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Fractons are topological quasiparticles with limited mobility. While there exist a variety of models hosting
these excitations, typical fracton systems require rather complicated many-particle interactions. Here, we discuss
fracton behavior in the more common physical setting of classical kagome spin models with frustrated two-body
interactions only. We investigate systems with different types of elementary spin degrees of freedom (three-
state Potts, XY, and Heisenberg spins) which all exhibit characteristic subsystem symmetries and fractonlike
excitations. The mobility constraints of isolated fractons and bound fracton pairs in the three-state Potts model
are, however, strikingly different compared to the known type-I or type-II fracton models. One may still explain
these properties in terms of type-I fracton behavior and construct an effective low-energy tensor gauge theory
when considering the system as a two-dimensional cut of a three-dimensional cubic lattice model. Our extensive
classical Monte Carlo simulations further indicate a crossover into a low-temperature glassy phase where the
system gets trapped in metastable fracton states. Moving on to XY spins, we find that in addition to fractons
the system hosts fractional vortex excitations. As a result of the restricted mobility of both types of defects, our
classical Monte Carlo simulations do not indicate a Kosterlitz-Thouless transition but again show a crossover
into a glassy low-temperature regime. Finally, the energy barriers associated with fractons vanish in the case of
Heisenberg spins, such that defect states may continuously decay into a ground state. These decays, however,
exhibit a power-law relaxation behavior which leads to slow equilibration dynamics at low temperatures.
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I. INTRODUCTION

Fractional quasiparticles are a widespread phenomenon
in currently investigated condensed matter phases. Despite
their rather conventional constituents such as the electron’s
charge or spin, the actual low-energy physics is governed by
excitations that are fractions of the original degrees of free-
dom. Typical examples are fractional quantum Hall systems
[1–3] or quantum spin liquids [4–7] where the occurrence of
fractional quasiparticles is closely tied to topological order
and long-range entangled ground states [8]. While the exotic
nature of fractional excitations manifests in various intrigu-
ing ways (e.g., anyonic braiding statistics), they usually still
possess the very common property of being equipped with a
kinetic degree of freedom.

In the last few years, however, a new class of systems has
attracted increasing interest, where the low-energy fractional
excitations are intrinsically immobile, known as fractons
[9–21]. In simple terms, the immobility stems from the fact
that fractons can only be created at the corners of a mem-
branelike operator, known as type-I scenario [14]. This is,
e.g., in contrast to a more conventional quantum spin liq-
uid, where fractional spin excitations appear at the ends of a
string operator [6]. Stated differently, in these latter systems
the fractional “charge” is conserved and the dipole opera-
tor is unconserved while a fracton phase is characterized
by both conserved charge and dipole moments. Such dipole
conservation laws are a natural property of symmetric tensor

gauge theories which provide an effective low-energy descrip-
tion of fracton phases [22–28]. Despite their immobility when
being isolated, composites of fractons may be partially mo-
bile within lower-dimensional subsystems. Such subsystem
operations establish a subextensive ground-state degeneracy
characteristic for many fracton phases.

As a result of their mobility constraints, fracton phases
feature a slow thermal relaxation and glassy dynamics even
in the absence of randomness in the Hamiltonian [11,29].
While in disorder-induced spin glasses the slow dynamics is
a consequence of a complex distribution of energy barriers,
in fracton phases the glassy behavior rather stems from re-
strictions in the elementary moves by which the system can
transition between states. Fracton phases, hence, share many
properties with kinetically constrained models [30–40], which
have a much longer history of investigation.

A severe difficulty in realizing fracton phases in real phys-
ical systems is that most of the known models consist of
rather artificial and complicated cluster spin interactions. For
example, the famous X-cube model has interactions involving
12 spin operators [14]. Various interesting proposals have
recently been put forward, aiming to embed fracton physics
in real world systems, however, this field is still in its infancy.
For example, it has been shown that in a certain limit of cou-
pled Kitaev honeycomb layers, type-I fracton order emerges
with nearest-neighbor two-body spin interactions only [41].
In other works, fracton mobility constraints have been iden-
tified in valence plaquette solids [42], frustrated hole-doped
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antiferromagnets [43], strongly coupled spin chains [44], vor-
tex systems [45], and breathing pyrochlore magnets [46].

Here, we investigate fracton behavior in the familiar con-
text of frustrated two-body spin models on the kagome lattice.
Our conceptual starting point is a classical kagome spin model
with nearest-neighbor interactions [47–51], featuring an ex-
tensive ground-state degeneracy. Through a suitable inclusion
of longer-range couplings, this degeneracy is lifted to become
subextensive, hence, realizing an environment for fracton
physics (see Refs. [52–62] for a selection of works about
related kagome models with longer-range interactions). The
ground and excited states may be most conveniently described
by defect variables associated with local spin constraints. We
study three variants of this system where the elementary con-
stituents become increasingly more realistic: Starting with a
three-state Potts model we generalize the spins towards con-
tinuous in-plane XY degrees of freedom and finally consider
isotropic Heisenberg spins. While all our models are classical
spin systems which cannot display real fracton topological
order, we still identify characteristic fracton phenomena such
as subdimensional particles, emergent tensor gauge theories,
and glassy dynamics.

A first observation is that our three-state kagome Potts
model hosts isolated defects which correspond to a single
violated spin constraint. While the restricted mobility of such
excitations shows a strong resemblance with fractons, they
still do not fall exactly into the known type-I [14] or type-II
[12] fracton categories. Particularly, defects are neither cre-
ated at the corners of a modified region nor through a fractal
operation. We resolve this mystery by embedding the kagome
structure in a simple three-dimensional (3D) cubic lattice.
This allows us to view the kagome Potts model as a more con-
ventional 3D type-I fracton system, restricted to a particular
two-dimensional (2D) subspace. We further formulate a 3D
rank-2 U(1) electrostatics theory describing the system’s low-
energy behavior. Concerning thermal properties, our extensive
classical Monte Carlo simulations indicate a high-temperature
regime where the system shows characteristic linelike spin
fluctuations on short length scales. In contrast, at low temper-
atures the system enters a glassy regime where the dynamics
slows down and spin configurations get stuck in (or around)
local energy minima [see, e.g., Refs. [63–68] for further works
on glassy dynamics in kagome spin systems and Refs. [39,40]
for one-dimensional (1D) systems].

Generalizing the spins towards XY degrees of freedom, the
isolated fractons remain qualitatively unchanged. However,
the increased configurational space enables the existence of
vortices with fractional vorticity, known from other classical
XY kagome models [69,70]. Our Monte Carlo simulations
reveal thermally excited patterns of fractons and fractional
vortices whose positions are strongly correlated among each
other. These correlations significantly reduce the dynamics
of vortices such that a Kosterlitz-Thouless transition [71–73]
into a quasi-long-range ordered low-temperature phase is not
observed. Finally, in the case of Heisenberg spins, any defect
state can be continuously transformed into a ground state
without crossing energy barriers and, consequently, fractons
lose their stability. The associated timescales, however, easily
exceed available computation times such that even in slowly
cooled systems, remnants of fracton states are still discernible.

In total, this work demonstrates that fracton behaviors are
not restricted to models with artificial spin cluster interactions
but may be observed in more common frustrated two-body
spin systems.

The remainder of this work is organized as follows: In
Sec. II we introduce the investigated models which are defined
in terms of three-color states, XY spins, and Heisenberg spins.
In the following Sec. III we discuss the properties of ground
states and isolated defect states for all three variants of the sys-
tem. We, particularly, focus on fractons in the three-state Potts
model (Sec. III A) and explain their low-energy behaviors and
effective field theory. Thereafter, in Sec. IV we investigate the
thermal properties of the three systems using classical Monte
Carlo simulations. We discuss in detail thermodynamic quan-
tities such as specific heat, spin-structure factor, real-space
spin configurations, as well as autocorrelation functions. The
paper ends with a conclusion in Sec. V.

II. MODELS

Below we study a family of classical three-state Potts,
XY, and Heisenberg spin models defined on the sites of
the kagome lattice. Depending on the type of model, the
spin operators Si, hence, either denote color states Si ∈
{red, blue, green} [or equivalently Sred = (1, 0, 0), Sblue =
(− 1

2 ,
√

3/2, 0), Sgreen = (− 1
2 ,−√

3/2, 0)], XY spins Si =
(Sx

i , Sy
i , 0), or Heisenberg spins Si = (Sx

i , Sy
i , Sz

i ) where nor-
malization |Si| = 1 is always assumed. The ground states
of all models are subject to two types of constraints: Each
elementary nearest-neighbor triangle and six-site hexagon of
the kagome lattice is locally in a ground state if their spins
sum up to zero (also referred to as color neutrality in the Potts
model),

J1-J2-J3d model:
∑

i∈n.n. triangle

Si = 0,
∑

i∈hexagon

Si = 0. (1)

In Fig. 1 we present a possible three-color configuration
whose construction will be discussed in the next section. We
call this model the J1-J2-J3d model for reasons to become
clear below. Triangles and hexagons violating this rule are
associated with an energy cost.

Furthermore, we construct two variants of this model
which share the same ground states but partially differ in
their excited states. To this end, consider the 12 spins labeled
S1, . . . , S12 in Fig. 1 which form a Star of David. Combining
the constraints for three triangles with the one for the hexagon
leads to

0 = (S1 + S11 + S12) + (S3 + S4 + S5) + (S7 + S8 + S9)

= (S1 + S3 + S5 + S7 + S9 + S11)︸ ︷︷ ︸
=0

+(S4 + S8 + S12), (2)

indicating that the hexagon condition implies color neutrality
in larger upward pointing triangles (here, the triangle formed
by S4, S8, and S12). These triangles have a side length of
three nearest-neighbor lattice spacings and will be denoted
as J5� triangles since the involved spins are fifth neighbors.
Hence, we may formulate a variant of the above J1-J2-J3d

model which we call the J1-J5� model:

J1-J5� model:
∑

i∈n.n. triangle

Si = 0,
∑

i∈J5� triangle

Si = 0. (3)

064406-2



FRACTON EXCITATIONS IN CLASSICAL FRUSTRATED … PHYSICAL REVIEW B 104, 064406 (2021)

FIG. 1. Definition of different bonds on the kagome lattice. The
hexagon on the top left illustrates the fifth neighbor J5� and J5

�

bonds while the hexagon on the top right shows examples for J2 and
J3d bonds. The numbers 1–12 label a set of 12 spins forming a Star of
David (see text for details). The illustrated spin state is an example
for a configuration fulfilling all constraints discussed in the main text.

