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Microwave photonic crystals, graphene, and honeycomb-kagome billiards with threefold symmetry:
Comparison with nonrelativistic and relativistic quantum billiards
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We present results for properties related to the band structure of a microwave photonic crystal, that is, a
flat resonator containing metallic cylinders arranged on a triangular grid, referred to as the Dirac (microwave)
billiard, with a threefold-symmetric shape. Such systems have been used to investigate finite-size graphene
sheets. It was shown recently that the eigenmodes of rectangular Dirac billiards are well described by the
tight-binding model of a finite-size honeycomb-kagome lattice of corresponding shape. We compare properties
of the eigenstates of the Dirac billiard with those of the associated graphene and honeycomb-kagome billiard and
relativistic quantum billiard. We outline how the eigenstates of threefold-symmetric systems can be separated
according to their transformation properties under rotation by 2π

3 into three subspaces, namely singlets, that
are rotationally invariant, and doublets that are noninvariant. We reveal for the doublets in graphene and
honeycomb-kagome billiards in quasimomentum space a selective excitation of the valley states associated with
the two inequivalent Dirac points. For the understanding of symmetry-related features, we extend known results
for nonrelativistic quantum billiards and the associated semiclassical approach to relativistic neutrino billiards.
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I. INTRODUCTION

We investigate the properties of a microwave photonic
crystal consisting of a flat microwave resonator containing
metallic cylinders arranged on a triangular grid [1], which
has a threefold-symmetric shape. It is shown schematically
in Fig. 1. Such resonators have been used to investigate spec-
tral properties of artificial graphene billiards [1–4] and have
been named Dirac billiards (DBs). Before constructing the
microwave cavity which is cumbersome and needs more than
one year, we performed numerical simulations with COMSOL
Multiphysics, which are presented in this article. The mi-
crowave frequency range is restricted such that only the lowest
transverse magnetic modes are excited, implying that the
electric-field strength is perpendicular to the top and bottom
plate. Then, the system is described by the scalar Helmholtz
equation with the Dirichlet boundary condition (BC) that the
electric field strength vanishes at the walls of the resonator and
cylinders, and is mathematically equivalent to the Schrödinger
equation of a quantum billiard of corresponding shape with
scatterers at the positions of the cylinders. The voids at the
center of, respectively, three cylinders (marked by red and
cyan disks in the left lower inset) form a honeycomb structure
and, for that arrangement of the metallic cylinders and choice
of geometric sizes, the resonance spectrum exhibits two Dirac
points framed by van Hove singularities [1–5], independently
of the shape of the photonic crystal.

Dirac points are a characteristic of graphene sheets that
have attracted a lot of attention [6,7]. They originate from

*Dietz@lzu.edu.cn

the honeycomb structure [8] which is formed by two in-
terpenetrating triangular sublattices leading to the reduction
of the Fermi surface to two independent ones, denoted by
K±. There the valence and conduction band touch each other
conically, implying that the low-energy excitations exhibit a
linear dispersion relation and are governed by Dirac Hamil-
tonians for massless spin-1/2 quasiparticles, Ĥ± = ±vF σ̂ · q,
with σ̂ = (σ̂x, σ̂y), where σ̂x,y,z denote the Pauli matrices and
q = (qx, qy) the quasimomentum vector. In the vicinity of
these valley states graphene features relativistic phenomena
[6,7,9–17], which triggered numerous realizations [18] of ar-
tificial graphene [19–32]. In order to realize an experimental
model for a graphene billiard (GB) with Dirichlet BCs at the
sites encircling it, we chose the wall of the DB such that
it passes through them; see Fig. 1. It was demonstrated in
Refs. [1–5] for rectangular and Africa-shaped Dirac billiards
that in the bands of propagating modes framing the lower
Dirac point, the DOS and properties of the resonance frequen-
cies and electric-field distributions agree well with those of the
eigenvalues and wave functions obtained with a tight-binding
model (TBM) for the GB of corresponding shape which takes
into account up to third-nearest-neighbor hoppings and wave
function overlaps [33]. Previous experiments focused on this
Dirac point and the properties of GBs [3] were reproduced;
however, the occurrence of a flat band of extraordinarily high
spectral density that separates the lower and upper Dirac
points and that of the upper one could not be explained with
the honeycomb-lattice based TBM. Indeed, it was demon-
strated recently that the properties of rectangular DBs are well
captured by a TBM for honeycomb-kagome billiards (HBs)
whose lattice structure is formed by a honeycomb and kagome
sublattice [34–38], which is illustrated in the lower right inset
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FIG. 1. Design of the DB with threefold symmetry. It contains
1033 metallic cylinders (gray disks) arranged on a triangular grid.
The number of voids (red and cyan dots in the lower left inset)
formed by respectively three cylinders equals 2066. They are posi-
tioned on a honeycomb lattice, which is terminated by zigzag and
armchair edges, and correspond to the sites in the graphene billiard.
The centers between two adjacent cylinders (red dots in the lower
right inset) form a kagome lattice. The electric field strength distribu-
tion is localized on both lattices and, consequently, has the structure
of a honeycomb-kagome lattice consisting of a honeycomb and a
kagome sublattice.

of Fig. 1. We show in the present article that this analogy
generally holds for DBs.

With the pioneering fabrication of graphene [6,7,10], in-
terest in relativistic quantum chaos [3–5,14,18,39–47], which
entails the study of the spectral properties and properties of
the wave functions of GBs [3,4,6,7,39–41,43,44], reemerged.
It was shown in Ref. [3] that the spectral properties of
DBs and GBs coincide with those of nonrelativistic quantum
billiards (QBs) in the vicinity of the band edges, whereas
around the Dirac point graphene features relativistic phe-
nomena [1,27,48–50]. If the shape of a QB coincides with
that of a classical billiard (CB)—consisting of a bounded
two-dimensional domain in which a point particle moves
freely and is reflected specularly at the boundary—with a
chaotic dynamic, then according to the Bohigas-Giannoni-
Schmit conjecture [51–54] the spectral properties coincide
with those of random matrices [55] from the Gaussian or-
thogonal ensemble (GOE) when time-reversal invariance is
preserved and with random matrices from the Gaussian uni-
tary ensemble (GUE), when it is violated. Quantum billiards
with a threefold-symmetric shape do not comply with this
conjecture [56–60]. To be explicit, the eigenstates can be
classified according to their transformation properties with
respect to rotations by 2π

3 into three subspaces. For one of
these subspaces the eigenstates are invariant under this trans-
formation. The eigenfunctions of the other two subspaces are
complex, the associated subspectra are degenerate, and the
fluctuation properties coincide with those of random matrices

from the GUE if the shape has no further geometric symme-
try, even though time-reversal invariance is preserved. These
discrepancies could be explained on the basis of a semiclas-
sical approach [61–67]. In Refs. [63,67] symmetry-projected
trace formulas were derived for the spectral density of the
subspectra, which involve in addition to the full-system pe-
riodic orbits pseudo-orbits, which are periodic orbits only in
the symmetry-projected fundamental domains. The direct link
between the quantum spectral density and classical periodic
orbits is best visualized by length spectra, obtained from the
Fourier transform of the spectral density from wave number to
length, which exhibit peaks at the lengths of periodic orbits.
In Refs. [3,38] length spectra of DBs and the associated GBs
and HBs were shown to agree well with those of the QB in
the vicinity of the band edges. We will address the question of
whether this analogy also holds for the pseudo-orbits.

In 1987 Berry and Mondragon proposed relativistic neu-
trino billiards [68] (NBs) that are governed by the Dirac
equation for a spin-1/2 particle, which is confined to the
billiard domain by imposing appropriate BCs. The associated
Dirac Hamiltonian is not invariant under time reversal, so
the spectral properties of NBs with the shape of a chaotic
CB typically coincide with those of random matrices from
the GUE, if the shape has no additional geometric symmetry.
The spectral properties of GBs were expected to be similar to
those of NBs in the valley regions around the K± points, be-
cause there they are governed by the same wave equations. In-
deed, experiments with graphene quantum dots with the shape
of a chaotic Africa billiard yielded that the spectral proper-
ties follow GUE statistics [14]. However, tight-binding model
(TBM) calculations [43] and experimental investigations [1,2]
with GBs of that shape revealed that they coincide with those
of random matrices from the GOE. The discrepancies were
attributed to the differing conditions on the wave functions
along the boundary [41,45,46]. In a finite-size graphene sheet
or GB waves are scattered back at the boundary, leading to a
mixing of the K± valley states and thus to a coupling of the
Dirac Hamiltonians Ĥ±. The resulting four-dimensional Dirac
equation preserves time-reversal invariance.

In the present article we compare the spectral properties
and length spectra deduced from the spectra of DBs, GBs,
and HBs around the Dirac points with those of massless
and massive NBs. Their eigenvalues and wave functions are
obtained from a boundary-integral equation (BIE) which has
been deduced based on Green’s theorem for massless NBs
in Ref. [68] and extended to massive NBs in Ref. [69].
With increasing mass, NBs undergo a transition from the
ultrarelativistic to the nonrelativistic limit [69–72]. Based
on the BIEs for massive NBs trace formulas were derived
for their spectral density which capture that transition [69].
Like in the nonrelativistic case, the eigenstates of NBs with
a threefold-symmetric shape can be classified according to
their transformation properties under rotation by 2π

3 . We will
outline how the BIE can be separated into three symmetry-
projected BIEs. Using the trace formula for massive NBs we
derive symmetry-projected trace formulas that are employed
to understand their length spectra obtained from the Fourier
transform of the symmetry-projected spectral density. Note
that NBs and, generally, relativistic QBs have no well-defined
classical limit; however, the trace formula provides a direct
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link to the classical dynamics [73,74]. Similarly, a trace for-
mula was derived for the relativistic region of GBs [75]. In
Ref. [44] a trace formula was obtained for GBs with infinite-
mass confinement which was shown in Ref. [69] to coincide
with that of massless NBs. We compare length spectra involv-
ing all eigenvalues and symmetry-projected subspectra of the
NBs with the corresponding ones of the DBs, GBs, and HBs
to test to what extent this analogy holds.

The investigation of the fluctuation properties in the
symmetry-projected subspectra is also interesting from an-
other point of view. Actually, a motivation for the investi-
gation of properties of DBs with threefold symmetry comes
from experiments which were performed in the context of
topological phononics and valleytronics with open phononic
and sonic crystals that are composed of rods with triangular
cross sections arranged on a triangular grid [76–80]. Depend-
ing on the orientation of the rods, these systems may exhibit
C3 or C3v symmetry and may lead to a selective excitation
of the valley-vortex states resulting in topological phenom-
ena related to pseudospin-dependent transport. Similarly, we
reveal for the degenerate eigenstates of the GB and HB a
selective excitation of the valley states associated with the
K± points, as outlined in Sec. IV, after subdividing into
the three symmetry-projected subspaces, implying that there
backscattering at the boundary does not lead to a mixing of
the valley states [41]. As explained above, the discrepancies
between the spectral properties of DBs, GBs, and HBs in the
vicinity of the Dirac points and NBs have been attributed to
the backscattering. Therefore, the question arises of whether
these are lifted due to the selectivity. To find out, we compare
their spectral properties which, actually, are expected to be
GUE for all cases, and their length spectra.

