-
induced phases, which include two phases with fractional
magnetization plateaus, namely, 1

2 MS and 1
3 MS, and we have

indications of at least one incommensurate magnetic phase.
Several first-order phase transitions appear with huge hys-
teresis effects, and sharp lattice deformations occur. All this
makes Cs3Fe2Br9 an extremely interesting material with very
rich and unusual properties.

Note added. While finalizing this paper, we became aware
of a very recent publication about the closely related material
Cs3Fe2Cl9 [37]. The magnetic phase diagrams derived for
this isostructural material strongly resemble those of Fig. 4,
but with reduced TN = 5.4 K, reduced saturation fields H‖

S =
19.4 T, H⊥

S = 17.4 T, and smaller anisotropy δ = 0.1. Al-
though the proposed interpretation of Ref. [37] concerning
the relative importance of various exchange couplings differs
from our conclusions, it is gratifying that the basic experimen-
tal features of both materials Cs3Fe2Cl9 and Cs3Fe2Br9 are
very similar. This confirms that this extremely rich behavior
is indeed an intrinsic property of these materials, although the
detailed clarification of the magnetic structures of the different
field-induced phases requires further studies.
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APPENDIX A: ZERO-FIELD TRANSITIONS

1. Hysteresis and magnetic entropy

As discussed in Refs. [38,39], the usual relaxation-
time method used for specific heat measurements in the
PPMS is not very applicable for first-order phase transitions.
Thus, long heat pulses over a temperature range of ∼1 K
were analyzed. As shown in Fig. 5(a), the time-dependent
evolution of the sample temperature T (t ) has pronounced
kinks in both the heating run and in the subsequent relax-
ation curve, which signal two first-order phase transitions
with sharp peaks in the heat capacity. The positions of the
respective transition temperatures can be obtained from the
derivatives ∂T/∂t , as shown in panel (b). The transition tem-
peratures TN1 and TN2 are separated by 170 mK, and for
both transitions, we observe a small hysteresis of 30 mK
between the TN values obtained with increasing or decreasing
temperature.

For the heat capacity data of Fig. 1(b), cp(T ) between 13.2
and 13.4 K was derived from the relaxation curve of Fig. 5
following the procedure described in Ref. [38] and combined
with data obtained by the usual relaxation-time method in the
remaining temperature ranges. An entropy analysis of these
data is presented in Fig. 6. Temperature integration of the
measured cp/T data reveals that, despite the rather large cp

anomalies at TN1 and TN2, the combined entropy release at
both transitions is ∼4 J/molK. This corresponds to 13% of

0 20 40 60
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T/
dt
)(
a.
u.
)

T (K)
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FIG. 5. (a) A long heat pulse in zero field shows two kinks in the
time-dependent sample temperature T (t ) during both the heating run
(red) and in the subsequent relaxation curve (blue). The kinks signal
first-order transitions at TN1 and TN2. (b) A plot of − ln(∂T/∂t ) vs T
reveals a weak hysteresis of ∼30 mK at each transition.
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FIG. 6. Heat capacity data (◦; left axis) from Fig. 1(b) in a log-
arithmic plot of ctot

p /T vs T and the corresponding total entropy (red
•; right axis) obtained by numerical integration. The solid black line
is an estimate of the phononic background cph

p /T that was adjusted
such that the magnetic entropy Smag = ∫

(ctot
p − cph

p )/T dT (blue) ap-
proaches 2R ln(2) = 29.8 J/molK, as expected for Cs3Fe2Br9.

the full magnetic entropy 2R ln(2) = 29.8 J/molK expected
for Cs3Fe2Br9 with two S = 5

2 moments per formula unit.
For conventional magnets, most of the magnetic entropy is
expected to change continuously below the ordering temper-
ature, but with decreasing (spin and spatial) dimensionality
and/or increasing frustration, the continuous magnetic en-
tropy extends toward higher temperature. To analyze this, one
has to estimate the phononic background cph

p . Here, we use
the solid line in Fig. 6, which comprises a Debye model
with additional Einstein modes. The parameters were ad-
justed such that (i) cph

p (T ) describes the measured data >

∼50 K and (ii) that the expected Smag = 29.8 J/molK is repro-
duced by Smag = ∫

(ctot
p − cph

p )/T dT . The obtained magnetic
entropy release above TN1/2 appears reasonable in view of
the moderate frustration ratio |θ |/TN ≈ 4.4 derived from the
Curie-Weiss analysis.

