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Topological phonon-magnon hybrid excitations in a two-dimensional honeycomb ferromagnet
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We develop a phonon-magnon interaction model for the two-dimensional honeycomb ferromagnet and calcu-
late the band structure of the hybrid phonon-magnon excitation. When the phonon (either acoustic or optical)
energy overlaps with the magnon energy, the degeneracies at the crossing points are lifted by the phonon-magnon
interaction, leading to topological band inversion. We show that the Berry curvatures and Chern numbers are
nonzero around the phonon-magnon band-crossing areas but vanish throughout the rest of the Brillouin zone.
We calculate the thermal Hall conductance enabled by the phonon-magnon interaction, which is also an indicator
of nontrivial topological properties. In addition, we show that band topologies can be manipulated by varying
spin-exchange coupling strengths and Dzyaloshinskii-Moriya interactions strengths.

DOI: 10.1103/PhysRevB.104.064305

I. INTRODUCTION

Interactions between basic energy carriers in a condensed
system have been among the most well-studied problems
and cast significant impacts. Specifically, two types of heat
carriers, phonons [1–4] and magnons [5–8], have been long
studied separately but seldom considered together since their
interaction is usually too small to be physically impor-
tant. Nevertheless, the phonon-magnon interaction started
attracting attention recently because of interesting phenom-
ena arising from their interaction, such as broadening of
the Raman spectrum [9] and phonon/magnon softening
[10,11]. Meanwhile, the discovery of topological insulators
has stimulated the venture of searching for other types of
condensed-matter systems with topological behaviors, such as
the topological band structure of phonons and magnons.

The earliest consideration of phonon-magnon interaction
can be dated to the Kittel theory, which predicted phonon at-
tenuation at simultaneous resonance [12,13]. Further insights
were given in the Callen-Callen theory of magnetostriction,
which, although only considered the global strain on the lat-
tice, extended the spin-lattice interaction to more complicated
lattices by point-group symmetry considerations [14,15].
More recently, a more general theory employing quantum
field treatments for Cs2CuCl4 was given by Kreisel et al. [16],
in which the magnetic-field dependence of elastic constants
and the ultrasonic attenuation rate were studied. The hybrid
magnon-phonon modes in h-YMnO3 were experimentally ob-
served using inelastic neutron scattering [17]. In addition, the
theory of phonon-magnon interaction by long-range dipole-
dipole interaction (DDI) and without sublattice structure was
proposed by Takahashi and Nagaosa [18], and short-range
phonon-magnon interaction was studied for a simple ferro-
magnetic square lattice [1,19]. On the other hand, the topolog-
ical nature of phonon Hall effects in a honeycomb dielectric
with Raman spin-phonon coupling was also reported [20].

*zhiting@cornell.edu

Dzyaloshinskii-Moriya interactions (DMI) were found
to introduce the topological properties and the thermal
Hall effect of magnon systems [5–7]. Simple ferromagnetic
square-lattice systems with phonon-magnon interaction were
also predicted to exhibit nontrivial Berry curvature [1,19].
However, such overly simplified models are unlikely to cap-
ture important details of the interaction, such as the effects
of more complicated lattice symmetry. Therefore, it is de-
sired to use a more realistic structure, such as honeycomb
lattice, to demonstrate the topological properties caused by
phonon-magnon interaction. One of the major distinctions be-
tween the honeycomb ferromagnets and square ferromagnets
is that the square lattice has the edge-shared lattice geometry,
which cancels with the U (1) gauge field and forbids the exis-
tence of the DMI-induced nontrivial Berry connection [2,21].
Thus, the honeycomb lattice not only provides a multiband
magnon model but also opens possibilities for a richer space
of phonon-magnon interaction with more complicated lattice
symmetry.