Section II is divided into several subsections. In Sec. II A
we review the properties of quantum systems with three-
fold symmetry and in Sec. II B the results for nonrelativistic
quantum billiards. In Sec. II C we extend these results to
relativistic QBs, namely massless and massive NBs and then
compare in Sec. II D the spectral properties of QBs and NBs.
In Sec. II E we extend the semiclassical theory [61,62] for
threefold symmetric QBs [63] to NBs for an understanding
of the symmetry-projected length spectra. The derivation is
based on the trace formula for massive NBs [69]. In Secs. III
and IV we present the results for the DB, the GB, and the HB,
which are discussed in Sec. V.

II. NONRELATIVISTIC AND RELATIVISTIC QUANTUM
BILLIARDS WITH THREEFOLD SYMMETRY

A. Quantum systems with threefold symmetry

First we consider nonrelativistic quantum systems sub-
ject to a potential with C3 symmetry, which we realize with
quantum billiards of which the shape has a threefold ro-
tational symmetry. Motivation for the choice of the shape
stems from experiments which were performed 20 years
ago with a superconducting microwave billiard to investi-
gate the spectral properties of quantum systems with C3

symmetry. Its shape is shown schematically in Fig. 2. The
domain � of the billiard is defined in the (x, y) plane by the

FIG. 2. Shape of the threefold-symmetric billiard. The billiard
domain can be divided into three fundamental domains that are
mapped onto each other under rotation by 2π

3 . A possible subdivision
is indicated by the red-dashed lines. Any other partition can be
obtained by rotation of the lines. The shortest connected PO (green
lines) has a length of l̃s = 11.336r0/3.

parametrization

x(r, φ) + iy(r, φ) = w(r, φ) = R(r, φ)eiφ,

φ ∈ [0, 2π ), r = [0, r0], (1)

with

R(r, φ) = r f (φ), (2)

f (φ) = 1 + 0.2 cos(3φ) − 0.2 sin(6φ). (3)

The boundary ∂� of the billiard is defined by w(r = r0, φ)
where we chose r0 = 3 in the numerical simulations. The
shape is threefold symmetric, and thus can be divided into
three fundamental domains which can be mapped onto each
other by a rotation by 2π

3 . This symmetry property is imprinted
on the wave functions ψ (r, φ), which are governed by the
Schrödinger equation or, equivalently, the scalar Helmholtz
equation, with Dirichlet BCs along the boundary of the QB,

Ĥψm(r, φ) = −�(r,φ)ψm(r, φ) = k2
mψm(r, φ),

ψm(r = r0, φ) = 0. (4)

The eigenenergies Em = k2
m of the Hamiltonian Ĥ = −�(r,φ)

are given in terms of the wave numbers km, which are related
to the eigenfrequencies νm of the corresponding microwave
billiard through the relation km = 2πνm/c, where c denotes
the velocity of light in vacuum. For the parametrization Eq. (2)
the gradient ∇(x,y) = ( ∂

∂x ,
∂
∂y ) is obtained from [81]

(
∂

∂x
+ i

∂

∂y

)
= J

{
−i

∂w(r, φ)

∂φ

∂

∂r
+ i

∂w(r, φ)

∂r

∂

∂φ

}
,

J =
(

R(r, φ)
∂R(r, φ)

∂r

)−1

, (5)
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yielding for the Laplace operator �(x,y) = ∂2

∂x2 + ∂2

∂y2 in polar
coordinates (r, φ),

J−2�(r,φ) = r2

{(
∂ f

∂φ

)2

+ f 2

}
∂2

∂r2
+ f 2 ∂2

∂φ2

− 2r f

(
∂ f

∂φ

)
∂2

∂r∂φ
+
{

2r

(
∂ f

∂φ

)2

+ r f 2

− r f

(
∂2 f

∂φ2

)}
∂

∂r
. (6)

The solutions of the free-space Schrödinger equation can be
written in terms of an expansion of the Bessel functions
Jm(x) [81],

ψ (r, φ) =
∑

m

Jm(kR(r, φ))[am cos(mφ) + bm sin(mφ)]. (7)

For quantum systems with threefold symmetry the sym-
metry group is given by G = C3 = {e, g, g2}, where e is
the identity operation and g denotes rotation by 2π

3 . The
symmetry group C3 has three one-dimensional irreducible
representations labeled by l = 0, 1, 2, which are given by
M(l )(gλ) = eiλ 2lπ

3 with λ taking either of the values {0, 1, 2}.
Consequently, the solutions of the wave equation (4) can
be separated into three subspaces which are defined by the
transformation properties of the associated eigenfunctions
ψ (l )

m (r, φ) under rotation by 2λπ
3 , λ = 0, 1, 2 when applying

the rotation operator [56,57,59,67]

Û (g) = R̂ = ei 2π
3 L̂ (8)

with L̂ denoting the angular momentum operator,

Û (gλ)ψ (l )
m (r, φ) = R̂λψ (l )

m (r, φ)

= ψ (l )
m (g−λ[r]) = ψ (l )

m

(
r, φ − 2π

3
λ

)

= ei 2lπ
3 λψ (l )

m (r, φ), (9)

where

[R̂, Ĥ ] = 0. (10)

The projection operator P̂l onto the irreducible subspace la-
beled with l , which is defined by the properties P̂lψ

(l ′ )(r, φ) =
δll ′ψ

(l ′ )(r, φ) and P̂2
l = P̂l , is given by

P̂l = 1

3

2∑
λ=0

χl (gλ)Û †(gλ), (11)

where χl (g) = trM(l )(g) denotes the character of the corre-
sponding irreducible representation.

For l = 0 the wave functions are invariant under rota-
tion by 2π

3 , whereas for l = 1, 2, R̂ needs to be applied
three times on ψ (l )

m (r, φ) in order to recover its initial value.
The wave functions are real for l = 0 and invariant under
application of the antiunitary time-reversal operator T̂ = K̂
with K̂ the complex conjugation operator [82], whereas with
ψ (l )∗

m (r, φ − 2π
3 ) = e−i 2lπ

3 ψ (l )∗
m (r, φ),

T̂ ψ (1,2)
m (r, φ) = [

ψ (1,2)
m (r, φ)

]∗ = ψ (2,1)
m (r, φ). (12)

However, the QB itself is invariant under time reversal,

[Ĥ, T̂ ] = 0, (13)

implying that ψ (1,2)
m (r, φ) and T̂ ψ (1,2)

m (r, φ) = ψ (2,1)
m (r, φ)

are eigenfunctions to the same eigenvalue k2
m. Thus, the

eigenvalue spectrum can be separated into nondegenerate
eigenvalues (singlets) and pairwise degenerate ones (dou-
blets). Note that due to the degeneracy of the eigenvalues a
complete set of real eigenfunctions of Ĥ corresponding to that
eigenvalue can be constructed from a linear combination of
ψ (1)

m (r, φ) and ψ (2)
m (r, φ). As a consequence of the behavior of

the eigenstates of the QBs with threefold symmetry under the
T̂ operation, the spectral properties of the singlets follow GOE
statistics, while those of the two doublet partners exhibit GUE
statistics, if the dynamic of the corresponding CB is chaotic.
This is generally the case for QBs with C3 symmetry and no
mirror symmetry [83,84] and was confirmed experimentally
in high-precision experiments with superconducting [59,60]
and normal conducting [83] microwave billiards. If the spectra
of quantum systems with C3 symmetry and a chaotic classi-
cal dynamics are not separated according to their symmetry
properties, their fluctuation properties coincide with those of
a superposition of one random matrix from the GOE and two
of same dimension from the GUE with identical eigenvalues
and eigenvectors related through Eq. (12).

B. Nonrelativistic quantum billiards

In Ref. [84] the experimental results were validated numer-
ically with a procedure which is based on the finite-element
method (FEM). In the present paper we use BIEs originating
from the Green theorem, which take into account the BCs and
thus provide an exact integral equation for the eigenvalues and
the associated eigenfunctions of QBs [85]. Another advantage
with respect to the FEM is that the eigenvalue problem is re-
duced from discretization of the two-dimensional billiard area
required for the FEM to that of the boundary. To further reduce
the numerical effort we incorporate the symmetry properties
into the BIE and thereby obtain individual BIEs for each
subspace with the boundary integrals reduced to one-third of
the boundary.

To obtain the eigenvalues of the QB we have to solve the
interior Dirichlet problem. Then, the eigenvalues are obtained
from a Fredholm equation of the second kind [85] which
involves the normal derivative u(s) = ∂nψ (s) instead of the
wave function ψ (s), where s denotes the arclength parameter

s(φ) =
∫ φ

0
|w′(φ̃)|dφ̃, s ∈ [0,L), ds = |w′(φ)|dφ (14)

with w′(φ) = dw(φ)
dφ

and L the perimeter,

u(s′) = −2
∮

∂�

ds∂n′G0[k; r(s′), r(s)]u(s)

= Q̂QB(k)u(s). (15)

Here,

G0[k; r(s′), r(s)] = − i

4
H (1)

0 (k|r − r′|) (16)
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is the two-dimensional free-space Green function and
H (1)

m (kρ) = Jm(kρ) + iYm(kρ) refers to the Hankel function of
the first kind of order m [86]. Denoting by α(s) the angle of
the outward-pointing normal vector n(s) with respect to the
x axis, i.e., n(s) = [cos α(s), sin α(s)], the distance between
the boundary points at s and s′ by ρ = |r(s) − r(s′)|, and by
ξ (s, s′) the angle between ρ(s, s′) = r(s) − r(s′) and the x
axis, the normal derivative equals

∂n′G0[k; r(s′), r(s)] (17)

= n(s′) · r(s) − r(s′)
|r(s) − r(s′)|

(
− i

4
k

)
H (1)

1 (kρ)

= cos [α(s′) − ξ (s, s′)]
(

− i

4
k

)
H (1)

1 (kρ). (18)

Accordingly, the BIE Eq. (15) can be cast into the form [85]

u(φ′) =
∫ 2π

0
dφ|w′(φ)|QQB(k; φ, φ′)u(φ), (19)

QQB(k; φ, φ′) = i
k

2
cos [α(φ′) − ξ (φ, φ′)]H (1)

1 (kρ). (20)

To take into account the threefold symmetry of the QB we use
periodicity properties resulting from it,

w

(
φ + λ

2π

3

)
= eiλ 2π

3 w(φ), (21)

w′
(

φ + λ
2π

3

)
= eiλ 2π

3 w′(φ), (22)

eiα(φ+λ 2π
3 ) = eiλ 2π

3 eiα(φ), (23)

with λ = 0, 1, 2 yielding that

QQB

(
k; φ, φ′ − λ

2π

3

)
= QQB

(
k; φ + λ

2π

3
, φ′

)
. (24)

Restricting φ to φ ∈ [0, 2π
3 ) and introducing wave func-

tions for the three domains marked by λ = 0, 1, 2 in Fig. 2,
ψλ(φ) = ψ (φ + λ 2π

3 ), uλ(φ) = ∂nψλ(φ), and

MQB
λ (k; φ, φ′) = QQB

(
k; φ + λ

2π

3
, φ′

)
, (25)

the BIE becomes

u(φ′) =
∫ 2π

3

0
dφM̂QB(k; φ, φ′)u(φ) (26)

with

u(φ) =
⎛
⎝u0

u1

u2

⎞
⎠(φ), (27)

