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Driven quantum spin chain in the presence of noise: Anti-Kibble-Zurek behavior
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We study defect generation in a quantum XY-spin chain arising due to the linear drive of the many-body
Hamiltonian in the presence of a time-dependent fast Gaussian noise. The main objective of this work is to
quantify analytically the effects of noise on the defect density production. In the absence of noise, it is well known
that in the slow sweep regime, the defect density follows the Kibble-Zurek (KZ) scaling behavior with respect
to the sweep speed. We consider time-dependent fast Gaussian noise in the anisotropy of the spin-coupling
term [γ0 = (J1 − J2)/(J1 + J2)] and show via analytical calculations that the defect density exhibits anti-Kibble-
Zurek (AKZ) scaling behavior in the slow sweep regime. In the limit of large chain length and long time, we
calculate the entropy and magnetization density of the final decohered state and show that their scaling behavior
is consistent with the AKZ picture in the slow sweep regime. We have also numerically calculated the sublattice
spin correlators for finite separation by evaluating the Toeplitz determinants and find results consistent with the
KZ picture in the absence of noise, while in the presence of noise and slow sweep speeds the correlators exhibit
the AKZ behavior. Furthermore, by considering the large n-separation asymptotes of the Toeplitz determinants,
we further quantify the effect of the noise on the spin-spin correlators in the final decohered state. We show that
while the correlation length of the sublattice correlator scales according to the AKZ behavior, we obtain different
scaling for the magnetization correlators.
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I. INTRODUCTION

A quantum system driven at zero temperature by some
system dependent parameter through a quantum critical point
(QCP) is subjected to quantum phase transition (QPT) in
which the ground state of the system is fundamentally al-
tered with completely different physical properties across the
phase transition point. One of the main points of interest is
to quantify the generation of excitations or the defect density
generation due to the quench through the critical point. De-
fects are inevitable in a drive through the critical point due
to the vanishing energy gap at the critical point where the
adiabaticity criterion breaks down and nonadiabatic effects
become important. In this regard, the Kibble-Zurek mech-
anism (KZM), a theory originally proposed to quantify the
topological defect production in a cosmological phase transi-
tion has been successfully applied in quantifying the defect
production in idealized condensed matter systems undergoing
QPT [1–12]. The theory predicts that the defect density scales
as n ∝ τ

−β
Q , where τQ is the quench time and the universal

exponent β > 0 is determined by the critical exponents and
the dimension of the system. Recent experimental studies
supporting KZM have been reported in well controlled sys-
tems involving trapped ions, Bose-Einstein condensates, and
Rydberg simulator [13–15].

While the study of quantum systems exhibiting KZ behav-
ior remains an area of active interest, scenarios which result
in deviations from this universal behavior have also come
under increased scrutiny. Recent studies of drive protocols in
quantum systems that are coupled to external environment,

disorder, or are in the presence of noise indicate that the defect
density generated exhibit fundamentally different dynamical
behavior than the one predicted by the KZ theory [16–33].
The focus of our attention has been to understand analytically
the experimental and numerical studies wherein, unlike the
KZ behavior, slower drives beyond a certain optimal quench
rate/speed create more defects [34–40]. This scaling has been
termed as the anti-Kibble-Zurek (AKZ) behavior. In all of
them, the AKZ scaling behavior manifested itself in the pres-
ence of the noisy control field driving the system through the
critical points. In this work, we consider a time dependent
quantum XY-spin chain which is driven by a transverse mag-
netic field with an anisotropy term that contains a fluctuating
Gaussian noise term. In the limit of fast noise, we perform
exact analytical calculations and derive the universal AKZ
scaling behavior of the defect density with respect to the
quench rate.

Apart from the study of the defect generation, the con-
sequence of the KZ picture for the noiseless case to the
entropy, magnetization, and the correlation functions has been
considered before (for example in Refs. [28,41–45]). The
entropy of the final state shows information loss due to de-
coherence in passing through the critical points, i.e., a finite
nonzero entropy density at the end of the protocol is a sign of
mixed state due to the defect generation. The presence of de-
fects reduces the magnetization density. In addition, increase
in defects results in reduced size of the ordered domains.
Slower sweep speed results in reduced defect production;
this consequently implies reduced entropy density, increased
magnetization density, and enhanced correlation length at the
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end of the drive protocol. In this work, we quantify the effect
of noisy drive through the QCPs on the above mentioned
physical quantities and show that they exhibit signatures of
the AKZ behavior in the slow sweep regime. For quench times
greater than the optimal quench time, the enhanced defect
generation results in increased entropy density of the final
decohered state, meanwhile, the magnetization density is sup-
pressed. By considering the large n-separation asymptotes of
the Toeplitz determinants, we calculate the correlation lengths
of the sublattice correlators and show that the correlation
length of the spin correlators decreases for slow sweep rates
consistent with the AKZ scaling picture. However, the correla-
tion length of the (connected) magnetization correlator in the
large n-separation limit continues to follow the KZ picture.

The organization of the paper is as follows. In Sec. II we
discuss the model Hamiltonian and dynamics of the XY-spin
chain with transverse magnetic field (varying linearly with
time) in the z direction in the absence of noise. In Sec. III we
consider transverse protocol in the presence of fast Gaussian
noise and obtain analytically the AKZ scaling behavior of
the defect density in the slow drive regime. We also derive
an expression for the optimal quench time with which the
system must be driven so as to minimize the defect production
at the end of the drive protocol. In Sec. IV we discuss the
decoherence of the local observables due to the drive through
the QCPs in the presence of Gaussian noise and in addition
the expectation values of a fermionic two-point correlator in
the final decohered state has been obtained. In Sec. V we
derive the analytical expression for the entropy density for the
final decohered state and show that the results are consistent
with the AKZ scenario. Finally, in Sec. VI we discuss in
detail the analytical results for the spin correlators and the
magnetization density at the end of the noisy drive protocol.
We have summarized our results in Sec. VII.

