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Zeeman term for the Néel vector in a two sublattice antiferromagnet
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We theoretically investigate the dynamics of solitons in two sublattice antiferromagnets under external
perturbations, focusing on the effect of Dzyaloshinsky-Moriya (DM) interactions. To this end, we construct a
micromagnetic field theory for the antiferromagnet in the presence of the external magnetic field, DM interaction,
and spin-transfer torque. In particular, we show external magnetic field and spin current couple to Néel vector in
a Zeeman-like manner when DM interactions present, which can be used to efficiently drive antiferromagnetic
solitons of different dimensions. Besides, we study the effect of straining the local lattice. It can serve as an
external handle on the Néel field inertia and thus dynamical properties. Our findings may find applications in
antiferromagnetic spintronics.
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I. INTRODUCTION

Antiferromagnets hold a promise for a faster spintronics
platform. The spin wave dynamics of an antiferromagnetic
system is controlled by an energy scale ∝ J , where J is the
antiferromagnetic exchange. For ferromagnets, the same scale
is ∝ √

KJ where K is a local anisotropy. In most materials
J � K . The energy scale for the antiferromagnet translates to
a frequency scale of a few THz. Antiferromagnets offer an-
other significant advantage over ferromagnetic devices. Since
the net magnetic moment largely cancels over a unit cell, they
do not produce stray fields. This is particularly important in
device design, where we would like our individual memory
components to be isolated from one another [1–5].

However, these advantages also present a significant
handicap–of coupling antiferromagnetic solitons to external
probes. The absence of a local spin density implies a minor
response to spin currents. The response to external magnetic
fields is also tuned down by a factor of the exchange strength.
One way to manipulate these solitons is to transfer linear mo-
mentum, exploiting the inertial dynamics of the solitons [6–8].
This can be achieved, for instance, by using magnons to scat-
ter from the domain walls. Other methods involve creating a
local Berry phase which can then be coupled to an external
spin current field. This technique was used in Ref. [9] to
generate a Magnus force for an antiferromagnetic vortex.

We know from the classic work of Schryer and Walker [10]
that, in a collective coordinate picture [11], an external mag-
netic field acts like a force on the ferromagnetic domain wall
in one dimension. This construction can be extended generi-
cally to any spatial dimension. In the ferromagnetic case, the
gyroscopic dynamics causes the force to act in the angular
momentum channel, leading to a precession of the domain
wall.

In antiferromagnets, a local density of magnetization is en-
ergetically costly. The dynamics is expressed in terms of soft
modes, which are spin configurations with vanishing net spin
density. In the case of a two sublattice antiferromagnet, this
is the Néel field. The magnetization density follows the soft
mode dynamics and renders an inertial mass to the soft modes.
Thus the dynamics in the antiferromagnet is inertial—a force
produces a linear acceleration, not a precession [7,12].

In order to propel antiferromagnetic domain walls easily,
one may then hope to use the analog of the Zeeman field for
the Néel vector. One question naturally arises–what would be
equivalent to the magnetic field for the antiferromagnet? This
question was addressed by Gomonay et al. [13] for the two
sublattice case. They pointed out that a Néel spin-orbit field,
induced by an electrical current [14,15], has a Zeeman-like
coupling to the Néel vector (staggered magnetization), which
they utilized to drive the one-dimensional domain wall effi-
ciently.

In this paper, we find another situation where such a
Zeeman-like coupling emerges in an antiferromagnet. In par-
ticular, we show that the Dzyaloshinsky-Moriya (DM) [16,17]
interaction is the key ingredient. The DM interaction creates
a local magnetization density which can then respond to both
external magnetic fields and spin currents through Zeeman-
like terms. In addition to this, we investigate the effects of
straining the local lattice on the staggered magnetization field.
The presence of a nonzero strain tensor would modify the
inertia of the Néel field. Thus strain can potentially function
as a handle on the dynamics of antiferromagnetic solitons.

Our approach will be that of collective coordinates, devel-
oped for describing the slow dynamics of magnetic textures
in ferromagnets [11] and antiferromagnets [7]. The dynamics
of the texture is described through a set of coordinates qi,
which represent soft modes of the texture. These are usually
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restricted to the position and orientations of the soliton. The
kinetic energy of an antiferromagnet is expressed as Mi jq̇iq̇ j ,
where Mi j is a symmetric inertia tensor. The generalized force
conjugate to the coordinate qi is Fi = −∂U/∂qi with U being
the total potential energy. The dissipative force is given by
F v

i = −Di j q̇ j . The inertia and dissipation tensors are propor-
tional to each other Di j = Mi j/T ; the relaxation time T is
inversely proportional to Gilbert damping constant α [6].

Although we use collective coordinates as our degrees of
freedom, we shall not use the Landau-Lifshitz equations for
the individual sublattices. Instead, we take the micromagnetic
field theory picture presented in Refs. [6,7,9] and figure out
the potential energies (or gauge theories) that are spawned
by adding external perturbations. To facilitate this, we briefly
review the micromagnetic field theory for two sublattice an-
tiferromagnets in Sec. II. We then move onto the effects of
the individual perturbations: namely a magnetic field, a DM
interaction, and a spin-transfer torque in Sec. III. The meat of
our discussion lies in Sec. IV where we deal with the effect
of simultaneous perturbations. This construction is essential
for a propulsion mechanism. Finally we gather our results
in Sec. V.

II. TWO SUBLATTICE MICROMAGNETICS

In this section, we derive the micromagnetic Lagrangian
for the two sublattice antiferromagnet along the lines of
Ref. [7]. Our description is in terms of the magnetization
field represented by the unit vectors m(r, t ). The length of
the magnetization, M, is a constant and is connected to the
underlying spin density J through the relation M = γJ with
gyromagnetic ratio γ .

For antiferromagnets, each magnetic unit cell comprises
two or more magnetization fields mi which are constrained by
the exchange interaction to follow

∑
i mi = 0. To make this

explicit, we convert the nearest neighbor exchange into

Hexchange = J
∑
〈i, j〉

Si · S j = JS2

2

∑
α

(∑
i

mi

)2

α

− N

2

∑
α

S2.