In this paper, we develop a model for the two-dimensional
(2D) honeycomb ferromagnet with explicit couplings between
phonons and magnons. We consider a hybrid phonon-magnon
system since they are both bosons, and when the energy scales
of lattice vibration and spin wave are close, it is more reason-
able to treat them on an equal footing. Because the honeycomb
lattice has two atoms per unit cell, it embodies both acoustic
and optical phonons. We include the interactions between
the magnons and both types of phonons, which are different
from the previous lattice models using a single atom per
unit cell. We consider a model with short-range spin-lattice
coupling, which is different from the models involving DDI.
Then we numerically calculate the hybrid phonon-magnon
spectra. The band inversion is observed, implying the non-
trivial topological properties of the system. This demonstrates
that the short-range coupling can give rise to topological
behaviors in 2D honeycomb ferromagnet. We deduce from
the symmetry-breaking perspective that the phonon-magnon
interaction enables the thermal Hall effect, indicating non-
trivial topological properties. To further show the topological
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behavior of the hybrid phonon-magnon system, we calcu-
late the Berry curvatures and Chern numbers for the hybrid
phonon-magnon bands, as well as the thermal Hall conduc-
tance. By varying magnon exchange and phonon-magnon
coupling parameters, we show that the band topology can
be altered by tuning those parameters. Our honeycomb ferro-
magnetic system closely resembles the newly experimentally
realized 2D ferromagnetic materials (e.g., single-layer CrI3),
which offers insights in understanding their fundamental
mechanisms and future applications, such as spintronics.

II. MODEL

Consider the hybrid phonon-magnon bosonic Hamiltonian,
H, defined for a 2D honeycomb lattice

H = Hph + Hmag + Hpm, (1)

where Hph, Hmag, and Hpm are Hamiltonians for phonons,
magnons, and the phonon-magnon coupling subsystems, re-
spectively. To model the hybrid honeycomb phonon-magnon
system, we expect the matrix form of this Hamiltonian to be
represented by an 8×8 matrix, in which the first two diagonal
terms are the magnon dispersions (labeled by σ = 1, 2 cor-
responding to the two atoms in the honeycomb lattice), and
the remaining six diagonal terms represent the phonon disper-
sions (labeled by s = 1, . . . , 6). The 2×6 and 6×2 rectangular
off-diagonal blocks represent the phonon-magnon coupling.
Our strategy is to consider the phonon, magnon, and phonon-
magnon parts separately, and then combine them into the total
8×8 matrix.

The phonon Hamiltonian, Hph, is given by the lattice dy-
namics, and up to the fourth-nearest neighbor is considered.
The general equation of motion is given by

Miüi =
∑

j

K (i j)(u j − ui ), (i = 1, . . . , N ), (2)

where M is the mass, ui is the displacement from the equilib-
rium position of the ith lattice site, K (i j) is the force-constant
tensor capturing the two in-plane and one out-of-plane de-
grees of freedom of the lattice vibrations, and N = 2 for
the honeycomb lattice. By plugging in the force constants
and diagonalizing the dynamical matrix associated with the
equation of motion, we can obtain the phonon dispersion
relations. Here, we use the force constants for 2D graphene
for numerical calculations because the CrI3 lattice involves
two Cr atoms and six I atoms per unit cell, which is hard
to model theoretically and adds unnecessary complications
[22]. We see later that the graphene honeycomb lattice with
the fourth-nearest neighbor phonon force-constant tensor is
sufficient to capture the topological features of the phonon-
magnon band structure successfully (Fig. 1). Finally, we can
rewrite the phonon Hamiltonian in terms of creation and an-
nihilation operators

Hph =
∑
k,s

wk,s

(
a†

k,sak,s + 1

2

)
, (3)

where wk,s is the phonon frequency of phonon mode with
momentum k in branch s; and a†

k,s and ak,s are phonon creation
and annihilation operators. Here we consider both acoustic

FIG. 1. (a) The fourth-nearest neighbors of two sublattices high-
lighted using concentric circles; (b) The “twist” vibration of the
two highlighted atoms need to be modeled using the fourth-nearest
neighbor.

and optical phonons. Because the energy of flexural optical
phonon (ZO) phonon branch in graphene overlaps with the
acoustic branches, we should pay special attention to it. The
ground-state energy can be ignored for now. Later in the
numerical calculation, we add a negligible on-site potential
to avoid the singularity caused by the zero �-point phonon
energies of the acoustic branches, which appear in the denom-
inator of the phonon-magnon coupling elements.