II. THE MODEL HAMILTONIAN

We consider the quantum XY-spin model driven by the
transverse external field h(t ),

H (t ) = −
N∑

n=1

[
J1σ

1
n σ 1

n+1 + J2σ
2
n σ 2

n+1 + h(t )σ 3
n

]
, (1)

where J1 and J2 are, respectively, the spin-spin couplings
along the x- and y-spin directions. Introducing the coefficients
J = J1 + J2 and anisotropy, γ0 = (J1 − J2)/J , allows us to
re-express the Hamiltonian as

H (t ) = −J

2

N∑
n=1

[
(1 + γ0)σ 1

n σ 1
n+1 + (1 − γ0)σ 2

n σ 2
n+1

]

− h(t )
N∑

n=1

σ 3
n . (2)

The γ0 = 0 limit represents the isotropic XY-spin chain, while
γ0 = ±1 limits correspond to the quantum Ising chain case.
We consider time dependence in the anisotropy by including
Gaussian correlated noise η(t ), i.e., γ0 → γ (t ) = γ0 + η(t ).
The Gaussian noise η(t ) is characterized by

η(t ) = 0, η(t ) η(t1) = η2
0 e−�|t−t1|, (3)

where η0 is the noise strength and � is the inverse time scale
associated with the noise.

In the following, we will summarize the well studied
transverse protocol [41,46,47]. In this protocol, the transverse
external field h(t ) is tuned to drive the equilibrium system
from h → −∞ at the start of the protocol to h → ∞ at the
end of the drive protocol. For a linear protocol,

h(t ) = vt = Jt/τQ,

where v is the sweep speed of the drive, τQ = J/v is the
‘quench time,’ and the time t runs from −∞ to ∞. The
system starts out in the paramagnetic (PM) ground state (GS),
| ↓↓↓ ... ↓〉 with all the spins along the negative z axis. As t
is increased the system goes through the QCPs at h(t ) = ±J .
The quantum phase transition involves change in the nature of
GS from PM to ferromagnetic (FM) at h = −J and from FM
to PM at h = J . The final state that emerges is not the perfect
GS of the Hamiltonian, | ↑↑↑ ... ↑〉, but instead is formed
out of the quantum superposition of the states of the type
|.. ↑↑↓↑↑↑↑↓↑↑ ..〉. The reason for such a final state is the
inevitable violation of the adiabaticity criteria. This criteria is
obtained by comparing two time scales, the relaxation time
scale, which is proportional to the inverse of minimum gap of
the system, and a time scale for driving the system, τQ. For
a perfectly adiabatic dynamics, ‘relaxation time � τQ.’ But
in the N → ∞ limit, the energy gap vanishes at the QCPs
[h(t ) = ±J]. Therefore the dynamics becomes nonadiabatic
in close proximity to the QCPs, leading to a final state which is
formed out of the quantum superposition of the states having
kinks/domain walls.

It turns out that rate of production of these topological
defects can be quantified with the help of KZ scaling the-
ory. Qualitatively one can understand the theory as follows
[48]. The energy gap around the QCP depends on the driving
field, �(h) ∼ |h − hc|ν zd ∼ |vt |νzd (assuming the gap varies
linearly with time) with ν being the correlation length expo-
nent and zd the dynamical exponent. The correlation length
diverges near the QCP as ξ ∼ |h − hc|−ν , whereas the ex-
citation energy, E (k, h = hc) ∼ |k − kc|zd , characterized by
the dynamical exponent zd , vanishes near the critical mode
kc. The region where the adiabaticity breaks down called
the nonadiabatic/impulse region (near the QCP) can be es-
timated by comparing the rate of change of the driving
parameter/energy gap with the energy which is proportional
to the square of the energy, i.e., d�/dt ≈ �2. One finds that
the energy scale at which the adiabaticity breaks down is
given by �∗ ∼ |v|ν zd /(ν zd +1). Corresponding to this energy
scale a length scale ξ ∗ ∼ |v|−ν/(zd ν+1) can be associated be-
yond which the fluctuations of the order parameter cannot
follow the adiabatic dynamics resulting in the creation of
defects/excitations.

n ∼ |ξ ∗|−d ∼ |v|νd/(νzd +1) ∝ |τQ|−νd/(νzd +1), (4)

where d is the dimension of the system. For a 1D XY-spin
chain undergoing a transverse protocol (linearly with time)
and ν = zd = 1, the KZ scaling theory predicts the defect
density to scale as n ∼ √

v ∼ 1/
√

τQ.
These predictions were confirmed by the exact solution

of the defect density generation in a linearly driven XY-spin
chain Hamiltonian by mapping it to a set of independent
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FIG. 1. p0
k vs k in the absence of noise. In the large z or the small

sweep speed limit, most of the contribution to the defect generation
comes from the regions near the critical points k = 0, ±π . It is to be
noted that z1 = log 2/2π is a special value of z, where p0

k = 1/2 at
k = ±π/2.

two-level Landau-Zener (LZ) problems. The first step in-
volves the use of Jordan-Wigner (JW) transformation, σ±

n =
(e±iπ

∑n−1
l=1 c†

l cl )cn and σ z
l = 2c†

l cl − 1 (with σ±
l = σ x ± iσ y),

to map the spin-1/2 Hamiltonian to the spinless free fermion
Hamiltonian

H (t ) = −J
N∑

n=1

[(c†
ncn+1 + γ0cn+1cn + H.c.)