Finally, the steps in Eq. (2) can be modified to show that the
color-neutrality constraint for the hexagon is also equivalent to
S2 + S6 + S10 = 0, which involves the spins on a downward-
pointing large triangle (denoted as J5

� triangle). Adding this
constraint results in the so-called J1-J5�-J5� model:

J1-J5�-J5� model:∑
i∈n.n. triangle

Si = 0,
∑

i∈J5� triangle

Si = 0,
∑

i∈J5
� triangle

Si = 0. (4)

From their construction, it is clear that all three models have
the same ground states, however, their excited states differ to
some extent.

While the above constraints might first seem artificial, they
can be straightforwardly recast into quadratic spin Hamil-
tonians with antiferromagnetic interactions and, hence, may
be realized in real materials. The following rewriting also
fixes the energies of excited states that do not fulfill the con-
straints. The procedure amounts to replacing a constraint Si1 +
Si2 + · · · + Sin = 0 by a term ∼J (Si1 + Si2 + · · · + Sin )2 in
the Hamiltonian. Up to constants the above models then read
as

HJ1-J2-J3d = J1

∑
〈i, j〉1

Si · S j + J2

∑
〈i, j〉2

Si · S j + J3d

∑
〈i, j〉3d

Si · S j,

(5)

where J2 = J3d. Furthermore, since the first-neighbor cou-
pling J1 has contributions from both the triangle and hexagon
constraints, this interaction is bounded by J2 = J3d < J1. Note
that 〈i, j〉x stands for a pair of sites coupled by Jx and each
pair appears in the sum once (see Fig. 1 for the definition of
coupling constants). Equivalently, the other models read as

HJ1-J5� = J1

∑
〈i, j〉1

Si · S j + J5�
∑

〈i, j〉5�

Si · S j, (6)

HJ1-J5�-J5
� = HJ1-J5� + J5

�
∑

〈i, j〉5
�

Si · S j . (7)

As long as all interactions J are positive, the properties of the
three models do not crucially depend on the precise coupling
ratios J2

J1
, J5�

J1
, and

J5
�

J1
. Hence, without loss of generality,

we will fix these ratios in our numerical calculations below.
Throughout the paper, we use regular periodic boundary con-
ditions or open boundary conditions, and do not consider
twisted boundary conditions.

Before we discuss the properties of these models in detail
in the next sections, it is worth highlighting that long-range
interactions on the kagome lattice are generally rather com-
mon in magnetic materials. One specific example is the
mineral centennialite CaCu3(OH)6Cl2 · 0.6H2O [56] which
realizes the J1-J2-J3d model; however, J3d is ferromagnetic
instead of antiferromagnetic. Further examples are given
by the family of compounds kapellasite ZnCu3(OH)6Cl2

[74,75], Cd-kapellasite CdCu3(OH)6Cl2 [76], and haydeeite
MgCu3(OH)6Cl2 [77–80] which are akin to the well-
known kagome Heisenberg antiferromagnet herbertsmithite
ZnCu3(OH)6Cl2 [81,82]. While these materials are again
believed to realize the J1-J2-J3d model, the couplings are par-
tially predicted to be ferromagnetic. Therefore, even though
there are currently no materials known where the couplings
are precisely given as above, this incomplete list of materials
demonstrates that our models are within the scope of artifi-
cially or naturally creatable compounds.

III. GROUND STATES AND LOW-ENERGY EXCITATIONS

In this section we discuss the set of ground states and iso-
lated low-energy excitations (such as fractonlike defect states)
of the models introduced in the last section, starting with the
three-state Potts models. While this model is rather artificial
and cannot be easily realized in actual materials, it serves as a
suitable toy model to illustrate fracton behavior. Afterwards,
we make the models more realistic by promoting the spin
degrees of freedom towards XY and Heisenberg spins.

A. Three-state Potts models

1. Ground states

The simplest ground states of the Potts models obeying
all constraints are homogeneous q = 0 states where all unit
cells (which can be chosen as the three sites of the upward-
pointing J1 triangles) are identical. Globally, there are 3! = 6
such states which transform into each other by permutations
of the three colors [see yellow region in Fig. 2(a) for an
example of a q = 0 state]. The homogeneous q = 0 states are
characterized by an alternation of two colors along straight
lines running through the entire system. Starting from these
q = 0 states, all other ground states can be obtained by swap-
ping the colors along arbitrary parallel lines, which keeps all
constraints intact. Note, however, that swapping the colors
along two nonparallel lines creates defect triangles/hexagons
near the point where the lines cross. It follows that the system
has a subextensive ground-state degeneracy proportional to 2L

(where L is the linear system size) typical for fracton systems.
In Fig. 2(a) we depict an example of a ground state where
colors along a single horizontal line have been swapped with
respect to the rest of the system. Note that when relaxing the
constraints in the hexagons or J5 triangles the ground-state
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FIG. 2. (a) Example of a ground state of the three-state kagome
Potts models. Colors have been swapped along a horizontal line,
creating a stripelike domain. (b) Adjacency rules for the six types of
q = 0 orders. Neighboring and opposite sectors may share a common
domain wall (see text for details).

degeneracy is enlarged, leading to the well-known exten-
sive degeneracy characteristic for nearest-neighbor kagome
antiferromagnets [47,48].

An alternative way of describing the states of the Potts
models is by viewing the six types of q = 0 states as domains.
It is then straightforward to formulate rules for possible ar-
rangements of domains such that all constraints are respected
at the domain walls. These rules are summarized in Fig. 2(b):
two domains in adjacent sectors can have a common domain
wall with an orientation given by the gray line separating
them. Additionally, domains in opposite sectors (connected
by orange lines) may have a common domain wall with an
orientation perpendicular to the respective orange line. Triv-
ially, the rules remain valid when interchanging each sector
in Fig. 2(b) with the opposite one, e.g., the domain 6 may
lie above a domain 1 or vice versa. As illustrated in Fig. 2(a)
domain walls respecting all constraints are straight lines pass-
ing through kagome sites of the same sublattice. Below, we
will use this domain-wall representation for discussing defect
states.

2. Fracton behaviors

We now investigate three-color states with isolated defects
in single hexagons and triangles excited from a ground state.
A first indication for possible fracton behavior comes from
the observation that changing the value of one spin in a ground
state leads to a multipole of defects, each representing a “frac-
tion” of the excitation. For example, changing a single spin in
a ground state of the J1-J2-J3d model creates two defect trian-
gles and two defect hexagons adjacent to the modified spin.
In the usual type-I fracton scenario, as for example realized
in the plaquette Ising model (see below), these quadrupolar
defects can be far separated such that they form the corners
of an area of flipped spins. Hence, the two relevant questions
discussed below are as follows: (i) Do isolated defect triangles
and hexagons exist in our kagome Potts model? (ii) If yes,
are they located at the corners of a region of flipped spins?
While the answer to the first question is yes, the situation in
the second question cannot be realized.

Before we discuss the kagome Potts models, we briefly
introduce the well-known plaquette Ising model [33–35]. De-
spite its simplicity, this model features various prototypical
type-I fracton properties which we will compare with the
fracton behaviors in our kagome systems. The plaquette Ising

FIG. 3. Properties of the plaquette Ising model. (a) Flipping a
single spin in a ground state creates four defect plaquettes (indicated
by magenta stars). (b) When the region of flipped spins is enlarged,
isolated and immobile fracton excitations sit at its corners. (c) Two-
fracton bound states are free to move in the direction perpendicular
to itself.

model exhibits Ising spins Si = ±1 located at the sites of a 2D
square lattice, coupled via four-body interactions S1S2S3S4 in-
volving the four spins of an elementary 1×1 square plaquette.
The Hamiltonian is a sum over all plaquette terms

Hplaq-Ising = −
∑

plaquettes

∏
i∈plaquette

Si. (8)

Starting with a homogeneous ground state where all spins are
Si = +1 (or equivalently Si = −1) the system’s subextensive
ground-state degeneracy is obvious from the fact that arbitrary
lines of spins (which may also intersect) can be flipped. A
single spin flip at site i in an arbitrary ground state creates
a quadrupole of four excitations in the plaquettes sharing the
site i [see Fig. 3(a)]. These excitations can be separated by
enlarging the region of flipped spins into a rectangular area
[Fig. 3(b)]. The isolated defects at the corners of this region,
called fractons, are characterized by their immobility, since
any move to a neighboring site requires flipping a whole line
of spins. Despite the immobility of single fractons, however,
a two-fracton bound state (so-called lineon) is free to move in
the direction perpendicular to itself, as illustrated in Fig. 3(c).
Such moves only require flipping a finite number of spins,
given by the size of the dipole.

We now contrast these properties with the fracton be-
haviors in our kagome Potts models. First, isolated defect
triangles and hexagons in an otherwise defect-free system
exist and can be most easily described as points where domain
walls cross. There are two types of domain-wall arrangements
which yield an excitation in a hexagon (or in a J5�/J5

�

triangle): The first [called triple fracton, see Fig. 4(a)] exhibits
π/3 sectors of domains, where six domain walls emanate
from the crossing point. This fracton has an excitation energy
of EPotts

3-frac = 4.5J2 [4.5J5�, 4.5(J5� + J5�)] for the J1-J2-J3d

model (J1-J5�-model, J1-J5�-J5
�-model). The second [called

single fracton, see Fig. 4(b)] has two π/3 and two 2π/3 sec-
tors with four domain walls emanating from the fracton core.
This excitation has a lower energy of EPotts

1-frac = 1.5J2 [1.5J5�,
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FIG. 4. (a)–(d) Isolated fractons (magenta stars) in the kagome
Potts models residing at intersections of domain walls (gray lines).
(a) Triple defect in a hexagon/J5 triangle. (b) Single defect in a
hexagon/J5 triangle. (c) Triple defect in a J1 triangle. (d) Single
defect in a J1 triangle. (e) Two-fracton bound state in the J1-J2-J3d

model with horizontal mobility. Light magenta stars indicate the
positions of fractons when the domain “5” (light blue region) is
further extended to the left.

1.5(J5� + J5
�)] for the J1-J2-J3d model (J1-J5� model, J1-

J5�-J5
� model). Except for the J1-J5�-J5

� model, these
fractons can also be moved into neighboring J1 triangles via
a simple shift of domain walls, illustrated in Figs. 4(c) and
4(d). The associated excitation energies are then 4.5J1 and
1.5J1 for triple and single fractons, respectively. As a fur-
ther difference between the three variants of our system the
J1-J2-J3d model allows for fractons in both the upward- and
downward-pointing J1 triangles while the J1-J5� model can
only host isolated fractons in downward-pointing J1 triangles.
Up to real-space rotations around the fracton center and per-
mutations of domains these configurations cover all isolated
fractons the system may host.