To obtain the XY ferromagnetic magnon Hamiltonian with
x-axis quantization, Hmag, we start with the spin Hamiltonian,
Hspin [5], and only consider the first-nearest exchange cou-
pling for simplicity,

Hspin = −2J
∑
〈i j〉

(
Sx

i Sx
j + Sy

i Sy
j

) + D
∑
〈〈i j〉〉

vi j
(
Sy

i Sz
j + Sz

i Sy
j

)
, (4)

where the nearest exchange couplings J and the second-
nearest in-plane DMI (D = D x̂) are considered, and vi j = ±1
for opposite hopping directions. Here, the single and double
angle brackets represent the first and second-nearest sites,
respectively; Sx

i and Sy
i are x and y component of the spin

operators for the specified magnetic ion, respectively. For
magnetic ions with large spin (e.g., spin 3/2 for Cr3+ in CrI3),
we can use the linear Holstein-Primakoff (HP) transformation
to obtain a good approximation. For x-axis quantization, we
write Sy

i and Sz
i in terms of the magnon creation and annihila-

tion operators S±
i = Sy

i ± iSz
i , S+

i = √
2Sbi and S−

i = √
2Sb†

i
by only keeping the lowest (linear) order term. We introduce
a structure factor,

g(k) = 1

3

∑
l

eik·rl , (5)

where rl donates the spatial coordinate for the three-nearest
neighboring sites (l = 1, . . . , 3). Then the eigenfrequencies of
the XY ferromagnetic can be solved by diagonalizing a non-
Hermitian Bogoliubov Hamiltonian [5],

ωk,σ =
[(

3vs±
√

(vDρk )2+
(

3vs|gk|
2

)2)2

−
(

3vs|gk|
2

)2]
,

(6)
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where vs = JS, vD = DS, and ρk = ∑
l sin(k · ρl ), where ρl

donates the spatial coordinate for the second-nearest neigh-
boring sites (l = 1, . . . , 6). We properly scale the nearest
exchange-coupling constant and DMI strength constants such
that the magnon energies are close to the acoustic phonon
energy range so that we can investigate the band structure at
the phonon and magnon band-crossing points [6].

Next, we obtain the phonon-magnon coupling Hamilto-
nian. The general form of the spin-lattice coupling term is
given by [17]

Hsl = −
∑

i

∑
�

B�
∑

i

ε�
i S�

i (i), (7)

where � labels different irreducible representations of the
hexagonal point group, B� is the symmetrized phonon-
magnon coupling constant associated with �, ε�

i is the sym-
metrized strain, and S�

i is the symmetrized products of spin
operators, with S�

i = {(Sz
i )2 − 1/3 S(S + 1), (Sx

i )2 − (Sy
i )2

,

1/2(Sx
i Sy

i + Sy
i Sx

i ), 1/2(Sy
i Sz

i + Sz
i Sy

i ), 1/2(Sx
i Sz

i + Sz
i Sx

i )}, and
(Sx

i )2 + (Sy
i )2 + (Sz

i )2 = S(S + 1). Hence, Hsl can be further
simplified into a linear form,

Hsl = −
∑

i

ST
i EiSi, (8)

where the spin operators Si = (Sx
i , Sy

i , Sz
i )T can be directly

rewritten in terms of linearized HP magnon operators. The
coupling matrix Ei is written in terms of the Cartesian strain
tensor

εi
αβ = 1

2
(Eαβ + Eβα ) = 1

2

(
∂uβ

i

∂rα

+ ∂uα
i

∂rβ

)
, (9)

where uα
i is the αth component of the displacement of the

lattice site i and rα is the αth component of its location. We

can expand ui = u(ri ) in the phonon coordinates

u(ri ) =
∑
k,s

ξk,s

√
1

2Mwk,s
(ak,s + a†

−k,s)eik·ri , (10)

where ξk,s is the phonon polarization vector. We can rewrite
the two-ion strain tensor in the limit of small displacement for
numerical calculations [23]

ε
i j
αβ = 1

2
[(riα − r jα )(uiβ − u jβ ) + (riβ − r jβ )(uiα − u jα )] ,

(11)
where riα is the αth component of the location of the atom
at the lth lattice site. The relative displacement is given by
averaging over the strains from nearest-neighboring ions

ε̃i
αβ = 1

N

∑
j

ε
i j
αβ . (12)

Our goal is to write the Hamiltonian in terms of phonon
and magnon creation and annihilation operators to couple
them together. We need first to symmetrize the strain tensor to
reduce the coupling matrix for the hexagonal honeycomb lat-
tice. From the Callen-Callen theory [15] of magnetostriction,
we can write down the point-group symmetrized local cou-
pling matrix with a set of four spin-lattice coupling constants
Bα

12, Bα
22, Bγ , and Bε associated with the fully symmetrical

representations, which are essential for modeling the compli-
cated couplings between various types of lattice distortions
and spin degrees of freedom in the realistic honeycomb lattice.
Since we choose the quantization axis to be the x axis, the
contribution of Bα

