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Chiral kinetic theory of anomalous transport induced by torsion
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In Weyl semimetals subjected to torsion, there are two different kinds of chirality: (i) The (coordinate-space)
shape of the twisted crystal is chiral and (ii) the momentum space contains chiral quasiparticles. Here we
construct a general kinetic theory of anomalous transport using the phase space (coordinate and momentum
spaces combined) Berry curvature induced by torsion in Weyl systems. We describe how torsion generates the
chiral chemical potential and thus leads to the chiral magnetic effect (CME) in the presence of a background
magnetic field. We propose to measure the CME current induced by the torsion as a way to detect the anomalous
coupling between the coordinate-space and momentum-space chiralities.
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I. INTRODUCTION

The defining property of Dirac and Weyl semimetals is the
existence of gapless chiral quasiparticles. The spectral flow
induced by external parallel electric and magnetic fields leads
to the imbalance between the chemical potentials for right-
and left-handed chiral quasiparticles and thus to nonconser-
vation of chiral charge known as the chiral anomaly [1,2].
The chiral anomaly induces a number of phenomena in chiral
materials, including the chiral magnetic effect (CME) [3] that
manifests itself through the negative longitudinal magnetore-
sistance [4,5] in Dirac materials such as ZrTe5 [6] and Na3Bi
[7] and Weyl materials such as TaAs [8]. Weyl materials also
exhibit chirality-dependent optical effects [9–12], some of
which are driven by the chiral anomaly [13–15].

It is interesting to consider the effects of crystal deforma-
tion on anomalous transport, since deformations are known
to lead to strong “synthetic” gauge fields [16–18]; for ex-
ample, in graphene nanobubbles, the synthetic magnetic field
in excess of 300 T has been reported [19]. The geometrical
torsional response of Weyl fermions has been addressed in
Refs. [20–29], including its relations to the Neih-Yan anomaly
[30] and chiral torsional effect [31].

A natural question to ask is whether these synthetic gauge
fields can be used to source the chiral anomaly and thus drive

the CME and other anomalous phenomena. At first glance,
it may appear that deformations should be irrelevant for the
CME—indeed, the CME is captured [32] by the topological
Chern-Simons term ∼μ5

∫
εi jkAiF jk in the effective action

(where μ5 = μR − μL is the chiral chemical potential and
Ai and F jk are the gauge potential and field strength tensor,
respectively) that does not depend on the space-time metric
gμν . Therefore, if one describes the deformation as a change
in an effective metric, the chiral anomaly and thus the CME
should seemingly not be affected.

However, this conclusion is premature since a time-
dependent, inhomogeneous deformation can induce a change
in the momentum space distribution of chiral quasiparticles,
e.g., by deviating the chiral chemical potential μ5 away from
its equilibrium value μ5 = 0 [33,34]. In this case, the CME
current will be induced by the deformation in the presence
of a background magnetic field [33,34]. The collective exci-
tations mixing sound and chirality have been considered in
Refs. [35–37].

Kinetic theory provides a convenient framework for de-
scribing transport phenomena. For chiral fermions, the effect
of chiral anomaly has been incorporated [38,39] in this the-
ory via the Berry curvature; see Ref. [40] for a review of
earlier work on Berry curvature effects on transport. In the
resulting chiral kinetic theory, Weyl cones are described as
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FIG. 1. An illustration of how the chiral imbalance and anoma-
lous transport can be manipulated by deformations in an external
magnetic field. The semimetal is twisted and compressed by the
force F ; this generates an electric current that is measured by an
ammeter A.

momentum-space monopoles of Berry curvature. In the pres-
ence of an external magnetic field, the combined effect of
the momentum-space monopoles and magnetic field is the
modification of the density matrix in the phase space, resulting
in the anomalous Hall effect and the CME [38,39,41–48].

In this paper, our goal is to construct a chiral kinetic theory
for Weyl materials under a mechanical twist, i.e., Saint-Venant
torsion. We focus on a twisted crystal under nonuniform
strain, similar to the case studied in Ref. [60]. We will first
show that the effect of dynamical, time-dependent deforma-
tions on chiral fermions can be captured by Berry curvature
in phase space (coordinate and momentum spaces combined).
This quantity has been introduced and used before in a variety
of problems involving chirality and spatially inhomogeneous
backgrounds [49–52]. In our problem, Berry curvature in
phase space emerges because the spatially inhomogeneous,
time-dependent deformations change the distribution of the
fermions both in coordinate and momentum spaces. We then
derive the generalized chiral kinetic equations (10) describing
the effect of deformations on transport of chiral fermions, both
with and without external electromagnetic fields. The corre-
sponding anomaly equation (12) has, as a source of chirality,
an exterior derivative of the phase-space Berry curvature.
Since it measures the charge of the Berry monopole in phase
space, we call it the “monopole charge function.”