−h(t )(2c†
n cn − 1)]. (5)

Restricting to the even parity subspace with cN+1 = −c1 and
using the Fourier transformation, cn = e−i π/4√

N

∑
k ck ei k n yields

H (t ) =
∑

k

[
(h(t ) + J cos k)c†

kck + �k

2
c−kck

]
+ H.c., (6)

where �k = 2J γ0 sin(k). The above Hamiltonian can be writ-
ten as a sum of independent terms, H (t ) = ∑

k>0 Hk (t ),
where for each value of k, Hk (t ) acts on the four-dimensional
Hilbert space spanned by the basis vectors: |0〉, |k〉 =
c†

k |0〉, | − k〉 = c†
−k|0〉 and |k,−k〉 = c†

kc†
−k|0〉. We note that

the Hamiltonian with or without the noise term proportional
to η(t ) leaves the parity unchanged. Although the one-particle
states |k〉 and | − k〉 evolve in time with a global phase factor
only, the states |0〉 and |k,−k〉 couple to each other and exhibit
LZ dynamics. The projected Hamiltonian in the subspace of
|0〉 and |k,−k〉 has the structure of LZ type Hamiltonian and
is given by

Hk (t ) = 2

[
h(t ) + J cos(k) �k/2

�k/2 −h(t ) − J cos(k)

]
, (7)

where we note that the off-diagonal term is k-dependent.
Applying the LZ transition theory yields the k-dependent
transition/excitation probability (in the large time limit),

p0
k (z) = e−2πz sin2 k, (8)

where z is the dimensionless quench parameter given by z =
J2γ 2

0 /v = Jγ 2
0 τQ (see Fig. 1).

FIG. 2. n0(z) vs z in the absence of noise. Plotted is the exact
result for the defect density. The log-log plot in the inset shows the
exact result and the approximate result (scaling behavior as predicted
by the KZ scenario) coincide for large z values.

The total defect density is thus given by n0(z) =∑
k>0 p0

k (z)/N . In the N → ∞ limit, the summation over the
k modes is replaced by integration. Performing the integration
one obtains the exact result for the total defect density n0 in
the absence of noise,

n0(z) = 1

π

∫ π

0
dk e−2πz sin2 k = e−π z I0[π z], (9)

where I0(π z) is the modified Bessel function of the first kind.
The limit of large z (or the small sweep speed regime) reveals
that the defect density scales as n0 ∼ 1/

√
z, which indeed

matches with the prediction of the KZ scaling behavior (see
Fig. 2).

Interestingly, recent numerical studies have shown that
the defect density production exhibits completely different
scaling when in addition to the usual linear protocol a small
Gaussian noise is present in the control field [36,37]. In par-
ticular, the defect density scales as

n ≈ c τ
−1/2
Q + d η2 τQ, (10)

where c and d are system dependent parameters. The first
term in the above equation Eq. (10) accounts for the usual
KZ scaling behavior. The second term is proportional to the
square of noise amplitude and represents increased defect-
density production with the increase of τQ (or is inversely
proportional to the sweep speed). This is converse to that of
the KZ scaling and is termed the AKZ scaling behavior.

In the next section we will consider linear protocol with
transverse noise and obtain analytical results for the defect
density. We will show that for large-z values AKZ scaling
behavior dominates. In the subsequent sections, we will calcu-
late the entropy and correlation functions of a driven quantum
XY-spin chain in the presence of noise.
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III. EFFECT OF NOISE ON THE DEFECT GENERATION

The time dynamics of states spanned by |0〉 and |k,−k〉 is
governed by the Hamiltonian Hη

k (t ),

Hη

k (t ) = 2

[
h(t ) + J cos(k) J γ0 sin(k)

J γ0 sin(k) −h(t ) − J cos(k)

]

+ 2 η(t )

[
0 J sin(k)

J sin(k) 0

]
, (11)

where the first term in the above Hamiltonian is the usual
deterministic part. The second term couples the homogeneous
time-dependent Gaussian noise η(t ) to each of the k mode
within the restricted subspace. In this subspace, a general state
at any given time t for a single realization of the noise η(t ) can
be written as |�η

k (t )〉 = uη

k (t )|0〉 + v
η

k (t )|k,−k〉, where uη

k (t )
and v

η

k (t ) are the time-dependent amplitudes. The system
starts out in the perfect PM state defined by the initial con-
ditions uη

k (−∞) = 1 and v
η

k (−∞) = 0. The time evolution
of the general state |�η

k (t )〉 for a single noise realization is
governed by the stochastic Schrödinger equation,

i
d

dt

∣∣�η

k (t )
〉 = Hη

k (t )
∣∣�η

k (t )
〉
, (12)

where the solution has to be averaged over all possible real-
izations (ensemble averaging due to the noise) of the two-level
system corresponding to each k mode [49–51].