(1)

Here
∑

i mi is a sum over all the spins that constitute the
antiferromagnetic unit cell—if there are N sublattices, the sum
is over N spins. The other sum α is over the lattice, broken
down into the magnetic unit cell clusters. The second term
is dropped as it is constant and does not enter equations of
motion.

In general, to get to the continuum model, we express the
vector fields mi in terms of the appropriate normal modes
of the systems, dictated by the point group symmetry of the
order, and expand the exchange interaction (and the other
energies) in them [12].

The particular construction of the field theory depends on
the specific lattice geometry. However, generically they all
stem from labeling the sublattice magnetizations as individ-
ual fields and then putting them together by expressing the
respective magnetization fields in terms of the normal modes.
These are of two kinds—soft modes which do not break the

FIG. 1. This figure shows the two dimensional two sublattice
antiferromagnet. Red sites have their spins out of plane and blue
spins have spins into the plane. The unit cell for each sublattice is
marked in dashed lines. The exchanges are isotropic and are marked.

constraint
∑

i mi = 0, and hard modes which do, inducing a
net magnetization per unit cell.

Solitonic dynamics in ferromagnets is dominated by gy-
roscopic effects generated by the local angular momentum
density. Thus, to propel a ferromagnetic vortex in the x direc-
tion of the xy plane, one applies a force in the y direction [18].
Similarly, exerting a force to a domain wall in a uniaxial
ferromagnet primarily generates a precession about the long
axis [10]. To propel it forward, one has to apply a torque to it,
for example through the adiabatic spin-transfer torque [19,20].
This is not the situation in antiferromagnets where a net angu-
lar momentum density is usually a secondary effect from local
anisotropy and fights with a much larger exchange interaction.

A continuum theory of a collinear antiferromagnet with
two sublattices operates with two slowly varying (in space)
fields Mm1(r) and Mm2(r). M is the moment size and
m1, m2 are unit vector fields. In a state of equilibrium,
m1(r) = −m2(r). More generally, the two sublattice fields
are expressed in terms of dominant staggered magnetiza-
tion n = (m1 − m2)/2 and small uniform magnetization m =
m1 + m2. The constraints |m1|2 = 1 and |m2|2 = 1 translate
into

m · n = 0, |n|2 = 1 − |m|2/4 ≈ 1; (2)

the last approximation is valid as long as |m|2 � 1.

A. The kinetic term and spin wave spectrum

We demonstrate the calculation of the spin wave spectrum
for a two sublattice antiferromagnet on a square lattice of side
length a as shown in Fig. 1. The only interaction present is the
nearest neighbor Heisenberg exchange with strength J . The
kinetic term for the antiferromagnet emerges from the Berry
phases of the two sublattice magnetizations m1,2 [21]. The
total Berry phase for the unit cell:

LB = J (a1.ṁ1 + a2.ṁ2). (3)

Here J = S/(2a2) is the density of angular momentum in
two dimensions with S as the moment (spin) length. While
choosing the vector potentials a1,2 for the two sublattices,
we adopt different gauges, such that the Dirac string of the
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two monopoles lie on opposite hemispheres of the magneti-
zation sphere. This ensures that neither m1/2 is near a Dirac
string. The convenient choice is a1(m) = a(m) and a2(m) =
a(−m) [6,22,23].

In the equilibrium state when m1 = −m2, the Berry phases
of the two sublattices cancel exactly. This can be seen for the
standard gauge choice of the vector potential aθ = 0 and aφ =
(cos θ ± 1)/ sin θ . The Dirac string carries a “flux” of +4π

either through the north or south pole. If we put the string
through the south pole for m1 and through the north pole for
m2 we have in equilibrium LB = J [a(n) − a(−(−n))] · ṅ =
0.

The lowest nonvanishing kinetic terms are obtained by
expanding the vector potentials using |m| as a small parame-
ter. Individually, a1 · ṁ1 = a1(m/2 + n) · (ṁ/2 + ṅ) and a2 ·
ṁ2 = a2(m/2 − n) · (ṁ/2 − ṅ). Expanding to quadratic or-
der in |m| and |ṅ|, the kinetic term Eq. (3) yields the
following:

LB/J = [a1(n) + a2(−n)] · ṁ
2

+ [a1(n) − a2(−n)] · ṅ

+ mi

2

[
∂a1(n)

∂ni
− ∂a2(−n)

∂ni

]
· ṁ

2

+ mi

2

[
∂a1(n)

∂ni
+ ∂a2(−n)

∂ni

]
· ṅ (4)

We have the identity ∂ni a1(n) − ∂ni a2(−n) = 0, from the def-
inition of the vector potentials. This cancels the second and
third terms. In the first term, we now transfer the time deriva-
tive to a using an integration by parts and combine with the
corresponding vector potential term from the last line to get:

miṅk

[
∂ak (n)

∂ni
− ∂ai(n)

∂nk

]
= ṅ · (n × m), (5)

where we have used ∇n × a = −n.
The potential energy is obtained from the Heisenberg ex-

change:

U = JS2
∑
〈i, j〉

mi · m j,

= JS2

2

∑
α

(m1 + m2)2
α

=
∫

dV
JS2

2

[
2m2

a2
+ (∂in)2 + (∂im)2

2

]
, (6)

where J is the Heisenberg exchange strength and in the second
line we have dropped the constant term. In the second line,
we have expressed the summation over nearest neighbours in
terms of summation over two site magnetic unit cells α. We
can see that the uniform magnetization picks up an energy
contribution from the exchange interaction at the zeroth order
in gradients and is hence a hard mode. The Néel field n only
appears through gradients and is the typical example of a soft
mode in antiferromagnetic systems.

B. Spin waves

The procedure to obtain the effective spin wave field theory
is similar to the planar ferromagnet [24]: we integrate out the

hard field and express the theory in terms of the soft field.
This process generates an inertia for the soft mode. Since m
is hard, we shall drop its gradient terms. Let us carry this out
explicitly:

L = S

2a2
ṅ · (n × m) − JS2

2

[
2m2

a2
+ (∂in)2

]
. (7)

Now we can solve for the hard field m = (ṅ × n)/(4JS),
implying m is a slave variable to the Néel field n in this
treatment. Substituting this solution back into the Lagrangian,
we obtain a field theory for the soft Néel field:

L = ρ

2
ṅ2 − JS2

2
(∇n)2, (8)

with ρ = 1/(8Ja2). Here we have used (ṅ × n)2 = ṅ2 as n ·
ṅ = 0, following from the unit vector constraint of n.