M̂QB(k; φ, φ′) =

⎛
⎜⎝

MQB
0 MQB

1 MQB
2

MQB
2 MQB

0 MQB
1

MQB
1 MQB

2 MQB
0

⎞
⎟⎠(k; φ, φ′). (28)

This procedure corresponds to a separation of phase space
into fundamental domains to which all group operations are
applied in order to generate the whole phase space [63]. On

multiplication with

Û = 1√
3

⎛
⎝1 ei 4π

3 ei 4π
3

1 1 ei 2π
3

1 ei 2π
3 1

⎞
⎠, (29)

M̂QB(k; φ, φ′) is brought to diagonal form,

[Û †M̂QB(k; φ, φ′)Û ]lm = M̃QB(l )(k; φ, φ′)δlm, (30)

yielding three independent symmetry-projected BIEs,

u(l )(φ′) =
∫ 2π

3

0
dφM̃QB(l )(k; φ, φ′)u(l )(φ), (31)

where u(l )(φ) = ∂nψ
(l )(φ), l = 0, 1, 2, and

M̃QB(l )(k; φ, φ′) =
2∑

λ=0

ei 2lπ
3 λMQB

λ (k; φ, φ′). (32)

Note that the prefactor of MQB
λ corresponds to the character

χl (gλ) = ei 2lπ
3 λ of the representation matrix M(l )(gλ). The

BIEs Eq. (31) have solutions only for discrete values of k
yielding the eigenvalues k2

m, m = 1, 2, . . . , of the QB for the
three subspectra corresponding to the irreducible representa-
tions of C3. The eigenvalues corresponding to the rotationally
invariant states l = 0 are nondegenerate, whereas for l = 1, 2
they form doublets of degenerate ones.

C. Relativistic quantum billiards

The Dirac equation for a free spin-1/2 particle of mass m
moving with momentum p̂ = −ih̄∇ in the two-dimensional
r = (x, y) plane is given by

ĤDψ = (cσ̂ · p̂ + mc2σ̂z)ψ = Eψ, ψ =
(

ψ1

ψ2

)
. (33)

Here, σ̂ = (σ̂x, σ̂y), σ̂x,y,z are the Pauli matrices, and E =
h̄ckE = h̄ck

√
1 + β2 is the energy of the particle, where k is

the free-space wave vector and β = mc
h̄k is the ratio of the rest-

energy momentum and free-space momentum. The particle is
confined to the billiard domain � by requiring that the Hamil-
tonian of a closed system should preserve self-adjointness
[68], that is, that there is no outgoing flow, thus yielding
the BC

ψ2(s) = ieiα(s)ψ1(s), (34)

which imposes a phase relation on the wave-function com-
ponents ψ1,2(s) along the boundary ∂�. Introducing local
coordinates (n, s) in the directions of n(s) and of the tangential
vector t (s) = [− sin α(s), cos α(s)] at r(s) with n = 0 on the
boundary, this BC can be turned into separate ones for the two
wave-function components,

(∂n + i∂s)ψ1(n, s)|n→0− = −kK−1ψ1(s),

(∂n − i∂s)ψ2(n, s)|n→0− = kKψ2(s). (35)

Here, ∂n = n · ∇ and ∂s = t · ∇ denote the normal and tan-
gential derivatives along ∂�, respectively, yielding ∂x ±
i∂y = e±iα(s)(∂n ± i∂s), n → 0− means that the boundary is

064310-5



WEIHUA ZHANG AND BARBARA DIETZ PHYSICAL REVIEW B 104, 064310 (2021)

approached in the direction of n(s) from the interior, and
ψ1,2(n = 0, s) = ψ1,2(s). Furthermore, we introduced

K =
√

1 − sin θβ

1 + sin θβ

, (36)

cos θβ = 1√
1 + β2

, sin θβ = β√
1 + β2

. (37)

The nonrelativistic limit is reached when the energy is close
to the rest energy, E � mc2, which is reached in the limit
β = mc

h̄k → ∞ for fixed, nonzero h̄k, i.e., in a given k-value
range for β̃ = mc

h̄ → ∞ [70], where β̃ denotes the rest-energy
momentum mc in units of h̄. In that limit K � 1

2β
→ 0 and

θβ → π/2. We demonstrated in Ref. [69] that the nonrela-
tivistic limit complies with the BCs for massive NBs yielding
that for sufficiently large β̃ the spinor components decouple
and their wave equations coincide with those of QBs subject
to Robin BCs that eventually turn into Dirichlet BCs with
increasing β̃.

Introducing a two-component spinor ψ̃(r) which is ob-
tained by dividing the components ψ1,2(r) in Eq. (33) by
the amplitudes of the corresponding free-space wave-function
components [70],

(
ψ1

ψ2

)
=
⎛
⎝
√

1+sin θβ

2 ψ̃1√
1−sin θβ

2 ψ̃2

⎞
⎠, (38)

leads to a Dirac equation of massive NBs

kψ̃(r) + iσ̂ · ∇ψ̃(r) = 0, (39)

ψ̃2(s) = ieiα(s)K−1ψ̃1(s), (40)

which has the same form as for the massless NB [68] with
modified BCs that approach for β̃ → 0 those for massless
NBs given in Eq. (34).

Application of Green’s theorem yields BIEs which con-
tain singularities originating from the logarithmic singularity
of H0(kρ) and the 1/ρ singularity of H1(kρ) for ρ = 0. In
Ref. [68] these singularities could be removed for massless
neutrinos by using a combination of the BIEs for the two
wave-function components ψ1,2(φ) and applying the BC. Due
to the modified BCs the derivation of BIEs containing no
singularities is more involved for nonzero m [69]. The BIEs
for the two wave-function components can be written in a
form similar to that for the QB given in Eq. (19),

ψ̃
†
[r(φ′)]

=
∮

∂�

dφ|w′(φ)|ei ��(φ,φ′ )
2 Q̂NB[k; r(φ′), r(φ)]ψ̃

†
[r(φ)]

= Q̂
NB

(k)ψ̃
†
[r(φ)], (41)

with ��(φ, φ′) = α(φ′ )−α(φ)
2 and Q̂

NB
i j (k) = Q̂

NB
j (k)δi j , and

Q̂
NB
j (k) denoting the integral operator which is applied to

ψ̃∗
j (φ) to obtain ψ̃∗

j (φ′). For the first component the BIE is

given by

ψ̃∗
1 (φ′) =

∫ 2π

0
dφ|w′(φ)|ei ��(φ,φ′ )

2 QNB
1 (k; φ, φ′)ψ̃∗

1 (φ), (42)

QNB
1 (k; φ, φ′)

= i
k

2

{
i cos θβ sin

(
��(φ, φ′)

2

)
H (1)

0 (kρ)

+ i sin θβ sin

(
α(φ′) + α(φ)

2
− ξ (φ, φ′)

)
H (1)

1 (kρ)

+ cos

(
α(φ′) + α(φ)

2
− ξ (φ, φ′)

)
H (1)

1 (kρ)

}
. (43)

In the sequel we suppress the argument of ρ = ρ(φ, φ′). For
φ → φ′ the first and the last term vanish [87] whereas the
second term approaches1

QNB
1 (k; φ, φ′)ds

φ→φ′
−−−→ − sin θβ

2π
[κ (s)ds + 2i]. (44)

The corresponding equation for ψ̃∗
2 (φ′) is deduced from

Eq. (40) by multiplying the integrand with e−i��(φ,φ′ ). The
ultrarelativistic and nonrelativistic cases are attained for θβ =
0 and θβ = π

2 , respectively. The corresponding BIEs for the
wave-function components ψ1,2 are obtained from ψ̃1,2 by
employing Eq. (38).

Before implementing the symmetry properties in the BIEs
for NBs a few remarks are necessary. For a QB of which
the shape exhibits mirror symmetries the wave functions are
either symmetric or antisymmetric with respect to the symme-
try axis; that is, they follow Neumann, respectively, Dirichlet
BCs along this axis. This, however, is not the case for the
corresponding NB, because the wave functions, obtained by
applying the associated symmetry operation to those of the
full system, do not obey the BC Eq. (40) for finite values of
β̃. If, on the other hand, the billiard shape has an N-fold ro-
tational symmetry, w(z′) = eil 2π

N w(z) and eiα(z′ ) = eil 2π
N eiα(z)

with z′ = eil 2π
N z, l = 1, . . . , N − 1, then the free-space solu-

tion of the transformed Hamiltonian ĤD(z′) = Û
†
ĤDÛ with

ĤD defined in Eq. (33) and

Û =
(

eil π
N 0

0 e−il π
N

)
, (45)

ψ′ = Û
†
ψ, obeys the BC Eq. (34) if the original wave func-

tion ψ(z) does [87]. The Hamiltonian of NBs with N-fold
rotational symmetry can be brought to a block-diagonal struc-
ture with each of the N blocks corresponding to one of the
irreducible representations of the symmetry group, defined
by the transformation properties of the associated eigenstates
with respect to a rotation by l 2π

N , l = 0, 1, . . . , N − 1 [87,88],
where in the case considered here N = 3. Indeed, the inte-
grand QNB

1 (k; φ, φ′) of Eq. (41) exhibits the same periodicity

1This term results from a more accurate determination of
eiξ (φ′+δφ′,φ′ ) for φ → φ′ than in Ref. [69], where it was based on the
estimate given below Eq. (41) of Ref. [87] obtained by neglecting
terms of second and higher order in δφ′ in the Taylor expansion of
ρ(φ′ + δφ′), which is sufficient to show that the first and last terms
in Eq. (43) vanish.
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as QQB(k; φ, φ′) given in Eq. (24),

QNB
1

(
k; φ, φ′ + λ

2π

3

)
= QNB

1

(
k; φ − λ

2π

3
, φ′

)
(46)

with λ = 0, 1, 2, so we may proceed as in Eqs. (24)–(32) to
separate the BIE Eq. (41) into individual ones for the three
irreducible representations of C3,

ψ̃
(l )∗
1 (φ′) =

∫ 2π
3

0
dφM̃NB(l )(k; φ, φ′)ψ̃ (l )∗

1 (φ) (47)

with l = 0, 1, 2 and [63]

M̃NB(l )
1 (k; φ, φ′) =

2∑
λ=0

ei 2lπ
3 λMNB

1,λ (k; φ, φ′), (48)

where

MNB
1,λ (k; φ, φ′) = QNB

1

(
k; φ + λ

2π

3
, φ′

)
. (49)

Note that the Dirac Hamiltonian Eq. (33) does not commute
with the time-reversal operator T̂ . Consequently, if the shape
has no mirror symmetry, the eigenvalues corresponding to
the invariant representations of C3 labeled by l = 1, 2 are not
degenerate and also for the singlets the spectral properties of
massless NBs typically coincide with those of the GUE if the
shape of the billiard generates a chaotic classical dynamics.
Furthermore, the BCs Eq. (34) or, equivalently, Eq. (40) re-
late wave function components to each other which belong
to different representations l . Namely, using that ψ

(l )
2 (φ −

2π
3 ) = ei 2lπ

3 ψ
(l )
2 (φ) and Eq. (23) supposing that with Eq. (34)

ψ
(l ′ )
1 (φ) = ieiα(φ)ψ

(l )
2 (φ) yields

ψ
(l ′ )
1

(
φ − 2π

3

)
= ieα(φ− 2π

3 )ψ
(l )
2

(
φ − 2π

3

)

= ie−i 2π
3 eα(φ)ei 2lπ

3 ψ
(l )
2 (φ)

= ei 2(l−1)π
3 ψ

(l ′ )
1 (φ), (50)

i.e., l ′ = l − 1, where l = −1 is equivalent to l = 2.