The physical meaning of the anomaly equation is as
follows: As shown in Fig. 1, the angular twist creates a
synthetic magnetic field Beff, the time-dependent strain cre-
ates a synthetic electric field Eeff, and they combine to
yield a source Ei

effB
i
eff for the chiral charge generation in

the nth cone. Although the anomalous current induced by
strain alone cancels out after summation over all Weyl cone
pairs, the strain does provide a total chiral imbalance μ5—
therefore, in the presence of an external magnetic field, the
chiral magnetic current appears. We then use the general-
ized chiral kinetic theory to evaluate the magnitude of the
CME current induced by torsion in the presence of mag-
netic field. The current has a linear dependence both on
the chiral chemical potential and the magnetic field, similar
to the usual CME. It is observable and provides a way to
discover the generation of chiral imbalance through synthetic

gauge fields arising from the phase-space Berry curvature.
Throughout the paper, we use as an example a concrete tight-
binding Hamiltonian (1); however, all of our derivations apply
to any Hamiltonian of type H = �σ · �p(k, x, t ) + φ(k, x, t )
without an explicit cutoff.

Our work focuses only on elastic deformations without
the defects, e.g., screw dislocations. Screw dislocation is a
topological defect in the crystal structure and hence also
in the synthetic gauge field, which acquires a δ function
analogous to the Abrikosov vortex in a type II superconduc-
tor. The elastic torsion we consider deforms the lattice, and
therefore the Hamiltonian, continuously, whereas the defects
induce singularities and thus potential sensitivity to the UV
cutoff [53].

Let us consider an angular twisted Weyl semimetal with
time-dependent compression along the axis of twist. The twist
is chiral; the compression and twist together generate chirality
and produce a chiral imbalance for the Weyl quasiparticles, as
we will demonstrate. In order to solve this problem within
the framework of chiral kinetic theory, we need to do the
following. First, we need to understand how the elastic defor-
mation in position space affects the Berry curvature, in both
position and momentum spaces. Second, we need to formulate
and solve the kinetic equation, and calculate the anomalous
current and chiral charge generation.

For the first problem, because the Hamiltonian in mo-
mentum space now depends on the spatial coordinates, it
is impossible to separate the position space and momen-
tum space components of Berry curvature. Therefore, we
will address this problem from the perspective of the phase-
space path integral; our starting point is a phase-space La-
grangian, which we will obtain from the coordinate-dependent
Hamiltonian. To solve the second problem, we start from the
definition of the Berry connection in phase space and derive
the corresponding kinetic equation.

II. HAMILTONIAN IN DEFORMED WEYL SEMIMETAL

Since much work on Hamiltonian under deformation is
derived from a tight-binding model [54–57], we will use a
simple model Hamiltonian of an anisotropic Weyl semimetal
proposed in Ref. [58] as an example. This model has a simple
tetragonal lattice with lattice constants a and b. The tight-
binding Hamiltonian of the model is given by

H = −
∑

i

(c+
i−1x′ci + c+

i+1x′ci ) t1σx

+ 2cos(k0a)
∑

i

c+
i ci t1σx

+ i
∑

i

(c+
i+1⊥′ci − c+

i−1⊥′ci ) t2σ⊥

+
∑

i

(c+
i+1⊥′ci + c+

i−1⊥′ci )t3, (1)

where a is the lattice spacing in the x direction, and c+ and c
are creation and annihilation operators. The parameters t1, t2,
and t3 represent the strength of tight-binding interaction, and
k0 is the location of Weyl points in momentum space. The ⊥
denotes the directions perpendicular to the specific x axis, so
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it corresponds to the indices in y-z plane, which can be taken
as ŷ or ẑ. For example, ci+1⊥′σ⊥ means ci+1y′σy + ci+1z′σz.

This model possesses a fourfold rotation symmetry around
the x axis, and inversion symmetry but not the time-reversal
symmetry. The deformation can be described by the following
parameter change:

(c+
i−1x′ci + c+

i+1x′ci )t1σx

→ c+
i−1x′ci + c+

i+1x′ci )(t1σx − β1uxxσx ) + i(c+
i−1x′ci

− c+
i+1x′ci )β2ux⊥σ⊥, (2)

t2σ⊥ → t2σ⊥ − β3u⊥⊥σ⊥, (3)

where β is the anisotropic Gruneisen parameter and uab is
the strain tensor. We set the twist to be along the x axis,
ux⊥ = γ εi j r j ; γ describes the twist angle gradient; and εi j is
the rank-two antisymmetric tensor in y-z plane. We also apply
a time-dependent compression λ = −uxx.