The ordered ground state n0(θ, φ) spontaneously breaks
the SO(3) symmetry of the system up to SO(2). Hence in
this case, there are two Goldstone modes, residing in the coset
space S2 = SO(3)/SO(2), one for each continuous degree of
freedom, dispersing linearly according to ω = ck, with c =
±(2

√
2JSa). They classically correspond to the opposite cir-

cular polarizations of the small-angle oscillations of δn ⊥ n0.

C. Strain

Studies of strain control of antiferromagnets [3,25,26]
have been mainly based on the change of electronic struc-
tures and strain-induced spin–orbit coupling, which have been
observed in metallic antiferromagnets such as Mn2Au [27]
and FeRh [28,29]. Here we explore the direct influences of
straining the lattice on the Néel field dynamics. The strain
to moment coupling is expressed through the energy den-
sity [30,31]:

UME = S2
∑

i j

[
∂J (w)

∂wab
· δwab

]
mi · m j, (9)

where wab = wa − wb with w as the lattice displacement
field. On the nearest neighbor square lattice, the only strain
components that couple to the Heisenberg Hamiltonian are
εxx and εyy, where εi j = (∂iw j + ∂ jwi )/2 is the linear strain
tensor. If the system has next-nearest neighbor interactions,
we can couple to those using the off-diagonal strain εxy. The
off diagonal strain will appear in two dimensions for non
collinear magnetic ordering, for instance the Mn3X group of
120◦ ordered antiferromagnets [32–34].

To lowest order in gradients, the strain couples to the
uniform magnetization m and gradients of the Néel vector
∂in. The dominant effect is through a coupling to the uniform
magnetization m. This produces an energy density:

UME = J ′S2
εxxm2

x + εyym2
y

a2
, (10)

where J ′ = (∂iJ ) and we have assumed ∂xJ = ∂yJ from the
local cubic symmetry. This modifies the inertia for the Néel
field:

1

ρ i
= 1

ρ

[
1 + J ′εii

J

]
, (11)
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FIG. 2. Schematic of strain serving as a handle on dynamics of
solitons in two dimensions. The strain modifies the inertia associ-
ated with Néel field. It can also introduce anisotropies, leading to
anisotropic spin wave velocity.

where now ρi is the inertia in the ith direction. Note that the
cross-strain εxy is absent to first order here as we are restricting
ourselves to nearest neighbor interactions. It serves as an ex-
ternal handle on the Néel field inertia which can be exploited
to control its dynamical properties, especially in the case of
solitons (see Fig. 2). This presents a new avenue to manipulate
the frequency response for two sublattice antiferromagnets.

The next higher order coupling is to the gradients of the
soft Néel field. This coupling modifies the spin wave velocity
and makes it anisotropic. This is expected since strains induce
an additional two fold anisotropy in the plane. The velocities
are now given by

c = c

(
1 + J ′

J
εxx, 1 + J ′

J
εyy

)
, (12)

with c = ±(2
√

2JSa).

D. Solitons

We are interested in the situations where the only spatial
dependence of the staggered magnetization field n is at the
location of topological defects. These regions are character-
ized by a skyrmion density defined using the Néel vector
field [35,36]:

Nsk = 1

4π

∫
dqidq j n ·

(
∂n
∂qi

× ∂n
∂q j

)
. (13)

Here (qi, q j ) are collective coordinates conjugate to each
other. Typical examples for the two sublattice case are—
domain walls characterized by the conjugate set of location
and orientation of the domain wall (Z,�), and the vortex with
it core center (X,Y ) serving as the conjugate set.

Uniaxial domain wall. The uniaxial domain wall is pro-
duced by an easy axis anisotropy. Choosing this to lie along
the z axis, we get

U (n) = A

2

∣∣∣∣∂n
∂z

∣∣∣∣
2

+ K

2
|e3 × n|2. (14)

Here A > 0 characterizes the strength of exchange, K > 0
is the easy axis anisotropy, and e3 = (0, 0, 1). This system
has two uniform ground states n = ±e3, linear excitations
in the form of spin waves with the dispersion ω2 = (K +
Ak2)/ρ, and nonlinear solitons in the form of domain walls
which interpolate between the two ground states. Static
domain walls in n = (sin θ (z) cos φ, sin θ (z) sin φ, cos θ (z))

FIG. 3. On the top, we show the constituent sublattice magneti-
zations m1,2. These sublattices combine to form the antiferromagnet.
A typical soliton in one dimension is a domain wall shown on the
bottom. The domain wall is a soliton interpolating between the two
unidirectional ground states of the one dimensional antiferromagnet.

have width λ = √
A/K and are parametrized in spherical an-

gles θ (z) and φ(z) as follows:

cos θ (z) = ± tanh
z − Z

λ
, φ(z) = �. (15)

Position Z and azimuthal angle � represent the two zero
modes of the system associated with the global symmetries
of translation and rotation see Fig. 3. Weak or local external
perturbations do not alter the shape of the soliton significantly
and mostly induce the dynamics of Z and �.

Planar vortex. This topological feature is stable in two
spatial dimensions with an easy plane anisotropy, K < 0 in
Eq. (14). The uniform ground states are n = (cos φ, sin φ, 0).
A vortex centered at the origin is parametrized as

eiφ(r) =
(

x + iy

|x + iy|
)n

, cos θ (r) = ± fn(r/λ). (16)

Here n ∈ Z is the vortex winding number. The magnetization
leaves the plane at the cores and this is captured by the
function f (ζ ) with fn(0) = 1 and fn(∞) = 0. The core size
is controlled by the same length scale as the domain wall,
λ = √

A/|K|.

