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Determination of spin-wave stiffness in the Fe-Si system using first-principles calculations
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The behavior of magnetic materials can be simulated at the macroscale using the micromagnetic model
whose key parameters, such as exchange stiffness constants and magnetic anisotropies, can be derived from
first-principles electronic structure calculations. In this work we employed the Korringa-Kohn-Rostoker (KKR)
Green’s function method with the coherent potential approximation (CPA) to investigate the dependence of the
spin-wave stiffness on the Si concentration for the three magnetic phases of FeSi, namely A2, B2, and D03. Based
on the structural, magnetic, and electronic structure analysis using the KKR-CPA methodology, the changes in
the spin-wave stiffness caused by the addition of Si are primarily governed by the variations in the electronic
structure.
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I. INTRODUCTION

Magnetic steels containing small amounts of silicon have
been used extensively as soft magnetic materials in various
technological applications. The addition of Si is crucial for
the improvement of intrinsic magnetic properties as well as
low core losses, small saturation induction, and high electrical
resistivity [1].

The Fe-Si phase diagram [2] in the range of 0–25 at.% of
Si is characterized by the presence of three phases: a fully
disordered body-centered cubic (bcc) α phase (A2 Struk-
turbericht crystallographic designation), and two partially
ordered α1 and α2 phases (corresponding to the D03 and B2
Strukturbericht designations, respectively) emerging below
and above the Curie temperature. The latter two structures
correspond to the Fe3Si and CsCl prototypes with nominal
Si concentrations equal to 25 and 50 at.%, respectively. The
D03 structure is composed of four face-centered cubic (fcc)
sublattices, usually denominated as A, B, C, and D, displaced
along the cube diagonal. Iron atoms occupy the A, B, and C
sites while silicon is located at the D sites. The A and C sites
are structurally and magnetically equivalent with four Fe and
four Si nearest neighbors. The Fe atoms on the B sites have
eight first-nearest Fe neighbors like in bulk bcc Fe.

The energetical stability, magnetic properties, and local
chemical order of the Fe-rich Fe-Si phases have been in-
vestigated extensively in the past by both experiments and
theory [3–17]. It has been established that for both ordered and
disordered Fe-Si phases, the magnetic moments at different Fe
sites are strongly affected by the local atomic environment and
the number of Si atoms in the first coordination shells. Already
early studies [3–5] revealed the existence of very different
magnetic moments on Fe atoms in the D03 phases. Based
on experimental determination of the magnetic moments for
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alloys with low Si content, Niculescu et al. [6] and Elsukov
et al. [7] formulated a phenomenological model according to
which the magnetic moments of Fe atoms decrease linearly
with the increasing average number of Si nearest neighbors.
Furthermore, more recent experimental studies [12,14] sug-
gested that the induced uniaxial magnetic anisotropy in the
Fe-rich Fe-Si alloys (with 5 to 10 at.% of Si) is due to a
B2-type short-range order (SRO) formed during the thermo-
magnetic or thermomechanical treatment, such as annealing
and cooling in a constant magnetic field or under external load
along the 〈100〉 easy magnetization axis.

The experimental studies have been complemented by
numerous electronic structure calculations. Williams et al.
[8] were the first ones to calculate the Fe magnetic mo-
ments in the ordered D03 phase using rudimentary electronic
structure calculations. The first thorough theoretical analysis
was carried out by Kudrnovský et al. [9] who employed
the coherent-potential approximation (CPA) to compute the
properties of the D03 phase using the linear-muffin-tin-orbital
(LMTO) framework, where the disorder was introduced
on the D sites only. The resulting Fe1−xSix magnetic mo-
ments for the range of Si concentrations between 0.10 �
x � 0.25 showed a decreasing linear behavior for the A and
C sites while for the B sites the magnetic moments re-
mained almost constant. Moroni et al. [10] investigated the
stability and elastic properties of several Fe silicides using
a full-potential linearized-augmented-plane-wave (FLAPW)
approach. In another study, Kulikov et al. [11] employed the
Korringa-Kohn-Rostoker (KKR) approach with CPA as well
as supercell TB-LMTO calculations to study a fully disor-
dered bcc Fe1−xSix and partially ordered D03 and B2 phases.
It was shown that the magnetic energy governs the stability
of D03 over B2 for temperatures below TC . Moreover, the cal-
culated magnetic moments for the fully disordered structures
followed the linear behavior observed by Elsukov et al. [7].
However, more recent studies [13,15–17] have revealed that
some properties (e.g., bulk modulus, heat of formation) of
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the disordered alloys depend on the details of local electronic
structure and cannot be derived by a simple interpolation
between a highly diluted Fe-Si solid solution and the ordered
D03 Fe3Si phase.