D. Spectral properties of quantum and neutrino billiards

Based on the BIEs Eqs. (32) and (48) we computed 3000
eigenvalues and corresponding wave functions for each sym-
metry class for the QB and the massless NB and 2000 for
NBs with mass β̃ = 2, 20, 100. In Fig. 3 we show examples
for the intensity distributions of the wave functions of the QB
for the singlets (left three columns) and only for one of the
doublet partners (right three columns), because for the other
one they are the same. They were obtained by employing the
BIEs deduced on the basis of Green’s theorem for QBs [85].
The nodal domain structure is blurry for the doublets, because
the corresponding wave functions are complex. In Figs. 4–6
we exhibit wave function intensity distributions of NBs for
the eigenstates with n = 45, 48, 106 which were computed
using the BIEs for massive NBs [69]. They are shown for the
first and second component of the singlets (first and second
column), and of the doublets with l = 1 (third and fourth col-
umn) and l = 2 (fifth and sixth column) for β̃ = 0 (first row),
β̃ = 20 (second row), and β̃ = 100 (third row). In all cases the

FIG. 3. Wave functions of the singlets (left three columns) and
the corresponding doublets (right three columns) of the QB. They
correspond to, from top left to bottom right in the left and right parts,
eigenstates {kn, ψn} with n = 34, 36, 39, 40, 51, 52, 55, 57, 58. The
color code goes from dark blue for zero intensity to red at the
maximal intensity.

distributions of the massive NBs differ from the corresponding
ones for the massless case. For the singlets the nodal line
structure becomes discernible with increasing β̃ indicating
that the wave functions become real [88]. Furthermore, the
distributions of doublet partners approach each other with
increasing β̃, as expected in the nonrelativistic limit. These
features are visible in the local current shown in Figs. 7–9.
It is defined as the expectation value of the current operator
û = ∇pĤD = cσ̂, u(r) = cψ†σ̂ψ. First, the local current can
be used to test whether the BCs are fulfilled, that is, whether
the outward current n(s) · u(s) vanishes along the boundary,
which indeed is the case. In addition, the patterns exhibit a
clear nodal-line pattern with increasing β̃. These observations
may be explained by the fact that the wave-function compo-
nents decouple and their patterns become similar. However,
the second component becomes vanishingly small as com-
pared to the first one with increasing β̃ [70]; see Eq. (38).

Figure 10 shows the nearest-neighbor spacing distribution
P(s), the integrated nearest-neighbor spacing distribution I (s),
the number variance �2(L), and the Dyson-Mehta statistic

FIG. 4. Wave function intensity distributions of the first (first
column) and second (second column) component of the singlets, the
first (third column) and second (fourth column) component of the
doublets with l = 1, and the first (fifth column) and second (sixth
column) component of the doublets with l = 2 for β̃ = 0 (first row),
β̃ = 20 (second row), and β̃ = 100 (third row) for the eigenstate with
n = 45. The color code goes from dark blue for zero intensity to red
at the maximal intensity.
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FIG. 5. Same as Fig. 4 for n = 48.

�3(L), which serves as a measure for the rigidity of a spec-
trum for the NBs with β̃ = 0, 20, 100 and for the QB. For
β̃ = 2 the curves lie on top of those for β̃ = 0. Before an-
alyzing the fluctuation properties in the spectra we unfolded
the eigenvalues Em = k2

m to mean spacing unity. This was
achieved for the QB and massless NB with Weyl’s formula
[89] by replacing the eigenvalues by εm = NWeyl(km) where
for QBs NWeyl(km) = A

4π
k2

m + L
4π

km + C0 with A denoting the
area of the billiard and the perimeter contribution cancels out
for NBs [68]. For the massive NBs unfolding was attained
with a general second-order polynomial [44] which was fitted
to the integrated spectral density. For the singlets, shown in
the upper panel of Fig. 10, a transition from the GUE for the
massless case to the GOE takes place when increasing the
mass β̃ whereas for the doublets, shown in the lower panel,
the curves are close to those of the GUE for all billiards. For
the doublets, shown in the lower panel of Fig. 10, the curves
are close to those of the GUE for all billiards. For β̃ = 100
the spacing between the eigenvalues corresponding to l = 1
and l = 2, respectively, is much smaller than the average
spacing in each subspectrum and the spectral properties of the
NB are close to those of the QB when considering the same
number of eigenvalues. Deviations from random matrix theory
(RMT) predictions visible in the long-range correlations for
the NB with mass β̃ = 100 (orange squares), and also for
the QB when taking into account only 1500 eigenvalues, are
attributed to eigenstates localized along the shortest connected
periodic orbit (PO) shown in Fig. 2 and along POs trapped
in the bulges of the billiard visible in Fig. 3 and, e.g., in
Fig. 5 for β̃ = 100. These orbits are nontypical and analogous
to the bouncing-ball orbits in the stadium billiard [90,91].

FIG. 6. Same as Fig. 4 for n = 106.

FIG. 7. Current corresponding to the wave functions shown in
Fig. 4. The color code goes from dark blue for zero intensity to red
at the maximal intensity.

Their contributions lead to slow oscillations Nosc(km) in the
fluctuating part of the integrated spectral density depicted as
turquoise lines in Fig. 11. We removed their contributions to
the spectral properties (cyan dots) by unfolding the eigen-
values with εm = NWeyl(km) + Nosc(km) which, in addition to
Weyl’s formula, takes into account these oscillations [84,92].
Then the agreement with the spectral properties of the QB is
very good.

The identification of slow oscillations is not an easy
task, because it depends on the smoothing procedure and,
in distinction from the determination of contributions from
bouncing-ball orbits in the stadium billiard [91,92], the sep-
aration into fluctuating and oscillating contributions is not
obvious. To determine the oscillating part we proceeded as

FIG. 8. Current corresponding to the wave functions shown in
Fig. 5.

064310-8



MICROWAVE PHOTONIC CRYSTALS, GRAPHENE, … PHYSICAL REVIEW B 104, 064310 (2021)

FIG. 9. Current corresponding to the wave functions shown in
Fig. 6.

in Ref. [84] and employed length spectra, which are obtained
from the Fourier transform of the fluctuating part ρfluc(k)
of the spectral density, ρ(k) = ∑

m δ(k − km), from wave

number k to length l , ρ̃(l ) = | ∫ kmax

0 dkeiklρfluc(k)|, where l
is shown in units of r0/3. For nonrelativistic QBs the length
spectra exhibit peaks at the lengths of the POs of the corre-
sponding CB. In Fig. 12 we compare the length spectra of
the QB and the NBs with β̃ = 0, 2, 20, 100 deduced from the
complete spectra including all eigenvalues irrespective of their
transformation properties under rotation by 2π

3 . All length
spectra exhibit peaks at the lengths of the POs of the CB,
except that for the massless NB, peaks corresponding to POs
with an odd number of reflections are missing [44], like, e.g.,
the shortest connected PO shown in Fig. 2. For the NB with
β̃ = 2 still some of the peaks are missing, however for β̃ = 20
the length spectrum is already close to that of the QB and for
β̃ = 100 they are similar. Peaks at lengths smaller than the
length of the shortest connected PO, ls = l̃s/(r0/3) = 11.336,
correspond to the POs trapped in the bulges. Accordingly,
we determined Nosc(km) plotted as turquoise lines in Fig. 11
from the inverse Fourier transform of the length spectrum for
lengths l � ls [84].

In Fig. 13 we compare the length spectra of the singlets
(l = 0) and doublets (l = 1, 2) with those obtained from the
complete spectra for the QB and the NBs with β̃ = 0, 2, 20.
Only the length spectra of the singlets exhibit for sufficiently
large β̃ a peak at the length of the shortest PO shown in
Fig. 2. This explains why we observe largest deviations of the
spectral properties from RMT predictions in their spectra. The
length spectrum of the NB with β̃ = 20 is similar to that of the
QB and that of the NB with β̃ = 2 to that of the massless NB.
The symmetry-projected length spectra of the QB exhibit be-
sides peaks at the lengths of the POs of the CB additional ones
at the lengths of pseudo-orbits, which correspond to POs in the
fundamental domain, but are not periodic when unfolded back
to the full system. Yet, since these pseudo-orbits are POs of
one of the fundamental domains, in the full system their initial

FIG. 10. Spectral properties of the singlets (top) and doublets
(bottom) of the QB and NBs. Shown are the results for NBs with
β̃ = 0 (dark green lines and plus), β̃ = 2 (dashed cyan lines and
stars), β̃ = 20 (dash-dotted red lines and circles), β̃ = 100 before
extraction of nongeneric contributions (orange dash-dot-dotted lines
and circles) and afterward (cyan dots), and the QB (blue dash-
dash-dotted lines and crosses). They are compared to the spectral
properties of the GOE (black full line) and the GUE (dashed black
line).

and final points are related via the symmetry operations of the
associated irreducible representation [63,67]. Accordingly,
the length spectra deduced from the symmetry-projected sub-
spectra essentially correspond to those of quantum systems
which are distinct from the full system. These features can be
understood in terms of the symmetry-projected trace formula
for QBs [63]. Also for the NBs the length spectra of the
singlets and doublets exhibit peaks which are not observed in
the complete spectra. In order to understand their appearance
we extend the symmetry-projected trace formula for QBs to
NBs, as outlined in Sec. II E.

E. Trace formula for threefold-symmetric neutrino billiards

The starting point for the derivation of the trace formulas
were in Refs. [5,69,93] the underlying BIEs, Eqs. (19) with
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FIG. 11. Fluctuating part of the integrated spectral density (black dots and dashed lines) for the singlets (left) and doublets with l = 1
(right) and the slow oscillations (turquoise lines) resulting from nongeneric POs.