The projected Hamiltonian Eq. (11) is equivalent to the
noisy LZ problem with the noise present only in the trans-
verse part of the Hamiltonian. We consider the density matrix,
ρ̂

η

k (t ) = |�η

k (t )〉〈�η

k (t )|, and set up the time evolution equa-
tion for the population inversion ρ

η

k (difference between the
unexcited and the excited density for a given mode k):

d

dτ
ρ

η

k (τ ) = −1

2

∫ τ

−∞
d τ1ei

∫ τ

τ1
dτ2 (vLZτ2 )/2

ρ
η

k (τ1)

− 1

2 γ 2
0

∫ τ

−∞
d τ1ei

∫ τ

τ1
dτ2 (vLZτ2 )/2

× η(τ )η(τ1) ρ
η

k (τ1) + H.c., (13)

where τ = 2�k (t + cos k/v), and vLZ = v/�2
k . Taking the

noise average one obtains

d

dτ
ρk (τ ) = −

∫ τ

−∞
d τ1 cos

[
vLZ

4

(
τ 2 − τ 2

1

)]
ρk (τ1)

− 1

γ 2
0

∫ τ

−∞
d τ1 cos

[
vLZ

4

(
τ 2 − τ 2

1

)]

× η(τ )η(τ1) ρk (τ1), (14)

where ρk (τ1) is obtained by performing noise average over
ρ

η

k (τ1). The fast noise criteria (�−1 � τQ) allows us to de-

couple η(τ )η(τ1)ρη

k (τ1) into a separate product of the noise
terms and the density matrix term, η(τ )η(τ1) ρk (τ1) [50]. The
solution of the reduced master equation in the t → ∞ limit is
obtained by following the approach of Ref. [50] and is given
by ρk = e−2π η2

0/(2 vLZ γ 2
0 )(2 e−π/(2 vLZ ) − 1). The noise averaged

excitation probability thus obtained in the fast noise regime is

pk (z) = 1
2

[
1 + e−4πz η2

1 sin2 k (2 e−2πz sin2 k − 1)
]
, (15)

FIG. 3. pk vs k in the presence of the fast noise: Interestingly, in
the large-z regime (z � z1) or slower sweeps the fast noise begins to
affect the system. New critical region (where the excitation proba-
bility becomes nonzero) opens up symmetrically around k = ±π/2
resulting in more defect generation.

where η1 = η0/γ0. It is interesting to note that the excitation
probability [Eq. (15)], which is nonzero around the k = 0,±π

points in the absence of noise, also opens up around k =
±π/2 regions in the presence of noise and in particular for
the large z limit or the small sweep speed scenario, which is
the result of dephasing due to the presence of the fast noise
which is one of the main reasons for more defect generation
for slower sweeps (see Fig. 3). Recently, similar results have
been reported in Ref. [52] for the noisy drive protocols in a
trapped ion experiment. It is worth noting that the fast sweep
regime (z � z1) is unaffected by the fast noise.

We next evaluate the defect density by integrating n(z) =∫ π

0 dk pk/π and obtain

n(z) = 1
2 + e−π (z+z̄) I0[π (z + z̄)] − 1

2 e−π z̄I0[π z̄], (16)

where z̄ = 2zη2
1. The focus of our interest is in the scaling of

the defect density in the slow sweep (z � 1) and weak noise
(η1 � 1) regimes, such that π z̄ < 1. In this limit, the defect
density is approximated as

n(z) ≈ 1

π
√

2z
+ πη2

1z, (17)
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FIG. 4. Effect of the fast noise on the defect density: The defect
density has been plotted with respect to z for different noise strength,
which is consistent with the AKZ picture for large-z regime i.e.,
enhanced defect generation for sweep rates slower than the optimal
quench rate.

which gives the AKZ scaling behavior (see Figs. 4 and 5).
Therefore, it can be deduced that the defect density is mini-
mized for a optimal z given by

zO ≈ 2
√

2 π2η
−4/3
1 ∝ η

−4/3
1 , (18)

and hence the optimal quench time scales as τO ∝ η
−4/3
0 with

respect to the noise strength. We note that the defect density in
the slow sweep regime, given by Eq. (17), in its most general
form can be written in terms of the equilibrium critical ex-
ponents as n(τQ) = cτ−β

Q + dη2
0τQ, where β = νd/(νzd + 1)

is the universal KZM exponent, while c and d as mentioned
earlier are the system dependent parameters. The origin of the
second term can be attributed to the presence of fast Gaussian
noise in the limit of weak noise strength when expanded up
to the second order in perturbative expansion. By minimizing
the defect density, one obtains τO ∝ η

−2/(β+1)
0 , which implies

universal power law scaling of the optimal quench time τO

(∝ zO) with the noise strength. For our case this results in
Eq. (18). The power law universality of the optimal quench

FIG. 5. Anti-Kibble-Zurek scaling behavior of the defect den-
sity: The difference, δn = n(z) − n0(z), scales linearly with z for
weak noise strengths and π z̄ < 1.

time with the noise strength has also been shown in the nu-
merical studies in Refs. [36,37] and in an experimental work
in Ref. [52].

While the above results have been obtained in the thermo-
dynamic limit, we will briefly discuss the regime for which
the results continue to hold in the leading order for the finite-N
scenario. The generation of nonzero defects in a quantum crit-
ical system in the presence of the external drive is due to the
nonadiabatic effects around the critical points. The effect of
finite size is reflected in the nonzero energy gap at the critical
points. To ensure that the diabatic effects are observed, the
quench rate should be fast enough such that the lowest modes,
k = ±π/N , get excited. This is ensured if z < N2/2π3 (i.e.,
pπ/N is not exponentially suppressed) or in other words the
constraint on the quench time for diabatic effects are τQ <

N2/2π3Jγ 2
0 (which is always satisfied in the thermodynamic

limit). Moreover, taking into account the criterion considered
for obtaining Eq. (17) puts the following constraint on the
quench time 1/Jγ 2

0 � τQ < min[1/2πJη2
0, N2/2π3Jγ 2

0 ]. In
this regime, it is expected that the leading order results for
the finite-N chain to match with those obtained from the
thermodynamic limit case as given in Eq. (17).