With these substitutions, the strain-modified Hamiltonian
in momentum space becomes

H = − 2t1[cos(k′
xa) − cos(k0xa)]σx

− 2t2 sin(k′
yb)σy − 2t2 sin(k′

zb)σz

− 2β2γ y sin(k′
xa)σz + 2β2γ z sin(k′

xa)σy

+ 2β1 cos(k′
xa)λσx + 2[cos(k′

yb) + cos(k′
zb)]t3, (4)

where the primed symbols denote the local lattice vector di-
rection. The transformation of direction from global vierbein
to the local one is given by⎛

⎝dx
dy
dz

⎞
⎠ =

⎛
⎝1 − λ(t ) 0 0

0 1 −γ x′
0 γ x′ 1

⎞
⎠

⎛
⎝dx′

dy′
dz′

⎞
⎠; (5)

we will denote the transformation matrix as M j
i = dx j

dx′i .
Expanding the effective Hamiltonian in the vicinity of the

Weyl point at momentum Ki, we get a familiar form,

Heff = e′i
aσa(k′

i − K ′
i ) + W ′i(k′

i − K ′
i ) + E

= ei
aσa(ki − Ki ) + W i(ki − Ki ) + E,

(6)

where the local Weyl points K ′, dreibein e′, tilt vector W ′, and
energy of Weyl points E can be derived from Eq. (4). The
corresponding dreibein and Weyl points in global coordinates,
which are defined to be consistent with the untwisted lattice,
are given by Ki = (M−1) j

i K ′
j , ei

a = e′ j
aMi

j , and W i = W ′ jMi
j .

In the next section, we will prove that the elastic chiral
anomaly is independent of ei

a and W i, so there is no need to
give an explicit form of these quantities here. All we need
is the elastic gauge field that can be read off the form of
the effective Hamiltonian. There are eight Weyl cones. In the
lowest order,

Kx = sx

[
k0x + β1

t1a
cot(k0xa)λ

]
,

Ky = sy
β2γ z′

t2b
sx sin(k0xa) + �(−sy)

π

b
,

Kz = −sz
β2γ y′

t2b
sx sin(k0xa) + �(−sz )

π

b
,

(7)

where sx = sgn(sin(Kxa)) and sy,z = sgn(cos(Ky,za)),E and
the chirality χ is sxsysz. The velocity of fermions in the x
direction is vx = 2at1cos(k0xa) and in the y, z direction is
vy,z = 2t2b.

III. KINETIC EQUATIONS FOR THE HAMILTONIAN
σ · p(k, x, t ) + φ(k, x, t ).

In the above analysis, we find that the elastic deforma-
tion affects the dreibein, tilt vector, and position of Weyl
points, but the Hamiltonian always maintains the form σ ·
p(k, x, t ) + φ(k, x, t ). This Hamiltonian can be analyzed by
chiral kinetic theory from a path integral perspective [38],
where the action is given by

I =
∫ t f

ti

[k · ẋ − ε(p) − ak · k̇ − ax · ẋ − at ]dt ; (8)

ε = ±|p| + φ is the eigenvalue of energy.
After generalizing the Berry connection and curvature in

momentum space [38], the Berry connection and Berry cur-
vature in phase space can be defined as aα = i〈u| ∂ pi

∂α
∂p|u〉 =

∂ pi

∂α
ap

i , �αβ = ∂βaα − ∂αaβ = 1
2∂α pm∂β plεmln�

p
n , where

�=
n

p̂n

2|p|2 . Below, we use the Greek characters as the indices in
phase space.

For an arbitrary Hamiltonian, the kinetic equations corre-
sponding to (8) are derived in [59]; see Eqs. (C3), (C8), and
(C9) in that paper. For our Hamiltonian, the Berry curvatures
satisfy the following identity:

�αβ�γσ + �αγ �σβ + �ασ �γβ = 0. (9)

Using this identity, the kinetic equations can be brought to
the form

√
Gẋi = −�kit + (δi

j (1 + �kl xl ) − �kix j )∂k j ε + �kik j ∂x j ε,

(10)

√
Gk̇i = �xit − (δ j

i (1 + �kl xk ) − �kix j )∂x j ε − �xix j ∂k j ε,

(11)

where
√

G = 1 + �kixi describes the modification of the phase
space density.

The corresponding anomaly equation can be written as

∂
√

G

∂t
+ ∂

√
Gẋi

∂xi
+ ∂

√
Gk̇i

∂ki

= �kixit + �k j x j xi∂kiε + �x j k j ki
∂xiε, (12)

where

�αβγ = ∂α�βγ + ∂β�γα + ∂γ �αβ (13)

is the exterior derivative of the Berry curvature; we will call
this quantity the monopole charge function, as it measures the
charge of the Berry monopole in phase space.

It is easy to prove that if the Berry connections are all
continuous analytical functions, Eq. (12) becomes a classical
Liouville equation, because �αβγ = 0. However, the Berry
curvature possesses a singularity at the point p = 0, where
two degenerate bands cross. This is the source for the chiral
anomaly.
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The chiral anomaly is linked to the topology of fields in
the system; to investigate the gravitational topology and gauge
topology, we need to understand the source of ei

a and Ki.
As we showed in the first section, to form the dreibein

ei
a we need the following: (1) the elastic deformation of the

lattice that changes the dispersion relation and (2) the frame
transformation matrix M j

i induced by the geometric structure.
The gauge-analogy effect is affected only by the existence of
the Weyl points Ki, and is independent of the dreibein (e)i

a
and the tilt W i that describe the shape of the cones. The gravi-
tational “Nieh-yan” anomaly effect is determined by nontrival
structure (for example, dislocation) and the momentum cut-
off. The structure is absent in our continuous deformation
model. So, the final result for the anomaly is cutoff indepen-
dent. In other words, the chiral anomaly in our model just
contains the gauge-analogy anomaly which depends on the
existence of Weyl cones (Ki) but not on their detailed shapes,
as we will now demonstrate.

