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Inherent issues regarding the use of in situ x-ray diffraction measurements to determine
temperature in shock-compressed metals
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Temperature determination in shock-compressed solids constitutes an important and long-standing scientific
need. Since the reduction of Bragg diffracted peaks due to temperature increase, using the Debye-Waller factor, is
well established, we examined the use of this approach to determine temperatures in shock-compressed gold and
platinum by representing the shocked state as a superposition of density and temperature changes. Comparison
of the calculated and measured diffraction peaks did not show good agreement, because x-ray diffraction (XRD)
profiles in the shock-compressed state are not governed solely by density and temperature changes. XRD results
are also influenced measurably by shock wave induced microstructural changes. Our results demonstrate that
contributions from microstructural changes need to be incorporated and modeled in the theoretical analysis to
use XRD measurements for reliable temperature determination in shock-compressed solids.
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I. INTRODUCTION

Shock wave experiments are uniquely suited to exam-
ine the real-time response of materials to high pressures
and temperatures. Use of the Rankine-Hugoniot jump con-
ditions results in a determination of the longitudinal stress,
density, and internal energy—but not temperature—in the
shock-compressed state [1]. Experimental determination of
temperature in shock-compressed materials has long been
recognized as an important and fundamental need for the
development of a complete equation of state.

Over the past several decades, optical pyrometry has been
the most common approach to determine temperature rise in
shocked solids [2–9]. In this approach, measurements of emit-
ted radiation are obtained at several discrete wavelengths and
the measured spectra are interpreted as gray-body radiation to
estimate temperatures. Although various limitations regarding
optical pyrometry—measurements limited to optical penetra-
tion depth, need for improved understanding of wavelength-
dependent emissivity, nonthermal emissions from extraneous
sources, and heterogeneous inelastic deformation—have been
discussed in the cited publications, ongoing improvements in
optical pyrometry constitute an active area of research due
to the importance of temperature determination in shocked
solids. Recent developments regarding pyrometry measure-
ments can be seen in Refs. [7–9].

Among optical methods, time-resolved Raman spec-
troscopy offers an alternate approach to temperature measure-
ments under shock compression [10–12]. By measuring the
ratios of the intensities of anti-Stokes and Stokes peaks in
the same experiment, shock temperatures can be obtained up
to several thousand kelvin in transparent samples. Although
Raman spectroscopy likely constitutes an optimal approach,
when usable, the transparency requirement for samples and

the difficulty in using it at higher temperatures—due to ther-
mal emission [13]—precludes its general use except in fairly
limited situations.

Neutron resonance broadening, assuming a hydrodynamic
response and a classical assemblage of noninteracting parti-
cles, has also been proposed for temperature determination of
shocked solids [14]. However, the difficulties in adapting it to
common experimental configurations have likely limited its
usage.

With recent experimental developments in obtaining reli-
able in situ x-ray diffraction (XRD) data in shock-compressed
solids [15–17], XRD measurements represent a potentially
attractive approach [18] to determine temperatures in shocked
solids. We note that the effect of temperature on XRD profiles
at ambient pressure is reasonably well understood [19–22].
If XRD measurements can be used reliably to determine
temperatures in shocked solids, then comparisons between
temperatures obtained using two very different approaches—
XRD and optical pyrometry—provide a path forward for
establishing confidence in measured shock temperatures.

To evaluate the use of XRD results for determining shock
temperatures—the thrust of the present study—we assumed
the shocked state to be a superposition of only density and
temperature increases. Using this assumption, common in
high-pressure shock wave studies, we have compared the cal-
culated and measured XRD profiles in two fcc metals shock
compressed to above 100 GPa. We note that our assumption
regarding the shocked state is also an underlying assumption
in the shock temperature measurement approaches referenced
above.

Shock compression of solids beyond the Hugoniot elas-
tic limit invariably results in microstructural changes due
to plastic deformation—in addition to density and tempera-
ture changes. Hence, it is important to ascertain whether the
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deduced shock temperatures are insensitive to shock-induced
microstructure changes.

