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Influence of impurities on the phase transitions in chiral magnets: Monte Carlo calculations
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Using classical Monte Carlo simulation we investigate the evolution of the specific heat in chiral magnets
with impurities. Our calculations are made in the framework of a spin lattice model and could be applicable
to an analysis of the specific heat in transition-metal monosilicides Mn1−x(Fe,Co)xSi with increasing doping.
We propose two tentative models for impurity positions in the lattice. In the first one, impurities substitute the
regular transition-metal ions in a parent compound. The second one treats impurities as frozen spins placed
into interstitial positions of the regular lattice and coupled with their nearest neighbors by random exchange
interactions. In both models an increase of doping leads to a quick degradation of the magnetic phase transition,
though an evolution of the hump anomaly is not similar. We provide a comparison of the behavior of the specific
heat and Bragg scattering amplitude for these two models.
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I. INTRODUCTION

One of the debating topics in the physics of the chiral
helimagnets is the description of their magnetic phase tran-
sition which is characterized by an unusual behavior of a
number of thermodynamic quantities. In particular, one sees
the formation of the hump anomaly in the heat capacity,
thermal expansion, and elastic moduli above the temperature
of the magnetic phase transition [1–5]. This anomaly results
from the strong spin fluctuations as is revealed by the small
angle neutron scattering experiments [6–9]. The experiments
indicate strong chiral fluctuations in scattering intensity at
temperatures corresponding to the hump anomaly. In k space
these fluctuations are localized in a spherical layer with a
radius equal to a wave vector of the corresponding helix in
the low-temperature spiral phase.

Another interesting aspect of the subject is the role of dis-
order and its effect on the magnetic phase transition in chiral
magnets. Doping has different effects on the magnetic struc-
ture of MnSi and MnGe parent compounds. Doping MnGe
by Fe shows continuous evolution of the spin helix wave
vector from its maximum value for pure MnGe to zero value
at xc � 0.75, and an increase to another maximum value for
the pure FeGe [10]. Compound Mn1−xFexGe is magnetically
ordered in the whole range of concentrations. The opposite
effect appears on doping MnSi; material Mn1−xFexSi shows
spin ordering only in a narrow interval of doping concentra-
tion x � 0.17, while pure FeSi is not magnetically ordered.

The detailed study of the evolution of the helimagnetic
correlation in Mn1−xFexSi with doping indicates [11,12] that
the helimagnetic Bragg peaks disappear at doping concen-
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tration x∗ ∼ 0.11, while the magnetic transition temperature
vanishes at a larger concentration xc ∼ 0.17. Concentration
x∗ corresponds to an abrupt disappearance of the long-range
helimagnetic periodicity [11], and the range of composition
between x∗ and xc corresponds to short-range helimagnetic
correlations and is viewed as a consequence of a chiral spin
liquid state [12]. An analysis of the behavior of thermody-
namic quantities in Mn1−xFexSi and Mn1−xCoxSi [13–15]
shows that impurities eliminate the signature of the first-order
transition; they spread the fluctuation maximum of the specific
heat in a such way that its low-temperature part presum-
ably reaches zero temperature. This suggests that intensive
helical fluctuations accompanying the magnetic transition in
helimagnets over a significant range of doping concentra-
tions at finite temperatures become quantum close to zero
temperature [16,17].

Another important development in the field is the discovery
of a spin-glass state in Mn1−xCoxSi for Co concentrations
0.05 < x < 0.90 [18]. This state is attributed to a forma-
tion of localized magnetic moments. Helimagnetic structure
is conserved only in a concentration range below x = 0.04;
above the critical concentration xc = 0.06 the compound
Mn1−xCoxSi does not show any magnetic order [18]. In recent
measurements, however, the formation of a spin-glass state for
Co concentrations lower than x = 0.5 was questioned [15].
The discrepancy probably originates from an inaccurate cal-
culation of the impurity concentration after annealing in [18].

In the present study we investigate helimagnetic correla-
tions and the thermodynamic response in a chiral helimagnet
with transition-metal impurities; the main application of our
model we have in mind is Fe or Co doping to the itinerant
helimagnet MnSi. For the parent helimagnet we use a classical
model of unit spins placed onto sites of the regular lattice
which are coupled by exchange and Dzyaloshinskii-Moriya
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(DM) interactions. We propose two models to take into ac-
count the doped atoms. In the first model we assume that an
impurity replaces a regular Mn ion in the parent compound.
In terms of the spin lattice model it amounts to a substitution
of an impurity spin in place of a regular spin. Such a substitu-
tion would naturally modify the exchange and DM coupling
constants of the impurity spin with its neighbors.