Like in the plaquette Ising model, the immobility of defects
is clearly established by the fact that moving a fracton requires
shifting domain walls, which amounts to changing the spin
configuration in the whole area swept over by the domain

wall. However, as a striking difference compared to the pla-
quette Ising model, more than two domain boundaries are
sticking out of the fracton cores. Consequently, in contrast to
conventional type-I fracton models, it is impossible to create
a group of isolated fractons out of a local multipole of defects
such that they reside at the corners of a large region of flipped
spins. In other words, exciting one or more fractons out of
a ground state inevitably requires introducing domain walls
reaching out to infinity.

Swapping two colors in a q = 0 state along a semi-infinite
line as shown in Fig. 4(e) creates a fracton bound state with
subdimensional mobility, similar to a lineon. These excita-
tions move by extending or shortening the string of swapped
colors which amounts to shifting the blue domain in Fig. 4(e)
to the left or right. In contrast to conventional type-I fracton
models this motion, however, is not strictly linear but occurs in
an unusual zigzag manner, as indicated by the light magenta
stars in Fig. 4(e). As a further difference compared to more
usual fracton scenarios, the two defects forming the lineon
are not of the type of isolated excitations shown in Figs. 4(a)–
4(d) but rather should be considered as parts of a defective
domain wall which violates the adjacency rules of Fig. 2(b).
This becomes obvious when trying to extend the vertical
thickness of the domain “5” in Fig. 4(e). Indeed, there is no
possible termination of this domain at its left end that obeys
the adjacency rules. Hence, in contrast to the plaquette Ising
model where the two defects in Fig. 3(c) may be vertically
separated without energy cost, such a separation would lead to
a string of defects in Fig. 4(e) with an energy proportional to
its length. Reversely, a subdimensional excitation consisting
of two isolated defects, each of the type of Figs. 4(a)–4(d),
does not exist.

3. Interpretation of the fracton behaviors

As discussed above, our kagome Potts models show un-
usual fracton behaviors: (i) Fractons cannot be created at the
corners of a finite region of modified spins and (ii) two-fracton
bound states move along zigzag paths and cannot be extended
in a direction parallel to themselves. This is in contrast to
conventional type-I fracton models [14,33–35] where fractons
are created as a group of four at the corners of a rectangular
region. Such differences present an interesting challenge of
how to interpret them in a natural and unifying manner.

The following considerations apply to the J1-J2-J3d model
but their implications also hold for the other two models.
Furthermore, the arguments below do not depend on the ex-
istence of three colors. For simplicity, it suffices to consider
the degrees of freedom arising from interchanging, e.g., red
and blue colors. Starting from a ground state and changing
a single red into a blue spin means that the two adjacent
triangles and hexagons obey

∑
i∈triangle Si = ∑

i∈hexagon Si =
Sblue − Sred ≡ +d. The reverse process leads to two triangles
and two hexagons with spin sums −d such that ±d are effec-
tive Z2 charges.

Conforming to the rank-2 U(1) gauge theory interpreta-
tion of fractons [22,23], we can think of the spin degrees of
freedom sitting on the sites of the kagome lattice as discrete
electric fields. The color-neutrality conditions on the triangles
and hexagons correspond to a “Gauss’s law” which relates
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FIG. 5. The rhombille tiling (blue lattice) and kagome lattice
(gray lattice) are dual to each other. Left: quadrupole resulting from
a single spin flip. Right: charge configuration from two neighboring
+d and −d quadrupoles. Modified spins are indicated by red points.

the electric field to the “electric charges” (i.e., defect trian-
gles/hexagons). Hence, the fractons reside on the dual lattice
of the kagome lattice which is formed by the centers of the
triangles and hexagons, called the rhombille tiling (cf. Fig. 5).
Reversely, the spin degrees of freedom, or electric fields, live
on the centers of the rhombi. Changing the value of one spin
creates a quadrupole of four excitations with charges ±d on
the corners of a rhombus [see Fig. 5 (left)]. The fracton behav-
iors now crucially depend on how the lattice can be tiled with
these quadrupoles. As an example we show in Fig. 5 (right) a
charge configuration resulting from a pair of neighboring +d
and −d quadrupoles.

A first indication for the unusual fracton behavior comes
from the fact that the rhombille tiling is lacking “scale in-
variance.” Particularly, enlarged versions of the elementary
rhombi such as parallelograms extending over large regions
do not exist in the lattice. This is in contrast to fracton models
on square or cubic lattices where rectangular areas of any size
can be embedded into the lattice. Below, these ideas will be
formulated in a more rigorous way.

We can view the rhombille tiling as a two-layer cut of a
cubic lattice, perpendicular to the [1,1,1] direction. In this
representation, each rhombus is a face of an elementary cube.
Hence, the fracton quadrupole created by changing the value
of a single spin now lives on the corners of a square embedded
in a square lattice in either the x-y, y-z, or x-z plane. This
is the familiar type-I fracton scenario as, e.g., realized in the
plaquette Ising model [33–35]. By considering the full cubic
lattice, large rectangular regions in the x-y, y-z, or x-z planes
can be tiled with quadrupoles which create the usual type of
isolated fractons. Furthermore, a dipole of fractons can move
in the plane perpendicular to itself.

The fracton behavior on the rhombille tiling can, hence, be
explained by familiar fracton type-I behavior on a cubic lat-
tice, but restricted to the two-layer cut forming the rhombille
tiling. This means that any quadrupoles outside the two-layer
cut are not usable. As a consequence, a large rectangular
region in the x-y, y-z, or x-z plane does not live entirely on the
cut in [1,1,1] direction and, hence, one cannot create isolated
fractons from a far-separated quadrupole [see Fig. 6(a)]. Ad-
ditionally, as illustrated in Fig. 6(b), a plane perpendicular to a

FIG. 6. Fracton behaviors explained by viewing the rhombille
tiling embeded in the cubic lattice. (a) A large rectangle highlighted
in red with a quadrupole of fractons on its corners does not fully over-
lap with the rhombille tiling cut. Hence, a single fracton originating
from a far-separated quadrupole cannot be created on the rhombille
tiling. (b) A fracton dipole can move in the plane perpendicular to
itself in the cubic latice. This plane only intersects the rhombille
tiling cut on the one-dimensional orange path. Hence, a fracton
dipole on the rhombille tiling is restricted to move along the orange
zigzag path.

fracton dipole intersects the [1,1,1] cut on a one-dimensional
submanifold, forming a zigzag path on the rhombille tiling
in agreement with our observation in Fig. 4(e). This dipole
cannot be extended beyond a separation of one lattice spacing
since this would lead to fractons outside the [1,1,1] cut.

4. Low-energy effective theory

In the next step, we discuss the low-energy effective the-
ory underlying the observed fracton behaviors. The following
considerations are based on a simple cubic lattice in which
the kagome model can be embedded. The cubic lattice hosts
a rank-2 U(1) electrostatics theory [22,23], where the rank-2
electric field is a symmetric tensor with all diagonal compo-
nents vanishing:

E =
⎡
⎣ 0 Exy Ezx

Exy 0 Eyz

Ezx Eyz 0

⎤
⎦. (9)

This type of rank-2 U(1) theory is found to be crucial in de-
riving three-dimensional gapped fracton topological order by
Higgsing gapless rank-2 U(1) theories [26,27]. Note that the
components Ei j are defined on different lattice positions. For
example, denoting the cubic lattice sites by r, the component
Exy lives on the centers of elementary plaquettes in the x-y
plane, i.e., at r + (±ex ± ey)/2 (where ei are Cartesian unit
vectors). The other components are defined equivalently. The
Gauss’s law describing the charge-free sector is that of a scalar
charged rank-2 U(1) theory:

∂i∂ jE
i j = 0. (10)

To connect this condition to our above discussion, we formu-
late a discretized lattice version of Eq. (10) which exists for
all cubic sites r:

Ei j

r+ ei
2 + e j

2

− Ei j

r+ ei
2 − e j

2

− Ei j

r− ei
2 + e j

2

+ Ei j

r− ei
2 − e j

2

= 0. (11)

Hence, changing Ei j on a single plaquette in a state that

satisfies all constraints creates a quadrupole of charges + −− +
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at the corners of the plaquette. Tiling the lattice with these
quadrupoles follows the same rules as for the quadrupoles
illustrated in Fig. 5. The fact that there are only off-diagonal
components in the field tensor is in agreement with the ob-
servation that only quadrupoles on a plaquette can be created
by changing Ei j . The low-energy effective Hamiltonian can,
therefore, be written as

H = U (∂i∂ jE
i j )2, (12)

penalizing the existence of a charge with an energy cost.
Since there are only off-diagonal components of Ei j living
on the faces of the cubes, the simplest way to vary Ei j while
respecting the Gauss’ laws is to shift all Ei j by the same value
on an entire plane. In the picture of multipoles, this amounts
to extending the quadrupole on a plaquette to infinity on the
plane it lives on.

The low-energy physics of the kagome model can again
be interpreted as the restriction of the above 3D tensor gauge
theory to a [1,1,1] cut. Particularly, the degeneracies from
flipping three types of planes in the 3D system are translated
into three types of line degeneracies on the kagome lattice.
The fracton excitations can also be consistently explained in
the same fashion, as we discussed in detail in the previous
section.

In total, these considerations show that an effective tensor
gauge theory for the 2D system may be constructed, however,
its physical properties become more transparent when viewing
the system as being embedded in a 3D model which also
unveils connections to more standard type-I fracton behavior.
From a more general viewpoint one may ask which types
of 2D models result for an arbitrary cut of our 3D tensor
gauge theory. Broadly speaking, all such 2D models exhibit
fracton properties in the sense that only quadrupole dynamics
are allowed. The difference between them lies in the types of
subsystem symmetries and the associated mobility of the frac-
ton composites. For example, a [1,0,0] cut results in a fracton
model with essentially the same properties as the plaquette
Ising model discussed above.