The remainder of the paper is organized as follows: the-
oretical background relevant to the calculations of the XRD
profiles is presented in Sec. II. The calculated and experi-
mental XRD profiles for shock-compressed gold and platinum
are compared in Sec. III. Discussions and conclusions related
to the present work are presented in Sec. IV. Supplementary
details relevant to Sec. III are presented in the Appendix.

II. THEORETICAL BACKGROUND

The effect of temperature increase on the x-ray diffraction
results in a crystalline solid is represented by the Debye-
Waller factor, also called the temperature factor [22,23]. This
factor represents the reduction in the intensities of the coher-
ent elastically diffracted x rays, the Bragg diffraction peaks.
The intensity reduction arises due to the temperature-induced
increase of the atomic vibrations amplitudes. The underlying
theoretical background for determining the intensity reduction
is briefly discussed below.

A. Debye-Waller factor

The x-ray intensities for the Bragg diffraction peaks at a
finite temperature can be written as [22,23]

IT = I0 exp(−2M ). (1)

Here I0 is the diffracted intensity in the absence of lat-
tice vibrations and the Debye-Waller factor, denoted by
exp (−2M ), represents the effect of lattice vibrations on
the intensities of the Bragg peaks. It is known that 2M =
G2

hkl〈u2〉, where Ghkl represents the reciprocal lattice vector of
the crystal corresponding to the hkl Bragg peak and 〈u2〉 rep-
resents the average mean-squared amplitude of vibrations of
atoms comprising the solid [22,23]. For an anisotropic crystal,
〈u2〉 is a 3 × 3 matrix and could be represented as an ellipsoid
for each atom in the unit cell [22]. For a pure metallic solid,
within the harmonic approximation, the relation between 〈u2〉
and the vibrational modes of the solid is given as [22]

〈u2〉 = 1

3mN

∑
jq

E j (q)

ω2
j (q)

. (2)

Here N is the number of atoms in the crystal, m the mass
of the atom, ω j (q) is the phonon frequency in the jth branch
and at a wave vector q, Ej (q) is the energy of the phonon
mode [= (n + 1/2)h̄ω j (q), n being the Bose-Einstein distri-
bution function representing the occupancy of the vibrational
states], and the sum is over all the branches and q vectors
in the Brillouin zone. The form of Ej (q) implies that at low
temperatures the quantum effects are important but at high
temperatures, when the occupancy of the vibrational states is
much higher, their relevance decreases correspondingly.

Equations (1) and (2) imply that for a metallic solid at
ambient pressure, a reliable calculation of the Debye-Waller
factor requires a knowledge of the vibrational spectrum of
the metal [22]. Specifically, calculations of the density of
vibrational states should incorporate the anharmonic effects,
since their noninclusion may cause significant errors [22].

B. Debye approximation

Although accurate information about the lattice vibrational
states is required for detailed calculations of the Debye-Waller
factor, a reasonable determination can be made by employing
the Debye approximation for monatomic solids [19,20]. The
Debye approximation treats the lattice vibrations as elastic
modes in which the phonon energy is linearly proportional
to the wave vector: h̄ω(q) ∼ Aq for q < qD. Here A is a
constant and qD is the radius of the Debye sphere—defined
by 4π

3 q3
D=Brillouin-zone volume. The Debye temperature TD

is defined by the highest vibrational state, viz.,

kβTD = h̄ωD = AqD.

Within the Debye approximation, 〈u2〉 can be written as
[22]

〈u2〉 = 3h̄2

mkβTD

(
�(x)

x
+ 1

4

)
, (3)

where x = TD/T and �(x) = 1
x

∫ x
0

ydy
(ey−1) .