12 and Bα
22 vanishes by the symmetry con-

struction.
We generalize the Callen-Callen theory into local strains

for each lattice site i [17]

Ei =

⎛
⎜⎜⎜⎝

Bα
12ε

α,1 − Bα
22

2
√

3
εα,2 Bγ

2 ε
γ

2
Bε

2 εε
2

Bγ

2 ε
γ

2 Bα
12ε

α,1 − Bα
22

2
√

3
εα,2 − Bγ

2 ε
γ

1
Bε

2 εε
1

Bε

2 εε
2

Bε

2 εε
1 Bα

12ε
α,1 + Bα

22

2
√

3
εα,2 + Bγ

2 ε
γ

1

⎞
⎟⎟⎟⎠, (13)

where εα,1 = εxx + εyy + εzz, εα,2 = (
√

3/2)(εzz − 1
3εα,1),

ε
γ

1 = 1
2 (εxx − εyy), ε

γ

2 = εxy, εε
1 = εyz, and εε

2 = εxz are the
symmetrized strains according to the representations of the
hexagonal point group. We rewrite the coupling matrix Ei in
terms of phonon operators and do the Fourier transform; then
we can absorb all the constants into one, given as

Eαβ

σ,k =
∑

s

(
ak,s + a†

k,s

)
Gk,s,σ , (14)

where Gk,s,σ is the matrix containing the spin-lattice coupling
constants and can be added together with the independent
phonon and magnon Hamiltonians to form the total bosonic
Hamiltonian. Once the spin-lattice Hamiltonian is completely
rewritten using the phonon and magnon bosonic operators, we
can convert the spin-lattice Hamiltonian Hsl into the phonon-
magnon operator, Hpm.

Hsl [Eq. (8)] is nondiagonalizable since its components
consist of three bosonic operators (two magnon operators and
one phonon operator). To solve the hybrid phonon-magnon
system, we need to assume that the phonon-magnon interac-
tion is weak to make Hsl [Eq. (8)] diagonalizable. Under the
weak coupling assumption, the particle number is conserved,
so we can simply drop one of the magnon operators and now
Hsl only consists of two bosonic operators, either a†

kbk or b†
kak,

and hence diagonalizable. The total Hamiltonian can then be
approximately written as

H �
∑

k

ψk
†Hψk , (15)

where ψk = (ck,1, . . . , ck,8)T , H is the 8×8 dynamical ma-
trix consisting of all the phonon, magnon, and the coupling
information, whose terms are already obtained above, and
c†

k,� and ck,� (� = 1, . . . , 8) are the creation and annihilation
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FIG. 2. (a), (c) Uncoupled phonon and magnon modes, with or without DMI, respectively; the blue dashed lines are acoustic phonon
branches, and the red solid lines are magnon branches; (b), (d) Coupled phonon and magnon modes, (b) without DMI and (d) with DMI
included, clear band inversions can be seen at crossing points, indicating the topological nature of the hybrid phonon-magnon excitation. The
band gaps in the blue circles in (b) and (d) are small but exist. Also note that in the �-M regime there is a band-gap opening between the
originally TA and magnon bands, but not between LA and magnon bands. Here, we use Bγ = 15, Bε = 15, J = 1.21, and D = 0 in (c), (b),
and D = 0.1 in (c), (d).

operators for the hybrid system. The diagonal terms are given
by the six phonon and two magnon dispersion relations. The
off-diagonal terms are given in terms of Gk,s,σ , with Gk,s,σ

transformed into A and B in terms of local coordinates

As,σ = a−T Gs,σ a3 , (16)

Bσ,s = (A†)s,σ , (17)

where a3 = (1, 0, 0), a− = (0, 1,−i) for the x-axis quantiza-
tion. Note that A is a 2×6 matrix and B is a 6×2 matrix filling
the off-diagonal positions of H, so that the system is now in a
diagonalizable form.

In this representation, the spin-lattice coupling matrix in
Eq. (8) can be rewritten in a form that represents the coupling
between the coupling between the s phonon branch and the σ

magnon branch at different k’s. The total dynamical matrix is
then given by

H =
(


 A
B W

)
, (18)

where 
 = diag({ωk, σ }) and W = diag({wk, s}) are matrices
with diagonal elements giving the magnon and phonon disper-
sion relations. By diagonalizing this matrix, we can obtain the
dispersion relations for the hybrid phonon-magnon excitation.