III. EXTERNAL PERTURBATIONS

We now consider the situation where the only spatial de-
pendence of the staggered magnetization field n is at the
location of defects. The theory we work with is

L = J ṅ · (n × m) −
(M2

2χ

)
m2 − Uext[ζ, n, m], (17)

where we have absorbed the Heisenberg exchange strength
into a spin susceptibility χ . ζ in the theory is an external
(pseudo)vector field (it can be a general tensor field, such as
the strain tensor we have discussed). Our main objective is to
see how ζ modifies the Lagrangian density, in particular how
it couples to the soft mode n. Once we have an understanding
of these couplings, we can study their effects on solitons in
the staggered magnetization order, such as uniaxial domain
walls and planar vortices. We outline the manner in which
these solitons can be effectively moved in space by coupling
to the order parameter.
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These external vector fields couple either to the uniform
magnetization m(r, t ) or the staggered magnetization n(r, t )
in the Lagrangian. This is broadly guided by symmetries
like time reversal and mirror planes of the spin Hamiltonian.
Fields, which couple to m, produce a gauge coupling to ṅ,
on integrating out m. This is the case with perturbations like
an external magnetic field h(r, t ) or a spin transfer torque
characterized by the electron drift velocity u(r, t ). Such terms
require a spatial or temporal variation of the external vector
field to produce solitonic motion [9,37].

The coupling to n gives rise to terms like (Ai jζin j )k , where
k = 1, 2 is the cases we study. Here, ζi represents an ex-
ternal field sourced from a combination of terms like the
Dzyaloshinski-Moriya interaction, external magnetic fields, or
combinations. This term acts as a potential energy density
which can generate a force (or torque) on a soliton. Note
here, that an antiferromagnetic soliton by virtue of Eq. (8) is
inertial, i.e., a force propels an antiferromagnetic domain wall
instead of making it precess. We show that Dzyaloshinski-
Moriya interactions generate such terms and can be used to
propel solitons.

Dissipation. An additional ingredient that needs to be
added to the field theory is the dissipation term. This is done
using the standard Rayleigh dissipation density function with
the Gilbert damping parameter α:

R = αJ
2

(
ṁ2

1 + ṁ2
2

) � αJ ṅ2. (18)

Converted to the collective coordinate picture we find that
for the antiferromagnets the dissipation tensor is proportional
to the inertia tensor, Di j = Mi j/T where T ≡ ρ/2αJ is the
relaxation time. The dissipation is captured in a force term
F v

i = −Di j q̇ j in the dynamical equations for the solitons.
In the course of working out these contributions to the

energy density, one particularly useful identity we repeatedly
use is

(ṅ × n) · (A × n) = A · [n × (ṅ × n)] = A · ṅ. (19)

This identity follows in a straightforward manner from n2 =
1 − (m2/4) � 1. Corrections to this assumption modify the
inertia ρ. Since A in our theory is already a perturbation, these
are higher order corrections and will be suppressed.

A. Magnetic field

The external magnetic field couples to the uniform magne-
tization U = −Mh · m to form a Zeeman term. This adds to
the Lagrangian density:

L[m, n] = J ṅ · (n × m) −
(M2

2χ

)
|m|2 + Mh · m. (20)

A straightforward minimization with respect to m gives
m = χJ ṅ × n/M2 + χh/M, which violates the constraint
m · n = 0. To ensure the perpendicularity, we resolve h into
a component perpendicular to n, h⊥ = n × (h × n) which
enters the Zeeman coupling m · h⊥ to produce a term (n × H)
· (n × m).

Now on solving for m, we obtain m = χJ (ṅ × n)/M2 +
χ (n × h) × n/M. Substituting this into the Lagrangian, we

obtain

L(n) = ρ(ṅ − γ h × n)2

2
, (21)

with the inertia ρ = χ/γ 2. The Lagrangian is identical to that
of a particle in a rotating frame with an angular velocity γ |h|,
causing a texture in n to precess. There is an additional con-
tribution to the energy in the form of UH = −ρ|γ h × n|2/2,
which adds to the crystal anisotropy term in the energy func-
tional and resembles the potential energy that leads to the
centrifugal force in the rotating frame.

Let us take a closer look at each of the terms in Eq. (21).
The term ρṅ2/2 is the kinetic energy of staggered magne-
tization, which endows antiferromagnetic solitons with an
inertial mass. Supposing a soliton is parametrized by a set
of collective coordinates q = {q1, q2, . . .} such as the position
of a domain wall, the coordinates of a vortex core etc., the
variation of n in time is mediated by the change of these col-
lective coordinates: ṅ = q̇i∂qi n. The soliton’s kinetic energy is
then Mi jq̇iq̇ j/2, where Mi j = ρ

∫
dV ∂qi n · ∂q j n is the inertia

tensor [38].
The potential term ρ|γ h × n|2/2 in Eq. (21) expresses

local anisotropy favoring the direction of n orthogonal to the
effective field h. This term modifies the potential landscape
U (q) of a soliton

U [q, h(r)] = U [q, 0] −
∫

dV
ρ|γ h × n|2

2
. (22)

To get an idea of what kind of anisotropy this term induces,
let us take a look at the energy density for the uniaxial domain
wall in Eq. (15) with the easy axis along ẑ as shown in Fig. 3.
We now introduce a magnetic field h = h0(cos ϕ, sin ϕ, 0)
modifying the energy density:

U = −K

2
cos2 θ − ργ 2

2
(n × h)2,

= −K

2
cos2 θ − ρ(γ h0)2

2
[cos2 θ + sin2 θ sin2(φ − ϕ)],

(23)

with K > 0.
The magnetic field chooses the azimuthal plane for the

Néel domain wall and hence acts as an angle-selector. For a
particular direction of the field (cos θ ) the minimum energy
occurs when |φ − ϕ| = π/2. In the figure (Fig. 3), we point
the magnetic field along x̂ which prefers a Néel wall in the yz
plane. The easy axis anisotropy, however, is unaffected in this
configuration. This leaves the soliton size unchanged.

