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Kick-induced rectified current in a symmetric nanoelectromechanical shuttle
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We have studied rectified current in a geometrically symmetric nanoelectromechanical shuttle with periodic
kicks and sinusoidal ac bias voltages. The rectified current is exactly zero under the geometrical symmetry
generated by electrons transferring from source to drain electrodes via the movable shuttle. We investigate
nonzero rectified currents through the regular motion of the shuttle in which the time-translational symmetry
is broken. The motion of the shuttle, moreover, becomes chaotic with the same mechanism as a kicked rotor and
generates a scattered current with increasing kick strength. We point out that the time-translational symmetry
breaking of the instantaneous current has an important role in the manipulation of the rectified current.
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I. INTRODUCTION

The rapid development of nanotechnology in recent years
has created a new class of quantum electronic devices, called
nanoelectromechanical systems [1,2], that are able to incorpo-
rate mechanical degrees of freedom. One particular example
is the single-electron shuttle [3–10], a system in which a
movable mesoscopic object, namely, the shuttle, begins to
transport electrons one by one beyond a certain critical bias.
In this case, the Coulomb blockade and temperature render
Ohm’s law for electrical conductance invalid because the
electrical current is not necessarily proportional to the volt-
age drop across the device. Instead, current forms because
electrons tunnel from a source to a drain electrode via the
nanometer-sized shuttle. Since quantum-mechanical tunnel-
ing probability is exponentially sensitive to the tunneling
distance between the shuttle and the electrodes, the position
of the shuttle is crucial to defining the system’s electrical
properties. On the other hand, the Coulomb force that ac-
companies discrete nanoscale charge fluctuations drives the
motion of the shuttle. Previous research [11] has reported that
a geometrically symmetric shuttle with sinusoidal ac driven
voltage has a rectified current of exactly zero. We want to
treat the case of a symmetric shuttle with a periodic driven
force beyond a simple sinusoidal ac voltage.

The kicked rotor model is a prototypical model for study-
ing both classical and quantum chaos [12–14]. This model
represents a single-particle system with a kicked driven poten-
tial where the strengths are discrete at every periodic time Tk .
In classical theory, a particle with a strong kick strength shows
chaotic motion with a positive Lyapunov exponent, whereas
in quantum theory, two momentum-space phenomena arise,
dynamic localization [13,15–17], and quantum resonance
[18–20], which correspond to whether the driving period is
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an irrational or rational multiple of 2π , respectively. It has
been shown that there are rectified currents in a geometrically
asymmetric nanoelectromechanical shuttle with time-periodic
bias voltage [11,21]; such results not only advance our knowl-
edge about the dynamics of self-excited oscillators onthe
nanoscale, but also provide the means to optimize nanodevices
to generate rectified current for practical purposes.

In this paper, we study a geometrically symmetric elec-
tron shuttle with an applied periodic bias voltage that is a
combination of kicked and sinusoidal ac voltage. First, we
find that the rectified current is nonzero with regular motion
of the shuttle when we turn on the kick. The reason for
this rectified current under regular motion is a breaking of
the time-translational symmetry of the instantaneous current
due to the interplay between the period of the self-oscillating
shuttle and the period of the driven bias voltage with kicks.
On the other hand, we also observe a chaotic motion of the
shuttle with increasing kick strength, a phenomenon caused
by the nonlinear force induced by the bias voltage at the kicks,
even though the system is exactly geometrically symmetric. It
is noted that the rectified current is generated by the time-
translational-symmetry breaking of the instantaneous current
due to the interplay between self-oscillation period and ex-
ternal kick period. Moreover, scattered rectified currents arise
from the chaotic motion of the shuttle following the kicked
harmonic-oscillator mechanism.

II. MODEL OF A SYMMETRIC SHUTTLE

Let us consider a nanoelectromechanical shuttle as the
combination of two metallic electrodes and a movable nan-
odot. The nanodot is initially located symmetrically in the
center of the two electrodes, and the distance between the
electrodes is large enough for sufficient nanodot (or nanoshut-
tle) oscillation without touching either electrode. We apply
a symmetric time-dependent voltage to both electrodes that
drives the oscillation of the shuttle between the two electrodes
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FIG. 1. Model schematic showing an electron shuttle with sym-
metric bias voltages. An equivalent circuit is drawn below. The
rectangles with wavy lines in the circuit represent position-dependent
tunnel junctions.