IV. CONSISTENCY CHECK OF KINETIC EQUATIONS

Let us first check that our equations are consistent with
Ref. [38] in the absence of deformations. In this case, pi =
ki − Ai; we will use the Coulomb gauge. From (13), we get
for the monopole charge function

�αβγ = εmnl
∂ pm

∂α

∂ pn

∂β

∂ pl

∂γ
�p, (14)

where �p = 2πδ3(p) is the well-known Berry monopole in
momentum space. Therefore,

�kixit = 2π ( �E · �B)δ3(p), (15)

�k j x j xi∂kiε + �x j k j ki∂xiε = 0. (16)

We thus obtain from (12) the same expression for the “Liou-
ville anomaly” as in Ref. [38]:

∂
√

G

∂t
+ ∂

√
Gẋi

∂xi
+ ∂

√
Gk̇i

∂ki
= 2π ( �E · �B)δ3(p). (17)

Let us now check the consistency of kinetic equation (10). For
the Weyl Hamiltonian H = σiki, we get

�kit = − �E × p̂

2|p|2 , �kl xl ∂kiε = ( �B · ��) p̂, (18)

−�kix j ∂k j ε + �kik j ∂x j ε = ( p̂ · ��) �B − ( �B · ��) p̂. (19)

The kinetic equation is thus given by

√
Gẋ = p̂ + �E × p̂

2|p|2 + ( p̂ · ��) �B, (20)

which is also same with the equation derived by Stephanov
and Yin [38].

V. DERIVATION OF TOPOLOGICALLY PROTECTED CME
AND CHIRAL ANOMALY FOR A GENERAL DEFORMED

WEYL SEMIMETAL

Let us now apply the kinetic equations (10)–(12) to the
Weyl semimetal under torsion. We first use the anomaly
equation (12) to identify the quantities responsible for the

topological configuration of the system. In our case, by sub-
stituting pa = ei

a(x)(ki − Ai − Ki ), and φ = W i(x)(ki − Ai −
Ki ) + E (x) into (12), we get

�kixit = ei
ae j

b

∂ (Aj + Kj )

∂xi
el

c

∂ (Al + Kl )

∂t
εabc2πδ3(p)

− ei
a

∂e j
b

∂xi
Tje

l
c

∂ (Al + Kl )

∂t
εabc2πδ3(p)

= 2πdet(e)

(
d ( �A + �K )

dt
· [∇ × ( �A + �K )]

)
δ3(p),

(21)

where Ti = e−1
i j p j = ki − Ai − Ki. The second line above van-

ishes by piδ
3(p) = 0.

The monopole charge functions � only depend on p, so
(21) is tilt independent. One can further prove that the last
two terms in (12) are also the same:

�k j x j xi∂kiε + �x j k j ki
∂xiε

= 2πdet(e)(∇E · [∇ × ( �A + �K )])δ3(p). (22)

Therefore, the anomaly equation for an isolated Weyl cone is

∂μ jμ =
∫

d3k

(2π )3

(
∂
√

G

∂t
+ ∂

√
Gẋi

∂xi
+ ∂

√
Gk̇i

∂ki

)
f

=
∫

sgn(J )
J−1d3 p

(2π )3
(�kixit + �k j x j xi∂kiε + �x j k j ki

∂xiε) f

= sgn(J )

4π2
det(e)−1det(e) �Beff · �Eeff

= χ �Beff · �Eeff

4π2
, (23)

where the effective electric and magnetic fields are

�Eeff = d ( �A + �K )

dt
+ ∇E, �Beff = ∇ × ( �A + �K ), (24)

and J = det(e) is the Jacobian; its sign corresponds to the
chirality of the Weyl cone.

It is clear from (23) that the anomaly equation is inde-
pendent of dreibein and tilt vector—it depends only on the
existence of the Weyl point, due to its topological nature.

Although the anomaly is not affected by dreibein and tilt
vector, the general expression for the current still depends
on them:

ji =
∫

d3k

(2π )3

√
Gẋi f =

∫
sgn(J )J−1 d3 p

(2π )3

√
Gẋi f

=
∫

sgn(J )J−1[−�kit + (δi
j (1 + �kl xl ) − �kix j )∂k j ε

+ �kik j ∂x j ε] f
d3 p

(2π )3
.