To modulate the size of the soliton λ = √
A/K we need to

apply a field along the easy axis h = h0ẑ. In this configuration
the anisotropy K defined in Eq. (15) is modified to K → K̃ =
K − ργ 2h2

0. Now for the easy axis scenario since K > 0 this
leads to an expansion, while for the easy plane scenario where
K < 0 this leads to a constriction of λ. Thus the magnetic field
breaks the SO(3) symmetry of the Néel vector and allows an
external control of the soliton size. A similar analysis for the
domain wall is presented in [39] including corrections from a
nonuniform magnetic field.

We remark that, in the easy axis case, the soliton profile is
no longer stable when K̃ → 0 as the applied magnetic field
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increases; the system undergoes a spin-flop transition into a
spin-flop phase, where the Néel vector lies within the plane
perpendicular to the magnetic field. In the easy plane case,
one can utilize the magnetic field to enhance the easy-plane
anisotropy, which is essential for the conservation of spin
winding and thus is applicable in energy storages [40,41] and
related transport experiments [42–44].

The cross term ργ h · (ṅ × n) in Eq. (21) is linear in
time derivative ṅ and thus quantifies the effective geometric
phase for the dynamics of staggered magnetization. This is
analogous to the Coriolis effect in a rotating frame. In the
Lagrangian of a soliton, it turns into Aiq̇i, a coupling to an
external gauge field

Ai(q) =
∫

dV ργ h ·
(

∂n
∂qi

× n
)

. (24)

The equations of motion for an antiferromagnetic soliton
have the form of Newton’s second law for a particle of unit
electric charge in this gauge field:

Mi jq̈ j = −∂U/∂qi + Ei + Fi j q̇i − Mi jq̇ j/T . (25)

The “magnetic field” Fi j = −Fji is the curl of the gauge po-
tential:

Fi j = ∂Aj

∂qi
− ∂Ai

∂q j
= −2

∫
dV ργ h ·

(
∂n
∂qi

× ∂n
∂q j

)
. (26)

The “electric field”

Ei = −
∫

dV ργ ḣ ·
(

∂n
∂qi

× n
)

, (27)

arises when h depends on time explicitly.

B. Dzyaloshinski-Moriya interaction

We now examine the effect of adding the antisymmetric
exchange or DM interaction [16,17] to the Lagrangian. This
interaction exists in an antiferromagnet with broken inver-
sion symmetry intrinsically or at interfaces like sample edges
and extended domain walls. It is characterized by the energy
density UDMI = D · (Si × S j ) = J 2D · (mi × m j ) where the
direction of the DM vector D is given by the Moriya rules [17].

Their net effect is to induce a weak ferromagnetism in the
material, which then couples to external torques and fields.
In the presence of a homogeneous DM interaction, the theory
takes the form:

L = J ṅ · (n × m) −
(M2

2χ

)
|m|2 − J 2D · (n × m). (28)

This adds an extra term to the solution for the staggered mag-
netization m = χJ ṅ × n/M2 − χD × n/γ 2. On integrating
out the uniform magnetization, we obtain

L = ρ(ṅ − JD)2

2
. (29)

Note that here, unlike in the case of the external magnetic
field, there is no additional anisotropy induced by the DM
vector. The Lagrangian suggests a steady-state translation for
the Néel soliton ṅ′ ≡ ṅ − JD with a velocity v = JD. In
other words it acts as a potential for ṅ.

The cross term with the kinetic term gives rise to a vector
potential of the form

ADM
i = −ρJ

∫
dV

∂n
∂qi

· D. (30)

For the material bulk where the DM vector is a constant,
this does not produce an electromagnetic field density Fi j .
However, there are two situations where an exception occurs.
One is when ∂i∂ jn − ∂ j∂in �= 0 as in the case of the antiferro-
magnetic vortex core where n is singular [24]. In this case, the
vector potential Ai yields a density FXY = (−2π ñρJ )eφ · D.
Here ñ is the vorticity density and êφ is the azimuthal unit
vector.

It is unlikely that this effect is finite in the two-sublattice
case as the DM vector tends to point out of the plane. How-
ever, it might be present in non collinear antiferromagnets
like Mn3Ge. The other situation occurs at interfaces where
the DM vector can become space dependent. In that case, the
electromagnetic tensor strength is given by Fi j = ρJ (∂ jn ·
∂iD − ∂in · ∂ jD).

C. Spin-transfer torque

For metallic antiferromagnets, we can transfer angular mo-
mentum to each individual sublattice through a conduction
band electron current [45]. The local magnetic moments cou-
ple to the electron spins through an s-d exchange [46]. The
coupling polarizes the conduction band to follow the orienta-
tion of spins on individual sublattices. This mechanism gives
rise to the adiabatic spin transfer torque.

For the ferromagnet, the adiabatic spin transfer torque
modifies the time derivative in the Landau-Lifshitz equation
to a convective derivative ∂t → ∂t + u · ∇ [47]. Here u is
the drift velocity of electrons related to the electric current
j = enu—with n as the concentration of electrons.

This manipulation can be extended to the two sublattice
antiferromagnet [48]. The kinetic term is

m · (ṅ × n) → m · [(∂t + (u · ∇))n × n]. (31)

This correction modifies the induced magnetic moment m =
(χJ /M2)(ṅ + (u · ∇)n) × n, which suggests that nonuni-
form Néel fields will induce a magnetization in the presence
of a spin current. The Lagrangian reads

L = ρ[ṅ + (u · ∇)n]2

2
. (32)

The most immediate effect of this coupling is to modify the
spin wave velocities. Comparing this with Eq. (7), we can see
that the potential energy density is now

U = JS2

2
(∇n)2 − ρ

2
[(u · ∇)n]2. (33)

Consider an adiabatic spin current of the form u = (ux, 0).
This modifies the spin wave velocity in the x̂ direction to cx =
c[1 − (ux/(2c2))], where c = 2

√
2JSa. Thus, for a generic

current direction, the spin wave will no longer be isotropic in
the plane and will get corrections of the order of |u|/c2. This,
along with strain can be used to modify spin wave magnitudes
and polarizations in the two sublattice antiferromagnet.
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The adiabatic spin transfer torque needs a local Berry phase
density to effect propulsion of a soliton. This implies that
the spin transfer torque needs to be applied in addition to
a perturbation that creates a local magnetization density to
propel an antiferromagnetic soliton. For instance, in Dasgupta
et al. [9] an external magnetic field was used to generate a
local Berry phase density. This coupled to the spin transfer
torque to produce a Magnus force for the antiferromagnetic
vortex.