(see Fig. 1) where the force is a function of x which indicates
the displacement of the shuttle. In this system, we neglect
nonequilibrium contributions to the current-induced force and
pumping current [22–24].

In the adiabatic limit, namely, when the electronic relax-
ation is much faster than the mechanical motion, a classical
circuit, such as the one shown in Fig. 1 can be used to an-
alyze the electronic properties of the shuttle [25]. Based on
Kirchhoff’s law for a circuit structure, we obtain the following
equations:

Ql

Rlcl
− Qr

Rrcr
= 0, (1)

Ql

cl
+ Qr

cr
= U (t ), (2)

where Qj is the induced charge, Rj is the resistance, c j is the
capacitance at the jth junction, and U is the applied time-
dependent voltage. The position-dependent resistances at each
junction are Rl = R0

l e(d+x)/λ and Rr = R0
r e(d−x)/λ where λ is

the phenomenological tunneling length consideration of the
electron tunneling process between the electrodes and the
shuttle. The capacitances depending on the position are cl =
cl0/(1 + x/d ) and cr = cr0/(1 − x/d ) with a geometrically
simplified form, and d is the half distance between the two
electrodes. With geometric symmetry, i.e., R0

l ed/λ = R0
r ed/λ =

R0 and cl0 = cr0 = c, the position-dependent resistances of
the left and right electrodes are Rl = R0ex/λ and Rr = R0e−x/λ.
We point out that the assumption of constant capacitance
can quantitatively affect the results but not the qualitative
observations. The total charge on the movable nanoshuttle is
as follows:

Qs(x, t ) =Rl (x)cl (x) − Rr (x)cr (x)

Rl (x) + Rr (x)
U (t ), (3)

where under the condition d � λ the charge can be reduced
by Qs ≈ tanh(x/λ)cU (t ).

The time-dependent bias voltage between the two leads
is a combination of normal sinusoidal ac voltage and time-
periodic kicks. This pulsed voltage is given by U (t ) = Ū (t ) +

ξDε(t/Tk ), where Ū (t ) is the normal sinusoidal ac voltage,
Ū (t ) = α sin ωt , and α and ξ are the strengths of the sinu-
soidal ac voltage and the kicks, respectively. Discrete kicks
only affect the shuttle during ε as follows:

Dε(t/Tk ) =
{

0, t/Tk ∈ [n − 1, n − ε),
1, t/Tk ∈ [n − ε, n),

(4)

where Tk is the kick period and ε is the kick duration with ξε

kept very small. The electric energy of the oscillating shuttle is
E (x, t ) = Qs(x, t )Us(x, t ) where the voltage drop between the
electrodes is Us(x, t ) = 1

2U (t )(Rl − Rr )/(Rl + Rr ) based on
Eqs. (1) and (2) as well as the symmetric voltage distribution
on the electrodes. Correspondingly, the electric force exerted
on the shuttle is

F = −∂E (x, t )

∂x
= −cU 2(t )

λ
F (x), (5)

where the derivative of a function is following:

F (x) = −1

2

{
x
d

1 − (
x
d

)2 −
(
2 − λ

d

)
tanh x

λ

1 − (
x
d

)2 + 2 tanh3 x
λ

1 − (
x
d

)2

−
x
d tanh2 x

λ

1 − (
x
d

)2 − 2 λ
d

x
d tanh2 x

λ[
1 − (

x
d

)2]2 + 2 λ
d

(
x
d

)2
tanh x

λ[
1 − (

x
d

)2]2

}
.

(6)

The function is reduced by F (x) ≈ sinh(x/λ)
cosh3(x/λ)

under the large

gap assumption, d � λ, whereas F (x) ≈ − x/d
[1−(x/d )2] under

the additional small displacement assumption, x � λ, which
means we can ignore the interplay between dynamics and
charge transfer. Here, we concentrate on the tunneling effect
without geometric capacitance under the proper approxima-
tion. We carefully consider the electric force by the derivative
of the total electric energy of the oscillating shuttle of which
the electric charge depends on the displacement due to elec-
tron tunneling. We write F = Fc + Fk as the combination of
smooth and kicked forces: Fc = − cα2

λ
sin2 ωtF (x) as induced

by the sinusoidal ac voltage and the discrete kicked force
Fk = −cξ 2Dε(t/Tk )F (x)/λ as induced by the kicks. In order
to investigate the influence of Fk , we maintain a weak coupling
and general kick strength as α � ξ and a finite ξ 2ε.