IV. DECOHERENCE OF LOCAL OBSERVABLES

In both the noiseless and noisy drive protocols, the XY-
spin chain (with N spins) is prepared in a PM state at
the initial time tin = −T . This initial state is a pure state,
i.e., the full system density matrix can be written as ρ(t =
−T ) = |0N 〉〈0N |. Subsequently the system is driven by the
transverse magnetic field h(t ) = Jt/τQ through the quantum
critical points (h = ∓J) up to the final time t f = T . In the
noiseless drive scenario the full density matrix of the evolved
N-spin chain remains in the pure state due to the unitary time
evolution. However, for large system size (N → ∞) and in the
long time limit, i.e., T → ∞, the coherences of the density
matrix develop highly fluctuating phases (dependent on k and
T ) which vanish when integrated over k for all local observ-
ables [41]. This decohered density matrix corresponds to the
nonequilibrium steady state (NESS) which is fundamentally
different from the decoherence process due to any external
or internal noise [41]. In addition to the internal decoherence
the dephasing is further enhanced by the noise in the drive
protocol which results in the exponential suppression of the
fluctuating coherences.

For k-values such that η2
0J � �k , the noise has negligible

effect on the system. The crossover region is around η2
0J ∼ �k

at which the noise begins to play a role in the dynamics of
the system. In the limit η2

0J � �k , the fast noise effects the
system the most specifically in the nonadiabatic regions (when
the gap �k → 0) around the quantum critical points (k =
0,±π ), in addition new critical regions around k = ±π/2
become important. Overall, nonadiabatic effects are enhanced
due to the noise which gives incoherent contributions to the
defect density leading to increased defect generation at the
end of the protocol.

In the long time limit, the noise averaged off-diagonal
terms of the density matrix (coherences), ρ̄k

12 and ρ̄k
21 vanish.

Therefore the noise averaged decohered density matrix, ρ̄D =
⊗k>0ρ̄D,k (with ρ̄D,k a diagonal 2 × 2 matrix in the subspace
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|0〉, |k,−k〉) in the limit N → ∞ and T → ∞, with respect
to the final decohered state can be written as

ρ̄D,k =
(

pk 0
0 1 − pk

)
. (19)

We will use the above expression of the density matrix to
calculate the noise averaged observables in the final decohered
state.

Two-point correlator in the fermionic representation

Similar to Ref. [41], one can define a two-point correlator
in terms of the fermionic operators as

d (x − x′) = 〈cx c†
x′ 〉 = 1

2π

∫ π

−π

dk e−i k (x−x′ ) pk . (20)

This correlator is nonzero for x − x′ = 2n, where n is an
integer. In the absence of noise the two-point correlator is

dn(z) = 1

2π

∫ π

−π

dk e−i k n p0
k = e−π z In(π z), (21)

where In(π z) is the modified Bessel function of the first kind.
The large-n expansion of dn at fixed z yields

dn(z) ≈ 1

2π

∫ π

−π

dk e−π z k2/2ei n k = e−n2/2πz

√
2π2z

. (22)

Thus consistent with the KZ picture the correlation length of
the two-point correlator is proportional to

√
z and the magni-

tude of the correlator is inversely proportional to
√

z.
A similar calculation for the two-point correlator in the

presence of noise, pk yields

dn(z) = 1

2π

∫ π

−π

dk e−i k n pk

= 1

2
δn,0 − 1

2
e−π z̄In[π z̄] + e−π (z+z̄) In[π (z + z̄)]. (23)

In the limit of η1 � 1 and π z̄ < 1 and for large-n expansion

(n >

√
4πzη2

1 ln 1/η1) the above expression is approximated
as

dn(z) ≈ 1√
2π2(z + z̄)

e−n2/[2π (z+z̄)]. (24)

Thus the correlation length in the presence of noise ln =√
π (z + z̄) remains proportional to

√
z and increases with the

strength of the noise.

V. ENTROPY DENSITY IN THE FINAL
DECOHERED STATE

The decohered state has a finite entropy density which
is a clear indication that the final state is a mixed state. To
quantify the amount of information lost in the decoherence
process (at the end of the drive protocol) we calculate the
Von-Neumann entropy (S = −N tr ρD ln ρD) in terms of the
excitation probability as follows,

S = − N

2π

∫ π

−π

dk[pk ln pk + (1 − pk ) ln(1 − pk )], (25)

where pk is given in Eq. (15). The above integration is
performed by expanding both the log terms in terms of

FIG. 6. Entropy density S/N vs z plotted for different noise
strengths. The behavior of entropy density is consistent with the
AKZ picture. The entropy density increases for quench time greater
than the quench time ∼τO which is the signature of increased de-
fect generation due to the fast noise in slower sweep regime. For
very slow sweeps, the noise (even for η1 � 1) can randomize the
system to the maximally mixed state (i.e., S/N → ln 2). Apart from
that, the entropy density maximizes (locally) at z = z1 which is the
signature of the crossover behavior of the spin correlation functions
from monotonically decreasing behavior for z < z1 to the oscillatory
behavior for z > z1 as discussed in Ref. [41].

e−4πzη2
1 sin2 k (2e−2πz sin2 k − 1) and integrating each of the terms

individually. The final result of the entropy density (S/N) can
be expressed in the following series form,