In terms of temperature, Eq. (3) can be written as

〈u2〉 = 3h̄2T

mkβT 2
D

(
�

(
TD

T

)
+ 1

4

TD

T

)
. (4)

Thus, the Debye approximation for a monatomic solid
gives 2M as

2M = (Ghkl )
2〈u2〉 = 3h̄2G2

hkl T

mkβT 2
D

(
�

(
TD

T

)
+ 1

4

TD

T

)
. (5)

Using Ghkl = 4π sin θ
λ

(where λ represents the wavelength of
x rays and θ the angle of incidence with respect to the crystal
lattice planes corresponding to the Bragg diffraction peak), we
get

2M = 48π2 h̄2T

mkβT 2
D

(
�

(
TD

T

)
+ 1

4

TD

T

)(
sin θ

λ

)2

. (6)

The second term in the parentheses in Eqs. (4)–(6) rep-
resents quantum effects, which would be important for
evaluating the Debye-Waller factor for T less than or close
to TD.

C. Combined temperature and pressure effects

Equations (1)–(6) show that as the average squared am-
plitude of atomic vibrations increases with temperature, the
intensity of the Bragg diffracted peaks decreases. Several
measurements on simple solids at ambient pressure have
shown that, if the vibrational density of phonon states is accu-
rately known, the calculated Debye-Waller factors match well
with the experimental results [19–22]. These calculations also
require inclusion of anharmonic effects, which change G2

hkl as
well as the vibrational spectrum as a function of temperature
[21,22].

For monatomic metals at ambient pressure, Eqs. (5)
and (6), using the Debye approximation, have provided
reasonable estimates of the Debye-Waller factor at interme-
diate temperatures, close to the Debye temperature [19,20].
At higher temperatures, the Debye temperature is temper-
ature dependent, which arises partly from noninclusion of
the thermal expansion caused by anharmonic interactions
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[19–22]. However, a reliable empirical approach to obtain the
temperature-dependent variation in TD is not known.

In general, the x-ray scattering form factor [part of I0 in
Eq. (1)] decreases with increasing magnitude of the q vector.
Therefore, the Bragg diffracted intensities should decrease
under isothermal compression. Moreover, under isother-
mal compression, |Ghkl | increases and so does TD [24,25].
Equation (5) implies that it is the relative change in the ratio
|Ghkl |/TD which determines the rate at which the intensities of
the Bragg peaks decrease with temperature.

To obtain quantitative estimates of the changes in the
intensities of the Bragg peaks within the Debye approxima-
tion, under isothermal or shock compression (superposition
of pressure and temperature), we require knowing the De-
bye temperature as a function of volume compression.
Static pressure experiments show that TD increases with
volume compression [24,25]. Under shock compression,
volume-dependent changes in TD can be estimated using the
Mie-Grüneisen equation of state [24,25],

�(V ) = �0

(
V

V0

)q

. (7)

�(V ) is related to the Debye temperature through

�(V ) = −∂ ln TD

∂ ln V
. (8)

This gives

TD = TD0exp[(�0 − �)/q]. (9)

To summarize, we note that a rigorous determination of
the Debye-Waller factor requires an accurate knowledge of
the density and temperature-dependent vibrational spectrum
of the solid. Then, Eq. (2) can be used to obtain the average
mean-squared amplitude of the vibrations. Because Ghkl can
be determined from the P−V data, the reduction in the inten-
sities of the Bragg peaks can be calculated subsequently.

The rigorous approach indicated above is beyond the scope
of the present work—intended to examine the potential of
using Bragg diffraction results as a temperature probe of
the shock-compressed state. Our simplified approach utilizes
the following assumptions: the Debye approximation for the
vibrational modes; compression variations in TD can be eval-
uated using Eqs. (7)–(9); and the shocked state (at high
pressures) can be viewed as a superposition of pressure and
temperature. These assumptions are reasonable for evaluating
the use of in situ x-ray diffraction for temperature determina-
tion in shock-compressed solids.