The equation of motion for the nanoshuttle is governed
by Newton’s equation considering the shuttle as a damped
harmonic oscillator,

mẍ + mγ ẋ + mω2
0x = Fc + Fk, (7)

where γ is the dissipation coefficient. This governing equation
respects the parity symmetry under (x → −x). It is satisfied
by both the continuous force and the discrete kicked force.

The instantaneous current between the two electrodes
is defined by I (t ) = Ql (x, t )/cRl (x) = U (t )/2R0 cosh x/λ
through the charge distribution on the shuttle. Given time-
interval [0, τ ], the average current is calculated as

Idc = 1

2R0τ

∫ τ

0

Ū (t ) + ξDε(t/Tk )

cosh xt/λ
dt . (8)

If the instantaneous current has a period of TI , the rectified
current is the average current with τ = TI . Under the small ξε
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condition, we find
∫ TI

0 ξDε(t/Tk )/ cosh(xt/λ)dt ∼ 0. Then the
rectified current can be rewritten as follows:

Idc = α

2R0TI

∫ TI

0

sin ωt

cosh xt/λ
dt . (9)

For simplification, we use a dimensionless equation of mo-
tion as ¨̃x + γ̃ ˙̃x + x̃ = F̃c + F̃k , where F̃c = −α̃2 sin2 ω̃t̃F (x̃)
and F̃k = −ξ̃ 2D̃ε(t̃ )F (x̃) with F (x̃) = sinh x̃/ cosh3(x̃). Here,
x̃ = x/λ, t̃ = tω0, γ̃ = γ /ω0, α̃ = α

√
c/

√
mλω0, ξ̃ =

ξ
√

c/
√

mλω0, and ω̃ = ω/ω0. D̃ε(t̃ ) ≡ Dε(t̃/T̃k ) with
period T̃k = Tkω0. The corresponding rectified current is
calculated as

Idc = (I0α̃/τ̃ )
∫ τ̃ /ω0

0 sin ω̃t̃/ cosh x̃dt̃ , where I0 =
λω0

√
m/2

√
cR0 is the magnitude of the current. In the

following discussion, we omit all tilde(˜) symbols.

III. DRIVEN NANOSHUTTLE WITHOUT KICKS

Let us start by introducing a driven nanoshuttle without
kicks to investigate the simplest case of zero rectified current
at a fixed point and limit cycles. The system is invariant
under parity transformation with only sinusoidal ac voltage
ẍ + γ ẋ + x = Fc since the time-dependent part of Fc has a
period of π/ω, which gives two equivalent solutions ±x under
geometrical symmetry. The period of the shuttle is π/ω or
2π/ω following Floquet theory and the equation of motion
as a second-order differential equation. In the case of an odd
shuttle period π/ω, any position of the shuttle x(t ) returns
to the same position after time-shift t → t + π/ω. On the
other hand, for an even period, 2π/ω has two possibilities:
x(t + π/ω) = ±x(t ). For both cases, the rectified current is
exactly zero because the position dependence of the recti-
fied current is an even function whereas its time dependence
is an odd function, sin ω(t + π/ω) = − sin ωt based on
Eq. (9). In this situation, the instantaneous current has time-
translational symmetry as It ′ = −It with two time points t
and t ′ = t + π/ω. Therefore, the rectified current in a shuttle
with geometrical symmetry and sinusoidal ac-driven voltage
is always zero under periodic regular motion with any α and
ω. In the following section, we point out that the a break-
ing of the time-translational symmetry can generate a finite
rectified current.

IV. DRIVEN NANOSHUTTLE WITH KICKS

Now let us turn on the kicks through a discrete pulsed bias
voltage. The discrete pulses induce a nonsmooth function and
break the time-translational symmetry of the instantaneous
current whereas the system and applied bias voltage maintain
their geometrical and temporal symmetries.