B. XY models

We now generalize our system from three-state Potts spins
to continuous in-plane XY spins. Particularly, we discuss the
associated modifications of ground states and isolated defect
states from the last section, which turn out to be rather small
(new phenomena, however, emerge when considering vortex
states, see Sec. IV B). Apart from the freedom to globally
rotate spins within the x-y plane, the ground states are the
same as in the three-state Potts model. Likewise, there exist
two types of fractons for all three models (J1-J2-J3d, J1-J5�,
and J1-J5�-J5

� models) which we again call single and triple
fractons. An obvious difference, however, is that the optimal
spin configurations in the cores of defects (which correspond
to a local energy minimum) are slightly deformed compared to
the fractons in the Potts model. Such optimized states can be
most easily constructed by performing an iterative minimiza-
tion scheme [83,84]: The starting configuration is a defect
from the three-state Potts model in the center of a system
with open boundary conditions. We then successively select
random spins and orient them along its so-called local field

FIG. 7. (a) Optimized spin configuration of a single fracton (ma-
genta star) in the J1-J5� model from iterative minimization. Small
black arrows at each lattice point illustrate the initial defect of
the three-state Potts model. (b) Relaxation of excitation energies
E (τ ) − EXY

1-frac and E (τ ) − EXY
3-frac as a function of the step count τ

for a single and triple defect. Thin lines are fits to an exponential
function.

hi which, for a general Hamiltonian H = ∑
〈i, j〉 Ji jSi · S j is

defined by

hi = −
∑

j

Ji jS j . (13)

By construction, in each such step the energy can only be
lowered, however, as a steepest descent method the scheme
can get stuck in a local minimum (which in our case is a
fracton state). An example of an optimized single fracton in
the J1-J5� model with J1 = J5� is illustrated in Fig. 7(a),
together with the initial spin configuration of a fracton in
the three-state Potts model (small black arrows). While both
spin configurations in Fig. 7(a) closely resemble each other,
the excitation energies are reduced quite significantly, from
EPotts

1-frac = 1.5J1 to EXY
1-frac = 0.8546J1 for a single fracton and

from EPotts
3-frac = 4.5J1 to EXY

3-frac = 2.2014J1 for a triple fracton.
Furthermore, the real-space distribution of excitation energies
is no longer given by a single defect triangle but spreads over
a few lattice spacings. To estimate the spatial extent of the
fracton in Fig. 7(a) we note that at a distance of 4 lattice
spacings away from its center, the spins do not deviate more
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than 4.6◦ compared to the initial configuration. Adopting the
concept of fugacity as a measure for the size of vortex cores
in Kosterlitz-Thouless systems, one may conclude that frac-
tons in the three-state Potts model have the smallest possible
fugacity which increases for the XY model.

We also note that the decrease of the excitation energy
as a function of the step count τ in iterative minimization
follows a standard exponential relaxation at sufficiently large
τ (here one step corresponds to N = 7500 individual up-
dates, where N is the total number of lattice sites). This is
shown in Fig. 7(b), where the decay of the excitation energies
E (τ ) − EXY

1-frac and E (τ ) − EXY
3-frac is plotted as a function of

τ . As will be discussed in the next section, this behavior is
in stark contrast to the power-law relaxation of defects in the
Heisenberg models.

C. Heisenberg models

We now consider the ground states and low-energy defect
states of the Heisenberg models. Since the J1-J2-J3d, J1-J5�,
and J1-J5�-J5

� models all have very similar properties (the
degenerate ground states are even identical in the three cases)
they can be treated together.

1. Ground states of the Heisenberg models

It is clear that all ground states of the three-color models
are also ground states of the Heisenberg models; however, the
reverse is not true, i.e., not all ground states of the Heisen-
berg models consist of only three spin orientations. Indeed,
as demonstrated below, the set of degenerate ground states
of the Heisenberg models is surprisingly rich and interesting
on its own. Apart from global SO(3) rotations of all spins,
the ground-state manifold can be constructed by subsystem
operations. This is similar to the three-color models where,
starting from a q = 0 state, one can generate all ground states
by swapping two colors on arbitrary parallel lines. In contrast
to the three-color models, however, the Heisenberg models
also allow for subsystem operations on lines which cross. The
lines on which such operations are performed can have three
orientations and one may classify each ground state according
to the number of different directions of line manipulations
required to generate it out of a q = 0 state. The first case
(i) is similar to the three-color models, i.e., only operations
along lines with the same lattice direction are involved. In
the second case (ii), manipulations along two different lattice
directions are required, and in the third case (iii), all three
types of operations are performed. Below, we will consider
the ground states generated in each of the three cases and show
that they are characterized by different types of discrete and/or
continuous degeneracies.

Case (i): Subsystem operations on parallel lines. This case
is a direct generalization of the construction of ground states
in the three-color models. The operation of swapping two
colors along a line in the latter models, which generates all
ground states, corresponds to performing a π rotation around
the direction of the third spin. In a model with SO(3) spins,
this rotation can be performed by any angle ϕ ∈ [0, 2π ) with-
out exciting the system, as illustrated in Fig. 8. Since one

FIG. 8. Illustration of line manipulations in the ground states of
case (i): all spins along a line with alternating green and red colors are
rotated by an angle ϕ around the direction of the blue spins. Arrows
indicated by contours show the orientations of the spins before the
transformation.

can independently do such rotations on arbitrary numbers of
parallel lines where each subsystem operation is characterized
by an angle ϕ the ground-state manifold is defined by L
continuous parameters. In all states generated this way, one
of the kagome sublattices has a fixed direction.

Case (ii): Subsystem operations on lines with two di-
rections. Apart from global SO(3) rotations, the degenerate
ground states in this case depend on one continuous angle
α ∈ [0, 2π/3) and are constructed using eight different spin
orientations which we denote S1a, S1b, S2a, S2b, S3a S3b, S3c,
S3d . The free parameter α is the angle between the spins
S1a and S1b which we assume to be fixed in the following
[changing S1a and S1b amounts to changing the angle α and/or
performing a global SO(3) rotation of all spins]. The other
spin orientations are then defined according to Fig. 9(a):
Drawing a circle on the Bloch sphere around S1a such that
all points on the circle enclose an angle of 2π/3 with S1a and
drawing the same type of circle around S1b, the spins S2a and
S2b point in the two directions where the circles cross. The
remaining spin directions S3a S3b, S3c, S3d lie on opposite
positions on the two circles, as specified in Fig. 9(a). For
example, S3a lies on the circle around S1a opposite to S2a such
that S2a and S3a enclose an angle of 2π/3.

We construct the degenerate ground states in this case by
starting from a q = 0 state. For the three spin orientations
defining the q = 0 state we select an arbitrary trio of spins
from the eight directions, such that, in the usual way, each
pair of the trio encloses an angle of 2π/3. In the example
considered here [see Fig. 9(b)], we choose the three spins S1a,
S2a, and S3a (it is clear from their construction that all three
numbers “1”, “2”, “3” must be represented once in the index
labels of such a trio). Manipulations of the state in Fig. 9(b)
can now be independently performed along the two types of
lines where spins S1•, S3•, S1•, . . . alternate or where S2•,
S3•, S2•, . . . alternate (here “•” is a placeholder for a, b, c,
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FIG. 9. Construction of degenerate ground states in case (ii):
(a) The dots denote the Bloch sphere locations of the eight spins
defining these states. The angle α ∈ [0, 2π/3) is a free parameter.
The red (yellow) circle indicates all positions on the Bloch sphere
enclosing an angle of 2π/3 with the red (yellow) spin. Spins with
opposite positions on the red and yellow circles are connected by
gray lines. The q = 0 state in (b) represents the starting configuration
for the manipulations performed in the example in (c). The lines on
which the mirror operations described in the text act are highlighted
by a gray shaded background in (c).

d). Particularly, an operation on a line with S1•, S3•, S1•, . . .

(S2•, S3•, S2•, . . .) amounts to mirror all spins on the Bloch
sphere with respect to the plane passing through S2a, S2b, and
the origin (passing through S1a, S1b, and the origin). Since
these mirror operations commute, the order in which the line
manipulations are performed is irrelevant. Again, this specific
construction ensures that no such operation excites the system.
An example of a spin configuration resulting from manipulat-
ing the q = 0 state in Fig. 9(b) is shown in Fig. 9(c) where
modified lines are indicated by a gray shaded background.

Like in case (i) the mirror operations can be described as
ϕ rotations around the direction of the third spin. Particularly,
consider a manipulated nearest-neighbor pair of spins on a line
S1•, S3•, S1•, . . . (S2•, S3•, S2•, . . .). This pair is connected via
J1 to a spin S2• (S1•) outside the chain. The manipulation of
this pair is then a result of rotating it around S2• (S1•) by an
angle ϕ2 (ϕ1) given by

ϕ1 = arccos

(−1 − 5 cos α

3 + 3 cos α

)
,

ϕ2 = arccos

(
−1

3
+ 4

3
cos α

)
. (14)

FIG. 10. Construction of degenerate ground states in case
(iii): (a) Location of the 12 spin directions (±1,±1, 0)/

√
2,

(±1, 0, ±1)/
√

2, (0,±1, ±1)/
√

2 on the Bloch sphere where we
fixed the global orientation. The colored circles enclose an angle
of 2π/3 with the spin of the same color. Spins with opposite posi-
tions on these circles are connected by gray lines. The q = 0 state
in (b) represents the starting configuration for the manipulations
performed in the example in (c). The lines on which the mirror
operations described in the text act are highlighted by a gray shaded
background in (c).

In total, since the described operations can be independently
performed along each of the two types of lines, up to a global
rotation of all spins the degeneracy in this case results from
choosing a continuous angle α and performing (2L )2 possible
discrete operations.

Case (iii): Subsystem operations on lines with all three
directions. The construction of degenerate ground states in
this case is similar to case (ii); however, the angle α is fixed
to α = π/2 such that (apart from global rotations) no con-
tinuous free parameter exists. In addition to the eight spin
orientations S1a, S1b, S2a, S2b, S3a S3b, S3c, S3d from case (ii)
the system may host four more spins given by S1c = −S1a,
S1d = −S1b, S2c = −S2a, S2b = −S2d [see Fig. 10(a)]. Fixing
the global orientation, we may choose the S1• spins to lie
in the x-z plane at positions (±1, 0,±1)/

√
2. Equivalently,

the S2• spins (the S3• spins) reside in the y-z plane (x-y
plane) at (0,±1,±1)/

√
2 [(±1,±1, 0)/

√
2]. We again start

the construction of degenerate spin configurations with the
q = 0 state shown in Fig. 10(b) which is based on S1a, S2a, and
S3a spins (note that any other choice of a planar trio of spins
with mutual angles 2π/3 can, likewise, be used for the initial
configuration). Line manipulations can now be independently
performed along all three lattice directions: An operation on a
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line S1•, S2•, S1•, . . . amounts to mirror the spins with respect
to the plane in which the S3• spins reside (i.e., the x-y plane).
The definitions of the other two types of line manipulations
follow by cyclic permutations of indices 1 → 2 → 3 → 1.
In Fig. 10(c) we show an example of a spin configuration
obtained after various such operations. We may, alternatively,
view the transformation of any pair of nearest-neighbor spins
on a modified line as a rotation by ϕ = arccos(− 1

3 ) ≈ 109.5◦
around the direction of the third spin in the respective J1 tri-
angle. Again, all manipulations are independent of each other
(i.e., they commute) such that the total discrete degeneracy in
case (iii) is proportional to (2L )3.