III. COMPARISON WITH EXPERIMENTAL RESULTS

To evaluate the use of in situ, x-ray diffraction mea-
surements for determining temperatures under shock com-
pression, the calculated Bragg peaks are compared with
recently published experimental measurements on shock-
compressed gold and platinum. These two soft monoatomic
cubic metals—which retain their ambient fcc structure to
significant compression [26,27]—are near ideal for such
comparisons because of the considerable body of available
experimental and theoretical work relevant to their response
under adiabatic (shock) and isothermal (static) compression.

FIG. 1. Ambient pressure calculations showing the effect of in-
creasing temperature on the integrated intensities of the ten lowest 2θ

peaks of gold, using the Debye approximation for lattice vibrations.

A. Gold

Before comparing the calculated diffraction profiles with
the measured profiles, we present systematics regarding the
effect of temperature on Bragg peaks using gold as an
example. In calculating the temperature effect, we carried
out simulations of the diffraction profiles using the exper-
imental layout commonly used in laser shock experiments
conducted at the Dynamic Compression Sector, Advanced
Photon Source [17]. In a typical experiment conducted on
gold [28], the x rays were incident at an angle of ∼38◦ on
∼8-μm-thick gold foils. (See Fig. 6 in the Appendix for the
x-ray photon flux used in the experiments and in the present
calculations.) The calculations incorporated the absorption
of x rays in the sample and a Lorentzian with a half width
at half maximum of 250 μm to generate diffraction profiles
in agreement with the measurements at ambient conditions.
Further details regarding the gold experiments can be seen in
Ref. [28].

The calculated first ten diffraction peaks of gold at ambient
conditions are shown (see Fig. 7). The calculated results show
that several peaks have significant overlap and the intensities
of the higher 2θ peaks are significantly smaller than the lower
2θ peaks.

Figure 1 shows the temperature-caused reductions in the
integrated intensities under each of the first ten diffraction
peaks of gold at ambient pressure. The calculated results show
that the intensity reductions are larger for the higher 2θ peaks
than for the lower 2θ peaks. However (see Fig. 7), the higher
2θ peaks have significantly lower initial intensities and are not
measurable in current shock experiments. We note that the
calculated results shown in Fig. 1 and in subsequent figures
are based on the assumptions listed at the end of Sec. II.

To calculate changes in the Bragg intensities of gold under
isothermal compression and shock compression (superposed
temperature and pressure increase), we used the known P-V
results [28], TD0 = 176 K [25] and q and �0 in Eq. (9), as
1.0 and 3.05, respectively [29]. The temperature increase in
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FIG. 2. Calculated variations of the integrated intensities for the
ten lowest 2θ Bragg peaks of gold under isothermal compression at
ambient (300 K) temperature (lines) and under shock compression
(symbols), using the Debye approximation for lattice vibrations.
The variations for different hkl peaks under isothermal and shock
compression are represented by the same color.

shock-compressed gold was estimated using the theoretical
results of Greeff and Graf [30]. For gold, our calculations
showed that |Ghkl |/TD [Eq. (5)] decreases with compression
though individually |Ghkl | and TD increase.

Figure 2 shows the reduction in the calculated integrated
intensities of the first ten diffraction peaks as a function
of volume strain (1−V/V0) under isothermal compression
(300 K)—represented by the lines. Treating shock compres-
sion as a superposition of pressure and temperature increase,
the calculated results under shock compression—represented
by the symbols—are also shown in Fig. 2. Overall, these
calculations clearly show that the intensities of the Bragg
peaks are measurably reduced under shock compression be-
yond ∼15% compression—the compression threshold that
marks the onset of significant temperature increase under
shock compression [31]. Thus, to deduce temperature increase
from the measured Bragg peaks, under superposed pressure
and temperature increase, the reduction resulting from only
the compression part needs to be carefully accounted for. In
the absence of a structural transformation, compression can
be unambiguously determined through the shift of the Bragg
peaks. Thus, forward simulations incorporating compression
and temperature effects can then be compared with the XRD
measurements to deduce temperatures in the shocked state.