Figure 2 shows the deviation of the oscillating shuttle �x
as a function of the strength and frequency of the sinusoidal
ac voltage with a given kick period and strength. Here, �x =
xmax − xmin where xmax is the maximum shuttle position and
xmin is the minimum shuttle position. The quantity �x can tell
us whether the shuttle trajectory decays to a balanced zero
position or has a finite motion region. In Fig. 2(a), the motion
of the shuttle shows Arnold tongues, indicating unstable limit
circles when the kick strength is weak. Each tongue signifies

FIG. 2. Deviation of motion �x as a function of sinusoidal ac
voltage strength α and frequency ω with a kick period of Tk = 2π/9.
The given parameters are a dissipation coefficient of γ = 0.1 and
a kick duration of ε = 10−6. (a) Weak kicks show Arnold tongues,
which indicate symmetry breaking ξ = 300. (b) Strong kicks develop
new instabilities in the dynamics ξ = 1300.

distinguished oscillations corresponding to frequency, and the
kicks generate self-oscillations by perturbing the stable fixed
points; such features reflect a symmetry breaking the same as
the results in Ref. [25]. When the kick strength is strong, more
unstable features appear as shown in Fig. 2(b). Strong kicks
generate new tongues and lift up the original tongues; this
main feature indicates time-translational symmetry breaking
as well as chaotic behavior.

In order to elucidate the chaotic motion resulting from the
kicks, we introduce the Lyapunov exponent as an important
quantity to characterize the chaotic or regular motion of a
dynamic system. The maximal Lyapunov exponent can be
defined as follows:

λ = lim
N→∞

lim
δZ (0)→0

1

N
ln

|δZ (N )|
|δZ (0)| , (10)

where δZ (0) is the initial separation of two trajectories in
phase space and δZ (N ) is the separation of two corresponding
trajectories after kick period N . With the given parameters, we
can see that the motion of the shuttle can develop from fixed
points or regular motions into chaotic motions with increasing
kick strength as in Fig. 3(a). Figure 3(b) shows finite rectified
currents in the chaotic regions. In addition to these scattered
rectified currents caused by the chaotic motions, there are
several current tongues caused by regular motion in (b) that
are absent in (a). We point out through these two figures
that the shuttle exhibits fixed points, regular motions, and
chaotic motions. Furthermore, the shuttle system generates
corresponding nonzero rectified current in both regular and
chaotic regions due to the symmetry breaking.
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FIG. 3. (a) Lyapunov exponent λ and (b) rectified current Idc as a
function of the strengths of sinusoidal ac voltage α and kicks ξ . The
parameters are the same as those in Fig. 2 with a given frequency
of sinusoidal ac voltage ω = 1. Finite currents appear under both
regular and chaotic motion.

V. MOTION OF THE DRIVEN
NANOSHUTTLE WITH KICKS

The trajectories in the phase space and corresponding in-
stantaneous currents as a function of position contain fruitful
information about the finite rectified currents on the Arnold
tongues [x(t ), ẋ(t )] and [x(t ), I (t )], respectively. Let us ex-
amine more closely the special points corresponding to the
regular motion and chaotic motion in Fig. 3. In Figs. 4(a)
and 4(b), the phase-space trajectory shows regular motion and
the instantaneous current exhibits time-translational symme-
try breaking in one period so that the rectified current is finite.
In Figs. 4(c) and 4(d), meanwhile, the disordered trajectory
in the phase space shows chaotic motion from which the
instantaneous current exhibits irregular patterns. We can see
that the kicks generate a rectified current in the geometrically
symmetric electron shuttle in both regular and chaotic regions.

The parts of the corresponding time-dependent forces Fc ∼
sin2 ωt and Fk ∼ Dε(t ) have periods of π and 2π/9 in the cal-
culation, respectively. The period for the equation of motion,
Eq. (7), is determined by the lowest common multiple of the
periods of the two forces and spatial symmetry. The position
of the shuttle has a period of 2π with x(t + 2π ) = x(t ) or a
4π period with x(t + 2π ) = −x(t ). The instantaneous current
is an odd function of time and an even function of position as
shown in Fig. 4(b). Therefore, the rectified current is finite
under regular motion. For the current, the term sin ωt keeps
the same value under the time-shift t → t + 2π [Eq. (9)], so
there is no time-translational symmetry cancellation during
integration within one period of the instantaneous current. The
rectified current is determined by the properties of the motion
within the time interval [0, 2π ]. As the shuttle now no longer
has parity symmetry (x → −x) with the time-shift t → t + π ,
the time-translational symmetry of the instantaneous current
is broken, and the rectified current takes a nonzero value.