A common outcome of all studies mentioned above is the
fundamental role played by magnetism in determining the
phase stability, SRO, and variations of the bulk modulus in
the Fe-rich Fe-Si alloys. The aim of our study is to gain
further insight into the interplay between the local atomic
structure, chemistry, and magnetism in the dilute Fe-Si al-
loys by examining additional relevant quantities such as the
Heisenberg exchange interactions and the spin-wave stiffness.
To the best of our knowledge, no calculations of the spin-
wave stiffness have been carried out for the ferromagnetic
partially ordered A2, B2, and D03 Fe-Si phases. Such study
is highly desirable as the theoretical understanding of the role
played by magnetism, both at the atomic and mesoscopic
level, is crucial for the technological important soft magnetic
Fe-Si steels.

II. METHODS

A. Theoretical background

When dealing with itinerant magnetic systems at low tem-
perature, it is convenient to map the energy landscape to an
Heisenberg-like model Hamiltonian

H = −
∑
i �= j

Ji jSiS j, (1)

which is formulated in terms of local exchange interaction
Ji j between spins Si and S j on sites i and j, respectively.
This approximate description can be further incorporated in
dynamic models of magnetization, both in the atomic-level
spin dynamics and mesoscopic-level micromagnetic model-
ing. The latter involves a coarse-graining of the distribution of
magnetic moments under the assumption of local collinear-
ity of atomic magnetic moments to obtain a macroscopic
expression for the Gibbs free energy. Among the energy con-
tributions, the exchange term, which is for cubic systems
given by

Eexch = A
∑

i=x,y,z

∫
V

[∇mi(r)]2dV, (2)

can be derived from the microscopic Heisenberg Hamiltonian
by assuming a continuum distribution of the magnetization in
real space. The exchange parameter A, which appears in front
of the integral, can be derived from microscopic spin-wave
stiffness D through the expression

A = DMS

2gμB
, (3)

where MS is the saturation magnetization, g is the Landé fac-
tor, and μB is the Bohr magneton. The spin-wave stiffness is
an important quantity at the atomic level because it determines
the low-temperature magnetic excitations and is related to the
curvature of the magnon spectra.

There exist several techniques that can be used to extract
the spin-wave stiffness using first-principles calculations (cf.
recent reviews by Šipr et al. [18] and Turek et al. [19]). The
method that is used in this work was derived by Liechtenstein

and co-workers [20–22]. It essentially relates D with the real
space representation of the Heisenberg exchange interactions
through the following formula valid for cubic systems:

D =
∑

j

2μB

3μ j
J0 jR

2
0 j, (4)

where the summation extends up to a converged cutoff radius.
The spin-wave stiffness can be also obtained by carrying the
summation in reciprocal space, but this involves a numerically
expensive evaluation of the derivative of the scattering-path
operator with respect to the k vector [20–22]. Other possible
techniques include a spin-spiral approach, where the curvature
of the magnon spectra at q = 0 is extracted, or a recently
formulated method inspired by the transport theory [19].