In the second model we add impurities into interstitial
positions of the lattice and treat the dopant as a frozen spin.
For each frozen spin we set random exchange couplings with
nearest spins of the regular lattice. Such an arrangement of
impurities is probably more relevant for an experiment when
one knows only the amount of the dissolved impurities but
does not know exactly where they reside in the lattice. We
believe that these two phenomenological arrangements of im-
purities are relevant for low impurity concentrations far from
quantum criticality and allows one to partly explain to what
extent the classical model of spin-spin interaction can capture
the physics of helimagnets upon doping.

We use a classical Monte Carlo (MC) simulation technique
to investigate the thermodynamic response of the system upon
doping. We compare the evolution of the specific heat and the
corresponding spin structures of both models, and find that
the main signature of the unusual temperature behavior of the
specific heat, namely, the hump anomaly, persists with doping.
Upon doping helimagnetic correlations reveal themselves in a
similar way as for the parent MnSi, namely, the ring-shape
structure of the Bragg intensity profile is seen in a tempera-
ture range above that of the magnetic transition temperature.
However, the evolution of the hump profile is different in the
proposed models.

II. MODEL

For the parent helimagnet we use the lattice spin
model [19–24], which treats spin variables as classical unit
vectors coupled by exchange and DM spin-spin interactions.
The Hamiltonian of the model reads

Hlat = −
∑

r,r′
Jrr′Sr · Sr′ −

∑

r,r′
Drr′ (Sr × Sr′ ) · nrr′ . (1)

Variables Sr = (Sx
r , Sy

r, Sz
r ) are classical spins of unit length,

|Sr | = 1, arranged into a cubic lattice. The first and second
terms describe the exchange and DM interaction between
spins at sites r and r′. Below we suppose coupling constants
Jrr′ = J and Drr′ = D to be nonzero only for the nearest-
neighbor sites and zero otherwise. The summation on r is over
sites of the cubic lattice spanned by vectors x̂, ŷ, and ẑ. A unit
vector nrr′ is directed from r to r′, a vector r′ indexes a half of
the nearest neighbors of r, i.e., r′ = r + x̂, r + ŷ, r + ẑ, and
the lattice spacing is taken to be unity, a = 1.

The exchange term (with J > 0) favors ferromagnetic spin
alignment while the DM interaction twists neighboring spins
relative to each other. In the low-temperature phase spins are
arranged into a spiral with a wave vector k with a magnitude
proportional to D/J and a sense of rotations defined by the
sign of the DM interaction, a right-handed spiral corresponds
to a positive D in Eq. (1). The Hamiltonian Hlat supplemented
in an applied magnetic field with Zeeman term is widely

used for MC simulation in two- and three-dimensional chiral
magnets [21,23,25–29].

To describe a doped material one has to add an impurity
term to Eq. (1). A unit cell of a real helimagnet such as MnSi
is rather complicated; it contains four Mn and four Si ions
and the real microscopic Hamiltonian takes into account this
structure [30–32]. In the spin lattice model several unit cells
are combined into a block cell with a resulting block spin Sr

which enters the Hamiltonian (1). To keep the matter simple
we consider two possible arrangements of impurities. In the
first model we assume that an impurity ion is substituted in
place of one of the Mn ions and this leads to a new effective
impurity spin Sc

r for a given block cell positioned at r. We
assume that the impurity spin can be treated in the framework
of the lattice spin model as a new spin variable of unit length
coupled with neighboring spins of the regular lattice by some
modified exchange and DM coupling constants J ′ and D′. In
principle, there can be a case when two doped spins occur
at neighboring sites r and r′. At low doping concentration
(x < 0.2) such cases are every rare, and besides, rich-impurity
samples that we do not consider here would mimic FeSi or
CoSi which as known are not magnetic, hence in our model we
put couplings J ′ and D′ to zero for two neighboring impurity
spins.

In the second model we leave regular spins at their sites
and add impurities into interstitial positions, i.e. place them
between sites of the regular lattice. We again assume that the
impurity can be treated as a unit spin Sc

i . The impurity spin
is considered frozen in some random direction and coupled
by random exchange couplings with its eight nearest-neighbor
spins Sr of the regular lattice. These couplings Jc

ir are chosen
randomly from an interval [0, 1]. As a result the doping part
of the Hamiltonian can be described by a term

Himp = −
∑

i,r(i)

Jc
ir Sc

i · Sr, (2)

where i indexes a summation over all impurity spins Sc
i and

r(i) means a sum over eight nearest neighbors of the impurity
spin.