(20), (41) with (42), (31), and (47). These equations have
nontrivial solutions at the zeros of the spectral determinant,
leading to the quantization condition

det(1 − Q̂(l )(k)) = 0, (51)

where Q̂
(l )

stands for Q̂QB(l ) defined in Eq. (15) or Q̂
NB(l )

given
in Eq. (41). Accordingly, the integrated spectral density can be
deduced from

N (k) = N smooth(k) − 1

π
lim

ε→0+
Im ln

det[1 − Q̂(k + iε)]

det[1 − Q̂(0)]
,

(52)

FIG. 12. Length spectra of the NBs for, from bottom to top,
β̃ = 0 (black), β̃ = 2 (red), β̃ = 20, β̃ = 100 (violet), and the QB
(maroon). Shown are the results for the complete spectra regardless
of the symmetry properties of the eigenstates. For the massless NB
the length spectrum exhibits no peaks at the lengths of POs with
an odd number of reflections, some appear already for β̃ = 2, for
β̃ = 20 the length spectrum exhibits peaks at the lengths of almost
all POs, and for β̃ = 100 it is similar to that of the QB. Here, and
also in the other length spectra, l is given in units of r0/3.

yielding for the spectral density [93,94]

ρ(k) = ρsmooth(k) − 1

π
Im

d

dk
ln det[1 − Q̂

(l )
(k)]

= ρsmooth(k) + 1

π
Im

∞∑
p=1

1

p

d

dk
[Tr(Q̂

(l )
)p(k)], (53)

with

Tr(Q̂
(l )

)p(k) =
∮

∂�

ds1

∮
∂�

ds2 · · ·
∮

∂�

dspPp, (54)

where sr = s(φr ) and sp+1 = s1, s0 = sp. For the QB Pp is
obtained from Eq. (20),

Pp =
p∏

r=1

QQB(l )[k; r(φr ), r(φr+1)], (55)

and for the massless NB from Eq. (43) with θβ = 0,

Pp = 2 cos

(
p∑

r=1

��(φr+1, φr )

2

)

×
p∏

r=1

QNB(l );β̃=0
1 [k; r(φr ), r(φr+1)]. (56)

For massive NBs a trace formula was derived in Ref. [69]
on the basis of a combination of two BIEs, yielding a
trace formula which interpolates between the ultrarelativis-
tic and the nonrelativistic limit with minimized convergence
problems. The corresponding product Pp is obtained by
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FIG. 13. Comparison of the length spectra of the QB (upper left), NB with β̃ = 0 (upper right), β̃ = 20 (lower left), and β̃ = 2 (lower
right) for, from bottom to top, the complete spectra (black) and the subspectra of the singlets with symmetry class l = 0 (red), and the doublet
partners with symmetry classes l = 1 (dark green) and l = 2 (violet).

replacing QNB(l );β̃=0
1 in Eq. (56) with

QNB(l );β̃
1 [k; r(φr ), r(φr+1)]

= cos θβ

{[
i sin

(
αr − αr+1

2

)
− sin θβ cos

(
αr − αr+1

2

)]
H (1)

0 (kρ) + cos θβ cos

(
αr+1 + αr

2
− ξr+1,r

)
H (1)

1 (kρ)

}

+ sin θβ cos[αr − ξr+1,r]

{
cos θβ cos

(
αr+1 + αr

2
− ξr+1,r

)
H (1)

0 (kρ)

−
[

i sin

(
αr − αr+1

2

)
− sin θβ cos

(
αr − αr+1

2

)]
H (1)

1 (kρ)

}
. (57)

We use the abbreviations αr = α(φr ) and ξr+1,r = ξ (φr+1, φr ) which denote the angles of the outward-pointing normal vector at
sr and of the trajectory segment connecting the reflection points at sr and sr+1 with respect to the x axis, respectively. To obtain
the symmetry-projected trace formulas, we replace Q = QQB(l ), QNB(l )

1 with the sums Eqs. (32) or (48),

p∏
r=1

Q(l )[k; r(φr ), r(φr+1)] =
p∏

r=1

{
2∑

λ=0

ei 2lπ
3 λMλ(k; φr, φr+1)

}
=

2∑
λ=0

ei 2lπ
3 λMp(l )

λ (k; {φi}). (58)

We introduced

Mp(l )
λ (k; {φi}) =

p∑
N0=1

p∑
N1=1

p∑
N2=1

δ̂(N0 + N1 + N2 − p)δ̂

({
[N1 + 2N2]

2π

3

}
modulo(2π ) − λ

)∑
{πr}

N0∏
r=1

M0
(
k; φπr , φπr+1

)

×
N0+N1∏

r=N0+1

M1
(
k; φπr , φπr+1

) p∏
r=N0+N1+1

M2
(
k; φπr , φπr+1

)
, (59)
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where δ̂(x) equals unity for x = 0 and zero otherwise and the sum over {πr} = {π1, π2 . . . , πp} is over all permutations π

of {1, 2, . . . , p}. The product is over angles from the first, second, or third domain in Fig. 2 for N0 = p, N1 = p, or N2 = p,
respectively, over angles from two subdomains when one of the Ni equals zero, and over the whole domain when none of the Ni

vanishes.
The integrals Eq. (54) can be solved in the semiclassical limit h̄ → 0 or k → ∞ with h̄k fixed. For this we replace the Hankel

functions by their asymptotic values for k → ∞ [86] and extract them from Mp(l )
λ (k; {φi}), where we use the relation Eq. (16),

G0[k; r(φr ), r(φr+1)] � − i

4

√
2

πρr+1,r
eikρr+1,r− i

4 π (60)

H1(kρr+1,r ) � 1

i
H0(kρr+1,r ) (61)

and

∂n′G0[k; r(φr ), r(φr+1)] � i cos [αr − ξr+1,r] · (−k) · G0[k; r(φr ), r(φr+1]. (62)

Inserting these asymptotic approximations of the Hankel functions into Eq. (59), in the semiclassical limit each of the summands
of Mp(l )

λ (k; {φi}) in Eq. (59) can be split into a factor M̄p(l )
λ ({φi}), which does not depend on k and h̄, and a product over normal

derivatives of the Green’s functions [5,69],

Tr(Q̂
(l )

)p(k) �
2∑

λ=0

ei 2lπ
3 λ

p∑
N0=1

p∑
N1=1

p∑
N2=1

δ̂(N0 + N1 + N2 − p)δ̂

({
[N1 + 2N2]

2π

3

}
modulo(2π ) − λ

)

×
∑
{πr}

( i

2

)p M̄N0,N1,N2
λ

({φπr }
)

∏p
r=1 cos

[
απr − ξπr+1,πr

] (−2)p
∑
{πr}

∮
∂�

ds1 · · ·
∮

∂�

dsp

p∏
r=1

∂nr G0
[
k; r

(
sπr

)
, r
(
sπr+1

)]
. (63)

The p integrals can be performed by applying the stationary phase approximation [93] yielding that in the semiclassical

limit the nonvanishing contributions to Tr(Q̂
(l )

)p(k) are POs of order p complying with the symmetry class l . Furthermore, the
leading-k contribution to the derivative with respect to k in Eq. (54) comes from the phase factor resulting from the integrals
over the normal derivatives of G0. For the QB the second-last factor in Eq. (63) equals unity, and also for massless and massive
NBs it neither depends on k nor on h̄. The last term in Eq. (63) is the same as in the usual Gutzwiller trace formula for POs in
the fundamental domain and we can use the results of Refs. [63,67,93] to obtain for the symmetry-projected trace formula

Im
1

p

d

dk
[Tr(Q̂

(l )
)p(k)] = Re

∑
γp

2∑
λ=0

ei 2lπ
3 λ cos

(
�γp − p

π

2

)
B(l )β̃

γp
ei�(l )β̃

γp A(l )
γp

ei�(l )
γp

+ Re
∑
γp

2∑
λ=0

ei 2lπ
3 λ cos

(
�γp +p

π

2

)
B̃(l )β̃

γp
ei�̃(l )β̃

γp A(l )
γp

ei�(l )
γp . (64)

The sum over γp, that is, the sum over N0, N1, N2 and the product in Eq. (63), is over all orbits which are periodic in the
fundamental domain corresponding to the irreducible representation l . The second sum is obtained from the first one by reversing
the direction of propagation of the POs. While for QBs both contributions are identical this is not the case for NBs [5,69].
Furthermore, A(l )

γp
and �(l )

γp
denote amplitudes and phases as in the usual Gutzwiller trace formula with

A(l )
γp

= l (p)
PO

rPO

√∣∣TrM (p)
PO − 2

∣∣ , �(l )
γp

= kl (p)
PO − π

2
μ

(p)
PO. (65)

Similarly, the amplitudes and phases of Bβ̃
γp

ei�β̃
γp coincide with those of the trace formula for massive NBs [69]. With

χr = ξr,r−1 − αr = π − (ξr+1,r − αr ), 0 � χr < π/2, (66)

which gives the angle ξr,r−1 of r(φr ) − r(φr−1) with respect to the angle αr of the normal vector at sr , we have with αr − αr+1 =
χr+1 + χr − π [69]

�γp =
p∑

r=1

��(φr+1, φr )

2
+ p

π

2
=

p∑
r=1

χr (67)
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FIG. 14. Length spectra of the singlet states for, from bottom to
top, the NBs with β̃ = 0 (black), β̃ = 2 (red), β̃ = 20 (green), β̃ =
100 (violet), and the QB (maroon).

and

Bβ̃
γp

ei�β̃
γp =

p∏
r=1

{
i sin θβ − cos θβ

cos χr

}

×
[

cos

(
χr + χr+1

2

)
− i sin θβ sin

(
χr + χr+1

2

)

+ cos θβ sin

(
χr − χr+1

2

)]
. (68)

The product is over the reflection points r of orbits which
are periodic in the fundamental domain corresponding to l .

The factor B̃β̃
γp

ei�̃β̃
γp is obtained from Eq. (68) by reversing

the signs of the angles χr and χr+1. The symmetry-projected
trace formulas are sums over POs which are periodic in the
respective fundamental domain, but not necessarily in the
unfolded domain.

It has been shown in Ref. [69] that the additional factors
as compared to the trace formula for QBs approach unity for

β̃ → ∞, yielding with Eq. (53)

ρfluc(k; β̃ )
β̃→∞−−−→ 1

π
Re

∑
γp

2∑
λ=0

ei 2lπ
3 λAγpe

i�γp , (69)

thus recovering the symmetry-projected trace formula for QBs
[63,67]. In the ultrarelativistic limit we obtain

ρfluc(k; β̃ )
β̃→0−−→ 1

π
Re

∑
γp

(−1)p cos
(
�γp

)
cos

(
p
π

2

)

×
2∑

λ=0

ei 2lπ
3 λAγpe

i�γp . (70)

Summands with odd p vanish, implying that for β̃ = 0 like in
the full system only POs with an even number of reflections
[44,73] contribute to the trace formula. This difference has its
origin in the chirality property and the additional spin degree
of freedom, i.e., the vectorial character of the Dirac equation
[44,92,95]. Yet, for nonzero mass, i.e., θβ 
= 0, the additional
phase factor Eq. (68) yields a nonvanishing contribution of
POs with an odd number of reflections. Furthermore, due to
this additional β̃-dependent phase factor the interference pro-
ceedings and thus the symmetry-projected length spectra may
differ considerably from each other for the different symmetry
classes and also from that of the full system.

Figures 14 and 15 exhibit the length spectra of the sin-
glets and of the doublet partners with l = 1 (left) and l = 2
(right), respectively, for, from bottom to top, NBs with β̃ =
0, 2, 20, 100 and the QB. Especially the length spectra of
the doublets exhibit peaks for β̃ = 0 which disappear with
increasing mass. This is in contrast to the features of the full
system, where peaks in the length spectra of the nonrelativistic
QB exclusively disappear, namely those with an odd number
of reflections, when decreasing β̃ to zero implying that the
lengths associated with such peaks for β̃ = 0 in the symmetry-
projected length spectra correspond to those of pseudo-orbits.
This behavior can be attributed to the additional β̃-dependent
phase factor, which in the symmetry-projected trace formula
leads to constructive instead of destructive interference at such
peaks. The length spectra of the doublet partners are clearly
distinguishable for β̃ = 0, 2, 20, are close to each other for
β̃ = 100, and coincide for the QB. The origin of these features

FIG. 15. Same as Fig. 14 for the doublets with l = 1 (left) and l = 2 (right).
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again are the additional β̃-dependent factors, which depend on
the direction of propagation of the POs, and thus differ for the
doublets with l = 1 and l = 2 for finite β̃.