B. Computational details

In our study we used the spin-polarized multiple-scattering
KKR Green’s function approach as implemented in the
SPRKKR [23] code. The KKR calculations were performed
in the scalar-relativistic mode using the Perdew, Burke, and
Ernzerhof (PBE) generalized gradient approximation (GGA)
functional within the atomic-sphere approximation (ASA).
We employed CPA to simulate the chemical disorder. The
chosen angular momentum cutoff was lmax = 3. The equilib-
rium lattice parameters at all concentrations were obtained by
fitting the energy-volume curves to the Murnaghan equation
of state. The calculations were performed for the fully dis-
ordered A2 phase and the partially disordered D03 and B2
phases with Si concentrations ranging up to 20 at.%. The
Heisenberg exchange interactions, which are the key ingredi-
ents for the determination of the spin-wave stiffness in Eq. (4),
were determined for the three phases employing the Liechten-
stein formula [20–22].

To overcome the well-know problems related to the long-
range Ruderman-Kittel-Kasuya-Yosida (RKKY) oscillatory
behavior of the exchange interactions for transition metals,
such as Fe, Co, and Ni, we used the method of Pajda et al. [24]
generalized to the case of multicomponent systems [25,26].
This method uses an exponential damping to converge the
conditionally convergent sum in Eq. (4) as follows:

D = lim
η→0

D(η), (5)

D(η) =
∑

α

cαDα (η), (6)

Dα (η) =
∑

j

∑
β

cβ

2μB

3
√

μβμα

J0 jR
2
0 j exp (−ηR0 j/a), (7)

where α labels the atomic type, cα is the concentration of type
α, μα is the corresponding magnetic moment, and η is the
damping parameter. Equation (7) is valid only for structures
with a single sublattice, such as the A2 phase. For the B2 and
D03 phases, which are composed of two and three sublattices,
respectively, the total spin-wave stiffness was computed as a
weighted average of the spin-wave stiffness from all distinct
lattice sites as

D(η) = 1

N

N∑
α=1

cαDα (η), (8)
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where N is the number of nonequivalent atomic types (two for
B2 and four for D03). The validity of this approximation was
tested for the ordered D03 phase by calculating its spin-wave
stiffness from the curvature of the adiabatic magnon spectrum
(see the Appendix A). Both methods gave consistent results.

For the B2 phase we also evaluated the total spin-wave
stiffness by diagonalizing the full matrix of the sublattice
interactions and considering the largest eigenvalue, as was
done in Refs. [25,26]. The two approaches gave equivalent
results.

For analysis of the spin-wave stiffness variations due to Si
addition (see below), we found it useful to consider two partial
contributions to the total value of Dα in Eq. (7), namely

Dmag
α (x) =

∑
β

2μB

3
√

μα (x)μβ (x)
(9)

and

Del
α (x, η) = cα (x)

∑
β

cβ (x)

×
∑

j

Jαβ

0 j (x, R0 j )R
2
0 j exp (−ηR0 j/a). (10)

The first contribution Dmag
α (x) has a pure magnetic origin as

it only depends on the single-site magnetic moments, which
are functions of Si concentration. The second contribution
Del

α (x) is given as a sum of the Heisenberg exchange inter-
actions weighted by the squares of the distances from the
origin of the coordination shells. Therefore, it does not depend
directly on the magnetic moments but rather on the details of
the electronic structure, such as changes of the interactions
between the Fe d orbitals induced by the hybridization with
the Si p orbitals. The advantage of considering these partial
contributions separately is to analyze atomic quantities that
can be qualitatively linked to the trends of cαDα (see below).

The KKR calculations were performed by extending the
summation up to Rmax = 20a (a = 2.8263 Å is the equilib-
rium lattice parameter of bcc Fe) and by using a k mesh of
92 × 92 × 92 points in the full Brillouin zone (BZ) for the bcc
cell. A fifth order polynomial was used for the extrapolation
and η was sampled in the interval [0.2, 1.0]. The convergence
of this modified expression for D with respect to the cutoff
radius and the k-point mesh has recently been analyzed by
Šipr et al. [18].

The following naming conventions are used throughout
the paper to indicate the different atomic sites in the B2 and
D03 phases: Fe(I) denotes the site occupied partially by Si
(corresponding to the D site in D03 or the central atom in B2),
Fe(II) is the Fe atom with Si atoms in the first coordination
shell (corresponding to the A and C sites in D03 or the corner
atoms in bcc or B2), and Fe(III) is the Fe atom with Si atoms
in the second coordination shell (corresponding to the B sites
in D03). The nonequivalent sites are shown for both phases in
Fig. 1.