In summary, the degenerate ground states in our kagome
Heisenberg models fall into three classes which are charac-
terized by the type of allowed subsystem operations within
each class. In the simplest case (i) continuous spin rotations
on any set of parallel lines can be performed. In contrast, cases
(ii) and (iii) also permit subsystem operations on intersecting
lines which, however, come at the expense that such manip-
ulations are only of discrete nature. As we will see below,
these ground-state degeneracies also have consequences for
the properties of excited defect states.

2. Single defects in the Heisenberg models

Knowing the ground states of the Heisenberg models we
continue discussing the possible existence of fractonlike ex-
cited states. The procedure here is similar to the three-state
Potts and XY models, i.e., we first construct “by hand” states
with a single isolated defect triangle or hexagon (which gen-
eralizes the single and triple fractons discussed above). We
then investigate their stability by applying iterative mini-
mization. As we will see below, fractonlike excitations have
nearly identical properties for all three models (J1-J2-J3d, J1-
J5�, and J1-J5�-J5

� models) such that they are again treated
together.

The simplest and most generic way of constructing a single
defect (which applies to all three systems) is by merging six
sectors with different q = 0 states as illustrated by the colored
regions in Fig. 11(a). The defect is then located in the center
hexagon where the domain walls separating the six sectors
intersect. All other hexagons and small and large triangles not
part of this center hexagon shall fulfill the local constraints.
Since neighboring sectors share one type of spin, these con-
figurations have a maximum 12 different spin orientations
labeled 1–12 in Fig. 11(a).

A priori it is not clear whether solutions other than the sin-
gle and triple fractons from the three-state Potts model exist.
However, simple geometric considerations show that up to a
global SO(3) rotation of all spins a continuous manifold of
defects exists which may be characterized by three continuous
parameters u, v, w, each in the interval u, v,w ∈ [−1, 1].
One possible way of parametrizing the 12 (normalized) spins
S1, . . . , S12 in terms of u, v, w (where u = 0 must be
excluded) is given by

S1 =
⎛
⎝0

0
1

⎞
⎠, S5 =

⎛
⎝sin

( 2π |u|
3

)
0

cos
(

2πu
3

)
⎞
⎠, S9 = c e + d, (15)

FIG. 11. Construction of isolated defects (illustrated by magenta
stars) located (a) in the center of a hexagon and (b) in the center of a
J1 triangle. The configurations consist of 6 different q = 0 domains
(indicated by light background colors) which involves 12 different
spin orientations (indicated by numbers 1 − 12 and by different
colors of the points). The arrows ⇒ · · · ⇐ mark the lines which need
to be modified according to case (iii) in Sec. III C 1 to generate a
zero-energy defect out of a q = 0 state.

where

d = −1

2

⎛
⎝tan

(
π |u|

3

)
0
1

⎞
⎠,

e =
⎛
⎝sin(π |v|) sin

[ 2π |u|
3 − π

2 + |w|(π − 2π |u|
3

)]
cos(πv)

sin(π |v|) cos
[ 2π |u|

3 − π
2 + |w|(π − 2π |u|

3

)]
⎞
⎠,

c = −d · e +
√

(d · e)2 − 1

4 cos2
(

πu
3

) + 1. (16)

Furthermore,

Si = − Si+2 + Si−2

2(1 + Si+2 · Si−2)
+ sgn(ξi) Si+2 × Si−2

·
√

(1 + 2Si+2 · Si−2)

2(1 + Si+2 · Si−2)[1 − (Si+2 · Si−2)2]
, (17)

with i ∈ {3, 7, 11}, ξ3 = u, ξ7 = v, ξ11 = w, and S13 ≡ S1.
Finally,

S j = − S j+1 + S j−1

2(1 + S j+1 · S j−1)
, (18)

with j ∈ {2, 4, 6, 8, 10, 12}. We note that u, v, w cover each
possible isolated defect exactly once. The single and triple
fractons of the three-state Potts model discussed in Sec. III A
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are special cases which correspond to {u = 0+, v = − 1
2 ,

w = 1
2 } and {u = 0+, v = − 1

2 ,w = − 1
2 }, respectively.

Note that for the J1-J2-J3d model, the defect can also be
shifted into a J1 triangle (either an up-pointing or a down-
pointing one) by shifting one domain wall, as illustrated in
Fig. 11(b). In the case of the J1-J5� model the single defect
can only be moved into a downward-pointing J1 triangle [see
Fig. 11(b)] while this is not possible for an upward-pointing
J1 triangle. Finally, the J1-J5�-J5

� model cannot host any
isolated defects in a J1 triangle.

We also note that for isolated defects with special values
of u, v, w it is possible to perform additional manipulations
of spins on linelike subsystems without energy cost. The con-
struction is similar to Sec. III C 1; however, since these are
fine-tuned cases they will not be further discussed.

The excitation energies �E of the defects in the hexagons
are given by

�E = Jx(S4 + S8 + S12)2/2, (19)

with

Jx =
⎧⎨
⎩

J2 for the J1-J2-J3d model,
J5� for the J1-J5� model,
J5� + J5

� for the J1-J5�-J5
� model,

(20)

while �E for the defects in the triangles reads as

�E = Jx(S2 + S6 + S12)2/2, (21)

with

Jx =
{

J1 − J2 for the J1-J2-J3d model,
J1 for the J1-J5� model. (22)

The energies �E are generally complicated functions in u,
v, w. However, the most important property of �E is that it
assumes continuous values between its maximum (reached for
a triple fracton in the three-color models) and its minimum at
�E = 0. Remarkably, the case �E = 0 does not only occur
in the trivial configuration of a single homogeneous q = 0
state but also appears in nontrivial configurations with actual
domains in the system. The fact that defects may have zero
excitation energies and, hence, are part of the set of degen-
erate ground states is already included in the ground-state
construction of Sec. III C 1. For example, one can construct
a zero-energy defect by starting with a q = 0 state and per-
forming the manipulations of case (iii) along all lines marked
⇒ · · · ⇐ in Fig. 11. This defect is described by the param-
eters {u = − 1

2 , v = − arccos(−1/
√

3),w = − 1
2 }. We note in

passing that states with more than one of these “zero-energy
defects” can be constructed. In their densest configuration
they are located in the centers of each hexagon. This spin
state has a 12-site unit cell given by the Star of David around
the center hexagon in Fig. 11(a) and is referred to as cuboc
1 order (which appears in several contexts in kagome spin
models [52]). Indeed, it has previously been realized that the
line J2 = J3d < J1 of the J1-J2-J3d model as considered here,
marks the phase boundary between q = 0 and cuboc 1 ordered
regimes [53–56].

The key question is whether defects with �E > 0 are local
energy minima and how they are modified when performing
iterative minimization as has been done for the defects in the

FIG. 12. Decay of excitation energies E (τ ) of isolated defects
within iterative minimization for the J1-J5� model with J1 = J5� = 1
where τ is the simulation time (step count). Shown are results for
three different initial defects: triple fracton, single fracton, and a low-
energy fracton with {u = −0.5, v = −0.8, w = −0.5}. Straight lines
are power-law fits at large τ with the specific function indicated in
each case. Both axes are scaled logarithmically.

XY model (see Sec. III B). Indeed, the fact that single defects
have a continuous energy spectrum which reaches down to
zero means that they are not local minima but may decay to
a ground state without passing any energy barriers. However,
since such a decay amounts to changing complete sectors of
q = 0 orders in Fig. 11 which involves the modification of in-
finitely many spins, this happens very slowly. We have tested
this numerically by putting a single defect in the center of a
system with open boundary conditions. The defect is relaxed
by applying 104 iterative minimization steps according to the
procedure explained in Sec. III B. As an example, we show
in Fig. 12 the energy decay of three different initial states in
the J1-J5� model (a triple fracton with �E = 4.5J1, a single
fracton with �E = 1.5J1, and a fracton with {u = −0.5, v =
−0.8,w = −0.5} and �E ≈ 0.24J1). Our observations are
very different from the XY model: First, while in the XY
model the relaxation towards a local minimum only involved
a small number of spins, here, the minimization procedure
approaches a ground state and involves spins across the entire
system. Second, in contrast to the exponential energy decay
for the XY model here we observe a slow relaxation process
following a power-law behavior E (τ ) ≈ τ−α . Note that τ is
the step count and the exponent α takes small values down
α = 0.13 for low-energy defects.

We will return to these defects in the next section where
we apply classical Monte Carlo to investigate their thermal
behaviors. These studies indicate that remnants of the defects
discussed here still appear in spin configurations where ther-
mal equilibrium has not been fully reached.

IV. MONTE CARLO SIMULATIONS

After having discussed the properties of individual fracton-
like defects we now investigate their collective and thermal
behaviors via classical Monte Carlo simulations. In the
following, we only treat the J1-J5� model which can be con-
sidered as the minimal model exhibiting the aforementioned
fractonlike behavior. Here “minimal” refers to the fact that
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compared to the J1-J5�-J5
� and the J1-J2-J3d models it fea-

tures the smallest number of interacting bonds. It further has
the property that each site contributes to three corner-sharing
triangles (see [85–87] for similar systems in 3D) and, hence,
represents a generalization of nearest-neighbor kagome sys-
tems (where each site is only connected to two triangles).
Three versions of the J1-J5� model will be discussed below:
the three-state Potts, XY, and Heisenberg models, where we
always set J1 = J5�.

We apply a standard Metropolis algorithm with single spin
updates for a system of rhombic shape with a side length
of L nearest-neighbor lattice spacings and untwisted periodic
boundary conditions. A system characterized by the linear
length L then contains N = 3L2/4 lattice sites. In our results
below, L is varied between L = 40 and 100. To efficiently ap-
proach low temperatures we simulate a slow cooling process
using an exponential protocol

T = T0e−γ t , (23)

where T0 = 2J1. Here, t counts the Metropolis steps such
that within one step each spin is, on average, updated once
(note that we use the variable t to distinguish it from the
step count τ in iterative minimization). After each nor-
mal Metropolis step, we perform 10 over-relaxation steps
which helps achieving better thermalization [50,88–90]. For a
general Heisenberg Hamiltonian H = ∑

i, j Ji jSi · S j an over-
relaxation step amounts to randomly select a spin which is
rotated by an angle of π around the direction of the local field
hi = ∑

j Ji jS j . Ensemble averages are performed with respect
to 50 independent simulation runs.