2. Magnetoelastic domains

Here, we consider the occurrence of magnetoelastic do-
mains resulting from the magnetic order of the zero-field
phase P1. As shown in Fig. 2, the in-plane NN spins along
one of the three originally equivalent hexagonal a directions
are aligned parallel to each other but alternate along the other
two a. This results in a twofold in-plane symmetry with the
orthorhombic ao (bo) axis along (perpendicular to) the line of
parallel spins. For a single-domain crystal, different thermal
expansion anomalies are naturally expected for ao and bo, if
there is a finite magnetoelastic coupling. This can be ratio-
nalized by assuming that, with the onset of magnetic order,
the in-plane bond length of the antiparallel spin pairs weakly
shrinks, while the in-plane bond length of the parallel spin
pairs weakly increases. For a multidomain crystal, however,
the different thermal expansion anomalies of the ao and bo

axes are expected to cancel each other out, at least partially.
Thus, the rather large and essentially identical �Lei/L0 mea-
sured along the different orientations e1 and e2 may appear
surprising. However, in the used capacitance dilatometer, the
crystal is fixed by CuBe springs, which apply a uniaxial pres-
sure parallel to the measured �Lei . This pressure can cause

a partial detwinning at the symmetry-breaking phase transi-
tion [26,27], and consequently, the almost identical �Lei/L0

measured along e1 and e2 result from different orientations of
twin domains. Note that the dilatometer measurements along
e1 and e2 cannot be performed simultaneously.

For a quantitative discussion of the detwinning effects,
we consider the variations of the magnetoelastic energy
∂Emag/∂r ∝ δr and of the (nearly) harmonic lattice potential
∂Elatt/∂

2r ∝ δr2 to the lowest order of a generalized lattice
distortion δr. Here, the different powers in δr necessarily
cause finite lattice distortions to minimize the total energy
Emag + Elatt, and these distortions reflect the magnetic symme-
try. Consequently, independent spontaneous strains δao, δbo,
and δco along each of the orthorhombic axes are expected for
the P1 phase of Cs3Fe2Br9. If the variations of Emag and Elatt

are restricted to the respective lowest order in δr, straight-
forward geometric considerations reveal that δao = −δbo. In
this case, the hexagonal-to-orthorhombic transition is area
conserving with respect to the triangular planes, while δco

denotes the bare volume change. Therefore, no sizable in-
plane length changes should be measured in a fully twinned
multidomain sample, which means that the very large and
essentially identical contractions �Lei/L0 measured along the
in-plane directions e1 ⊥ e2 result from the shape changes of
differently oriented twin domains.

Because e1 and e2 are, respectively, parallel and perpen-
dicular to one of the hexagonal a axes, these directions
correspond to ao and bo of one domain and are rotated by
±60◦ with respect to the corresponding orthorhombic axes of
the other two domains. If we now consider the case that ao

shrinks at the ordering phase transition, the first domain will
be favored by uniaxial pressure along e1 and a single-domain
state can be reached for large enough pressure. For uniaxial
pressure along e2, the other two domains are favored and
a single-domain state cannot be reached. When n1 denotes
the population of the pressure-induced favored domain, n2 =
1 − n1 corresponds to the fraction of the other domains, and
the total length changes �Lei/L0 measured either along e1 or
along e2 are given by

δe1(n1) = (
3
2 n1 − 1

2

)
δao, (A1)

δe2(n1) = (
3
2 n1 − 1

2

)
δbo = (− 3

2 n1 + 1
2

)
δao. (A2)

A fully twinned sample has n1 = 1
3 , resulting in δe1 = δe2 =

0. By defining a detwinning ratio r that grows from 0 for a
fully twinned sample to r = 1 for a single-domain sample, the
above equation can be rewritten as

δe1(r) = [
3
2

(
1
3 + 2

3 r
) − 1

2

]
δao = rδao, (A3)

δe2(r) = [
3
2

(
1
3 − 2

3 r
) − 1

2

]
δbo = −rδbo. (A4)