S/N = ln 2 −
∞∑

m=1

2m∑
r=0

22m−r (−1)r
(2m

r

)
2m (2m − 1)

e−πzY r
m I0

[
πzY r

m

]
, (26)

where Y r
m = (2m − r + 4mη2

1 ). In Fig. 6 we plot Eq. (26) for
different noise strengths. One can observe from the figure that
the finite entropy density depends on the sweep speed and also
that for each noise strength there exists an optimal quench
parameter (∼zO) either side of which the entropy density
increases. In particular, for z greater than this parameter the
entropy increases which is the signature of AKZ behavior of
defect production. For η1 �= 0, the entropy density asymptoti-
cally approaches ln 2 for large-z value, i.e., a fully mixed state
is formed or in other words, the system approaches an asymp-
totic infinite temperature steady state. However, for the fast
sweep speeds (z < z1), the driven system is not affected by the
noise. In the intermediate region the system has some finite
nonzero entropy density which signifies a partially mixed
state.

VI. MAGNETIZATION AND SPIN-SPIN CORRELATIONS

The expectation value of the spin-spin correlators with re-
spect to the decohered state is conveniently obtained in terms
of the pair products of Majorana fermion operators. Consider
the Majorana fermion operators [28,41,53,54]

Ax = c†
x + cx, Bx = c†

x − cx. (27)
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The pair product of spins σα
x σα

x+n and that of the Jordan-
Wigner string variable τxτx+n [with τx = �x′<x(−σ 3

x′ )] can be
expressed as follows [41],

σ 1
x σ 1

x+n = BxAx+1Bx+1....Ax+n−1Bx+n−1Ax+n, (28)

σ 2
x σ 2

x+n = AxAx+1Bx+1....Ax+n−1Bx+n−1Bx+n, (29)

τxτx+n = AxBxAx+1Bx+1....Ax+nBx+n. (30)

Due to the sublattice structure of the decohered matrix, i.e.,
decoupling of the decohered matrix, ρD = ρE ⊗ ρO, with ρE

and ρO acting correspondingly on the even and odd sublattice
only, the expectation values of the full lattice spin correlators
can be written as a product of sublattice correlators as follows
[41], 〈

σα
x σα

x+2n

〉 = 〈〈
σα

x σα
x+n

〉〉〈〈τx τx+n〉〉, α = 1, 2. (31)

〈τx τx+2n〉 = 〈〈τx τx+n〉〉 〈〈τx τx+n〉〉, (32)

where 〈...〉 and 〈〈...〉〉 represent the expectation values on
the full lattice and the sublattice, respectively. The sublattice
correlators are obtained using the Wick’s theorem which re-
quires one to evaluate correlators of the form 〈BxAx′ 〉, 〈AxBx′ 〉,
〈AxAx′ 〉, and 〈BxBx′ 〉. Out of these only the correlators of the
type 〈BxAx′ 〉, 〈AxBx′ 〉 are needed to calculate the sublattice
correlators which can be expressed in the form of the Toeplitz
determinants.

The expectation value of the magnetization operator mz,
evaluated with respect to the final decohered state and in terms
of the Majorana operators, is given by

mz = 〈
σ 3

x

〉 = 〈AxBx〉, (33)

and the expectation value of the magnetization correlator is
given by 〈

σ 3
x σ 3

x′
〉 = 〈AxBxAx′Bx′ 〉. (34)

We first evaluate the magnetization and magnetization corre-
lators following which we discuss σ 1,2

x spin-spin correlators.

A. Magnetization density and magnetization correlation

The average magnetization density 〈σ 3
x 〉 at the end of the

quench protocol is given by

mz = 〈Ax Bx〉 = 1 − 2n(z), (35)

where n(z) is the noise dependent defect density [Eq. (16)]
and in terms of which

mz = e−π z̄I0[π z̄] − 2 e−π (z+z̄) I0[π (z + z̄)]. (36)

Thus the large-z limit of the magnetization density given by

mz − 1 ≈ − 1√
2 π

√
z

− πzη2
1 (37)

is consistent with the AKZ picture or in other words, it de-
creases after the optimal quench time, Eq. (18), when the
defect production starts to increase due to the noise (see
Fig. 7). In contrast, for the noiseless drive case (i.e., for
η1 = 0 in Fig. 7), the magnetization density asymptotically
approaches unity for z � 1.

FIG. 7. Magnetization density as a function of z reduces after the
optimal quench time in agreement with the AKZ picture. For the very
large-z case, the noise randomizes the system completely resulting in
a zero magnetization density.

Consider next the magnetization correlator in the z direc-
tion, 〈σ 3

x σ 3
x+2n〉, given by

〈
σ 3

x σ 3
x+2n

〉 = 〈
σ 3

x

〉2 −
(

2
∫ π

−π

dk

2π
e−ikn pk

)2

. (38)

The connected correlator Cn(z) is obtained by subtracting
the position independent part, 〈σ 3

x 〉2 from 〈σ 3
x σ 3

x+2n〉 and is
given by Cn(z) = −4d2

n (z), where dn(z) is given by Eq. (23).
Therefore, the magnetization correlation for large n retains the
KZ scaling relation with the correlation length given by

lnoisy =
√

π (z + z̄)/2, (39)

where we note that the magnetization correlation length in-
creases as compared to the noiseless scenario. It is interesting
to note that the presence of noise in the anisotropy decreases
the magnetization density due to increased defect production,
the correlation length of the magnetization correlator, how-
ever, increases with the strength of the noise. The amplitude of
the magnetization correlator nevertheless decreases with the
noise.