Before attempting to determine the temperature of a
shocked sample from the experimental data, we compare the
expected intensity changes of the idealized Bragg peaks under
isothermal and shock compression of gold in Fig. 3. The
calculated peaks (corresponding to the x-ray photon flux seen
in Fig. 6) were obtained for a shock pressure of 120.3 GPa,
which results in 1−V/V0 = 0.248. We chose this pressure
because gold remains in the fcc phase at 120.3 GPa and
because of available Hugoniot and XRD data [26]. Under
shock compression, this pressure corresponds to a calculated
temperature of 2678 K in gold [30].

FIG. 3. Comparison of the calculated diffraction profiles of
gold at ambient (green), isothermal compression (blue), and shock
compression (red) using the Debye approximation for the lattice
vibrations. Isothermal and shock compression results correspond to
V/V0 = 0.752 (shock stress of 120.3 GPa). Even isothermal com-
pression shows significant reduction in the intensities of all the
Bragg peaks with respect to the ambient. Temperature (2678 K)
associated with shock compression causes a further reduction of the
diffracted intensities. Ambient diffraction peaks are marked with the
hkl indices.

Figure 3 shows that, as expected, isothermal compression
results in a significant intensity reduction of all the Bragg
peaks and a further reduction occurs due to the higher tem-
perature (2678 K) under shock compression. Additionally, we
make the following observations: the Bragg peaks overlap and
the overlaps will change with compression; as noted earlier,
the peaks at higher 2θ angles show larger reductions but the
significantly lower initial intensities of these peaks make their
measurements difficult.

With the current experimental capabilities, only five
diffraction peaks (111, 200, 220, 311, 222) can be measured in
shock-compressed Au and Pt [26–28]. In the remainder of this
paper, we will consider only these five peaks and calculations
of the full diffraction profiles (instead of integrated intensities
shown in Figs. 1 and 2) will be compared with the experimen-
tally measured diffraction profiles.

To compare the calculated line profile (present work) and
the measured profile in the 120.3-GPa experiment on gold
[28], we note that several features integral to the experimen-
tal measurements (x-ray photon flux, sample texture, shock
propagation in the sample, detector location, etc.) need to be
carefully accounted for in obtaining the x-ray line profiles
from the experiments. Detailed procedures to account for each
of these features can be seen in Ref. [28]. Because the ambient
XRD data showed significant texture in the gold foils, the rel-
ative weight of each diffraction peak was adjusted to provide
a good fit to the measured ambient data (see Fig. 8). Since our
interest is in evaluating the role of density compression and
temperature increase on the calculated diffraction profiles, the
relative weights of the peaks (to account for texture at ambient
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FIG. 4. Comparison of the experimental x-ray diffraction data
with the calculated results for gold. Solid black line: experimen-
tal data for shock-compressed gold (120.3 GPa). Solid red line is
the calculated diffraction pattern at V/V0 = 0.752 (120.3 GPa) and
temperature of 2678 K under shock compression. For comparison,
the experimental x-ray diffraction line profile for gold at ambient
conditions is also shown as the blue dotted curve.

conditions) under shock compression was kept the same as at
the ambient conditions.

Figure 4 shows a comparison of three diffraction profiles:
experimental data at ambient conditions; calculated results
accounting for density compression and temperature increase;
and experimental data under shock compression. Although
the measurement under shock compression shows reduction
of the diffracted intensities for all five Bragg peaks when
compared to the ambient measurement, a detailed comparison
of the calculated peaks and the measured peaks does not show
the good agreement required to determine the temperature in
the shocked state. This difficulty is accentuated by the fact that
even increasing or decreasing the calculated temperature by
1000 K does not result in noticeable improvements in the com-
parison with the measured peaks (see Fig. 9). Essentially, the
comparisons between the calculated peaks and the measured
peaks (Fig. 4 and see Fig. 9) show that the diffraction peaks
in shock-compressed gold are not governed solely by density
compression and temperature increase. Without accounting
for the role of the other factors contributing to the diffraction
data, a good determination of temperature is not possible
from the measured diffraction peaks in shock-compressed
gold.