IV. COMBINED INTERACTIONS

Single perturbations couple to the Néel field in Eqs. (21),
(29), and (32) through ṅ. This gives rise to vector potentials.
Under certain circumstances where the perturbation is itself
nonuniform in time or space, this leads to a finite electromag-
netic tensor. However, as shown in Ref. [9], a perturbation
that is nonuniform in time does not produce a net propul-
sion of a soliton. Nonuniform drag forces [13] and spatially
nonuniform magnetic fields do induce a propulsion [37,39].
However, in this paper, we want to restrict our search to
spatially uniform situations which are easier to reproduce in
the laboratory.

A better alternative for antiferromagnetic solitons is to use
a combination of two (or more) perturbations. This is the
situation which we now turn to. The theme of two of these
combinations is similar. If we have a magnetic field h(r, t )
or a DM interaction D(r, t ) locally (at the location of the
soliton) inducing a small magnetic moment which the spin
current u(r, t ), latches on to and generates a displacement of
the soliton. The other combination, a DM interaction and an
external magnetic field, will lead to an energy density which
we show is structurally identical to Néel spin orbit torque used
in Ref. [13].

A. DM interaction and external magnetic field

If these two types of terms are simultaneously present in
the system, the Lagrangian density takes the form

L[m, n] = J ṅ · (n × m) −
(M2

2χ

)
|m|2

+ Mh · m − J 2D · (n × m). (34)

We can solve for the induced magnetization:

m = χJ
M2

ṅ × n + χ

M (n × h) × n − χ

γ 2
D × n. (35)

This can be plugged back into Eq. (34) to obtain

L = ρ[ṅ + γ (n × h) − (M/γ )D]2

2
− U (n, D, h). (36)

The cross term of interest is

UDM-h = −ρM n · (D × h). (37)

This term acts as a “Zeeman” term but for the staggered mag-
netization with an effective magnetic field heff = (D × h).
Note that, in the presence of a DM interaction, the induced
extra uniform magnetization is m ∝ (D × n). It is this in-
duced ferromagnetic moment that ‘Zeeman’ couples with the
external magnetic field. This coupling has been previously

studied in the context of weak ferromagnets [35,49]. Their
analysis was done in the continuum with a quadratic kinetic
term.

Here we look at it in the context of the two sublattice an-
tiferromagnet, cast in the collective coordinate scheme. This
achieves two goals—firstly, it becomes clear that the term is a
force on an massive particle (the soliton). Secondly, once we
have the collective coordinate scheme set up we can quickly
determine the effect of this term on the dynamics of the
regular solitons—uniaxial domain wall, vortex, skyrmion, and
hedgehog. This analysis has so far not been presented in the
literature.

To cause a net displacement in the position of the soliton,
we require (D × h)ζ̂ �= 0, where ζ̂ is the unit vector along a
zero mode direction of the soliton. For example, for the do-
main wall ζ̂ is along the easy axis. This requires, in particular,
a DM vector that is not aligned along the easy axis. To illus-
trate this idea, we explore the dynamics of antiferromagnetic
solitons of different dimensions. Their steady-state velocities
are also given.

Uniaxial domain wall. We adopt the static domain walls
parametrized in spherical angles θ (z) and φ(z) as follows:

cos θ (z) = tanh
z − Z

λ
, φ(z) = �, (38)

where position Z and azimuthal angle � are two collective
coordinates, standing for two zero modes of the system. We
now expand the first term in the Lagrangian Eq. (36):

L = ρ

2
ṅ2 + ρ

2
|γ n × h|2 + ρ

2

(MD
γ

)2

+ργ ṅ · (n × h) − ρM
γ

ṅ · D

−ρMD · (n × h). (39)

We assume a simple configuration with D = Dŷ and h = hx̂.
Both D and h are constants. Here ρṅ2/2 endows the domain
wall with a mass M. As shown before, the magnetic field
modifies the easy axis anisotropy. The term proportional to D2

is a constant and thus does not enter the equation of motion of
the domain wall.

The total “electromagnetic” force acting on the domain
wall Eq. (38) along ẑ direction, derived from the vector poten-
tial in the second line of Eq. (39), vanishes in this situation.
The last line in Lagrangian Eq. (39) gives rise to a potential
energy for the domain wall:

U (Z ) ≡ ρMDh
∫ L

−L
dz nz = ρMDhλ ln

cosh[(Z − L)/λ]

cosh[(Z + L)/λ]
,

(40)

where we have parametrized the one dimensional antiferro-
magnet with z ∈ [−L, L]. One can therefore write down the
equation of motion for the domain wall:

MZ̈ = −MŻ/T + F, (41)

where F ≡ −dU/dZ . We consider the situation that the
domain wall is far away from two boundaries of the 1D
antiferromagnet. The force due to the potential U (Z ) is a
constant F = 2ρMDh, independent of the position of the
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FIG. 4. A domain wall profile Eq. (38) with � = π/2 in a one-
dimensional antiferromagnet. The graph shows the potential U (Z ),
measured in unit of ρMDhλ, for the domain wall in the presence
of DM vector D = Dŷ and magnetic field h = hx̂. Here we set the
size of the domain wall to be λ = 1 and set the system to be Z ∈
[−10, 10]. We see the potential is nearly linear and only bends close
to two boundaries. The resultant constant forces acting on the domain
wall, balanced with the dissipative force, leads to a steady velocity
vsteady Eq. (43).

domain wall, in this scenario (see Fig. 4). The domain wall
mass M is

M = ρ

∫
dz

∣∣∣∣dn
dZ

∣∣∣∣
2

= 2ρ

λ
. (42)

From Eq. (41), we can read off the velocity of steady motion:

vsteady = MDhT λ = 2ρMDhT

M
, (43)

which is linearly proportional to the strength of DM interac-
tion, applied magnetic field, viscous relaxation time, and is
inversely proportional to the mass of domain wall, as one may
expect. Note that the mass M has a lower bound ρ/L, set by
the system size. We also remark that one cannot crank up the
magnetic field incontinently, as it also contributes to magneti-
zation (recall m = χh/M + · · · , when h ⊥ n), which would
ultimately invalidate our description at large fields.