B. Spin correlators: 〈σ1,2
x σ

1,2
x+2n〉

As shown in Eq. (31) the spin correlators can be expressed
as a product of sublattice correlators. One can represent the
sublattice correlators at n separation in terms of the determi-
nants of the Toeplitz matrices:〈〈

σ 1
x σ 1

x+n

〉〉 = Dn[g+1,z], (40)

〈〈
σ 2

x σ 2
x+n

〉〉 = Dn[g−1,z], (41)

〈〈τx τx+n〉〉 = Dn[g0,z], (42)

where gm,z are the generating functions defined as

gm,z(ξ ) = −(−ξ )m (1 − 2 pk ), (43)

where ξ = e2ik and Dn[gm,z] are the corresponding Toeplitz
matrix determinants for different sublattice spin correlators.
Given the generating function gm,z the determinant Dn[gm,z]
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are defined as [28,41]

Dn[gm,z] =

∣∣∣∣∣∣∣∣∣∣∣∣

f (m)
0 f (m)

−1 .... f (m)
−(n−1)

f (m)
1 f (m)

0 .... f (m)
−(n−2)

. . .... .

. . .... .

. . .... .

f (m)
n−1 f (m)

n−2 .... f (m)
0 ,

∣∣∣∣∣∣∣∣∣∣∣∣
, (44)

where the elements of the determinant f (m)
l is the lth cummu-

lant of the generating function gm,z(ξ ) = ∑
l f (m)

l ξ l and are
obtained by performing the following contour integration,

f (m)
l =

∮
C

dξ

2π iξ
ξ−l gm,z(ξ ), (45)

where C is a unit circle contour with |ξ | = 1. The above
integral in terms of the k variable acquires the form

f (m)
l =

∫ π/2

−π/2

dk

π
e−i2kl gm,z(ei2k ). (46)

The integral is evaluated by taking the integral representation
of the modified Bessel function of the first kind,

Iν (z) = 1

2π

∫ π

−π

dθez cos θ−iνθ , (47)

where ν is an integer and Re(z) > 0. Using the above integral
identity yields

f (m)
l = e−π z̄

2π
Il−m[π z̄] − e−π (z+z̄)

π
Il−m[π (z + z̄)], (48)

with m = 0,±1. In the large-z limit (and with zη2 �= 0), the
expression reduces to

f (m)
l = (−1)m

π

[√
2 e−(l−m)2/2π (z+z̄)

√
z + z̄

− e−(l−m)2/2π z̄

√
2z̄

]
.

In Figs. 8 and 9 we plot the numerically calculated determi-
nants for the sublattice correlators 〈〈σ 1,2

x σ 1,2
x+r〉〉 (where r is

even separation). Figure 8 corresponds to the noiseless case
where we observe the KZ scaling behavior for the correlation
length, i.e., larger correlation length for smaller sweep speeds.
In Fig. 9 we consider fast noise and use the elements of the
Toeplitz matrix given by Eq. (48) to evaluate the determinants.
Here we notice the signature of the AKZ behavior, i.e., de-
crease in the correlation length with the increasing strength of
the noise for slower sweeps. Similar behavior is found for the
〈〈τx τx+n〉〉 correlator.

C. Spin correlations at large separation

In this section, we investigate the behavior of spin corre-
lators at large separation in the presence of the fast noise.
In the asymptotic limit, following Szegö’s limit theorem, the
Toeplitz determinant acquires the form [28,41,53–56]

Dn[gm,z(ξ )] ≈ exp

[
n

∫ π

0

dθ

π
lngm,z(ei2θ )

]
, (49)

where gm,z(ξ ) is the generating function given in Eq. (43).
The zeros of the generating function play an important

role in the analyticity of the asymptotic behavior of the spin
correlators and it can be easily verified that it has the same
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FIG. 8. Sublattice spin correlators 〈〈σ 1,2
x σ 1,2

x+r〉〉 have been plotted
with respect to the even separation r in the noiseless scenario. The
correlators in the figure are normalized from their respective value at
separation r = 2. From the figure one can observe that the larger z
values correspond to the large correlation length which is consistent
with the KZ behavior. The correlation length (lσ ) becomes small
(short ranged spin correlations) in the fast sweep regime. From the
inset one can notice the KZ behavior at relatively larger separation.

set of zeros as the noiseless generating function. Therefore,
the effect of zeros of the generating function on the analyt-
icity of the spin correlators with respect to z will remain the
same as for the noiseless drive case. The difference is that
the generating function with noisy drive is multiplied by an
extra noise dependent exponential factor, e−2π z η2

1 (1−x). We
are mainly interested in the role of this extra term on the
correlation lengths of the sublattice and the full lattice spin
correlators. In the following discussion we will use the method
developed by Cherng and Levitov (Ref. [41]) to show that this
extra term is responsible for the AKZ scaling behavior of the
correlation lengths.
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FIG. 9. Normalized 〈〈σ 1,2
x σ 1,2

x+r〉〉 vs r for different noise strengths
(η1 = 0.01 and 0.05) at z = 200 (slow sweep regime). The correla-
tion length lσ decreases with the increased noise strength, which is
the signature of AKZ scaling behavior.
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FIG. 10. The sublattice inverse correlation lengths have been
plotted as a function of z for the different noise strengths; both the l−1

σ

and l−1
τ show the anti-Kibble-Zurek scaling behavior, i.e., the inverse

sublattice correlation lengths lσ,τ increases after an optimal quench
parameter (∼zO) which depends on the noise strength. In contrast, for
the noiseless case both l−1

σ and l−1
τ exhibit monotonic suppression for

large z regime. Furthermore, the l−1
τ shows nonanalytical behavior at

z = z1 and beyond z > z1 both have the same values. Therefore, it is
understood that the increased noise strength of the fast noise further
decreases l , making the spin correlators relatively short ranged in
the presence of the fast noise. The l−1 = l−1

σ + l−1
τ also shows the

nonanalytical behavior at z = z1 as a result of the nonanalytical
behavior of l−1

τ ; this is the indication of the crossover of different
behaviors of the spin correlators, i.e., nonoscillatory monotonically
decreasing behavior for z < z1 regime and exponentially suppressed
oscillatory behavior of spin correlators for z > z1 regime with respect
to the spatial separation.