Below we refer to the first and second models as model A
and model B, respectively. The first can be formally described
by the Hamiltonian Hlat in which the coupling constants Jrr′

and Drr′ are modified according to whether two regular spins
or a regular and an impurity spin are coupled. The second
model is described by the Hamiltonian Hlat + Himp. In the
model B the dynamics of regular spins are affected by the
random frozen spins disseminated over the lattice, which turns
out to greatly affect the magnetic structure of the lattice spins.

MC simulations were carried out on a L × L × L cubic
lattice of size L = 30 with periodic boundary conditions using
a standard single-site Metropolis algorithm. In calculations we
hold the parameter J = 1 fixed, serving as a unit of tempera-
ture. We start simulation at high temperature well above the
magnetic transition temperature and then gradually decrease
the temperature by sufficiently small steps �T = 10−2. We
use 106 MC steps per spin (MCS) to equilibrate the system
and the next 106 MCS to gain statistics. The equilibrated
spin configuration is used as the initial spin configuration for
the next run at a lower temperature. After we find the full
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temperature dependence of C(T ) we make several runs with
different arrangements of impurities and then average over the
impurity distribution. In most runs we use nd = 8 impurity
distributions; we checked that the increasing of nd does not
change the resulting behavior of C(T ).

Discussing the Vollhardt invariance below, we apply an
external magnetic field B along the z axis; the corresponding
term in the Hamiltonian is Hm = −B

∑
r Sz

r . We use a pro-
tocol in which the system is cooled in a constant magnetic
field. Different schemes of simulation in magnetic field do not
change the Vollhardt crossing point and are discussed by us in
Ref. [29].

From the simulation we directly calculate average spin
configurations 〈Sr〉, and an energy density, E (T ) = 〈H〉/N ,
N = L3. The specific heat we find by two ways: from differ-
entiation of the energy density C = dE/dT and from energy
fluctuations C = N (�E )2/T 2. The comparison of relevant
results is discussed below.

To analyze various spin configurations 〈Sr〉 we find Fourier
components, 〈Sq〉 = 1/N

∑
r〈Sr〉e−iq·r and then Bragg inten-

sity profiles I (q) ∝ |〈Sq〉|2. Presenting I (q) we set 2π/L as a
unit length in the q space. A spin spiral with a wave vector k,
Sr = S⊥[e1 cos(k · r) + e2 sin(k · r)], is characterized by two
separate peaks of the I (q) at points q = ±k. This and other
spin structures are convenient to analyze with the help of a
projected intensity, I∗(q̄) = ∑

qz (qy ) I (qx, qy, qz ), which shows
the profile of I (q) projected onto (qx, qy) or, respectively, onto
the (qx, qz ) plane. For a spin spiral the projected intensity
is I∗(q̄) = (S2

⊥/2)(δq̄,k̄ + δq̄,−k̄ ), where two-dimensional vec-
tors q̄, k̄ are projections of vectors q, k onto the corresponding
plane.

III. RESULTS AND DISCUSSION

A. Model A

To illustrate the dependence of the specific heat on the
impurity concentration we start our discussion with results
obtained for model A. We set a parameter of DM interaction
D = 0.75. This value was used in our previous calculations
in analysis of the specific heat in parent MnSi [28,29] and
it gives a pitch length of a spin spiral approximately equal to
� = 10a in the x̂ direction. Coupling constants for an impurity
spin with its neighbors were chosen in a phenomenological
way to be J ′ = 0.1 and D′ = 0. Such a choice is dictated by
experimental findings [14] which indicate that a substitutional
replacement of Mn with Fe or Co suppresses the helimagnetic
order in MnSi; in other words, in terms of the effective model,
Eq. (1), such a substitution deteriorates DM coupling between
impurity and the regular spin. Comments about other values
of J ′, D′ will be provided below.

Figure 1 shows the evolution of the temperature de-
pendence of the specific heat with increasing impurity
concentration. Function C(T ) is obtained from the fluctuation
of the thermodynamic temperature. In a doping range from
x = 0 to x � 0.15 the behavior of C(T ) is typical of parent
magnet MnSi; it shows a sharp peak of the magnetic first-order
transitions followed by a second broad maximum anomaly,
usually referred to as a hump, which extends over a tempera-
ture range up to 1.5J . With increasing doping, the first-order

FIG. 1. Temperature dependence of the specific heat C(T ) for
different doping concentration x for model A. Function C(T ) is
obtained from fluctuation of the thermodynamic energy. The in-
set shows C(T ) obtained by differentiation of the thermodynamic
energy.

peak shifts to lower temperature; it broadens and finally be-
comes degraded and disappears at x ∼ 0.2. This resembles the
experimental situation found in Mn1−xFexSi [12–14]. In the
same figure we also present for comparison the specific heat
obtained from direct differentiation of the thermodynamic
energy. Two C(T ) dependencies are similar to each other.