III. THE DIRAC BILLIARD WITH THREEFOLD SHAPE

We plan to do experiments with a microwave photonic
crystal, that is, a DB [1] with shape Fig. 2 for the design shown
in Fig. 1, described in detail in Sec. I. Like in the previous
constructions of rectangular and Africa-shaped DBs [3,96] the
cavity is constructed from a basin of 3 mm depth containing
metallic cylinders arranged on a triangular grid, and a top
plate. Both parts will be covered with lead and squeezed
together tightly to achieve a superconducting resonator at
liquid-helium temperature TLH = 4 K. The cutoff frequency,
below which the electric field strength excited in the cavity
is perpendicular to the top and bottom plate, equals fmax =
50 GHz. The voids at the centers of respectively three adjacent
cylinders form the corresponding GB (lower left inset), and
the HB (lower right inset) corresponds to the combination
of the kagome lattice formed by the centers between two
adjacent cylinders and the honeycomb lattice [38]. The BCs
are determined by the choice of the wall which passes through
voids, implying Dirichlet BC at the corresponding sites in the
HB and GB. Before starting with the construction of the DB,
which currently takes at least a year, we performed numerical
computations and compared these results with those for the
relativistic and nonrelativistic QBs of Sec. II and for the GB
and HB of corresponding shape presented in Sec. IV.

The eigenfrequencies and associated electric-field
strengths, which are perpendicular to the top and bottom plate
of the resonator, were obtained with COMSOL Multiphysics.
Here we chose the value of r0 in Eq. (2) as r0 = 30aL/

√
3

with aL = 12 mm denoting the lattice constant, which is
defined as the distance between the sites of the honeycomb
lattice, i.e., the voids (lower left inset in Fig. 1) and the radius
of the cylinders equaled aL/6, yielding N = 8890 eigenmodes
with eigenfrequencies fm below 41 GHz. The DOS of the
singlets and the doublets is similar. In Fig. 16 we show the
DOS ρ( f ) = ∑N

m=1
π2

N δ( f − fm) of the DB together with the
smoothed DOS (black curve), which is obtained by replacing
the δ functions by Lorentzians,

ρsmooth( f ) = π

N

∑
m

�L

( f − fm)2 + �2
L

, (71)

where we chose �L = 0.075. The DOS exhibits a Dirac point
at ≈19 GHz and another one at ≈35 GHz, and van Hove sin-
gularities bordering them. They are separated by a broadened
flat band of high spectral density. Note that at the frequencies
of the van Hove singularities the DOS diverges logarithmi-
cally only for infinitely extended two-dimensional periodic
lattice structures. We demonstrated in Ref. [2] that the peak
height increases proportional to Nc ln Nc, with Nc denoting the
number of unit cells. At the flat band the eigenfrequencies are
macroscopically degenerate in a perfect honeycomb-kagome
lattice, whereas in the DB degeneracies are slightly lifted due
to experimental imperfection and the overlap between wave
function components located at the sites of the kagome lattice
which corresponds to a coupling between these site. The val-

FIG. 16. Density of states of the DB. It exhibits Dirac points
around �19 GHz and �35 GHz, which are framed by van Hove
singularities. The associated bands are separated by a nearly flat
band of exceptionally high spectral density. Above approximately the
frequency of the upper Dirac point the DOS is distorted by adjacent
bands of partly high spectral density.

ues of the hopping parameters of the appropriate graphene-
or honeycomb-kagome-based TBM depend on the positions
of the Dirac points, van Hove singularities, and flat band
[3,33,38]. Around the upper Dirac point the DOS is distorted
by an adjacent band leading to the excessive density, as seen
in the two-dimensional band structure (dots) of the finite-size
DB shown in Fig. 17. To obtain it we computed momentum
distributions, that is, the Fourier transform of the electric
field distributions, which in the considered frequency range
correspond to the wave functions in the corresponding QB,
from configurational space to quasimomentum space [3]. The
locations of the maxima of the momentum distributions yield
the values of the quasimomentum components q = (qx, qy )
corresponding to the eigenfrequencies. The band structure is
compared to that of an infinite-size array of metallic cylinders
arranged on a triangular grid, shown in Ref. [3], which was

FIG. 17. Band structure function of the DB along a loop from
the band edge (� point), to one of the saddle points (M points),
corresponding to the van Hove singularities in the DOS, then to an
adjacent Dirac point (K point) and back to the � point. The dots show
the result for the DB (see main text), the lines that of an infinite-size
array of metallic cylinders arranged on a triangular grid.
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FIG. 18. Electric field intensity distributions of the DB
from top left to bottom right corresponding to state numbers
1,2,3,996,1000,1001,1487,1512,1748,3092,3109,4071 below the flat
band at the lower band edge (first row), around the Dirac point
(second row), and around the upper band edge (third row). The
bottom row shows one from the flat band, and above the flat band one
around the lower band edge and one around the upper Dirac point.
The color code goes from dark blue for zero intensity to red at the
maximal intensity.

computed with the FEM [97] and shown to agree well with
that of an infinitely extended honeycomb-kagome lattice in
Ref. [38]. The frequency at which the band leading to devia-
tions from the DOS of the corresponding HB occurs depends
on the distance between the cylinders, which was chosen such
that the number of propagating modes below the cutoff fre-
quency fmax is as large as possible, implying that the distortion
is unavoidable [38]. Note that the frequencies of propagating
modes in the DB are identified with the eigenenergies in
graphene [2]. As commonly done, the two-dimensional band
structure is plotted along a loop in the quasimomentum plane
from the band edge (� point) through one of the saddle points
(M points) of the band structure, located at the frequencies
of the van Hove singularities, and Dirac points (K points)
and then back to �. Below the flat band and around it the
band structure is similar to that of the rectangular DB [3,38],
whereas above the upper Dirac point it is interwoven with a
band emerging above �41 GHz.

In Fig. 18 we show typical examples for intensity distri-
butions of the electric field strength, which in the considered

FIG. 19. Spectral properties of the singlets (red) and doublets
(green) of the DB at the lower and upper band edge below the flat
band. They are compared to the spectral properties of the GOE (black
full line) and the GUE (dashed black line).

frequency range is perpendicular to the top and bottom plate
of the resonator, so that they are identical to those of the wave
functions of the corresponding QB, of the full system below
the flat band in the region of the lower band edge (first row),
the lower Dirac point (second row), and around the upper band
edge (third row). In the fourth row we show one example
in the flat band (left), and above the flat band, respectively,
one around the lower band edge (middle) and the upper Dirac
point (right). Counting from the upper left to the lower right
distribution, the second and third and the fifth and sixth ones
correspond to doublet partners. The associated wave functions
are superpositions of the corresponding symmetry-projected
states with l = 1, 2, and thus their intensity distributions dif-
fer. Due to rotational symmetry, the first, fourth, eighth, tenth,
and twelfth ones can be unambiguously identified as singlets.
In distinction to the rectangular HB, we already observe below
the flat band localization of the electric field strength at the
voids, which form the honeycomb sublattice, and of similar
size between two neighboring cylinders, i.e., at the sites of
the kagome lattice. Around the lowest band edge the wave
functions are similar to the non-symmetry-projected ones of
the QB. We will demonstrate in Sec. IV that, generally, below
the flat band they are similar to those of the GB and HB, and
above it to the HB, thus confirming the supposition of [38] for
DBs with curved boundaries.

The eigenfrequency sequence can be separated into a
subspectrum of singlets and two subspectra of degenerate
doublets [56]. In cases where the identification of singlets
and doublets was not unambiguous we checked the fluctuating
part of the integrated density of the unfolded eigenfrequencies
[85] and electric field intensity distributions. Here, we re-
stricted ourselves to the region below the flat band comprising
670 eigenfrequencies for each symmetry class, because above
the flat band an unambiguous classification of the eigenfre-
quencies into singlets and doublets was not possible. Note
that in the experiments this is possible by using the method
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FIG. 20. Left: Ratio distributions [(a), (b)] and cumulative ratio distributions [(c), (d)] for the DB. The results for the singlets are shown in
(a) and (c), those of the doublets in (b) and (d) (red). They are compared to those of the GOE (black full line) and the GUE (dashed black line).
Agreement of the former with GOE and the latter with GUE is very good. Right: Same for the (k = 1)-overlapping ratio distributions and their
cumulative distributions.

introduced in Ref. [60]. For the unfolding we ordered the
eigenvalues by size, fi � fi+1, and shifted them such that
f̃1 = 0, f̃i = fi − f1, and replaced f̃i by the smooth part of
the integrated spectral density, εi = N smooth(ki ) with ki de-
noting the effective wave number. Note that the dispersion
relation in a DB differs from that in a conventional billiard of
corresponding shape, which does not contain any scatterers;
namely, the frequencies depend quadratically on ki around
the band edges and linearly on ki around the Dirac points.
Accordingly, we define ki = √| fi − f1| with f1 denoting the
frequency at the respective band edge and ki = | fi − f1| with
f1 corresponding to the Dirac frequency [3], respectively.
Then we can proceed as with QBs and determine N smooth(ki )
in both regions by fitting a second-order polynomial to N (ki ).
We analyzed the spectral properties using 250 singlets and
doublets around the lower and around the upper band edge,
respectively. In Fig. 19 we show the averages of the statistical
measures for the singlets (red) and doublets (green). The for-
mer agree with the GOE curves; the latter are well described

FIG. 21. Length spectra of the DB around the lower band edge
for, from bottom to top, all eigenfrequencies irrespective of the sym-
metry class (black), the singlets (red), and the doublets (turquoise).
They are compared to the corresponding length spectra of the QB
(thin magenta and black lines) taking into account 250 levels.

by GUE statistics. Because of the small number of levels the
agreement is not as good as, e.g., for the QB and NBs shown
in Fig. 10. Below and above the Dirac point we have only
around 125 eigenfrequencies in the region of linear dispersion.
Therefore, we considered the distribution of the ratios [98,99]
ri = εi+1−εi

εi−εi−1
and the kth overlapping ratio distribution [100]

of rk
i = εi+k+1−εi

εi+k−εi−1
which are dimensionless so the non-unfolded

eigenvalues can be used. It was demonstrated in Ref. [4,38] for
rectangular and Africa-shaped GBs and rectangular HBs that
they are applicable to the regions of van Hove singularities
where the DOS exhibits a narrow peak. The results for the
threefold DB are shown in Fig. 20. For the singlets the dis-
tributions agree well with those of the GOE; for the doublets
they are well described by the GUE.