To quantitatively estimate the velocity of the domain
wall, we use γ ≈ 1.76×1011 s−1 T−1,J = 1 h̄/atom, the
applied magnetic field h = 1 T and the relaxation time T ∼
60 ps [50]. The size of the domain wall is determined by
the exchange strength and the easy-axis anisotropy which is
typically λ ∼ 10 nm. For the DM interaction, we use J 2D ∼
0.5 meV/atom, for example in Mn3Sn [51,52]. This gives us
a steady velocity vsteady ≈ 50 km/s, which is comparable with
the limiting (Walker) velocities of various antiferromagnetic
materials [53–55].

Antiferromagnetic vortex. The dynamics of the antiferro-
magnetic vortex in the presence of an external out-of-plane
magnetic field, h = h0ẑ, and an in-plane DM interaction mir-
rors the Magnus force dynamics presented in Ref. [9].

Magnus force type dynamics is unexpected and novel in
the broader context of antiferromagnetic solitons with this as

FIG. 5. Potential energy densities for the ‘Zeeman’ U ∝ n ·
(h × D) term in the collective coordinate space. The magnetic field
is out of plane h = h0ẑ and the DM interaction is in plane. The
sample geometry used was a square of side 20 units. On the left
(a) is the density produced by D = (D1, 0) and on the right is the
density produced by D = (0, D2 ). As noted in the text the densities
are linear in X and Y in the regime where the vortex core is well
inside the boundary.

a possible new addition, for a review see Ref. [36]. The nature
of the Magnus force and the dynamics it engenders in the anti-
ferromagnetic vortex is different from the same phenomenon
in the ferromagnetic vortex. Firstly, the dynamics is inertial
thus a steady state is not instantly achieved. Secondly, the
strength of the Magnus response is proportional to the external
magnetic field h0.

With an out of plane magnetic field a finite skyrmion
charge is generated for the antiferromagnetic vortex, q =
(ñργ h0/2J ) [9,36,56]. Here ñ is the winding number of
the vortex. This in turn creates a finite gyromagnetic density
GXY = −GY X = g = 2π ñργ h0. This effect is notably absent
for an in-plane magnetic field.

The in plane DM interaction provides a finite potential
energy in the vortex center coordinate channels. With a DM
vector of the form D = (D1, D2, 0) we get a Zeeman energy
density:

U = −ρMh0

∫
dxdy(D2nx − D1ny)

= ρMh0η(D2X − D1Y ), (44)

where η is a structural factor that depends on the dimensions
of the sample, see Fig. 5. We provide an estimate for a sample
with a circular geometry in the Appendix.A. This energy den-
sity is analogous to that of a planar ferromagnetic vortex with
an in-plane magnetic field [57]. Assuming a circular geome-
try, η = πR, the force acting on our antiferromagnetic vortex
is then F = −πRρMh0(D2,−D1). Here R is the radius of the
sample.

The collective coordinate equations of motion for the vor-
tex core reads:

MXX Ẍ = FX + gẎ − MXX

T
Ẋ − MXY

T
Ẏ ,

MYY Ÿ = FY − gẊ − MYY

T
Ẏ − MXY

T
Ẋ . (45)

The various mass tensors here are geometry dependent and
need to be calculated in specific setups or numerically
determined. The individual components are proportional to
the integrals: MXX ∝ I1, MXY = MY X ∝ I2, and MYY ∝ I3, see
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FIG. 6. The motion of an antiferromagnetic vortex core in the
presence of DM vector D = Dx̂ and magnetic field h = h0ẑ. The
steady state velocity for the vortex is given in Eq. (46) (setting
D2 = 0). The direction of the motion is determined by
tan θ = −M/gT .

Appendix A. We take the symmetric limit, such that MXX =
MYY = M and MXY = 0.

This gives the steady state velocity (see Fig. 6) for the
vortex core as

v = T ρMh0Rπ

(
D1gT − D2M

M2 + g2T 2
,

D2gT + D1M

M2 + g2T 2

)
, (46)

with magnitude being

|v| = πRρM√
1 + g2T 2/M2

|D|h0T

M
. (47)

We note that, similar to the steady motion of a domain wall
Eq. (43), |v| ∝ |D|πRh0T/M when the gyromagnetic density
is small g � M/T .

If we were to consider a DM interaction that points out
of plane D = D0ẑ, we would need an in-plane magnetic field
to drive the vortex core. An in plane magnetic field H =
(hx, hy, 0) does not create a skyrmion charge for the vortex and
hence no Magnus force is generated. Assuming a spherical
geometry again, we have a force on the vortex core F =
πRρMD0(hy,−hx ). The steady state velocity in this case is
v = πRρMD0T (hy,−hx )/M.

Antiferromagnetic skyrmion. This situation is simplified
for antiferromagnetic solitons where n(r) configuration cov-
ers the whole unit sphere—skyrmions and hedgehogs [9,36],
killing the possibility of an induced gyrotropic term.

The standard profile for an antiferromagnetic skyrmion is
n = (sin � cos �, sin � cos �, cos �). For a single skyrmion
located in the xy plane at (X,Y ) = R, we have �(|r − R|) ≡
g(|r − R|)—a monotonous function such that g(|r − R|) = 0
when |r − R| > Rsk and g = π at r = R. Here Rsk is the
skyrmion radius. The azimuthal function � is the same as
the vortex with a vorticity of 1. This profile can be used to
calculate the potential energy density from the crossed DM
and external field.

With an out of plane magnetic field h = h0ẑ and an in plane
DM vector D = (D1, D2, 0) we get the same form for the
energy density as the vortex, Eq. (44). However, the geometric
factor η is different as the integration kernels now include, and
depend on, the exact form of the function g(|r − R|). If we
take the simplest linear form:

g =
{

π
(
1 − |r−R|

Rsk

)
, 0 � |r − R| < Rsk

0, |r − R| � Rsk
, (48)

then the structural factor η = −π2. This should be worked
out numerically for realistic skyrmion profiles for an accurate
estimate. Using this we get a steady state velocity vskyr =
−π2ρMh0(T/M )(−D2, D1). With the fields reversed in con-
figuration the velocity is vskyr = −π2ρMD0(T/M )(hy,−hx ).