From Eqs. (A3) and (A4), it is clear that, for δao = −δbo,
the same overall length change can be expected along e1

and e2 if the uniaxial pressure applied either along e1 or e2,
respectively, results in the same detwinning ratio r. However,
for pressure along e2, a maximum detwinning ratio r = 0.5
can be reached because two domains are equally favorable. As
shown in Fig. 1(c), we observed essentially identical contrac-
tions along e1 and e2, which restricts the detwinning ratio to
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TABLE I. Crystal structure of Cs3Fe2Br9 as refined in space group P63/mmc using x-ray data for 150 K and neutron data for 15 and 2.5 K,
respectively. Thermal parameters Ui j are given in Å2. The structural refinements with the 150 K x-ray data were performed with the software
package SHELXL-2018/3 [40] and the neutron data with JANA2006 [41]. For Br2 also, U13 = 2U23 can be finite, and U23 was refined to 0.0000(2),
−0.0002(3), and 0.0011(1) Å2 at 2.5, 15, and 150 K, respectively. The lattice parameters amount to a = 7.528(1) Å and c = 18.552(2) Å at
150 K and to a = 7.491(1) Å and c = 18.477(2) Å at 15 K [42].

x y z
U11 U22 U33 U12

Cs1 0 0 1
4 150 K

0.0141(4) =U11 0.0105(6) =0.5U11

Cs2 1
3

2
3 0.41776(4)

0.0163(3) =U11 0.0116(4) =0.5U11

Br1 0.51243(8) 2x 1
4

0.0137(4) 0.0105(5) 0.0076(5) =0.5U22

Br2 2y 0.17217(6) 0.41242(4)
0.0134(4) 0.0162(3) 0.0093(4) =0.5U11

Fe 2
3

1
3 0.34667(9)

0.0140(6) =U11 0.0047(9) =0.5U11

R(obs) = 4.50, R(all) = 4.74
Cs1 0 0 1

4 15 K
0.0030(12) =U11 0.009(2) =0.5U11

Cs2 1
3

2
3 0.41779(13)

0.0060(9) =U11 0.0084(12) =0.5U11

Br1 0.51173(16) 2x 1
4

0.0047(6) 0.0063(9) 0.0079(8) =0.5U22

Br2 2y 0.17137(10) 0.41275(5)
0.0046(7) 0.0056(5) 0.0091(5) 0.0023(3)

Fe 2
3

1
3 0.34658(9)

0.0038(5) =U11 0.0073(6) =0.5U11

R(obs) = 3.71, wR(obs) = 4.05, R(all) = 16.03, wR(all) = 4.85
Cs1 0 0 1

4 2.5 K
0.0030(12) =U11 0.009(2) =0.5U11

Cs2 1
3

2
3 0.41798(8)

0.0060(9) =U11 0.0084(12) =0.5U11

Br1 0.51178(11) 2x 1
4

0.0047(6) 0.0063(9) 0.0079(8) =0.5U22

Br2 2y 0.17143(7) 0.41277(4)
0.0046(7) 0.0056(5) 0.0091(5) 0.0023(3)

Fe 2
3

1
3 0.34660(6)

0.0038(5) =U11 0.0073(6) =0.5U11

R(obs) = 2.44, wR(obs) = 2.15, R(all) = 4.67, wR(all) = 2.44

0 < r � 0.5, and the intrinsic orthorhombic distortions corre-
spond to 1/r�Lei/L0. Using the measured Lei/L0 � 3 × 10−4

allows us to give the lower bounds |δao|, |δbo| � 6 × 10−4,
but we cannot judge which of the orthorhombic axes contracts
or expands.

APPENDIX B: STRUCTURAL DETAILS

1. Crystal structure

The crystal structure was analyzed at 150 K using x rays
[22] and at 15 and 2.5 K with neutrons. On the four-circle
neutron diffractometer HEiDi, nuclear reflections were col-
lected using the wavelengths 1.171 and 0.795 Å, whereas
magnetic reflections were only collected with λ = 1.171 Å.
Reflections that were corrupted by a varying background or
by a too-close neighboring Bragg peak were culled manually,
so the following numbers refer to the remaining reflections.