The most notable difference between the calculated and
the measured results is that the measured diffraction peaks
are significantly broader than the calculated peaks. Also, the
intensity of the measured (200) peak is larger than the calcu-
lated (200) peak. The large generation of stacking faults has
been established previously in shock-compressed gold [28],
and the same can account for the small shifts observed in
the position of the (200) and (222) peaks. To rule out the
possibility that the observed disagreements for gold are due

FIG. 5. Comparison of the experimental x-ray diffraction data
with the calculated results for platinum. Solid black line: experimen-
tal data for shock-compressed Pt (200.9 GPa). Dashed red line is
the calculated diffraction pattern at V/V0 = 0.7466 (200.9 GPa) and
temperature of 3190 K under shock compression. For comparison,
the experimental x-ray diffraction line profile for Pt at ambient con-
ditions is also shown as the blue dotted curve.

to the abundance of stacking faults in shock-compressed gold,
the approach used for gold can be applied to platinum which
does not have significant abundance of stacking faults in the
shock-compressed state [27].

B. Platinum

X-ray diffraction results on shock-compressed Pt have
been obtained [27] using an experimental approach similar
to the experiments on gold [28]. The x-ray photon flux used
to obtain diffraction data in shock-compressed Pt is also
shown (see Fig. 6). Because Pt retains the fcc structure to
significantly higher stresses [27], we chose to examine the Pt
response for the experiment at 200.9 GPa.

Similar to gold, the Debye temperature of Pt increases with
compression and its variation is calculated using Eq. (9). For
Pt, TD0 = 230 K, �0 = 2.7, and q = 1.1 [32]. For a shock
stress of 200.9 GPa, V/V0 = 0.7466 [27] and the estimated
temperature is 3190 K [33].

The ambient diffraction pattern of Pt, similar to Au, dis-
played texture. The relative weights of the five diffraction
peaks were optimized through independent scaling to ac-
count for the texture. The calculated profile matches very
well the measured profile at ambient conditions (see Fig. 10).
Similar to the Au calculations, texture changes were not
considered in calculating the Pt diffraction under shock
compression.

Figure 5 shows a comparison of the calculated and mea-
sured diffraction peaks for shock-compressed Pt—along with
the measured diffraction peaks at ambient conditions. Except
for the superposed peaks (311) and (222), the other peaks
show considerable differences. Similar to the gold results, the
measured peaks in Pt are broader. Furthermore, the relative
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intensities of the peaks differ significantly. For the (200) peak,
the measured peak is much smaller than the calculated peak.
In contrast, the measured (220) peak is larger than the cal-
culated (220) peak. Because of the large differences between
the measured and calculated results, the diffraction peaks in
shock-compressed Pt are also not solely governed by den-
sity compression and temperature increase. Without properly
accounting for other factors contributing to the diffraction re-
sults, temperatures cannot be determined from the diffraction
peaks in shock-compressed Pt.

IV. DISCUSSION AND CONCLUDING REMARKS

The use of in situ x-ray diffraction measurements to
reliably determine temperatures under shock compression re-
quires that good agreement should be achieved between the
measured peaks and the corresponding calculated peaks. As
seen in Sec. III, good agreement was not achieved for either
Au or Pt. Two key differences—line broadening and changes
in the relative weights of the diffraction peaks—cannot be
attributed to the use of the Debye approximation, since the
Debye-Waller factor formulation does not contribute to either
of these differences. Even if details of the lattice vibrations
are incorporated in the calculations, including anharmonic
effects, that will result in a different value of the averaged
mean-squared amplitude of the lattice vibrations—resulting
in a different temperature. A change of ±1000 K does not
improve the agreement (see Fig. 9). Thus, incorporation of the
detailed vibration spectrum cannot account for the differences
presented in Figs. 4 and 5.