It is instructive to compare the evolution of C(T ) when one
varies the parameter x with those obtained in an applied mag-
netic field B when one varies the magnitude of the field [29];
the two evolutions are different. Whereas in magnetic fields
B � 0.5 the hump flattens out in such a way that the C(T )
curves for different B intersect with each other nearly at one
point signaling the occurrence of the Vollhardt crossing phe-
nomenon [33] and in fields B � 0.5 the hump gradually starts
to shift to higher temperatures; the variation of x leads to a
quite opposite behavior: the maximum of the hump anomaly
quickly diminishes and shifts to lower temperatures.

We also tested several other values of J ′ and D′. For mag-
nitudes of J ′ in a range from 0.03 to 0.2 and D′ lower than
0.1 we did not find substantial qualitative distinction in the
resulting C(T ) curves. However, upon increasing the value of
J ′ up to 0.5 and D′ up to 0.2 we find that the sharp peaks
of the specific heat persist and shift to lower temperatures in
a wider range of doping concentrations, larger than x ∼ 0.2.
In our simplified model which treats an impurity as a simple
substitution to a regular spin, lower values of J ′ and D′ set
a new scale for helical fluctuations, and do not considerably
modify the nature of these fluctuations. This naturally leads
to a lower scale for magnetic transition anomaly in the model
under discussion.

As we showed above, the evolution of C(T ) curves with
increasing doping concentration x does not show any signs
of the Vollhardt crossing phenomenon. Next, we consider the
combined effect of disorder and magnetic field. The main
question we want to address is whether the Vollhardt invari-
ance survives the disorder or not. In Fig. 2 we present results
for the evolution of the specific heat in an applied magnetic
field for disorder concentrations x = 0.1 and x = 0.2. The
figures demonstrate the remarkable tendency of specific heat
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FIG. 2. Temperature dependence of the specific heat C(T ) in an
applied magnetic field for doping concentration x = 0.1 and x = 0.2
for model A. Function C(T ) is obtained from fluctuation of the
thermodynamic energy.

curves to cross at one or nearly at one point. The crossing
point depends on the impurity concentration; the crossing
point is T ∗ � 1.35 for x = 0.1 and T ∗ � 1.15 for x = 0.2.
We note that the corresponding value of the crossing point
without disorder is T ∗ � 1.4 [29]. It shows that Vollhardt
invariance survives intermediate disorder; the value of T ∗
gradually diminishes with x consistent with experimental
results [14].

A remarkable difference in evolutions of C(T ) curves pre-
sented in Figs. 1 and 2 can be explained as the following.
The main ingredient in the Vollhardt theory of the crossing
phenomenon [33] is the the behavior of the entropy of the
system S(T, X ) at different values of a controlling parameter
X (in our case X is a magnitude of the magnetic field or a
doping concentration). Crossing of the specific heat curves
follows from a sum rule for the change of the entropy S(T, X )
with respect to X in the high-temperature limit [33]. In our
system, the effect of disorder changes the entropy of the
system in such a way that in the high-temperature limit the
derivative ∂S(T,x)

∂x = ∫ T
0

dT ′
T ′

∂C(T ′,x)
∂x depends on the amount x

of the impurities introduced into the system. Such a behavior
does not allow the occurrence of the crossing phenomenon.

Next we illustrate changes occurring in spin structure
with doping. In Fig. 3 examples of spin configurations at
different doping concentrations and temperatures are shown
along with the corresponding Bragg intensity patterns. At low

FIG. 3. Average spin configuration 〈Sr〉 in the xy plane (left) and
profiles I∗ of the Bragg intensity projected onto (qx, qy ) and (qx, qz )
planes (right) for model A. Spins with positive Sz are marked as red
and negative Sz as blue. The length of the arrows is proportional to
|〈Sr〉|. Distances in the reciprocal space are scaled by 2π/L.

temperatures spin patterns for all concentrations from x = 0
up to x = 0.2 are similar and have two peaks of Bragg in-
tensity characteristic of a helical spin structure. However, the
helical structure experiences small distortion with increasing
x; this is seen from a pattern shown for concentration x = 0.2.
The spiral shows irregular deviations from the direction of
the spiral wave vector. With increasing temperature peaks of
I∗(q) begin to smear and at temperatures corresponding to the
hump maximum, as illustrated for the concentration x = 0.1 at
T = 0.1, the ring-shape profile of the I (k) intensity is formed.
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FIG. 4. Temperature dependence of the specific heat C(T ) for
different doping concentration x for model B. Function C(T ) is
obtained from fluctuation of the thermodynamic energy.