III. RESULTS AND DISCUSSION

Because the phonon-magnon model is an 8×8 matrix with
complicated diagonal (fourth-nearest neighbor honeycomb
phonon dispersions) and off-diagonal terms (phonon-magnon
coupling terms with phonon dispersion relations in the de-
nominator), it would be infeasible to diagonalize the matrix
analytically. Hence, we numerically diagonalize the matrix to
calculate the hybrid phonon-magnon band structure. Setting
S = 3/2 and M = 1, the other constants used are given in the
Appendix [22]. Figure 2 shows the comparison between the
dispersion curves of uncoupled and coupled phonon-magnon
systems. The blue and red curves in Figs. 2(a) and 2(c) are
the original phonon branches and magnon branches, respec-
tively. In Figs. 2(b) and 2(d) band gaps emerge along the
M-K-� directions. Clearly, there is a band inversion at the
crossing points. The off-diagonal phonon-magnon coupling
terms in the dynamical matrix open the band gap, similarly
as the off-diagonal terms in the Kernel matrix representing the
spin-orbit coupling SOC opens the band gap in the topological
insulators. Along the �-M direction, although there is a band
gap between the originally TA and magnon bands, there are
no band gaps opened between LA and magnon bands. Fur-
thermore, when the magnon energies overlap with the optical
phonon energies, there are also couplings between magnons
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FIG. 3. (a) Uncoupled phonon and magnon branches for the parameters J = 2.01, D = 0.3, Bγ = 10, and Bε = 10. (b) Coupled phonon
and magnon branches where the upper magnon branch intersects with LO and TO phonons, causing them to gain nonzero Berry curvature and
nontrivial topology, as shown in Figs. 6(a) and 6(b).

and optical phonons, resulting in band-gap openings in the
�-K-M directions, as shown in Fig. 3.

We numerically calculate the Berry curvature associated
with each band to elucidate the topological nature of the
hybrid phonon-magnon system. The Berry curvatures of a 2D
crystal are nonzero only in the z direction, and the z-direction
Berry curvature associated with a given matrix Hamiltonian

H is given as


z
� (k) = i

∑
� �=�′

x†
�∂kx Hx�′x†

�′∂ky Hx� − (kx ↔ ky)

(λ� − λ�′ )2 , (19)

where x� is the �th eigenvector of H , λ� is the �’s
eigenvalue of H , and the summation is taken over all

FIG. 4. (a)–(h) The calculated Berry curvature �� = sgn(
z
� ) ln(1 + |
z

� |) of the eight phonon-magnon bands (from high to low energies)
and their corresponding Chern numbers (labeled on the top-left corners) for a system with J = 1.21, D = 0, Bγ = 15, and Bε = 15. The
signature of nodal rings from phonon-magnon coupling can be seen in (c)–(g). It is natural to see that the Berry curvatures in (a), (b), and (h)
are zero except for the phonon Dirac points.
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FIG. 5. (a) Thermal Hall conductance plotted versus spin-exchange strength J at different temperatures. (b) Thermal Hall conductance
plotted vs phonon-magnon coupling constants (setting Bγ = Bε).

�’s and �′’s, except for � = �′. Normally, for a topo-
logically trivial system, the Berry curvature should be
zero everywhere. Figure 4 shows the nonzero Berry cur-
vatures of the system with the phonon-magnon coupling
turned on and DMI turned off (J = 1.21, D = 0, Bγ = 15,
and Bε = 15). The Chern number of the energy band is
defined as

C� = 1

2π

∫
BZ

dkxdky 
z
� (k). (20)

For numerical calculation, we adopt the algorithm intro-
duced in Ref. [24] so that the k-point summation can be
performed in a computationally efficient manner. The results
are shown in Fig. 4.

It is noteworthy that, besides the phonon-magnon cross-
ing nodal rings, the phonon-phonon crossing points also
become Dirac points because of the global time-reversal and
spin-rotation (TCx) symmetry breaking by coupling with the
magnons. Neither the phonon part nor the magnon part inde-
pendently exhibits nonzero thermal Hall currents when DMI
is turned off. But, the TCx symmetry breaking causes the

FIG. 6. (a)–(h) The calculated Berry curvature �� = sgn(
z
� ) ln(1 + |
z

� |) for the eight phonon-magnon bands (from high to low
energies) and their corresponding Chern numbers (labeled on the top-left corners) with J = 2.01, D = 0.3, Bγ = 10, and Bε = 10. We can see
in (a) and (b) that as long as the upper magnon band reaches high enough energy to intersect with the optical phonons (TO and LO), the optical
branches can also gain nonzero Berry curvature and hence nontrivial topology.