For the structural refinement, 1291 reflections were collected
at 15 K (649 of which are unique with respect to space group

TABLE II. Basis vectors of the irreducible representations ob-
tained for the propagation vector ( 1

2 ,0,0) in space group P63/mmc
with four magnetic Fe ions at Fe1 ( 2

3 , 1
3 ,0.35), Fe2 ( 1

3 , 2
3 ,0.85), Fe3

( 1
3 , 2

3 ,0.65), and Fe4 ( 2
3 , 1

3 ,0.15).

Fe1 Fe2 Fe3 Fe4

	1 0ū0 0ū0 0u0 0u0
	2 2uuv 2uuv̄ 2uuv 2uuv̄

	3 2uuv 2uuv̄ 2ūūv̄ 2ūūv

	4 0u0 0u0 0u0 0u0
	5 0u0 0ū0 0ū0 0u0
	6 2uuv 2ūūv 2uuv 2ūūv

	7 2uuv 2ūūv 2ūūv̄ 2uuv̄

	8 0ū0 0u0 0ū0 0u0
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FIG. 7. (a) and (b) The observed structure factors are plotted
against the calculated ones for the refinements of the nuclear and
magnetic structure with the nuclear and magnetic Bragg reflection
intensities, respectively (T = 2.5 K). The FULLPROF program package
[29] was used in these refinements.

P63/mmc, and 282 unique reflections were observed), and
1109 reflections were collected at 2.5 K (350 of which are
unique, and 272 unique reflections were observed). For the
magnetic data collection at 2.5 K, 336 magnetic reflections
were collected (310 of which belong to different Friedel pairs,
and 94 of which were observed).

The structural refinements were performed with the soft-
ware package SHELXL-2018/3 [40] for the x-ray data taken at
150 K, and with the JANA2006 [41] software package for the
low-temperature neutron data. The resulting parameters are
given in Table I. The low-temperature structural parameters
are identical within the error bars for 15 and 2.5 K, but there
are slight differences with the results obtained at 150 K. The
largest deviations can be found in the x and y coordinates of
the Br atoms.

2. Magnetic structure

The symmetry analysis of the zero-field magnetic structure
was performed with the FULLPROF program package [29] and
is presented in Table II. Figure 7 presents the comparison of
observed and calculated structure factors for the nuclear and
magnetic reflections in panels (a) and (b), respectively.

APPENDIX C: DETAILS OF DFT + U CALCULATIONS

All calculations were performed using the full-potential
linearized augmented plane-wave method as realized in the
WIEN2K code [43]. We used the Perdew-Burke-Ernzerhof
version of the exchange-correlation functional [44]. The su-
percell used for the total energy calculations consisted of
four formula units. The irreducible part of the Brillouin zone
was sampled by a 9 × 5 × 9 k-point grid. Strong Coulomb
correlations were considered using the DFT + U method
[45], and Hubbard onsite electron repulsion and Hund’s intra-
atomic exchange parameters were chosen to be U = 5.8

FIG. 8. Partial density of states of Cs3Fe2Br9 in comparison
with Ba3CeIr2O9 (also having structural dimers with face-sharing
bi-octahedra) as obtained in nonmagnetic generalized gradient ap-
proximation calculations. Molecular Ir-Ir orbitals are seen in the
lower panel (a1g marks bonding and a∗

1g antibonding states of the
corresponding symmetry) in contrast to the ordinary atomic t2g and
eg orbitals in case of Cs3Fe2Br9. Fermi energy is zero.

and 6.5 eV and JH = 0.95 eV, as for other similar materials
[46,47].

The upper panel of Fig. 8 illustrates results of non-
magnetic generalized gradiant approximation calculations of
Cs3Fe2Br9. One can see that the electronic structure in this
case is very different from what we have in another dimer
material Ba3CeIr2O9 with a very similar crystal structure [48],
whose density of states are presented in the lower part of
Fig. 8. In Ba3CeIr2O9, one clearly sees the formation of the
bonding (a1g) and antibonding (a∗

1g) bands. There is noth-
ing like this in Cs3Fe2Br9, where one may distinguish the
atomic t2g and eg states only. Thus, despite naïve expectations,
Cs3Fe2Br9 should not be considered a material with molecular
orbitals formed by the Fe-3d states, and there is no large
exchange coupling between sites as a result. The reason for
this is a large ionic radius of Br1− (1.96 Å) compared with
O2− (1.4 Å) [49], which results in a large interatomic distance
of � 3.6 Å between the Fe3+ ions.
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