A. Three-state Potts model

1. Internal energy, specific-heat, and low-temperature
spin configurations

We start discussing the internal energy per site E (T )/N
as a function of T for different cooling rates γ [Fig. 13(a)]
and for different system sizes L [Fig. 13(b)]. Our data in
Fig. 13(a) indicate that small γ are essential to approach
the exact ground-state energy of Eexact(T = 0)/N = −1.5J1

at small temperatures. Indeed, even for the smallest γ = 10−5

the system may get trapped in a local minimum below T ≈
0.5J1 where E (T ) is a flat line with a small offset compared
to the ground-state energy. The dependence on the system
size L is shown in Fig. 13(b) where γ is kept constant at
γ = 10−5. While at large T results are well converged in L,
a characteristic observation at small T is that E (t ) slightly
increases with L [see inset of Fig. 13(b)] indicating that in
larger systems the defect density is higher. This behavior can
be understood from the fact that moving a fracton requires
flipping spins across the entire system and, consequently, the
probability for fractons to recombine and annihilate is larger
for small systems.

It might seem tempting to compare the simulated E (T )
to an exact solution as is possible for other kinetically con-
strained models [30–35]. Indeed, many of such models have a
dual description which allows for a direct mapping between
independent defect variables and spin states such that the
thermodynamics becomes trivial and an exact solution may be
easily formulated. In our case, however, we could not identify

FIG. 13. (a) Energy per site E (T )/(J1N ) for the three-state Potts
model at constant system size L = 100 and varying cooling rates
γ . (b) Energy per site E (T )/(J1N ) for the three-state Potts model
at constant cooling rate γ = 10−5 and different system sizes L. The
inset shows the low-temperature behavior in detail. (c) Specific heat
per site cv (T )/N of the three-state Potts model for different γ and
constant L = 100.

such a dual representation and, consequently, defects cannot
be considered as independent. For the J1-J2-J3d model this is
immediately obvious since for two triple defects in adjacent J1

triangles, the nearby hexagons must, likewise, carry defects.
We can, however, not exclude the possibility that an effective
dual representation exists in a suitably defined low-energy
subspace.

In Fig. 13(c) we present the system’s specific heat for
varying γ at constant L = 100, calculated by differentiating
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FIG. 14. Typical output of a spin configuration from Monte Carlo
for the three-state Potts model. The simulation has been performed
for a system size of L = 100, at T = 0.1J1 and cooling rate γ =
10−5. Each point represents a J1 or J5� triangle of the original lattice
where the colors of the points indicate the six possible local q = 0
orders (see Fig. 2). Black points denote defect triangles and gray
circles highlight the lineons.

E (T ). Due to the gapped nature of spin excitations we find ac-
tivated behavior at low T and zero slope dcv (T )

dT for T → 0. An
obvious feature is a pronounced peak at T ≈ 0.8J1. Below, we
will argue that this peak is associated with a crossover into a
spin-glass-like regime where the system becomes nonergodic.

A typical spin configuration in a local minimum obtained
for T = 0.1J1 and γ = 10−5 is shown in Fig. 14 where each J1

and J5� triangle is represented by a point (which together form
a triangular lattice). If a J1 or J5� triangle is in a local ground
state (i.e., the three-color constraint is fulfilled) the color of
the point encodes the six possible configurations. A triangle
violating the color constraint is illustrated as a black point. As
can be seen, the system exhibits a patchwork of different q =
0 order domains with single fractons at positions where four
domain walls meet. Note that triple fractons cost too much
energy to be observed at T = 0.1J1. The system also features
various lineons consisting of two single fractons, indicated by
gray circles.

2. Spin structure factor

Next, we discuss the equal-time spin structure factor

S (q) = 1

N

∑
i, j

e−iq·(ri−r j )〈Si · S j〉, (24)

where ri is the position of site i and 〈. . .〉 averages over
independent simulation runs. For better interpretation of the
Monte Carlo data, we first present results of an O(n) approx-
imation where the spins Si are generalized to n-component
vectors Si = (S1

i , S2
i , . . . , Sn

i ) subject to local length con-
straints

∑n
μ=1(Sμ

i )2 = 1. The system can be treated exactly
in the limit of large n [91–93], where thermal fluctuations
are correctly accounted for even if ergodicity is lost. While
the generalization from a three-state Potts model (which is a
discretized version of an n = 2 system) to n → ∞ may appear
drastic, previous results from pyrochlore magnets indicate
that the large-n limit provides an excellent approximation for
models with small n [93]. The large-n approximation uses
the eigenvalues εα (q) and corresponding eigenvectors ψα (q)

(where α = 1, 2, 3) of the coupling matrix

Jαβ (q) =
∑

b

e−iq·(r0α−rbβ )J0αbβ . (25)

Here, we have split up the site index i into two indices i →
(a, α) where a denotes the unit cell and α enumerates sites
within a unit cell. In this notation couplings and site positions
read as Ji j → Jaαbβ and ri → raα . The spin structure factor is
then obtained via

S (q) =
3∑

α,β,γ=1

[ψβ (q)]α[ψ∗
β (q)]γ

εβ (q)
T + λ

, (26)

where λ is a Lagrange multiplier enforcing spin normaliza-
tion, which is determined from the condition

1

N

∑
q∈BZ

3∑
α=1

[
εα (q)

T
+ λ

]
= 1. (27)

In Figs. 15(a)–15(d) we show the spin structure factor of
the J1-J5� model at large n for various temperatures T . At
small T the response is entirely distributed along streaks in
momentum space (forming again a kagome lattice) which is a
direct consequence of the system’s subextensive degeneracy.
The three directions of the streaks correspond to the three
directions of lines along which the spins of a q = 0 state can
be swapped to form a new ground state. With increasing T the
streaks broaden and pinch pointlike patterns become visible at
their intersections. Similar features at the same momenta are
well known from nearest-neighbor kagome antiferromagnets
which are characterized by an extensive ground-state degener-
acy. These similarities indicate that at finite temperatures, the
system may explore parts of this extensive manifold of states.
It can further be seen that the broadening of streaks occurs in
a continuous manner without any noticeable abrupt changes.

In principle, one would also expect to see the fourfold
pinch points discussed in Ref. [94] which are characteristic
for rank-2 U(1) electrostatics theories. However, the strong
streaks in momentum space which follow from the reduced
ground-state manifold mask these features. We still expect
that when considering a larger manifold of states including a
suitable set of excited states, the fourfold pinch points should
become visible. This requires access to the dynamical spin
structure factor and integrating it over some suitably chosen
low-energy range. We leave such an analysis for future work.

Turning to the Monte Carlo results [see Figs. 15(e)–15(h)]
we observe qualitative agreement with the large-n approx-
imation at sufficiently large temperatures T � J1 where
broadened streaks dominate the magnetic response. The in-
tactness of these streaks indicates that the system undergoes
the characteristic fluctuations of color swaps along lines of
alternating colors. Lowering the temperature below T ≈ 0.8J1

(which is the peak position in the specific heat), the signal
shows a sudden rearrangement not seen in large n, where
pronounced peaks at q = 0 order positions (located at the
intersections of the streaks) emerge. The absence of streaks
in momentum space indicates that the system can no longer
realize the aforementioned linelike fluctuations since any in-
tersection of a flipped two-color line with a domain wall
creates defects associated with an excitation energy. The
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FIG. 15. Spin structure factor of the J1-J5� model for different temperatures T . Top row [(a)–(d)]: spin structure factor in large-n
approximation. Bottom row [(e)–(h)]: spin structure factor of the three-state Potts model from classical Monte Carlo for γ = 10−5 and L = 100.
The lattice constant of the kagome lattice has been set to unity for the definition of q. (i) Spin structure factor S(q0) at the q = 0 order position
q0 = (0, π/

√
3) as a function of temperature in large-n approximation (blue line, rescaled by a factor of 4 for better visibility) and from Monte

Carlo simulations in the three-state Potts model (red line). Note that the spin structure factor in the large-n approximation is only calculated
for one spin component.

system, hence, gets arrested in states with patchlike patterns
of different q = 0 domains as shown in Fig. 14. To further
investigate the thermal behavior of domains it is instructive
to plot the spin structure factor at the q = 0 order positions
[e.g., at q0 = (0, π/

√
3)] as a function of temperature [see

Fig. 15(i)]. In an ideal q = 0 state each site contributes 4
9 to

S (q0) while on length scales larger than the typical domain
size the correlations decay to zero. Hence, the spin structure
factor at the q = 0 order positions provides a direct measure
of domain sizes. Figure 15(i) reveals that below the steep
increase at T ≈ 0.8J1 this quantity further grows, indicating
a limited mobility of domain walls, but eventually shows a
plateaulike behavior at small temperatures [this is in contrast
to the smooth increase of S (q0) in large-n approximation;
see blue line in Fig. 15(i)]. Note that the plateau value is
still significantly smaller than the maximal possible value of
716 due to the system’s finite size and, hence, the plateau
is no finite-size effect. Obviously, in this low-temperature
regime the system gets stuck in local minima. We, therefore,
conclude that the system undergoes a glasslike transition at
T ≈ 0.8J1.

For a 2D system without any continuous degrees of free-
dom, Mermin-Wagner theorem does not apply and one may
expect a finite-temperature transition to a long-range magneti-
cally ordered state associated with a thermal order-by-disorder
selection. However, this would require that all subsystem
symmetries are spontaneously broken which is impossible at
finite temperature due to a generalized Elitzur theorem [95].
Therefore, the system cannot display a long-range-ordered
low-temperature phase. Instead, at any finite T we observe
a dilute gas of single defects (which are the lowest-energy
excitations) as shown in Fig. 14. These defects are connected
by a network of domain walls, where each wall disrupts the
q = 0 correlations. Indeed, already one single defect in an
otherwise defect-free system has domain walls sticking out in

four directions which is sufficient to destroy long-range q = 0
order.