064305-6



TOPOLOGICAL PHONON-MAGNON HYBRID EXCITATIONS … PHYSICAL REVIEW B 104, 064305 (2021)

thermal Hall effect. The thermal Hall current is given by

j = καβ ẑ × ∇T , (21)

where καβ is the thermal Hall conductance.
The system’s ferromagnetic ordering breaks the time-

reversal (T) symmetry, but when combined with the
spin-rotation (Cx) operation, the system with neither phonon-
magnon interaction nor DMI preserves TCx symmetry [19].
Under the TCx operation, j → − j while ∇T is invariant. So,
if the system preserves TCx symmetry, j = − j = 0 so that
the thermal Hall conductance, καβ , must be zero. However,
the spin-lattice Hamiltonian breaks the TCx symmetry by
coupling the spin operators with an extra ∂u

∂r ∼ ku-dependent
term obtained from the spatial derivative in the strain tensor,
lifting the TCx symmetry constraint cast on j and makes it
possible to be nonzero. The thermal Hall conductance can be
written in terms of the Berry curvature [1,25–27]

κxy = −k2
BT

h̄V

∑
n,k

c2( fn,k )
z
� (k), (22)

where fn,k = 1/ exp( h̄λ� (k)
kBT ) − 1 is the Bose-Einstein distri-

bution function, kB is the Boltzmann constant, T is the
temperature, V the volume of the sample, and

c2( fn,k ) = (1 + fn,k )ln2 1 + fn,k

fn,k
− ln2 fn,k − 2 Li2(− fn,k ),

(23)

where Li2(z) is the polylogarithm function. We set T =
15, 25, 35, and 45 K, and Bγ = Bε for simplicity, and plot
the parameter (J , Bγ , and Bε) dependence of κxy to show the
nontrivial topology caused by the broken TCx symmetry, as
shown in Fig. 5. The scale of κxy agrees with the previous
result reported for the square ferromagnet system [19].

By tuning the parameters of the magnon part, we can study
the effects of the parameter dependence of the band topolo-
gies. We use a different set of spin-correlation strength and
coupling constants (J = 2.01, D = 0.3, Bγ = 10, and Bε =
10), and as shown in Figs. 3(a) and 3(b), the band structure
is clearly different, with new band gaps appearing within the
LO and TO phonon regime, as well as different band gaps
in the acoustic and ZO phonon regime. In this parameter set-
ting, when the upper magnon energy is high enough to cross
with the optical phonons, the highest two branches which are

TABLE I. Phonon force constants used in the model Ref. [22].

φr (1) 36.5 φr (3) 3
φt i(1) 24.5 φt i(3) −5.25
φto(1) 9.82 φto(3) 0.15
φr (2) 8.80 φr (4) −1.92
φt i(2) −3.23 φt i(4) 2.29
φto(2) −0.4 φto(4) −0.58

originally TO and LO phonons can also gain nonzero Berry
curvature, Chern numbers, and hence nontrivial topology, as
shown in Figs. 6(a) and 6(b).

IV. CONCLUSION

In this work, we develop a general phonon-magnon in-
teraction formalism for the 2D honeycomb ferromagnet by
treating those two types of excitations as hybrid phonon-
magnon excitations. We calculate the dispersion curves by
numerically diagonalizing the hybrid dynamical matrix and
deduce from the band inversions at the crossing points that the
system has topological properties. Furthermore, we calculate
the Berry curvatures and associated them with each hybrid
phonon-magnon band. We also compute the thermal Hall
conductance to show the topological nature of the system.
We show that the thermal Hall conductance can be affected
by the spin-exchange and phonon-magnon coupling parame-
ters. We provide a realistic model sufficient for modeling the
phonon-magnon systems in the context of honeycomb lattice,
and our result demonstrates nontrivial topological properties
in such systems. The topological nature of phonon-magnon
excitations can be useful in caloritronics [28] and magnonics
[29] applications.
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APPENDIX

All constants used in the model are listed in Table I. The
phonon force constants are extracted from graphene and up
to fourth-nearest neighbor. The spin-exchange strength, DM
strength, and the phonon-magnon coupling constants are cho-
sen such that the features of the result are made clear.
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