The generating function for the noisy drive can be written
as

gm,z
fn (ξ ) = −(−ξ )m λ−1

0 (1 − λ0 ξ )(1 − λ0 ξ−1) eH (ξ ), (50)

where

H (ξ ) = h(ξ ) − 2π z η2
1(1 − x), (51)

and

h(ξ ) = ln

[
1 − e−π z(1−2 z1/z−x)

2(1 − 2 z1/z − x)

]
. (52)

The zeros closest to the unit circle are denoted by λ0 and λ−1
0 ,

where λ0 = 1/exp[cosh−1(1 − 2z1/z)]. Both h(ξ ) and H (ξ )
can be expanded as a function of x = (ξ + ξ−1)/2 as follows,

h(x) =
∑
n�0

hn xn, H (x) =
∑
n�0

Hn xn, (53)

where we notice that H0 = h0 − 2π z η2
1 and H1 = h1 +

2π z η2
1, while for n �= 0, 1, all other coefficients satisfy Hn =

hn. The correlation length of the sublattice spin correlators are
given by the following expression

l−1
σ/τ = −

∫ 1

−1

dx√
1 − x2

H (x) = −
∫ 1

−1

dx√
1 − x2

h(x) + π2z̄,

(54)

where the full lattice correlator is given by l−1 = l−1
σ + l−1

τ .
The result of the above integration yields

l−1
σ/τ ≈

∞∑
m=0

�(m + 1/2)2 Re Lim+3/2(2)

π3/2 �(m + 1)(2π z)m+1/2
+ π2z̄, (55)

where the summation term is due to the noiseless case [41],
which in the limit of slow sweep speed results in the corre-
lation length or the domain size proportional to

√
z (from the

dominant m = 0 term) thus satisfying the KZ scenario. On
the other hand, the presence of the additional π2z̄ term due to
the fast noise in the large z scenario results in the scaling of
the correlation length to be consistent with the AKZ picture
suggesting that the domain size reduces. This result quantifies
how the fast noise randomizes the driven system spatially at
the end of the protocol. The sublattice correlation lengths have
been plotted in Fig. 10 with respect to z for different noise
strengths. They clearly show the AKZ behavior in the large-z
case, i.e., beyond quench parameters of the order of zO the
inverse correlation length starts to increase. For small-z values
the fast noise has negligible effect.

VII. CONCLUDING REMARKS

In this work we quantify analytically the effects of the fast
Gaussian noise in the driven quantum XY-spin chain. We have
considered transverse protocol in which the external trans-
verse magnetic field drives the system linearly with respect
to time, starting from the paramagnetic phase to a region with
the ferromagnetic phase and finally back to the paramagnetic
phase in the presence of the time dependent Gaussian noise
in the anisotropy term. In this protocol, the system passes
through two quantum critical points at h = ∓J where the
energy gap vanishes resulting in nonadiabatic effects. We map
the problem to the noisy LZ problem, and in terms of the den-
sity matrix formalism we obtain a reduced master equation for
the population inversion. The solution of the equation in the
T → ∞ limit has been utilized to obtain the final excitation
probability. We show that the defect density exhibits AKZ
scaling behavior in the slow sweep regime, and the optimal
quench time which minimizes the defect density is shown to
scale as η

−4/3
0 with the noise strength.

The implications for the correlators due to the nonequilib-
rium dynamics of the noisy transverse drive protocol are as
follows: First, the fast fluctuating coherences vanishes in the
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large time limit (even without the noise) due to the internal
decoherence arising from the large system size (N → ∞) and
this allows the course graining in momentum space and trans-
forms the pure state into an entropic state with finite nonzero
entropy. The time dependent Gaussian fast noise further ex-
ponentially suppresses the highly fluctuating coherences and
in particular affects the system most when the system passes
through the quantum critical points. Finally, the noise can heat
up the population to the asymptotic infinite temperature state
for the slower sweeps or large-z case, maximizing the entropy
density to log 2 and at the same time minimizing the average
magnetization density to zero. The effects of the noise are
minimized when driven at an optimal sweep rate which turns
out to scale universally with the strength of the fast noise.

We have analyzed the spin-spin correlation functions (in
the presence of noise) at the end of the protocol for large

separation using the Toeplitz determinant asymptotes at large
n. For slow sweep speeds the effect of the fast Gaussian
noise on the correlation lengths of the spin correlators at large
separation reveals behavior consistent with the anti-Kibble-
Zurek picture. The sublattice correlation lengths for σ 1,2 and
τ -spin correlators decreases with the strength of the noise
according to the anti-Kibble-Zurek scaling behavior. We have
also analyzed the effect of the fast noise on the magnetization
σ 3-spin correlator. For large n separation we find that the
correlation length of the magnetization correlator increases
with the strength of noise when η1 � 1 and π z̄ < 1.
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