(25)

The first term �kit describes a transverse current analogous to
the anomalous Hall effect. The second term ∂k j ε corresponds
to the anomalous velocity induced by lattice motion. To study
the CME, we focus on the last three terms:

�k j x j ∂kiε = εabc

(
e j

a�b je
i
d

pc pd

2|p|4 + e j
a�b j

Wi pc

2|p|3
)

, (26)
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�kix j ∂k j ε = εabc

(
ei

a�b je
j
d

pc pd

2|p|4 + ei
a�b j

Wj pc

2|p|3
)

, (27)

�kik j ∂x j ε = εabc

(
ei

ae j
b�d j

pc pd

2|p|4 + ei
ae j

b

� j pc

2|p|3
)

, (28)

where �ai = ∂ pa

∂xi = ω
j
aiTj − e j

a
∂Ai
∂x j . �i = ∂W j

∂xi Tj − W j ∂Aj

∂xi +
∂E
∂xi , and we have defined ωi

a j = ∂ei
a

∂x j .
Using the symmetry relation εabc pd − εdbc pa − εadc pb −

εabd pc = 0, one can simplify these equations, and get the
following expression for the anomalous CME current:

ji =
∫

sgn(J )J−1 d3 p

(2π )3

× [�k j x j ∂kiε − �kix j ∂k j ε + �kik j ∂x j ε] f

=
∫

sgn(J )J−1 d3 p

(2π )3

[
ei

ce j
bω

j
na

Taεbcn

2|p|2 + det(e)
Bi

eff

2|p|2

+ εabc
(
ek

aω
j
bkTjW

i − ei
aω

j
bkTjW

k + ei
ae j

b� j
) pc

2|p|3

+1

2
εabcε jlmem

a el
bW

j pc

2|p|3 Bi
eff

]
f . (29)

It is easy to derive from Eq. (4) that W i =
[0,−2t3sx

β2

t2
γ zsin(k0a), 2t3sx

β2

t2
γ ysin(k0a)] and γ y, γ z � 1,

so we will ignore it in our calculations and treat the cones as
untilted. In such a cone, in a equilibrium distribution, f (|p|)
can be assumed to be an even function of pa. So, most terms
in Eq. (29) should vanish except the second term. It is easy
to show that the second term is also independent of dreibein.
Therefore, the CME current is topologically protected too.
The contribution of each cone is

ji
n =

∫
sgn(J )J−1 d3 p

(2π )3
det(e)

Bi
eff

2|p|2 f

= χn
(μ − En)Bi

eff

4π2
,

(30)

where χn, En are the chirality and energy of the nth Weyl point.
In this expression, as explained in Ref. [44], both μ and En

should be counted from the bottom of the filled band.
The evolution of the chiral charge can be determined in the

relaxation time approximation:

∂i ji
n + ρ̇n = χn

e3 �E · �B
4π2

− e

τ
[ρn − (ρn)eq], (31)

where (ρn)eq denotes the equilibrium chiral charge density
in position space and τ is the chirality relaxation time.
So the chemical potential μn associated with the chiral
charge is [3,60]

δμn =
(

(μ − En)2

2π2vxvyvz

)−1

δρn

= χ
16π2ab2 cos(kx0a)t1t2

2

(μ − En)2

�Eeff · �Beff

4π2
τ,

(32)

where μ is the chemical potential. The contribution of each
cone to the chiral magnetic current is given by

�jn = χn
e2

4π2
δμn �B; (33)

therefore, the total CME current is determined by the chiral
imbalance [3]. The general form of the anomalous CME cur-
rent in a deformed Weyl semimetal is given by (29).

The current in the model with torsion

Following the general results derived above, we will now
focus on the topology effect by elastic torsion—effective
gauge field induced on the Weyl points by torsion. Since
the effective electric field transforms as a 2-form under ar-
bitrary diffeomorphisms, the effective electric and magnetic
fields (24) are

�Eeff = sx
β1

t1a
cot(k0xa)λ̇x̂; (34)

�Beff = −sx(sy + sz )
β2γ

t2b
sin(k0xa)x̂. (35)

The chiral anomaly at each cone is

�Eeff · �Beff = −(sy + sz )
β1β2 cos(ak0x )γ λ̇

abt1t2
. (36)

The total charge is conserved, as expected:∑
n

(∂i ji + ρ̇ )n =
∑

n

χn

4π2
(Eeff · Beff )n

=
∑

sx,y,z=±1

−sysz(sy + sz )
β1β2 cos(ak0x )γ λ̇

abt1t2

=0.

(37)

The energies of the Weyl points are

En = t3(sy + sz );

therefore, combining Eqs. (30) and (32) we get

ji
total =

∑
n

( ji)n =
∑

n

χnδμne2Bi
total

4π2

= −4e2 β1β2bt2 cos(ak0x )γ λ̇

π2h̄2

×
(

1

(μ − 4t3)2
− 1

(μ + 4t3)2

)
τBi

ext. (38)

This shows that the current is linear in the external magnetic
field [3], which is different from the CME induced in parallel
(weak) electric and magnetic fields, where j ∝ B2 [4,5].