Such a pattern is seen at other impurity concentrations as well.
The corresponding spin configurations consist of spin twirls
typical of the chiral fluctuations in the hump region [11].

FIG. 5. Average spin configuration 〈Sr〉 in the xy plane (left)
and profiles I∗ of the Bragg intensity projected onto the (qx, qy )
and (qx, qz ) planes (right) for impurity concentration x = 0.004 for
model B. Designations are the same as in Fig. 3.

FIG. 6. Average spin configuration 〈Sr〉 in the xy plane (left)
and profiles I∗ of the Bragg intensity projected onto the (qx, qy )
and (qx, qz ) planes (right) for impurity concentration x = 0.016 for
model B. Designations are the same as in Fig. 3.

B. Model B

The evolution of the specific heat for model B is presented
in Fig. 4. Again, similar to model A, a sharp peak of a first-
order transition gradually shifts to lower temperatures and
smears away with increasing doping concentration. However,
there are distinctions from model A. First, the degradation of
the first-order peak occurs in the range of considerably lower
concentrations of impurities, x � 0.02. It suggests that frozen
random disorder is more efficient to suppress the magnetic
transition than the dynamical impurity spins considered in
model A.

The second distinction is that the shape and the maximum
of the hump anomaly do not change appreciably with increas-
ing x. It can be well understood taking into account that the
frozen impurities do not have their own dynamics; as a result
the redistribution of the energy upon heating takes place only
amid regular lattice spins, and the hump is built up by the same
helical spin fluctuations at different doping concentrations.

For illustration of Bragg intensity profiles we pick two
temperatures. The first one, T = 1.00, corresponds to the low-
temperature side of the hump, while the second, T = 1.20,
lies almost at the hump maximum. The corresponding spin
patterns are shown in Figs. 5 and 6. At T = 1.00 there are
peaks of I (q) corresponding to the spiral phase; these peaks
are seen both at small, x = 0.004, and higher doping, x =
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0.016. The spin pattern corresponds to a spiral. However,
the structure of the spiral is different at low and higher x.
At higher doping there are clear distortions from the perfect
spiral structure; it resembles a “wavy” spiral with some small
modulation of the spiral wave vector. In the spin pattern there
are constrictions and wider parts in which small pieces of
vortices appear. With increasing temperature there occurs a
further distortion of the spiral phase; it is partitioned into
disconnected segments, which start to form their own twirls,
gradually going to a vortexlike pattern. Finally, at a higher
temperature T = 1.20, at the hump maximum, one clearly
sees the formation of the spin whirls with a Bragg intensity
pattern typical of chiral fluctuations, namely, demonstrating a
ringlike shape form of the intensity function I (k) in k space.

Summarizing, with increasing impurity concentration there
occurs a gradual distortion of the spiral phase. With increasing
temperature the distorted spiral phase evolves continuously
into a phase characterized by a spontaneous formation of
the spin twirls and demonstrates a ring-shape structure of
the Bragg intensity. This ring-shape structure is typical of the
parent MnSi and does not change appreciably with doping.

IV. CONCLUSION

We have proposed two phenomenological models for a
description of helimagnets with impurities. In the first one,
impurities substitute the regular ions; in the second, the
impurities reside in interstitial positions. In real materials

two arrangements of doped impurities should take place
simultaneously and the resulting specific heat dependence
encompasses these two possibilities. Both models show a
gradual suppression of the magnetic transition peak with
increasing doping concentration. However, this suppression
takes place on different scales of the concentration. While for
model A the suppression takes place for values of x lower
than 0.2, for model B it occurs for far less concentrations
x, lower than 0.02. Also the evolution of the hump anomaly
in the specific heat is different. While in model A the hump
eventually shrinks to a smaller maximum and shifts to low
temperatures, for model B its shape does not change appre-
ciably in the considered doping interval.

We have analyzed the evolution of the spin structure
emerging upon doping. In both models the low-temperature
phase is a spiral phase. With increasing x the spiral pattern
becomes significantly distorted by the presence of impurities,
there occurs a gradual distortion of a helix rather than an
abrupt destruction of the spiral phase. With increasing temper-
ature the distorted spiral pattern continuously transforms into
a vortexlike spin pattern similar to those seen in the region of
the hump anomaly of the parent MnSi.
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