III. ANALYSIS OF THE RESULTS

A. Analysis of the magnetic moment distribution

The total and site-resolved magnetic moments as functions
of Si content computed using the KKR-CPA approach are

FIG. 1. Atomic structures of the B2 (a) and D03 (b) phases;
the Fe(I), Fe(II), and Fe(III) sites are in blue, orange, and red,
respectively.

presented in Figs. 2 and 3, respectively. These trends are
comparable with the previous KKR-CPA calculations [11],
which analyzed the differences in the total and site resolved
magnetic moments for the partially ordered phases and the
ordered bcc phase. Our results in Fig. 3 show a strong decrease
of the magnetic moments with increasing Si concentration at
the Fe(II) sites in both B2 and D03 phases while the magnetic
moments at the Fe(I) and Fe(III) sites slightly increase. A
detailed interpretation of these trends is not the focus of this
paper and the interested reader is referred to previous studies
[9–11].

B. Spin-wave stiffness as a function of the Si concentration

Similarly to magnetic moments, the differences between
different sites are emerging also for other fundamental mag-
netic quantities, such as site-resolved exchange interactions
and the spin-wave stiffness for each atomic type. By comput-
ing the site-resolved quantities cαDα extrapolated to η = 0 in
Eq. (6) one can elucidate contributions of different Fe sites to
the total value of D and, hence, to obtain a deeper understand-
ing about the origin of the obtained trends. The variations of
the spin-wave stiffness upon doping can be related to changes
of the equilibrium volume, changes of the magnetic moments,
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FIG. 2. A comparison of the total magnetization for A2, B2, and
D03 phases as a function of the Si concentration obtained using the
KKR-CPA method.
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FIG. 3. KKR-CPA magnetic moments for the different sites of
the A2, B2, and D03 phases as a function of the Si concentration.

or changes of the electronic structure and hybridization
mechanisms.

The variations of the total spin-wave stiffness as function
of Si content, calculated by interpolating the value of D(η) to
zero, are shown for all three phases in Fig. 4. The figure also
contains results obtained by neglecting all Si contributions
in the sum over α and β in Eqs. (6) and (7). One can see
that by excluding the Si contributions the qualitative trends
are not affected, but the stiffness magnitudes are reduced.
This reduction is more pronounced with increasing Si con-
tent. Therefore, the induced antiparallel magnetic moment
(of about 0.1–0.2 μB) on the Si atoms has a small but not
negligible effect on the total value of the stiffness as a function
of Si concentration.

We included in the graph also available experimental data
for the Fe-Si alloys and the range of values for pure Fe ob-
tained by previous theoretical and experimental studies. The
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FIG. 4. Spin-wave stiffness for the A2, B2, and D03 phases as
a function of the Si concentration obtained with the KKR-CPA
method. The dashed lines were obtained by neglecting all Si contri-
butions in Eqs. (6) and (7). The experimental results are taken from
Refs. [27] (Exp1) and [28,29] (Exp2).
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FIG. 5. Site-resolved cαDα for different sites of the A2 (left
panel), B2 (middle panel), and D03 (right panel) phases as a function
of Si concentration.

site-resolved extrapolated quantities cαDα are plotted sepa-
rately for each phase in Fig. 5. The A2 and B2 phases show
very similar trends for the total spin-wave stiffness, while
the behavior of the D03 phase is qualitatively similar but
quantitatively different. This difference is also clearly visible
in the site-resolved dependencies in Fig. 5. In general, it is
expected that Fe sites with different atomic environment may
have different contributions to the total spin-wave stiffness.
For the A2 phase, the site-resolved stiffness for Fe varies little
for the whole range of Si concentrations. In the case of the
B2 phase, both Fe sites show similar behavior (except for the
smallest Si content of 2 at.%, see the discussion below) for
Si concentrations up to 15 at.%. At higher Si concentrations,
the contribution at the Fe(I) site starts to decrease while that
of the Fe(II) remains constant. For the D03 phase, the varia-
tions are much stronger and the contribution from the Fe(III)
sites shows an opposite trend than those from the Fe(I) and
Fe(II) sites. While the Fe(III) contribution sharply increases
for Si concentrations above 10 at.%, both the Fe(I) and Fe(II)
contributions decrease.