For a numerical estimate, let us assume a statically
twisted and dynamically compressed (along the axis of twist)
crystal with a square cross section 2 × 2 mm, and take
parameters t1 = 2 eV, t2 = 0.5 eV, t3 = 0.05 eV, β1 =
1.5 eV, β2 = 1 eV, a = 0.3 nm, b = 0.4 nm, τ =
10−10 s, μ = 0.15 eV, ak0x = π/3. Let us also assume
an external magnetic field of 10 T, with a twist parameter
of γ = 10 m−1 and compression rate λ̇ = 10 s−1. The
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anomalous current density would be ≈470 μA/m2, and the
total current would be about 2 nA. Note that the current has an
inverse square dependence on μ − En; it will be maximized in
materials with a Fermi surface very close to a Weyl point. For
example, for our parameters, if we take μ − 4t3 to be 0.01 eV
instead of 0.05 eV, our current will increase by a factor of 25
to approximately 50 nA.

VI. SUMMARY AND OUTLOOK

Our generalized chiral kinetic equations (10) and (11) and
the anomaly equation (23) apply to any Weyl system with
the Hamiltonian of the form σ · p(k, x, t ) + φ(k, x, t ). In the
anomaly equation (23), torsion creates a synthetic magnetic
field, while the time-dependent compressive strain creates a
synthetic electric field—so no external electric field is nec-
essary to generate the chiral chemical potential. Detecting
the resulting torsion-induced chiral magnetic current would
thus allow us to establish the anomalous coupling between
the spatial and momentum-space chiralities, without a back-
ground from the Ohmic current that exists in the longitudinal
magnetoresistance measurements.

The current measured in the corresponding experiment
will also not get contributions from the piezoelectric effect
(because the material is inversion symmetric and has no piezo-
electricity) or from eddy currents (because the compression is
along the magnetic field).

It has been suggested that lattice defects can act as sources
of emergent gravity: a disclination induces a curvature and
a dislocation induces torsion [61]. It would be interesting to
extend our method to computing the anomalous currents re-
sulting from the combination of chiral and gauge-gravitational
anomalies in this case.
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APPENDIX A: THE DETAILED DERIVATION OF
EQS. (10)–(12)

From the Euler-Lagrange equation for the momenta, we get

∂I

∂ki
− d∂I

dt∂ k̇i
= 0, (A1)

and we derive

ẋi = ∂kiε − �kix j ẋ j − �kik j k̇ j . (A2)

The Euler-Lagrange equation for the coordinates yields

∂I

∂xi
− d∂I

dt∂ ẋi
= 0, (A3)

from which we derive

k̇i = −∂xiε + �xik j k̇ j + �xix j ẋ j . (A4)

Since these two equations are coupled, the solution can be
found using a method based on differential geometry. This
work has already been done in Ref. [59]. Those results are

√
G = 1 + �kixi − �xix j �kik j + [(�kixi )

2 − �kix j �k j xi ]/2

−εiklε jmn�kkkl �kix j �xmxn/4

+εiklε jmn�k j xi�kmkk �knxl /6, (A5)

√
Gẋ = (δi j (1 + �kkxk ) − �kix j − εiklε jmn�kmkn�xkxl /4

+εiklε jmn�kmxk �knxl /2)(∂k j ε − �k jt )

+(�kik j + εklsεi jm�kkxm�kl ks/2)(∂x j ε − �x jt )

(A6)

√
Gk̇ = δi j (1 + �kkxk ) − �k j xi − εiklε jmn�kmkn�xkxl /4

+εiklε jmn�kmxk �knxl /2)(−∂x j ε + �x jt )

−(�xix j + εklsεi jm�kkxm�kl ks/2)(∂k j ε − �k jt ).

(A7)

Here we will consider the case of a Weyl-type Hamiltonian:
H = σ · p + φ. Equation (9) is a key point for deriving (10),
(11), and (12).

Since

�αβ = ∂baα − ∂aaβ = ∂ p j

∂β

∂ pi

∂α

∂ai
p

∂ p j
− ∂ p j

∂α

∂ pi

∂β

∂ai
p

∂ p j

= 1

2
∂α pm∂β plεmln�

p
n,

(A8)

we have the following relation:

�αβ�γσ = εmnlεm′n′l ′
∂ pm

∂α

∂ pn

∂β

∂ p′
m

∂γ

∂ p′
n

∂σ
�

p
l �

p
l ′

=
(

∂ p · ∂ p

∂α∂γ

∂ p · ∂ p

∂β∂σ
− ∂ p · ∂ p

∂α∂σ

∂ p · ∂ p

∂β∂γ

)
�2

− � · ∂ p

∂α

(
� · ∂ p

∂γ

∂ p · ∂ p

∂β∂σ
− � · ∂ p

∂σ

∂ p · ∂ p

∂β∂γ

)

+ � · ∂ p

∂β

(
� · ∂ p

∂γ

∂ p · ∂ p

∂α∂σ
− � · ∂ p

∂σ

∂ p · ∂ p

∂α∂γ

)
.