3. Autocorrelation function

To further substantiate the glassy dynamics at small tem-
peratures, we discuss the system’s autocorrelation function

A(t ) = 1

N

∑
i

〈Si(t0) · Si(t0 + t )〉 (28)

for varying temperatures. Again, 〈. . .〉 denotes an averaging
over independent simulation runs. The time argument of the
spin variables denotes the Monte Carlo step. The initial time
t0 is given by the Monte Carlo step at which our exponential
cooling protocol reaches the desired temperature T . Since we
use the smallest cooling rate γ = 10−5 for the initial equili-
bration, the time t0 corresponds to a “long waiting time” such
that for large t the autocorrelation function A(t ) approximates
the Edwards-Anderson parameter [96] for spin glasses qEA

defined as

qEA = lim
t→∞ lim

t0→∞ lim
L→∞

1

N

∑
i

〈Si(t0) · Si(t0 + t )〉. (29)

After the time t0, the temperature is kept constant and the data
sampling for A(t ) starts.

The results in Fig. 16 confirm the expected behavior. For
temperatures T � J1 the autocorrelation function A(t ) quickly
decays to zero showing that the system loses its memory about
the initial state. On the other hand, in the low-temperature
regime T � 0.3J1 practically no evolution in t is observed
and the autocorrelation functions remain close to one. The
general property of slow relaxation rates at small temperatures
has already been made in other fracton models (see, e.g.,
Refs. [11,29]); however, details of the thermalization process
may differ since our system is lacking quantum dynamics.
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FIG. 16. Autocorrelation function A(t ) [see Eq. (28)] of the
three-state Potts model for system size L = 100 and different tem-
peratures T . The initial equilibration prior to the measurement of
A(t ) has been performed with a cooling rate of γ = 10−5. Note that
the blue and red curves lie almost on top of each other.

It is worth emphasizing that even though the system shows
signatures of glassy behavior, it still differs from conventional
spin glasses. According to common understanding, a spin
glass exhibits a distribution of energy barriers whose heights
scale as a power law in L. In our case, however, removing
an isolated fracton in an otherwise defect-free system is as-
sociated with a constant energy barrier (on the order of J1)
independent of system size. Rather, the slow dynamics at
small T is due to the fact that the minimal number of spin
flips required to remove such a defect scales with a power law
in L.

B. XY model

1. Internal energy, specific-heat, and low-temperature
spin configurations

Next, we investigate thermodynamic properties of the XY
J1-J5� model. The system’s internal energy per site E (T )/N
from classical Monte Carlo for various γ and fixed L = 100
is shown in Fig. 17(a). In comparison to the three-state Potts
model, convergence in the cooling rate is much better, i.e., γ

can be chosen significantly larger. This is due to the fact that
the continuous spin degrees of freedom facilitate the system’s
escape from local energy minima. Similarly, convergence with
respect to system size L (not shown here) is also found to be
much better. At low temperatures the internal energy is well
approximated by E (T )/N = −1.5J1 + T/2 where Eexact(T =
0)/N = −1.5J1 is the exact ground-state energy and the term
T/2 is the expected contribution from a single quadratic mode
per site. The system’s specific heat cv (T ) obtained from dif-
ferentiating E (T ) is plotted in Fig. 17(b). As will be discussed
further below, a pronounced peak at T ≈ 0.27J1 is again as-
sociated with a crossover into a glassy phase.

A typical low-temperature real-space spin configuration is
shown in Fig. 18(a). Apart from the individual spin orien-
tations, the figure also highlights the domain walls between
different local q orders which we define via the spin chiralities
κ on J1 triangles:

κ = S1 × S2 + S2 × S3 + S3 × S1. (30)

FIG. 17. (a) Energy per site E (T )/(J1N ) for the XY J1-J5� model
with L = 100 and varying γ . At small temperatures, the Monte Carlo
data approximately follow E (T )/N = −1.5J1 + T/2, as indicated
by the dashed line. (b) Specific heat cv (T )/N for L = 100 and vary-
ing γ obtained by differentiating E (T ).

Here, S1, S2, S3 are the three spins in a (upward- or downward-
pointing) J1 triangle ordered in a counterclockwise manner.
If two neighboring triangles have parallel (antiparallel) chi-
ralities κ they belong to the same domain (are separated by
a domain wall passing through the shared spin). As in the
three-state Potts model, single fractons are clearly observed
via their characteristic structure of crossing domain walls,
indicated by magenta stars. Interestingly, however, one also
finds kinks in the domain walls enclosing angles of π/3 or
2π/3 (blue stars) which are forbidden in a three-color model.
We argue in the following that these spin configurations are
fractional vortices known from classical nearest-neighbor XY
kagome antiferromagnets [50,69,70].

To start with, we illustrate in Fig. 18(b) an attempt to con-
struct a three-color spin state with a domain wall exhibiting a
π/3 kink (thick gray line). Obviously, the restriction to only
three spin orientations creates mismatches along a branch cut
(orange wavy line) where defect triangles are unavoidable.
Comparing the two gray shaded triangles in Fig. 18(b) reveals
that on both sides of the branch cut the spin configurations
differ by a cyclic permutation of the three colors (which is
equivalent to a 2π/3 spin rotation). Hence, when allowing for
continuous in-plane spin orientations, this branch cut can be
removed by a rotation of all spins by an angle ϕ ∈ [0, 2π/3)
which varies continuously when encircling the kink [such
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FIG. 18. (a) Real-space spin configuration in the XY J1-J5� model at T = 0.01J1 obtained for γ = 0.0001. Domain walls are illustrated
by black lines defined via antiparallel chiralities κ [see Eq. (30)] on neighboring J1 triangles. Fractons (fractional vortices) are indicated by
magenta (blue) stars. The triangular domain walls highlighted by red lines in the upper part of the figure show a typical pattern where the
positions of one vortex and two fractons are fixed with respect to each other. (b) Construction of a fractional vortex starting from a three-color
state with a kinked domain wall (thick gray line) (see text for details). The blue star indicates the vortex core and the wavy orange line
is a branch cut of defect triangles. (c) Fractional vortex obtained after rotating the spins in (b) by an angle specified on the outer circle.
(d) Alternative domain-wall configurations of fractional vortices.

rotation angles are specified on the outer circle in Fig. 18(c)].
The resulting spin configuration in Fig. 18(c) can be consid-
ered as a 1

3 fraction of a conventional integer vortex since the
local trio of spins rotates by an angle of 2π/3 when moving
around the core. There are several other possible domain-wall
structures for fractional vortices where either two or four
domain walls emanate from the core [see Fig. 18(d)]. Note
that vortices with an odd number of emanating domain walls
are not possible. This is because when trying to construct such
vortices in a three-color model, the states on both sides of the
branch cut differ by an odd permutation. Such a mismatch
cannot be removed by a continuous twist but requires a mir-
ror operation in spin space (which is equivalent to inserting
another domain wall).

Fractional vortices are well known in nearest-neighbor
XY kagome antiferromagnets where they undergo a usual
Kosterlitz-Thouless binding and unbinding transition. The as-
sociated transition temperatures are, however, substantially
reduced compared to models with integer vortices [69,70].
As discussed below, in our systems the Kosterlitz-Thouless
transition even appears completely suppressed. A first obvi-
ous difference compared to more conventional XY magnets
is that fractional vortices cannot be placed everywhere in
the system without creating additional defects. Particularly,
since fractional vortices exhibit domain walls, their real-space
positions highly depend on the fracton positions. A typi-
cal configuration is shown in the upper part of Fig. 18(a)
where a triangle of domain walls is highlighted by red
lines. In this spin arrangement two single fractons and a
fractional vortex of the type of Fig. 18(c) are forced to form
an equilateral triangle. [In contrast to Fig. 18(c), however,
the 2π/3 twist is not evenly distributed around the vortex
core but is only found in the (2π − π/3) segment outside
the kink. Inside the π/3 segment a homogeneous q = 0 state
is realized.] Another difference compared to conventional
XY magnets is that depending on the precise arrangement

of domain walls, a fractional vortex-antivortex pair does
not necessarily decay to a ground state when merged, but
may result in a fracton. As a consequence of these restric-
tions, thermal fluctuations of vortex states which drive the
Kosterlitz-Thouless transition in more conventional XY mag-
nets [71–73] are strongly suppressed. Indeed, our systems
do not display the characteristic properties of the quasi-long-
range ordered state below a Kosterlitz-Thouless transition.
First, even at the lowest simulated temperatures a complete
binding of vortices into short-distance vortex-antivortex pairs
is not observed in our numerical outputs. Second, the spin
correlations 〈Si · S j〉 show a clear exponential decay as a
function of the distance between sites i and j down to T =
0.01J1 (see Fig. 19). This is opposed to the power-law cor-
relations and short-distance vortex-antivortex pairs observed

FIG. 19. Real-space spin correlations 〈Si · S j〉 of the XY J1-J5�
model as a function of the distance |ri − r j | between spins for tem-
peratures T = 0.01 and 0.1 using γ = 0.0001 and L = 100. To avoid
sublattice effects, only sites on the same kagome sublattice have been
considered. Lines are exponential fits of the data.
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FIG. 20. (a) Spin structure factor S(q0) of the XY J1-J5� model
at the q = 0 order position q0 = (0, π/

√
3) as a function of temper-

ature for γ = 0.0001 and L = 100. (b) Autocorrelation function of
the XY J1-J5� model [see Eq. (28)] at different temperatures T for
L = 100. The initial equilibration has been performed with a cooling
rate of γ = 0.0001.

in conventional XY magnets below the Kosterlitz-Thouless
transition. It is worth emphasizing, however, that due to slow
thermalization our low-temperature Monte Carlo data should
be interpreted with caution. Hence, we cannot generally ex-
clude the possibility that a perfectly thermalized ensemble of
states would show a Kosterlitz-Thouless transition at small
temperatures.

2. Spin structure factor and autocorrelation function

In this section we demonstrate based on the spin structure
factor and the autocorrelation function that despite the larger
configuration space of the spins and the occurrence of vor-
tices, the system still behaves glassy at small temperatures.

The spin structure factors of the XY J1-J5� model and
the three-state Potts model (presented in Fig. 15) are quali-
tatively similar. Particularly, streaks of strong signal forming
a kagome lattice are found at large temperatures while sharp
peaks at q = 0 order positions dominate the response at small
T . To capture this behavior it is sufficient to plot the spin struc-
ture factor at these peak positions [see Fig. 20(a)]. Similar to
the Potts model, this quantity shows a sharp increase (approx-
imately at T ≈ 0.27J1) which matches the temperature of the
peak in the specific heat. Compared to the three-state Potts
model, however, this crossover is significantly reduced in tem-
perature. Below T ≈ 0.2J1, the peaks only show a moderate

increase, indicating that the system enters a glassy phase with
reduced domain-wall motion.