In the following three subsections we analyze in more
detail how the observed variations of the spin-wave stiffness
relate to the changes of the lattice parameters, single-site
magnetic moments, and the local electronic structure due to
Si addition.

1. Volume interpretation

Figure 6 shows the variations of the spin-wave stiffness for
the A2, B2, and D03 phases as functions of their equilibrium
lattice parameters. While for the A2 phase the lattice param-
eter almost does not change with Si content, for both the B2
and D03 phases it decreases when the Si content exceeds 10
at.%. This result is consistent with previous KKR calculations
of Khmelevska et al. [13]. According to experimental studies
[30,31], the Si doping leads to approximately linear decrease
of the equilibrium volume, which is more pronounced for the
ordered D03 phases than for the A2 and B2 bcc phases. The
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FIG. 6. Variations of the spin-wave stiffness for the A2, B2, and
D03 phases with Si content from 0 to 20 at.% as a function of their
equilibrium lattice parameters; the value corresponding to pure bcc
Fe is marked by a black square. The graph also contains theoretical
D values for bcc Fe from recent studies [18,19,32].

KKR calculations predict these trends qualitatively correctly,
but only for Si concentrations exceeding 10 at.%.

Our value of D corresponding to pure bcc Fe (marked by
an empty black square) is consistent with the recent detailed
theoretical studies by Šipr et al. [18] and Turek et al. [19].
We also include theoretical results for bcc Fe obtained by
Moran et al. [32] who observed a decreasing trend of D with
increasing Fe lattice parameter. Our results for the B2 and D03

phases show an opposite trend, namely, a decrease of D with
decreasing lattice parameter. However, as will be shown in
the next two subsections, the volume effect is negligible com-
pared to the changes induced by variations in the electronic
structure.

2. Magnetic interpretation

To identify whether the trends in Fig. 5 are determined
by the distribution of the single-site magnetic moments, we
evaluated the Dmag

α (x) contributions according to Eq. (9). The
resulting dependencies are plotted for all nonequivalent Fe
sites in all phases in Fig. 7. Contributions from the Si sites are
smaller by one order of magnitude compared to those from the
Fe sites and are therefore not considered.

The trends shown in Fig. 7 are consistent with those in
Figs. 2 and 3 for all three phases. For the A2 phase, the in-
creasing trend is due to the decreasing magnetic moment as a
function of the Si concentration, as shown in Fig. 2. For the B2
phase, the magnetization at the Fe(I) site is roughly constant in
the whole considered concentration range, while the Fe(II) site
shows a strong decrease in the value of the magnetic moment
(cf. Fig. 3). This is reflected in Fig. 7 where Dmag

α (x) for
Fe(I) changes only marginally while that for Fe(II) increases.
Similar outcomes are obtained for the D03 phase, with Fe(I)
and Fe(III) contributions remaining almost constant while that
of Fe(II) increasing, again in accordance with the trends of
Fig. 3. Hence, the increase in the value of Dmag

α (x) upon Si
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FIG. 7. Behavior of the function Dmag
α (x) for Si concentration

ranging from 2.5 to 20 at.% [it is singular at zero, see Eq. (9)].

doping for the Fe site in the A2 phase, and for the Fe(II) sites
in both the B2 and D03 phases, is a direct consequence of the
decreasing single-site magnetic moments on the correspond-
ing sites. However, the Dmag

α (x) dependencies do not show any
correlation with the corresponding site-resolved contributions
plotted in Fig. 5.

3. Electronic structure interpretation

In order to investigate the electronic structure effect on
the exchange parameters and on the values of the spin-wave
stiffness we plot the function Del

α (x) for all three phases in
Fig. 8. The trends observed in Fig. 8 are clearly similar to
those in Fig. 5. Hence, the spin-wave stiffness for the three Fe-
Si phases is likely predominantly influenced by the changes of
the electronic structure and hybridization mechanisms due to
Si doping.