(A9)

Therefore, the following cancellation takes place, as
shown in (9):

�αβ�γσ + �αγ �σβ + �ασ�βγ

=
(

∂ p · ∂ p

∂α∂γ

∂ p · ∂ p

∂β∂σ
− ∂ p · ∂ p

∂α∂σ

∂ p · ∂ p

∂β∂γ

)
�2

+
(

∂ p · ∂ p

∂α∂σ

∂ p · ∂ p

∂γ ∂β
− ∂ p · ∂ p

∂α∂β

∂ p · ∂ p

∂σ∂γ

)
�2

+
(

∂ p · ∂ p

∂α∂β

∂ p · ∂ p

∂σ∂γ
− ∂ p · ∂ p

∂α∂γ

∂ p · ∂ p

∂σ∂β

)
�2

− � · ∂ p

∂α

(
� · ∂ p

∂γ

∂ p · ∂ p

∂β∂σ
− � · ∂ p

∂σ

∂ p · ∂ p

∂β∂γ

+ � · ∂ p

∂σ

∂ p · ∂ p

∂β∂γ
− � · ∂ p

∂β

∂ p · ∂ p

∂γ ∂σ
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+ � · ∂ p

∂β

∂ p · ∂ p

∂γ ∂σ
− � · ∂ p

∂γ

∂ p · ∂ p

∂σ∂β

)

+ ∂ p

∂α
·
(

∂ p

∂σ

� · ∂ p

∂β

� · ∂ p

∂γ
− ∂ p

∂γ

� · ∂ p

∂σ

� · ∂ p

∂β

+ ∂ p

∂γ

� · ∂ p

∂β

� · ∂ p

∂σ
− ∂ p

∂σ

� · ∂ p

∂β

� · ∂ p

∂γ

+ ∂ p

∂σ

� · ∂ p

∂γ

� · ∂ p

∂β
− ∂ p

∂β

� · ∂ p

∂σ

� · ∂ p

∂γ

)

= 0. (A10)

Equation (9) makes the following terms vanish:

(εiklε jmn�kmxk �knxl /2 − εiklε jmn�kmkn�xkxl /4) = 0,

εklsεi jm�kkxm�kl ks/2 = 0, (A11)

−(�kkxk − �kix j )�k jt − �kik j �x jt = 0. (A12)

Finally, Eqs. (A5)–(A7) can be simplified to

√
G = 1 + �kixi , (A13)

√
Gẋ = −�kit + [δi j (1 + �kkxk ) − �kix j ]∂k j ε + �kik j ∂x j ε,

(A14)

√
Gk̇ = �xit − [δi j (1 + �kkxk ) − �kix j ]∂x j ε − �xix j ∂k j ε,

(A15)

The Liouville anomaly equation is easily derived from
above three equations:

∂
√

G

∂t
+ ∂

√
Gẋi

∂xi
+ ∂

√
Gk̇i

∂ki
= �xikit + �k j x j xi∂kiε − �x j k j ki∂xiε.

(A16)

APPENDIX B: THE SUMMATION OVER CONES

The chirality and effective gauge fields depend on sx, sy

and sz as we explained in Eq. (7). To determine the total
anomalous current and the total chiral charge generation, we
should take into account the following summation rule:

∑
n

si = 0(i = x, y, z), (B1)

∑
n

sis j = 0(i �= j), (B2)

sisi = 1. (B3)

Using this summation rule, we find that the current jtor orig-
inating from torsion alone and the total current jtot resulting

from the combination of the torsional electric field and an
external magnetic field vanish after summation over all cones:

jtor ∝
∑

n

1

(μ − En)2
(Eeff · Beff )Beff

=
∑

n

sx

[μ − (sy + sz )t3]2

β1

t1a
cot(k0xa)λ̇|Beff|2

=
∑

n

sx(sy + sz )2

[μ − (sy + sz )t3]2

β1

t1a
cot(k0xa)λ̇(

β2γ

t2b
)2sin2(k0xa)

= 0,

(B4)

jtot ∝
∑

n

1

(μ − En)2
(Eeff · Bext )Bext

=
∑

n

sx

[μ − (sy + sz )t3]2

β1

t1a
cot(k0xa)λ̇Bx �B = 0.

(B5)

Therefore, the only current that survives the summation over
the cones is the chiral magnetic current resulting from the
chiral chemical potential induced by strain in an external
magnetic field.

APPENDIX C: CUTOFF INDEPENDENCE OF THE
MONOPOLE CHARGE FUNCTIONS

In this section, we show that the monopole charge function
computed from the entire tight-binding Hamiltonian (4) coin-
cides with the one computed for an effective low-energy Weyl
Hamiltonian.

From Eq. (4), we get

p1 = −2t1[cos(k′
xa) − cos(k′

x0a)] + 2β1λcos(k′
xa), (C1)

p2 = −2t2sin(k′
yb) + 2β2γ zsin(k′

xa), (C2)

p3 = −2t2sin(k′
zb) − 2β2γ ysin(k′

xa), (C3)

φ = 2[cos(k′
yb) + cos(k′

zb)]t3, (C4)

where k′
i = M j

i k j , so the dependence of the pa on the
variables is given by p1(kx, λ(t )), p2(kx, ky, kz, x, z, λ(t )),
p3(kx, ky, kz, x, y, λ(t )).