In Fig. 21 we show the length spectra for effective wave
numbers ki starting at the lower band edge, and in Fig. 22 for

FIG. 22. Length spectra of the DB around the lower Dirac point
(bold lines) compared with the length spectra of the QB (left) and
NB with mass β̃ = 20 (right) (thin lines), for, from bottom to top,
all eigenfrequencies irrespective of the symmetry class (black, ma-
genta), the singlets (red, black), and the doublets (turquoise, black),
where we took into account 125 levels.
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FIG. 23. Left: A honeycomb lattice consisting of three hexag-
onal cells is formed by two interpenetrating triangular sublattices
(cyan and red disks, respectively). The unit cell of the honeycomb
lattice consists of two sites, namely one of each sublattice. Right:
A honeycomb-kagome lattice consisting of 8 hexagonal cells. The
honeycomb-kagome lattice is formed by a honeycomb (red disks)
and a kagome sublattice (cyan disks). The rectangular frame borders
one unit cell of the kagome lattice.

ki starting at the lower Dirac point, for, from bottom to top, the
complete spectra (black), the singlets (red), and the doublets
(turquoise). They are compared to the length spectra of the QB
(thin lines) (left part in Fig. 22), where we used the number
of eigenvalues equal to that of the available effective wave
numbers ki. Around the Dirac point we in addition compared
the length spectra to those of the NB with mass β̃ = 20 (right
panel in Fig. 22). Generally, we find agreement in positions
of peaks but not necessarily in height which can be attributed
to the interference effects induced by the additional orbits in
the DB. Their occurrence may be explained by the differing
boundary shapes. As illustrated in Fig. 1, the boundary of the
DB was chosen such that it passes through the honeycomb
lattice sites framing the GB, which is formed by the voids
in the DB, so that it has a rippled structure. Furthermore,

FIG. 24. Density of states of the singlets of the GB. It consists
of 3N = 101 835 sites. The DOS (red dots) exhibits two van Hove
singularities at f = ±t1 and a peak at the DP, which is due to the
edge states that are localized at the zigzag edges of the GB. The black
curve shows the smoothed DOS.

FIG. 25. Wave functions of the GB around the lower band edge
for singlets (left three columns) and doublets (right three columns)
corresponding to the wave functions of the QB shown in Fig. 3.
The color code goes from dark blue for zero intensity to red at the
maximal intensity.

when filling a QB with a curved boundary with a honeycomb
lattice, there will be deviations between both structures along
the boundary, and these lead to a loss of the analogy between
the QB and GB for much lower state numbers than in a
rectangular DB [3], as observed for the Africa-shaped DB [4].
Around the Dirac point, agreement of the length spectra of
the DB with those of the NB with β̃ = 20 is slightly better
than with those of the QB, indicating that Robin BCs might
be more appropriate than Dirichlet BCs to describe properties
of the DB related to its void structure. We did not find any
agreement with the length spectra of the massless NB.

FIG. 26. Momentum distribution of the GB in the vicinity of the
Dirac point for the singlets l = 0 (left part), and doublets with l = 1
(middle part) and l = 2 (right part). It is peaked on all six corners
of the first Brillouin zone for l = 0, and on the three corners corre-
sponding to one of the distinct Dirac points K+ and K− associated
with the triangular sublattices for l = 1 and l = 2, respectively.
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FIG. 27. Spectral properties of the GB around the lower band edge (left) and the Dirac point (right). For the singlets (red) they agree well
with the GOE curves (black full lines), while those of the doublets (green) are well described by the GUE (black dash-dotted lines).

IV. GRAPHENE AND HONEYCOMB-KAGOME
BILLIARDS WITH THREEFOLD SYMMETRY

The GB and HB were constructed by filling the subdomain
1 in Fig. 2 with a honeycomb or honeycomb-kagome lattice,
respectively, and then rotating it twice by 2π

3 . The correspond-
ing unit cells are shown in Fig. 23. A honeycomb lattice con-
sisting of three hexagons is shown in the left part of Fig. 23.
The hexagonal lattice is formed by two interpenetrating trian-
gular sublattices (red and cyan dots). A unit cell generating the
GB lattice consists of two adjacent sites, i.e., one site of each
triangular sublattices. Subdomain 1 of the GB was generated
with help of the translation vectors denoted by ei, i = 1, 2.
They are given in terms of the lattice constant aL by

e1 = aL(1, 0), e2 = aL

2
(1,

√
3). (72)

The distance vectors from the central site to next-nearest-
neighbor sites equal

d1 = aL√
3

(0, 1),

d2 = − aL

2
√

3

(√
3,

1

2

)
, (73)

d3 = aL

2
√

3

(√
3,−1

2

)
.

The right part of Fig. 23 shows a honeycomb-kagome lattice
consisting of 8 hexagons. The corresponding unit cell is
framed by a rectangle. Subdomain 1 of the HB was generated
by employing the translation vectors marked by ei, i = 1, 2, 3
[38],

e1 = aL(1, 0), e2 = aL

2
(−1,

√
3), (74)

e3 = −e1 − e2. (75)

The distance vectors from site b to next-nearest-neighbor sites
c, d, e are given by

d1 = aL

2
√

3
(0, 1), (76)

d2 = − aL

4
√

3

(√
3,

1

2

)
, d3 = aL

4
√

3

(√
3,−1

2

)
, (77)

and from site c to neighboring ones a, b by

d̃1 = aL

2
√

3
(1, 0), d̃2 = − aL

2
√

3
(1, 0). (78)

We chose Dirichlet BCs on the sites adjacent to the bound-
ary sites outside the billiard. To obtain the eigenvalues and
wave functions of the GB and HB we used the TBM [3].
We chose equal on-site potentials for the GB (t0 = 0) and
the HB (t0 = 1). Note that in Ref. [38] we chose different

FIG. 28. Left: Ratio distributions [(a), (b)] and cumulative ratio distributions [(c), (d)] for the GB. The results for the singlets are shown in
(a) and (c), those of the doublets in (b) and (d) (red). They are compared to those of the GOE (black full line) and the GUE (black dash-dotted
line). Agreement of the former with GOE and the latter with GUE is very good. Right: Same for the (k = 1)-overlapping ratio distributions
and their cumulative distributions.
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FIG. 29. Length spectra of the GB around the lower band edge
for, from bottom to top, all eigenvalues (black), singlets (red), and
doublets (turquoise) around the lower band edge (left) and Dirac
point (right). They are compared to the corresponding length spectra
of the QB (thin magenta and black lines) where we took into account
the same number of levels, namely 800, as available for the GB.

values on the honeycomb and kagome sublattices to simulate
a rectangular DB, of which the electric field distributions are
predominantly localized at the voids, i.e., on the honeycomb
sublattice, below the flat band. However, for DBs with the
shape shown in Fig. 18 we observe similar localization at
the voids and between two neighboring cylinders, that is,
on the kagome sublattice. Furthermore, we considered only
nearest-neighbor hoppings t1 = 3, t2 = 0 in the GB, and in
the HB hoppings between the nearest-neighbor sites of the
kagome and honeycomb sublattices, t1 = 1, and in addition
hoppings between nearest-neighbor sites of the kagome sub-
lattice, t2 = 0.3, to achieve a qualitative agreement of the DOS
with that of the DB. For both the GBs and the HBs the entries

FIG. 30. Left: Same as Fig. 29 around the Dirac point, were we
took into account 400 levels. Right: Same as left part, but the length
spectra of the GB are compared with those of the NB with mass
β̃ = 20.

FIG. 31. The first eigenfunction of the singlet (left) and doublet
states (middle, right) where 2 sites were removed to realize a GB
with defects. The locations of the defects are recognizable as dark
blue spots in the left and the right plot. The color code goes from
dark blue for zero intensity to red at the maximal intensity.

of the TBM Hamiltonian matrix are obtained as

ĤTBM
i j = t0δi j + t1δ̂(|ri − r j | − d0) + t2δ̂(|ri − r j | − d1)

with ri denoting the location of the sites i, d0 = aL/
√

3 for
the honeycomb lattice, respectively, d0 = aL/(2

√
3) and d1 =

aL/2 for the honeycomb-kagome lattice. The TBM Hamilto-
nian is 3N × 3N dimensional if it comprises 3N sites and can
be brought to the form

ĤTBM =
⎛
⎝ Ĥ V̂ V̂ T

V̂ T Ĥ V̂
V̂ V̂ T Ĥ

⎞
⎠. (79)

Here, Ĥ refers to the N-dimensional Hamiltonian of each
subdomain in Fig. 2. It comprises the on-site potentials and the
next-nearest-neighbor hopping parameters. The N × N matrix
V̂ and its transposed V̂ T account for the coupling between
two adjacent subdomains, that is, for the hoppings between
the boundary sites along the common boundary.

The Hamiltonian has the same structure as the matrices
M̂QB in Eq. (28), the only difference being that their matrix
entries are scalar, whereas in Eq. (79) they correspond to

FIG. 32. Fluctuation properties in the complete eigenvalue spec-
trum of the GB with two defects (see Fig. 31) at the band edges (red)
and the Dirac point (green). They are compared to the RMT results
for a superposition of two GUEs and one GOE (violet dashed curves)
and three GOEs (cyan dashed curves).
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FIG. 33. Density of states (red) of the singlets of the HB, which
consists of 3N = 15 003 lattice sites. It comprises two Dirac points
bordered by van Hove singularities which are separated by a nearly
flat band of exceptionally high density.

N × N matrices. Thus, by applying the matrix

Û = 1√
3

⎛
⎝1N ei 4π

3 1N ei 4π
3 1N

1N 1N ei 2π
3 1N

1N ei 2π
3 1N 1N

⎞
⎠, (80)

FIG. 34. Same as Fig. 18 for the HB.

FIG. 35. Momentum distributions at the lower (left part) and
upper (right part) Dirac point for the doublet partners with l = 1 (first
column in each part) and l = 2 (second column in each part). Like in
the GB they are selectively localized on the three corners of the first
Brillouin zone corresponding to, respectively, one of the Dirac points
K+ and K−.

with 1N denoting the N-dimensional unit matrix, the TBM
Hamiltonian can be brought to block-diagonal form, where
each block corresponds to one of the three irreducible sym-
metry classes labeled by l = 0, 1, 2,

Û †ĤT BÛ =
⎛
⎝ĤT B(0) 0N 0̂N

0̂N ĤT B(1) 0̂N

0̂N 0̂N ĤT B(2)

⎞
⎠,

ĤT B(0) = Ĥ + V̂ + V̂ T ,

ĤT B(1) = Ĥ + ei 2π
3 V̂ + ei 4π

3 V̂ T ,

ĤT B(2) = Ĥ + ei 4π
3 V̂ + ei 2π

3 V̂ T . (81)

The Hamiltonian ĤT B(0) corresponding to eigenfunctions
which are invariant under rotation by 2π

3 is real symmetric
and has nondegenerate eigenvalues, because the billiard does
not exhibit any mirror symmetries, whereas ĤT B(1) and ĤT B(2)

are complex Hermitian and complex conjugate to each other,
ĤT B(1) = (ĤT B(2) )∗. Accordingly, both have the same eigen-
values. Thus the spectrum of ĤT B consists of one subspectrum
of singlets and two identical subspectra of doublets as in
the QB.