The analysis of the cumulative sum in Eq. (10) as a
function of the distance from the origin can be used to under-
stand the effect of Si on the decay of magnetic interactions,
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FIG. 8. Behavior of the function Del
α (x, η = 0.0) for the

nonequivalent Fe sites of the A2, B2, and D03 phase.
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FIG. 9. Behavior of Del
α (x) for the A2 phase at different Si con-

centrations as a function of the distance ri j/a from the central atom.

especially at large distances where in pure Fe the charac-
teristic RKKY fluctuations are present. In addition, we can
examine the changes of the exchange interactions at the Fe
sites due to the hybridization with the orbitals of neighboring
Si atoms. It has been shown [33,34] that the bonding states
with the t2g and eg symmetries contribute in a different way to
the total value of the exchange parameters in bcc Fe. The t2g

states, which are determined by the features of the Fermi sur-
face, have a Heisenberg-like character and govern the RKKY
oscillatory behavior. In contrast, the eg states are short ranged,
not Heisenberg-like, and determine the ferromagnetic behav-
ior of the first coordination shell.

Figures 9, 10, and 11 display the cumulative sums from
Eq. (10) as functions of the distance from the origin for the
A2, B2, and D03 phases, respectively. For these plots we chose
η = 0.0 (no damping) in order to discern clearly the changes
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FIG. 10. Behavior of Del
α (x) for the Fe(I) and Fe(II) sites in the

B2 phase at different Si concentrations as a function of the distance
ri j/a from the central atom.

in the fluctuations (the exponential damping smooths out the
fluctuations, especially for larger values of η).

Figure 9 contains curves for Si concentrations from 2 to
20 at.%. At small concentrations (i.e., 2 and 5 at.%) one can
see the typical RKKY fluctuating behavior that is damped
only very slowly and does not decay even at the normalized
distance of 20 lattice parameters. Hence, a large cutoff radius
or the exponential damping is necessary to converge the sum,
but the uncertainty in the spin-wave stiffness values for these
small concentrations is still significant, approximately within
±50 meV Å2. For Si concentrations larger than 10 at.%, the
RKKY oscillations are damped and the sums are well con-
verged.

The results can be interpreted such that for small Si con-
centrations (i.e., x < 10 at.%) the RKKY oscillations are
governing the value of the spin-wave stiffness, while for
larger concentrations (i.e., x > 10 at.%) the value of D is
mainly determined by the exchange interactions from the first
few coordination shells and is not affected by more distant
neighbors. In other words, the interactions between the t2g Fe
orbitals, which control the long-range behavior of Ji j [33,34],
are effectively screened at larger Si concentrations.

The damping of long-range RKKY fluctuations upon Si
doping makes the evaluation of the spin-wave stiffness easier
and more reliable. For Si concentrations larger than 10 at.%,
it is not necessary to avoid the ill-convergent summations by
interpolations to zero damping. Converged results can there-
fore be obtained with a significantly shorter cutoff radius and
less dense k mesh.

The results for the B2 and D03 phases are qualitatively
similar to those of the A2 phase. The behavior of cFe(I)DFe(I)

and cFe(II)DFe(II), shown in Fig. 5, is fully consistent with the
trends of Del

α (x) plotted in Fig. 10 for different Si concentra-
tions. Interestingly, for the B2 phase the RKKY fluctuations
are damped less with increasing Si content than for the A2
phase, especially for the Fe(II) sites. Another notable point,
most clearly visible for the black curves corresponding to 5
at.% of Si, is that the Del

α (x) fluctuations at the Fe(I) and
Fe(II) sites have an opposite phase. This is likely related to
the reciprocal arrangement of the coordination shells for the
two sites.