The lack of good agreement between the calculated and
measured peaks for both metals shows that shock wave in-
duced changes in the diffraction profiles are not determined
solely by temperature and density increase—and other shock-
induced changes need to be considered and accounted for in
the diffraction calculations. The same are briefly discussed
next.

In particular, changes in the relative weights of the diffrac-
tion peaks with respect to the ambient values imply texture
changes under shock compression. As noted in previous sec-
tions, temperature determination using XRD is based on a
comparison of the intensities. Therefore, without reliably
modeling shock wave induced texture changes in the par-
tially textured metal samples, XRD measurements cannot
be used for temperature determination under shock com-
pression. Whether this limitation as well as effects of other
microstructural changes can be circumvented by performing
measurements on samples specially prepared to ensure ab-
sence of preferred crystallite orientations in the initial state
will require further investigations.

The second difference—the increased broadening ob-
served in the measured Bragg peaks—is likely a fundamental
attribute of shock compression of solids. Beyond the Hugoniot
elastic limit, shock compression causes inelastic deformation
resulting in significant microstructural changes; the genera-
tion of dislocations [34], stacking faults [28,35], twinning
[36], and other material-specific defects would cause a reduc-
tion in the dimensions of the coherently diffracting domains
leading to an inherent broadening of the peaks. A comprehen-
sive and predictive understanding of this feature is required to

establish the use of XRD for reliable temperature determina-
tion in shock-compressed samples.

Based on the findings presented for Au and Pt in this work,
we conclude that the results of x-ray diffraction measure-
ments in shock-compressed metals depend on shock wave
induced density, temperature, and microstructural changes.
Hence, quantitative theoretical modeling of the microstruc-
tural changes and their effect on XRD profiles is required—in
addition to the developments presented here—to use XRD
results for temperature determination in shocked solids.
Although a challenging undertaking, the potential use of
molecular-dynamics simulations for modeling microstructural
changes would be desirable and worth exploring, given the
importance of temperature determination under shock com-
pression.

Although one can argue that findings based on Au and Pt
cannot be generalized to all materials (even all metals), we
chose Au and Pt because they appeared to be well suited—
for reasons noted earlier—for using XRD measurements to
determine temperature under shock compression. Finally, we
note that the approach and results presented here provide a
path forward to evaluate the use of XRD measurements for
shock temperature determination in other candidate materials,
particularly for materials/conditions where the XRD results
may be insensitive to microstructural changes.
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APPENDIX

Here we provide Figs. 6–10 that constitute supplementary
details relevant to the calculations and analysis presented in
Sec. III.

FIG. 6. Representative measured x-ray flux spectra used in x-ray
diffraction experiments on laser shock-compressed gold (red) and
platinum (blue).
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FIG. 7. Calculated XRD profile showing the first ten peaks of
gold at ambient conditions.

FIG. 8. Comparison of the experimental diffraction profile (solid
black line) with the simulated profile (dashed red line) at ambient
conditions for the five observed peaks of gold.

FIG. 9. Comparison of measured x-ray diffraction peaks with the
calculated peaks for gold. Solid black line: experimental data for
shock-compressed gold (120.3 GPa). The calculated results corre-
spond to a compression of V/V0 = 0.752 (120.3 GPa). The expected
temperature is 2678 K (Fig. 4). The effect of varying this temperature
by 1000 K is shown here. Green and blue dashed lines represent
the calculated results at the same compression but at temperatures
of 1678 and 3678 K, respectively. Also, the measured ambient x-ray
diffraction line profile for gold is shown as the dotted blue curve.

FIG. 10. Comparison of the experimental diffraction profile
(solid black line) with the simulated profile (dashed red line) at
ambient conditions for the five observed peaks of Pt.
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