For the GB we chose the lattice constant aL such that a
honeycomb lattice with N = 33 495 sites fits into each sub-
domain and diagonalized the TBM Hamiltonian separately
for each symmetry class. The resulting DOS of the singlets
is shown in Fig. 24 (red dots) together with the smoothed
DOS Eq. (71) (black line) where we chose �L = 0.01. It is
similar for all fundamental domains. In Fig. 25 we exhibit
examples for wave functions of the GB around the lowest
band edge. Agreement with corresponding ones of the QB is
very good. However, this analogy between the QB and the GB
is lost for eigenstate numbers n � 150 where an increasing
number of wave functions of the QB and GB differ due to
the differences of their shapes at the curved boundary [4].
In the vicinity of the Dirac point they are localized at the
zigzag edges of the boundary and vanish otherwise and at the
van Hove singularities they are one-dimensional and localized
along interior zigzag edges. Therefore, we do not show them.
Yet, the momentum distributions corresponding to eigenstates
close to the Dirac point exhibit interesting features. They are
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FIG. 36. Same as Fig. 27 for the HB. Shown is the superposition of the spectral properties around the lowest and uppermost band edge and
around the lower and upper Dirac points.

obtained from the Fourier transform of the eigenfunctions
from configurational space to quasimomentum space. Similar
to the rectangular and Africa-shaped GBs [3,4,96], they are
peaked at eigen-wave-vectors (kx, ky) of the corresponding
QB close to the band edges, while in the vicinity of the van
Hove singularities the momentum distributions are localized
along the isoenergy lines connecting the saddle points of the
band structure. In the vicinity of the Dirac point, the momen-
tum distributions of the doublets are localized at respectively
three corners of the first hexagonal Brillouin zone, i.e., on one
of the two distinct Dirac points K+ and K− associated with
the two triangular sublattices, as clearly visible in Fig. 26.
This is exactly the situation achieved in Refs. [76–80] in open
phononic and sonic crystals, which were realized with rods
arranged on a triangular grid like in the DB; however, the rods
had a triangular instead of a circular cross section. Depending
on the orientation of the triangles with respect to each other, a
selective excitation of the valley states at the K± Dirac points
similar to the one in Fig. 26 was observed.

Figure 27 shows the spectral properties of the singlets (red)
and doublets (turquoise) around the band edges (left) and the
Dirac point (right), respectively. Since the DOS is symmetric
with respect to the Dirac point we considered only eigenvalues
at the lower band edge (1500 for each symmetry class) and
above the Dirac point (400 for each symmetry class). We ex-
cluded edge states that correspond to wave functions localized
at the zigzag parts of the boundary and lead to the peak in
the DOS at the Dirac point. These would yield nonuniversal
contributions and thus deviations from the RMT result. For
the unfolding we ordered the eigenvalues by size, Ei � Ei+1,

shifted them such that Ẽ1 = 0, and replaced them by the
smooth part of the integrated spectral density, εi = N smooth(ki )
with ki denoting the effective wave numbers as outlined in
Sec. III, ki = √|Ei − EBE | at the band edge with E = EBE

and ki = |Ei − EDP| at the Dirac point with E = EDP. The
smooth part N smooth(ki ) was determined in both regions by
fitting a second-order polynomial to N (ki ) [3]. We find good
agreement with GOE and GUE behavior for the singlets and
doublets, respectively. Deviations are due to the POs trapped
in the bulges of the GB and the shortest connected PO and
decrease with increasing number of eigenvalues taken into
account; see Sec. II D. In both regions the spectral properties
coincide with those of the corresponding nonrelativistic QB
and the DB, or the massive NB with mass β̃ � 50; see Fig. 1.
In Fig. 28 we show results for the distribution of the ratios
[98,99] and the kth overlapping ratio distribution [100] of
the non-unfolded eigenvalues. Agreement with the GOE and
GUE is very good for the singlets and doublets, respectively.

In Figs. 29 and 30 are shown the length spectra of the
GB around the band edges and the Dirac point (bold lines),
respectively. They are compared to the length spectra of the
QB (left part in Fig. 30) and around the Dirac point also with
those of the NB with β̃ = 20 (right part in Fig. 30) (thin lines).
Around the band edge the agreement is better for the full
system and the singlets than for the doublets, concerning the
positions of the peaks, whereas their heights generally deviate.
Around the Dirac point the agreement of the length spectra of
the GB with those of the QB and NB is similar. The occur-
rence of additional peaks and missing of others in the length
spectra of the GB, especially for the singlets and doublets,

FIG. 37. Same as Fig. 28 for the HB.
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FIG. 38. Same as Fig. 29 for the HB were we took into account
450 levels.

may be explained by the, due to the curved boundary, slightly
differing shapes and BCs of the QB and GB; see Sec. III. Note
that a trace formula was derived for GBs in Ref. [44] which
can be brought to the symmetry-projected form by proceeding
as in Sec. II E. Thus, also in the GB, peaks in the length spectra
of the singlets and doublets that are not present in that of the
full GB may be attributed to pseudo-orbits in the respective
fundamental domain.

To study the effect of defects on the properties of the
threefold GB we removed two sites from the honeycomb
lattice. The locations are visible as blue spots in Fig. 31. The
wave functions are distorted in the vicinity of the defects and
the degeneracies of the doublet states are lifted. Thus, the
spectrum cannot be divided into three subspectra. In Fig. 32
we show the fluctuation properties of the full system in the
vicinity of the band edges (red) and the Dirac point (green).
They are compared to those of block-diagonal random ma-
trices, consisting of three equal-size blocks from the GOE
(cyan dashed lines) or two blocks from the GUE and one
block from the GOE. The latter would be applicable to a GB
with threefold symmetry. The associated curves are barely
distinguishable for the nearest-neighbor spacing distribution
P(s) and its cumulant I (s) and for the ratio distribution P(r).
Yet, the long-range correlations are clearly distinguishable,
as shown for the number variance �2(L). Interestingly, in
the vicinity of the band edges the number variance agrees
well with that for QBs with threefold symmetry and a chaotic
classical dynamics, whereas in the vicinity of the Dirac point
it agrees well with that of three GOE. Note that in the vicinity
of the band edges the spectral properties coincide with those
of a QB of corresponding shape, where the introduction of
the two defects corresponds to a slight perturbation of the
symmetry [101–103]. In the vicinity of the Dirac point, the
lattice structure has a strong effect on the spectral properties
of the GB, but it seemingly is still too weak to yield a complete
coupling of the three blocks resulting from the irreducible rep-
resentations, which would lead to agreement with one GOE.

For the HB we chose the lattice constant such that N =
5001 sites fit into each subdomain and again diagonalized the
associated TBM separately for each symmetry class to obtain

FIG. 39. Length spectra of the HB around the lower (left) and
upper (right) Dirac point for, from bottom to top, all eigenvalues
(black), singlets (red), and doublets (turquoise) compared to the
corresponding length spectra of the QB (thin magenta and black
lines) where we took into account in all cases 200 levels.

the spectrum of the full HB. We also considered a larger HB
with N = 15 453 sites for the singlets and with N = 9847 sites
for the doublets, respectively, to confirm the results obtained
for N = 5001. The DOS is shown in Fig. 33 for the singlets
and is similar for the doublets. It exhibits two Dirac points
framed by van Hove singularities. These are separated by a
nearly flat band of exceptionally high density. The hopping
parameters were chosen such that the DOS qualitatively de-
scribes that of the DB introduced in Sec. III. The asymmetry
is induced by the hopping between nearest-neighbor kagome
lattice sites. Figure 34 exhibits examples for the wave func-
tions of the HB. Corresponding wave functions of the DB are
shown in Fig. 18 and, indeed, exhibit a similar pattern struc-
ture, thus confirming the results of Ref. [38]. In Fig. 35 we
show examples of the momentum distributions of the doublet
states l = 1 and l = 2 for two states at the lower (left) and
upper (right) Dirac point. Pairs are localized selectively on
either of the two Dirac points K− and K+, respectively. Thus,
the threefold-symmetric HB exhibits at both Dirac points the
selectivity observed in the GB and in Refs. [76–80] for open
phononic and sonic crystals.

The spectral properties are shown in Fig. 36. They were
obtained from a superposition of the fluctuation properties of,
respectively, 500 eigenvalues around the lower and upper band
edges (red) and 200 eigenvalues below the lower and upper
Dirac point (green). These and also the ratio distributions and
(k = 1)-overlapping ratio distributions shown in Fig. 37 agree
well with those of the corresponding QB, DB, and GB or the
NB with β̃ � 50, i.e., with GOE for the singlets and with GUE
for the doublets.

In Figs. 38–40 we show length spectra of the HB around
the lower band edge and around the lower and upper Dirac
point, respectively. They are compared to the length spectra of
the QB (thin lines in Fig. 38 and in the left parts of Figs. 39 and
40). Around the band edge, agreement of the length spectra of
the HB and QB is better than for the GB, especially for the
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FIG. 40. Same as Fig. 39, but the length spectra are compared to
those of the NB with β̃ = 20.

singlets and doublets; that is, the QB reflects the properties in
the fundamental domains better than those of the full system.
Generally, the agreement between the length spectra of the HB
with those of the QB and NB is comparable and better around
the upper Dirac point than around the lower one.

V. CONCLUSIONS

We present a detailed study of the DOS, fluctuations in the
spectra, and the wave functions of DBs, GBs, and HBs with a
threefold-symmetric shape and compare them to those of QBs
and NBs of various masses. We outline how the eigenstates of
these billiards can be separated according to their transforma-
tion properties under rotation by 2π

3 and computed for each
fundamental domain 3000 eigenvalues and wave functions of
the QB and the massless NB and 2000 of the massive NBs
with mass β̃ = 0, 2, 20, 100 and evaluated spectral properties
and length spectra of the full system and in the symmetry-
projected fundamental domains. It is known that the spectral
properties of DBs, GBs, and also HBs deviate from those of
NBs, because of the backscattering at their boundary which
leads to a mixing of the valley states associated with the K±
points. Yet, in systems with threefold symmetry we observe a
selective excitation of the valley states for the doublets. Still,

we find for the spectral properties agreement with those of the
QB of corresponding shape, which implies that this selectivity
is lost when departing from the Dirac point. We also inves-
tigated symmetry-projected length spectra. For small masses
the doublet partners of the NBs exhibit clearly distinguishable
length spectra; however, the eigenvalues of the DBs, GBs, and
HBs corresponding to doublet partners are degenerate. There-
fore, if at all, agreement can only be expected for massive
NBs, as the associated singlets undergo a transition from GOE
to GUE behavior and the doublet partners approach each other
and their length spectra become similar with increasing β̃. We
find agreement with the length spectra of QBs and also with
those of NBs with β̃ = 20, but we did not find any agreement
of the length spectra of GBs and HBs with those of massless
NBs, as predicted for GBs with infinite-mass confinement
[44] based on a trace formula which, for circular billiards,
has been shown to coincide with that of NBs [5]. These BCs
best fit those of DBs; however, especially around the Dirac
point, the properties of GBs and HBs sensitively depend on
the structure of the boundary. The good agreement of the
length spectra of the DB, GB, and HB with those of the NB
with β̃ = 20 indicates that Robin BCs, obeyed by NBs for
sufficiently large mass, are appropriate for their description.
Actually, a motivation for the study of length spectra and
spectral properties of massive NBs is the search for BCs which
yield a good description of those obtained experimentally with
superconducting microwave billiards in Refs. [3,4] emulating
artificial graphene and numerically for the DB with threefold
symmetry. The experimental length spectra also exhibited
deviations from those deduced based on the trace formula
for graphene billiards with infinite-mass confinement [44].
We plan to perform experiments with a superconducting DB,
which has the shape of the one presented in this paper. The
eigenmodes can be separated into the three symmetry classes
by proceeding as in Ref. [60]. Furthermore, we can slightly
vary BCs and introduce defects for an in-depth study of
their relation to QBs and massive NBs. Encouraged by the
promising results for HBs, these studies will be accompanied
by numerical simulations employing the honeycomb-kagome-
lattice based TBM.
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