The analysis of the cumulative sums for the D03 phase,
shown in Fig. 11, is more complicated to perform, but it again
offers a valuable tool to interpret the trends in Fig. 5. The
overall behavior of Del

α (x) for the Fe(I) and Fe(II) sites is very
similar to that found for the B2 phase. This is due to the fact
that these two sites have similar local atomic environments
in both phases, namely, the Fe(I) sites are partially occupied
by Si while the Fe(II) sites have Si atoms in the first coor-
dination shell. One can also notice that the dependencies for
the Fe(II) and Fe(III) sites show an oscillatory behavior even
at large Si concentrations. Hence, the long-range interactions
are damped less effectively for these sites. The phase shift
by a half period is again seen for the Fe(II) sites (as in the
B2 phase) while the fluctuations at the Fe(I) and Fe(III) sites,
which are located at the centers of the eight bcc cubes of the
D03 phase, are in phase. The increasing value of cFe(III)DFe(III)

as a function of Si concentration (cf. Fig. 5) is consistent with
the mean values of the Del

α (x) curves for the Fe(III) site in the
bottom panel of Fig. 11.
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FIG. 11. Behavior of Del
α (x) for the Fe(I), Fe(II), and Fe(III) sites

in the D03 phase at different Si concentrations as a function of the
distance ri j/a from the central atom. The coloring of the lines is the
same as in Fig. 10.

A complementary understanding of the changes in the elec-
tronic structure induced by the Si doping can be obtained from
analysis of the electronic densities of states (DOS). The spin-
wave stiffness is related to changes in the electronic structure
associated with magnon excitations of small q vectors [35].
Therefore, perturbations in the DOS close to the Fermi level
can be related to deviations in the value of D.

In Fig. 12 we plot integrated differences between DOS of
the doped (with Si doping of 10 and 20 at.%) and undoped
phases; B2 (left column) and D03 (right column). One can
see that for the smaller doping of 10 at.% (dashed curves)
the changes in the local occupations at all Fe sites are rel-
atively small, especially at the Fermi level. This means that
for this concentration there should be negligible changes in
the site-resolved spin-wave stiffness, which is fully consistent
with the results in Fig. 5. In contrast, for the doping of 20
at.% there is a strong decrease in the occupation on the Fe(I)
sites, especially for the D03 phase. This is consistent with the
large decrease of cFe(I)DFe(I) in Fig. 5. However, a rather strong
increase of cFe(III)DFe(III) in the the D03 phase is not reflected
by any significant changes in the DOS occupation in Fig. 12.

IV. DISCUSSIONS AND CONCLUSIONS

In this work we studied the behavior of the spin-wave
stiffness upon Si doping in Fe-rich Fe-Si alloys. Three fun-
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FIG. 12. Integrated differences of the spin-up and spin-down
DOS between the doped and undoped B2 (left) and D03 (right)
phases. The dashed and full curves correspond to Si doping of 10
and 20 at.%, respectively; the Fermi level corresponds to zero energy
and is marked by the vertical dotted line.

damental phases, namely disordered A2 and partially ordered
B2 and D03, were investigated for Si concentrations ranging
from 0 to 20 at.%. Our study employed electronic struc-
ture calculations based on the KKR-CPA framework that
allowed us to examine different contributions to the total and
site-resolved values of D. The obtained trends due to Si dop-
ing were analyzed in terms of volumetric effects, variations
of local magnetic moments, and changes of the electronic
structure.

The volumetric contribution, originating from the changes
of the lattice parameter due to Si doping, was found not to
correlate with the observed changes of the spin-wave stiff-
ness. Similarly, the magnetic contribution, proportional to the
inverse product of the single site magnetic moments, did not
correspond with the trends of the total and site-resolved spin-
wave stiffness. Hence, the primary cause of the variations
was pinpointed to the changes of the electronic structure.
Our analysis revealed that the site-resolved spin-wave stiff-
ness is mostly controlled by the behavior of the exchange
interactions. The exchange interactions between the t2g Fe
orbitals are strongly suppressed for Si concentrations larger
than about 10 at.%. This efficient damping of the long-range
RKKY fluctuations enables a more reliable determination of
the spin-wave stiffness values, while for small Si concentra-
tions an uncertainty of about 100 meV Å2 remains, even for
long cutoff values employed here. The observed trends in the
local magnetic moments as well as the site-resolved spin-wave
stiffness for the Fe(I) and Fe(II) sites are very similar in the B2
and D03 phases. This is related to their equivalent local atomic
environments characterized by the number of Si neighbors.
This similarity is also apparent in the changes of DOS for
different Si doping levels.