The dynamics here is notably independent of system di-
mensions as skyrmions are local defects unlike vortices. This
adds to the methods that can be employed to move antifer-
romagnetic solitons such as the nonadiabatic spin transfer
torque [58]. Though this is probably a much more minor effect
owing to the skyrmion profile strongly suppressing the value
of the integral.

Antiferromagnetic hedgehog. To illustrate the cross
term (37) can be used to efficiently drive a hedgehog [59,60]
in three dimensional antiferromagnets, we consider an
isotropic hedgehog configuration n(r) = n0(r − Rc) with
n0(r) = r/|r| and collective coordinates Rc. The ‘Zeeman’
energy potential for the hedgehog is given by

U (Rc) = ρM
∫

d3r h · D × n(r), (49)

where h and D are the magnetic field and the DM vector,
respectively. This potential gives rise to a constant force

F ≡ −∇RcU = −ρM
∫

d3r h · [D × ∇Rc n0(r − Rc)]

= ρM(h × D) ·
∫

d3r ∇rn0(r)

= 4πR2

3
ρMh × D. (50)

when the hedgehog is far away from the boundary of the
sample. Note this force is dependent on the radius R of the
sample, which is a general feature of nonlocal solitons. The
equation of motion for the hedgehog core is

MR̈c = F − M

T
Ṙc, (51)

where M ≡ Mxx = Myy = Mzz = ρ
∫

d3V [∂xn0(r)]2 is the
mass of the hedgehog (note that all off-diagonal elements
vanish for the configuration n0). This gives us the steady state
velocity

v = 4πR2

3
ρMT h × D

M
, (52)

whose direction is dictated by the orientations of the magnetic
field and the DM vector.

B. DM interaction and adiabatic spin transfer torque

A combination of these two interactions produces the La-
grangian density:

L[m, n] = J (Dun) · (n × m)

−
(M2

2χ

)
|m|2 − J 2D · (n × m), (53)

where the convective derivative Du ≡ ∂t + (u · ∇ ). We can
solve for the induced magnetization:

m = χJ
M2

(Dun) × n − χ

γ 2
D × n. (54)
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This can be plugged back into Eq. (53) to obtain

L = ρ(Dun + JD)2

2
. (55)

The cross term generated here is proportional to ui(∂in j )Dj .
This is clearly a total derivative term which has no effect in the
bulk of a material where the DM vector is constant. However,
at all interfaces and edges of the sample where the DM vector
changes direction or magnitude or both, this term has a finite
contribution. Across a sample boundary perpendicular to xi,
this term adds an energy:

Uboundary = ρJ uiD · (�in), (56)

where �in stands for the change in the Néel order across
the boundary. Depending on the sign of the DM interaction,
the system will then choose to have the Néel vector along
a boundary to orient parallel to or perpendicular to the DM
vector. Note that this boundary anisotropy is controlled by the
direction of the adiabatic spin transfer torque u, as the gradient
is attached to that term.

V. DISCUSSION

In this paper, we studied the two sublattice antiferromagnet
in the presence of external perturbations. The method we
employed was to write a field theory for the Néel field n
and the uniform magnetization m. The perturbations can then
couple to these fields. One of our primary points is that to
effectively move antiferromagnetic solitons we need to con-
sider a combination of external perturbations. In all of this,
our main motive is to identify avenues through which internal
features like the inertia of n, the location of solitons and their
sizes can be controlled externally.

We work out these couplings for strain fields which mod-
ifies the inertia of the Néel vector. It does so by coupling
through a magneto-elastic coupling. An external magnetic
field can be put to multiple uses. A static field modifies the
shape of the soliton and its configuration. It can also be used
to create a local Berry curvature which can be coupled to
using a spin current [9]. A dynamical magnetic field, h(r, t ),
can be used to generate an effective electromagnetic tensor
and propel domain walls [37]. Crucially, what we find, is that
in combination with a Dzyaloshinsky-Moriya interaction a
magnetic field, providing a Zeeman like interaction for the
Néel vector which was discussed in weak ferromagnetism
[35,49], can be used to directly drive the antiferromagnetic
solitons.
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APPENDIX: ENERGY DENSITY OF THE
ANTIFERROMAGNETIC VORTEX

Here we provide the details for the energy density of the
antiferromagnetic vortex in the presence of an out of plane
magnetic field and an in-plane DM interactions. The config-
uration we use is D = (D1, D2, 0) and h = h0ẑ. The energy
density is given by the first line of Eq. (44).

To calculate a form for the energy density let us consider
a vortex profile of the form, n = (x, y, 0)√

x2+y2
with the core at the

origin. To calculate the energy density what we do is displace
the vortex core slightly from the origin (0, 0) → (δx, δy) and
subtract the two energies of the two spin profiles:

�U = U [X = δx,Y = δy] − U [X = 0,Y = 0], (A1)

which is then integrated over space
∫

dxdy �U to get the
energy in the collective coordinate space �U . The force is
then—F = −(�U/δx,�U/δx ). The displaced energy density
is then:

U = ρMh0

∫
dxdy (−D2nx + D1ny),

�U = ρMh0[D2(I1δx − I2δy) + D1(I2δx − I3δy)], (A2)

with the integrals

I1 =
∫

dxdy
y2

(x2 + y2)3/2
, I3 =

∫
dxdy

x2

(x2 + y2)3/2
,

I2 =
∫

dxdy
xy

(x2 + y2)3/2
. (A3)

Under the assumption that we are working with a symmetric
sample we can see that I2 = 0. The other two integrals, I1 and
I3 need to be worked out for specific sample geometries. We
can analytically work out the very simple situation where the
sample has a circular geometry of radius R and the vortex core
is displaced slightly. In this case, we can convert the integrals
to spherical coordinates on the plane and we obtain I1 = I3 =
πR. This then produces the energy �U = ρMπRh0(D2δx −
D1δy) and the force F = ρMπRh0(−D2, D1).
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