FIG. 4. (a) and (c) Trajectories in phase-space [x(t ), ẋ(t )] and
(b) and (d) corresponding instantaneous current as a function of
position [x(t ), I (t )]. In (a) and (b), (ξ, α) = (1050, 4.9), and in
(c) and (d), (ξ, α) = (2000, 5.08). The parameters are the same as
those in Fig. 3. Regular motion is seen in (a), whereas instantaneous
current with broken time-translational symmetry is shown in (b).
Chaotic motion appears in (c), and aperiodic instantaneous currents
are seen in (d).

On the other hand, the chaotic motion, the origin of which
is the periodic kicks, generates a chaotic current that remains
an arbitrary amount of the rectified current after averag-
ing. After rescaling t ′ = 2ωt , the equation of motion of the
nanoshuttle is rewritten as (the prime is omitted, and the
equation is dimensionless),

ẍ + γ̄ ẋ + δ2x + F (x)[A − A cos(t ) + BDε(t )] = 0, (11)

where γ̄ = γ /2ω, δ = 1/2ω, A = α2/8ω2, B = ξ 2/4ω2,

Dε(t ) ≡ Dε(t/Tk ), and Tk = 2ωTk . Supposing A is
a very small constant, we could use two variable
expansion methods [26] in which we define two time
variables as κ = t and η = At . The time derivative of
x can be expressed as the derivative of κ and η. By
expanding x = x0 + Ax1 + · · · , δ = δ0 + Aδ1 + · · · , and
F (x) = F (x0) + AF ′(x0)x1 + · · · , we can get the following
equations after collecting the terms with the same order,

∂2x0

∂κ2
+ δ2

0x0 + F (x0)BDε(κ ) = 0, (12)

∂2x1

∂κ2
+ δ2

0x1 + F ′(x0)x1BDε(κ )

= −F (x0)(1 − cos κ ) − 2
∂2x0

∂κ∂η
− μ

∂x0

∂κ
− 2δ0δ1x0,

(13)
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FIG. 5. Trajectory of the shuttle in phase-space [x(t ), ẋ(t )]. The
figure is calculated from Eq. (12) with the parameters Tk = 4π/9,

δ0 = 0.49, and Bε = 3.

where μ = γ̄ /A. Let us expand F (x0) ∼ x0 with small x0.
Then Eqs. (12) and (13) can be rewritten as follows:

∂2x0

∂κ2
+ δ2

0x0 + x0BDε(κ ) = 0 (14)

∂2x1

∂κ2
+ δ2

0x1 + x1BDε(κ ) = −x0(1 − cos κ ) − 2
∂2x0

∂κ ∂η

−μ
∂x0

∂κ
− 2δ0δ1x0. (15)

Equation (14) is the equation of motion for a kicked har-
monic oscillator. The condition for a trajectory with a positive
Lyapunov exponent is derived as

| cos δ0Tk − Bε sin(δ0Tk )/2δ0| > 1, (16)

where Tk is the period of Dε(t ) in Eq. (11). In this condition,
x0 quickly reaches a huge number after several time evolution
steps and destroys the validity of the expansion F (x0) ∼ x0.
However, the nonlinearity of F (x0) in Eq. (12) guarantees that
the trajectory is confined and induces the chaotic motion of x0.
We can demonstrate such chaotic motion via numerical calcu-
lations. Figure 5 shows a chaotic phase-space diagram under
the condition of a positive Lyapunov exponent with param-
eters Tk = 4π/9, δ0 = 0.49, and Bε = 3. These parameters
are close to those given in Fig. 4(c), and the condition for a
positive Lyapunov exponent, which is 1.16, is satisfied. As a
result of the chaotic motion, the time-translational symmetry
of the instantaneous current is broken, and the rectified cur-
rent is finite and quasirandomized, even though the system
preserves its geometrical symmetry.