Our theoretically predicted decrease in the total spin-wave
stiffness for Si concentrations greater than about 8–10 at.%, as
plotted in Fig. 4, is consistent with the available experimental
data. However, there exist apparent quantitative discrepancies,
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in particular for the A2 and B2 bcc phases. As mentioned
above, the real space summation is difficult to converge for
small Si concentrations due to the long-range RKKY oscilla-
tions and the uncertainty of the obtained values is rather large.
The reported theoretical predictions for the spin-wave stiff-
ness in pure bcc Fe range from 250 to 350 meV Å2, and our
value of 291 meV Å2 agrees very well with values reported in
the recent detailed comparative study by Šipr et al. [18]. Nev-
ertheless, the initial increasing trend for Si concentrations up
to 8–10 at.% obtained by our calculations may be an artifact
caused by large uncertainties in the evaluations of the sum in
Eq. (7). Moreover, as discussed recently by Turek et al. [19]
for the Fe-Al system, a further improvement of the obtained
trends can be achieved by including vertex corrections that
may lower the value of the spin-wave stiffness, especially at
high Si concentrations.

A proper comparison between theory and experiment also
needs to take into account the changes in the local atomic
ordering. Depending on the processing conditions, the Fe-Si
alloys can undergo B2 and D03 type ordering for Si con-
centrations above 8–10 at.% and temperatures T > Tc and
T < Tc, respectively. It was reported already by one of the
first experimental work by Antonini et al. [27] (gray circles
in Fig. 4) that a large fraction of Fe3Si (D03) ordering was
present in their samples containing just 15 at.% of Si. The
increase in the D03 short-range order for concentrations larger
than 8 at.% was also confirmed by Gorbatov et al. [36] using
Monte Carlo simulations performed at the ferromagnetic state.
Such transformations are clearly relevant and could partly
explain the quantitative discrepancies between the theoretical
predictions and experimental data and the qualitative agree-
ment of the experimental trends with that of the D03 phase.
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APPENDIX A: DETERMINATION OF THE SPIN-WAVE
STIFFNESS FOR THE ORDERED D03 PHASE FROM

THE ADIABATIC MAGNON SPECTRUM

To prove the validity of our weighted averaging procedure
[Eq. (8)] for structures with multiple sublattices, we computed
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�
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FIG. 13. Adiabatic magnon spectrum of the ordered D03 phase
obtained by diagonalizing the 2 × 2 matrix in Eq. (A2) along the
L-�-X -W -K-� path.

the spin-wave stiffness for the ordered D03 phase directly
from the curvature of the magnon spectrum.

For structures with N nonequivalent sites, the magnon
spectrum can be obtained by calculating the Fourier trans-
forms of the exchange interactions between the atomic types
μ and ν as [37]

Jμν (q) =
∑

j

Jμν
0 j eiq·R0 j , (A1)

where Jμν
0 j is the exchange interaction between the central

atom 0 and its neighbor j. The dispersion relation ω(q) is then
obtained by diagonalizing the following N × N matrix given
in its block form as [37]

4

( 1
Mμ

∑N
α (Jμα (0) − Jμμ(q)) − Jμν (q)

Mμ

− Jμν (q)�

Mν

1
Mν

∑N
α (Jαν (0) − Jνν (q))

)
,

(A2)

where Mμ and Mν are the magnetic moments of the atom types
μ and ν.

In the case of the ordered D03 phase, the diagonalization of
this matrix (Si contribution were neglected), gives the disper-
sion relation shown in Fig. 13 with one acoustic (blue) and one
optical (red) branch. The obtained value of the spin-wave stiff-
ness (corresponding to the curvature of the acoustic branch at
the � point), equals to 183 meV Å2, which is is consistent with
the trend shown in Fig. 4.
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