Let us use the above equations to compute the monopole
charge functions responsible for the chiral anomaly:

�kixit = εmnl
∂ pm

∂ki

∂ pn

∂xi

∂ pl

∂t
�(p)

=
[

− ∂ p1

∂λ
λ̇

(
∂ p2

∂z

∂ p3

∂kz
+ ∂ p2

∂x

∂ p3

∂kx

)

+∂ p1

∂λ
λ̇

(
∂ p3

∂y

∂ p2

∂ky
+ ∂ p3

∂x

∂ p2

∂kx

)

+∂ p2

∂λ
λ̇

(
∂ p1

∂x

∂ p3

∂kx
− ∂ p3

∂x

∂ p1

∂kx

)

−∂ p3

∂λ
λ̇

(
∂ p1

∂x

∂ p2

∂kx
− ∂ p2

∂x

∂ p1

∂kx

)]
�(p)

= C�(p), (C5)
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where, for simplicity, we use C to denote the part inside the
square bracket. C contains four terms separately displayed by
the four lines above. For the first term, which we denote as
C1, we have

C1 = −∂ p1

∂λ
λ̇

(
∂ p2

∂z

∂ p3

∂kz
+ ∂ p2

∂x

∂ p3

∂kx

)

= −2β1cos(k′
xa)λ̇(−4t2β2γ sin(k′

xa)bcos(k′
zb)

+4t2β2bacos(k′
yb)

dk′
y

dx
γ ycos(k′

xa)
dk′

x

dkx
)

= −2β1cos(k′
xa)λ̇[−4t2β2γ sin(k′

xa)bcos(k′
zb)

+4t2β2bacos(k′
yb)γ kzγ ycos(k′

xa)(1 − λ)].

Since �kxt = C�(p), where �(p) = 2πδ3(p), we are only
interested in the value of C1 at the point p = 0:

C1|p=0 = C1|k=K = 2β1cos(K0xa)λ̇

×[−4t2β2γ sin(K0xa)bsz + 4t2β2baγ Kzγ y(1 − λ)]

= −8β1cos(K0xa)λ̇t2β2γ sin(K0xa)bsz + 0(γ 2).

The same way, one can derive the second term of C to be

C2|k=K = 2β1cos(K0xa)λ̇

×[−4t2β2γ sin(K0xa)bsy − 4t2β2baγ Kyγ z(1 − λ)]

= −8β1cos(K0xa)λ̇t2β2γ sin(K0xa)bsy + 0(γ 2).

The third term is of higher order in deformation:

C3 = 4β1γ zcos(k′
xa)a

dk′
x

dλ
λ̇t2cos(k′

zb)b
dk′

z

dx
(2t1 − 2β1λ)sin(k′

xa)a(1 − λ),

C3|k=K = −8β1γ zcos(K ′
x0a)aKxλ̇t2bγ Ky(t1 − β1λ)sin(K ′

xa)a(1 − λ) = 0(γ 2).

Similarly, the last term C4 is also a higher order correction.
So, the integration of monopole charge function yields

∫
d3k

2π
�kixit =

∫
d3 p

(2π )3
[J−1C]2πδ3(p)

= 1

4π2
[det(J )−1C]|ki=Ki , (C6)

where J is a Jacobian. If we define ei
a = d pa

dki
, J = det(e). Since ei

a = (e′) j
aMi

j ,

det(J )−1C|ki=Ki = det(e′)−1det(M )−1C|ki=Ki . (C7)

From (C1)–(C4),

(e′)i
a = d pa

dk′
j

=

⎡
⎢⎢⎢⎣

(2t1 − 2β1λ)sin(k′
xa)a 0 0

2β2γ zsin(k′
xa)a −2t2cos(k′

yb)b 0

−2β2γ ysin(k′
xa)a 0 −2t2cos(k′

yb)b

⎤
⎥⎥⎥⎦.

To count the lowest order, we should take the lowest order of det(e′)−1|ki=Ki , det(M )−1|ki=Ki , and C|ki=Ki separately as below:

det(e′)−1|ki=Ki = 1

8t1t2
2 sin(K ′

xa)ab2
, (C8)

det(M )−1 = 1, (C9)

C = C1 + C2 + C3 + C4

= −8(sy + sz )β1β2γ λ̇t2absin(K0xa)cos(K ′
0xa). (C10)

One can also prove that in the first order of γ we get

�k j x j xi∂kiε + �x j k j ki∂xiε = 0. (C11)

So, finally let us multiply (C8), (C9), and (C10) to get the result for the anomaly:

∂μ jμ =
∫

d3k

2π
�kixit = 1

4π2
[det(J )−1C]|ki=Ki

= −cos(K ′
0xa)β1β2γ λ̇

4π2t1t2ab
(sy + sz ). (C12)
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It coincides with Eq. (36) in the main text, which means that
the computation with the effective Hamiltonian does not miss
any anomaly terms in lowest order in deformation.

This means that we do not need to impose a cutoff. In
principle, we can go beyond the lowest order using the entire

Hamiltonian of Eq. (4), but the result becomes cumbersome
at higher order. We also do not need a cutoff in computing the
monopole charge function in the case of elastic continuous
deformation.
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