VI. CONCLUSION

In this paper, we studied a geometrically symmetric elec-
tron shuttle with kicks and sinusoidal ac voltage and found

the following. If the kicks are turned off, there is no rectified
current due to the time-translational symmetry of the instan-
taneous current, even though the shuttle has finite motion
displacement between the two electrodes. However, when the
kicks are turned on, the period of the shuttle motion changes,
which results in a shuttle motion period that is incommensu-
rate with the driven bias voltage with kicks. This breaks the
time-translational symmetry of the instantaneous current so
that the rectified current is finite with regular shuttle motion.
Moreover, the electron shuttle exhibits chaotic motion due to
the nonlinear force caused by the kicks. Under chaotic motion,
the time-translational symmetry of the instantaneous current
is clearly broken, and the rectified current is nonzero even with
a geometrically symmetric shuttle. Our results present some
discrepancy with the general expectation for zero rectified
current in a geometrically symmetric electron shuttle. As a
number of properties of rectified currents relate to particular
bias voltages, these findings inform applications using nano-
electromechanical systems.
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APPENDIX: DERIVATION OF THE CHAOTIC REGION

The equation of motion for a kicked harmonic oscillator is
as follows, also see Eq. (12):

∂2x0

∂κ2
+ δ2

0x0 + x0BDε(κ ) = 0. (A1)

Suppose we know the position and momentum of the os-
cillator (xn

0, pn
0) at the beginning of the time-interval [nTk −

ε, nTk ), where xn
0 = x0(nTk ) and pn

0 = ẋ0(nTk ). Under small
ε, the position remains unchanged at the end of this time
period, but momentum changes to pn

0 − Bεxn
0. This point in

the phase space is the initial state for the next time-interval
[nTk, (n + 1)Tk − ε). In this period, the shuttle behaves ex-
actly like a harmonic oscillator. The position and momentum
are determined by

xn+1
0 = xn

0 cos δ0Tk +
(
pn

0 − Bεxn
0

)
δ0

sin δ0Tk, (A2)

pn+1
0 = (

pn
0 − Bεxn

0

)
cos δ0Tk − δ0xn

0 sin δ0Tk . (A3)

We can put these into matrix form as[
xn+1

0

pn+1
0

]
= M

[
xn

0

pn
0

]
, (A4)

where

M =
[

cos δ0Tk − Bε
δ0

sin δ0Tk
1
δ0

sin δ0Tk

−Bε cos δ0Tk − δ0 sin δ0Tk cos δ0Tk

]
. (A5)

It is easy to find that det M = 1, which means that the mul-
tiple of two eigenvalues of matrix M will be 1. Due to the
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simple form of matrix M, we can solve the eigenvalue as

λ± = cos δ0Tk − B sin δ0Tk

±
√

(cos δ0Tk − B sin δ0Tk )2 − 1, (A6)

where B = Bε/2δ0.
The eigenmatrix of M can be written as U giving

MU = Uλ, (A7)

where λ is the eigenvalue matrix of M. We then get

U −1

[
xn

0

pn
0

]
= λnU −1

[
x0

0

p0
0

]
. (A8)

Suppose the matrix U −1 has the form

U −1 =
[
Ua Ub

Uc Ud

]
, (A9)

and then we have

Uaxn
0 + Ub pn

0 = (λ+)n
(
Uax0

0 + Ub p0
0

)
, (A10)

Ucxn
0 + Ud pn

0 = (λ−)n
(
Ucx0

0 + Ud p0
0

)
, (A11)

where λ± are the corresponding eigenvalues. From this equa-
tion set we can solve the following:

xn
0 = 1

UaUd − UbUc

[
(λ+)nUd

(
Uax0

0 + Ub p0
0

)
− (λ−)nUb

(
Ucx0

0 + Ud p0
0

)]
. (A12)

Now suppose we have | cos δ0Tk − B sin δ0Tk| > 1 and
λ− < 1, and then (λ−)n → 0. We get

xn
0 = Ud (λ+)n

(
Uax0

0 + Ub p0
0

)
UaUd − UbUc

= Cen ln λ+ , (A13)

where C = Ud (Uax0
0 + Ub p0

0)/(UaUd − UbUc) is a constant re-
lated to the initial condition x0

0, p0
0. Now we have a positive

Lyapunov exponent Ly = ln λ+.
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