The system’s glassiness is also reflected in the autocorrela-
tion function as defined in Eq. (28) and plotted in Fig. 20(b).
We note that in these results we explicitly eliminated a possi-
ble global drift, i.e., an overall spin rotation as a function of
Monte Carlo time. Such effects lead to a spurious decay of
the autocorrelation function, especially at small system sizes
L. To remove this behavior we rotated the spin state at time
t0 + t into a frame where for a given site i the spin directions
Si(t0) and Si(t0 + t ) are identical. Effectively, this allows one
to reduce finite-size effects [97]. As shown in Fig. 20(b) the
temporal behavior of the autocorrelation function is clearly
different in the high-temperature regime T � 0.3, where a
rapid decay to zero is found, and at low temperatures T � 0.1,
where correlations remain finite in the long-time limit.

C. Heisenberg model

1. Internal energy, specific-heat, and low-temperature
spin configurations

In this section we discuss the thermal behavior of the
Heisenberg J1-J5� model with a particular focus on the fate
of defect states. The trend towards faster equilibration when
going from the three-state Potts to the XY model continues for
the Heisenberg model: the energy per site E (T )/N is already
well converged for a cooling process with a rather large γ =
0.001 [see Fig. 21(a)]. At small T the energy is well approxi-
mated by a straight line E (T )/N = −1.5J1 + T corresponding
to two quadratic modes per spin. Particularly, this result indi-
cates the absence of local zero modes which are, e.g., present
in Heisenberg antiferromagnets with nearest-neighbor cou-
plings only [where the energy shows the well-known low-T
behavior E (T )/N ∼ 11T/12 [48]]. The system’s specific heat
cv (T ) in Fig. 21(b) exhibits a peak at T ≈ 0.14J1 which is
again significantly lower compared to the three-state Potts and
XY models. As we will discuss below, this peak again marks
a crossover into a low-temperature regime where thermal fluc-
tuations slow down; however, the equilibration process is still
qualitatively different compared to the three-state Potts and
XY models.

An important property explaining these differences is that
local low-energy defect states are unstable in the Heisenberg
model. For the isolated fractons constructed in Sec. III C 1 this
has already been discussed: There are paths in configuration
space where a defect state can be continuously transformed
into a ground state and along which the energy decreases
monotonically. Vortex states are, likewise, unstable since lo-
cal three-component spins do not support a topologically
protected vorticity. Nevertheless, the relaxation process of
defects is very slow, such that it can be numerically costly
to obtain perfectly thermalized ensembles within classical
Monte Carlo. Energetically, our numerical outcomes seem to
be close to thermal equilibrium [see Fig. 21(a)], however, the
real-space spin configurations still show remnants of decaying
fractons.

An example for a spin configuration obtained at L = 100,
T = 0.01J1, and for the slowest simulated cooling rate γ =
0.001 is shown in Fig. 22(a). For each lattice site the angle
between the spin chiralities [see Eq. (30)] for the two adjacent
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FIG. 21. (a) Energy per site E (T )/(J1N ) for the Heisenberg
J1-J5� model with L = 100 and varying γ . The Monte Carlo data
approximately behave as E (T )/N = −1.5J1 + T at small tempera-
tures, as indicated by the dashed line. (b) Specific heat cv (T )/N for
L = 100 and varying γ obtained by differentiating E (T ).

J1 triangles is plotted, i.e., for a homogeneous q = 0 state
(domain wall in the three-state Potts model) this angle is
zero (π ). In the case of three-component Heisenberg spins,
however, any intermediate value may also be assumed. As
can be seen in Fig. 22(a), the system features a network of
domain walls where intersections correspond to fractonlike
defects. A typical example is highlighted in the upper right
corner (black circle) where two domain walls cross. However,
the fading of two legs with increasing distance from the defect
core indicates that this defect is in the process of decaying. To
compare this spin arrangement with an intact fracton defined
by a single defect hexagon, we plot in Fig. 22(b) a state with
u = 1, v = 0.57, and w = −0.8 as has been constructed in
Sec. III C 1. We generally find that for smaller cooling rates
γ these residual defect patterns become rarer such that we
attribute them to incomplete thermalization.

2. Spin structure factor and autocorrelation function

To further characterize the low-temperature regime we dis-
cuss the magnitude of the spin structure factor at the relevant
q = 0 momenta which indicates the size of contiguous q = 0
order domains. As shown in Fig. 23(a), similar to the previous
two models, S (q0) exhibits a sharp increase at a temperature
that matches the peak position in the specific heat. However,
as a clear distinguishing feature S (q0) does not show a plateau

FIG. 22. (a) Real-space spin configuration of a numerical out-
come obtained for the Heisenberg J1-J5� model at T = 0.01J1, L =
100, and γ = 0.001. For each site, the angle between the spin chiral-
ities [Eq. (30)] on the two adjacent J1 triangles is plotted. The black
circle highlights a typical decaying defect state. (b) For comparison,
an intact isolated defect in a single hexagon with u = 1, v = 0.57,
and w = −0.8 (see Sec. III C 1) is illustrated, using the same plotting
scheme as in (a).

at small T but instead keeps growing and is eventually only
limited by the system’s finite size. In accordance with the
real-space plot in Fig. 22(a) these results indicate that at low T
the system exhibits approximate q = 0 order configurations,
however, the system does not freeze in such states but keeps
slowly evolving towards more accurate q = 0 order realiza-
tions as the temperature is further lowered.

The autocorrelation function A(t ) in Fig. 23(b) reveals the
same behavior. It is worth highlighting that in these results
we have again eliminated effects of a global drift between
the two times t0 and t0 + t . Particularly, we have globally
rotated the system at time t0 + t such that Si(t0 + t ) at a given
site i points in the same direction as Si(t0). Additionally, a
second overall rotation around Si(t0) needs to be performed
which ensures that Si(t0), S j (t0), and S j (t0 + t ) all lie in
the same plane (where i and j are arbitrary but fixed) [65].
The autocorrelation function obtained this way again
shows the two temperature regimes. While at temperatures
above the heat-capacity peak a few Monte Carlo steps are
sufficient to completely suppress A(t ), in the low-temperature
regime a slow decrease is observed. However, even at T =
0.01J1 the autocorrelation function does not seem to saturate
at a finite value for large t , consistent with an ongoing but slow
thermalization process.

In summary, both results in Fig. 23 indicate a low-
temperature regime with slow spin dynamics. In contrast to
the previous two systems, however, this behavior is not caused
by energy barriers and local energy minima in which the
system may get trapped. Rather, the slow thermalization pro-
cess stems from the equilibration dynamics of defects whose
decay requires the simultaneous modification of an extensive
number of spins.

V. DISCUSSION AND CONCLUSION

Fracton states of matter represent a vast landscape, stretch-
ing from the field of quantum information and quantum
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FIG. 23. (a) Spin structure factor S(q0) of the Heisenberg J1-J5�
model at the q = 0 order position q0 = (0, π/

√
3) as a function of

temperature for L = 100 and γ = 0.001. (b) Autocorrelation func-
tion of the Heisenberg J1-J5� model at different temperatures T and
L = 100. The initial equilibration has been performed with a cooling
rate of γ = 0.001.

many-body theory to experimental realizations. In this work,
we studied in detail how to realize fracton states on the
kagome lattice, a paradigm of two-dimensional frustrated
magnetism. We analyzed an array of models with different
interactions and different elementary degrees of freedom, us-
ing a combination of analytical and numerical techniques.
They all have the characteristic subsystem symmetries and
host fracton excitations, but their quantitative properties vary
depending on the model. For example, the three-state Potts
model and the XY model share the same ground-state degen-
eracy structure aside from the global rotational symmetry of
the XY model; however, the Heisenberg model enjoys a much
larger degeneracy from subsystem operations on nonparallel
lines. The three-state Potts model and the XY model also share
similar fracton excitations that are stable and have a finite size,
while fractons in the Heisenberg model can smoothly decay
into ground states at a power-law speed.

Using classical Monte Carlo, we studied the thermal
properties of the models via their heat capacities, spin
structure factors, and real-space spin configurations. In the
three-state Potts model, we discovered a crossover from a
high-temperature paramagnetic phase to a low-temperature
spin-glass phase. A similar crossover occurs in the XY model,
where we additionally observe fractional vortices which, how-
ever, do not undergo a Kosterlitz-Thouless transition due to

their fracton nature. While the Heisenberg model likewise
shows a crossover into a low-temperature regime, its dynam-
ics is not completely frozen, due to the long-time instability
of fractons.

We also find an unusual deviation from the conventional
type-I fractons: In the kagome model, a single fracton can-
not be isolated from a ground state by extending a fracton
quadrupole to infinity. This, and various other low-energy
properties of the model, can be explained by viewing the
kagome model as an embedding in the cubic fracton model.

We note that the exact subextensive degeneracy in the
models discussed here is not robustly protected. Small per-
turbations breaking the subsystem symmetry will lift the
degeneracy, and may lead to an ordered ground state. How-
ever, this is the case for fine-tuned classical spin-liquid models
in general, and is not disastrous to the physics. Although
small perturbations split the energy levels of the formerly
degenerate ground states, their energy level differences are at
the scale of the perturbations. At a finite temperature above
such scale, which is often the case in real experiments, the
system still visits all the low-lying states and stays in the
spin-liquid phase. In a loose sense, the classical spin-liquid
phase is “protected” by the temperature (thermal statistics),
similar to topologically ordered phases which are protected
by the quantum dynamics.

Many interesting questions follow from this work. Our
discovery suggests that there is an underlying effective theory
of fractonalized vortices that is equivalent to the classical 2D
fracton model with subsystem symmetries. It will be interest-
ing to pursue a clearer understanding of this equivalency.

Despite being very challenging, it would also be interesting
to upgrade the models to their quantum versions, and explore
the fate of fractons therein. While it is generally hard to
speculate about the properties of the quantum model, there
are various arguments according to which 2D fractons un-
dergo confinement upon including quantum fluctuations [98].
This destabilizes fracton phases and may result in a more
conventional phase such as long-range magnetic order, dimer
solid, or an ordinary quantum spin liquid. Another scenario
for the quantum model is that, despite showing confinement
at low energies, effective fracton behavior still survives in a
finite-temperature regime. In future investigations, problems
of stability can also be avoided by extending our models
to three dimensions. For example, frustrated magnets on the
pyrochlore, hyperhyperkagome, and trillium lattices [85–87]
may be good candidates for realizing fractons.

We hope that this work lays some groundwork for finding
experimentally realistic scenarios to realize fractons, and will
be useful for both future experiments as well as other model
building efforts.
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