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We formulate a fracton-elasticity duality for twisted moiré superlattices, taking into account that they are
incommensurate crystals with dissipative phason dynamics. From a dual tensor-gauge formulation, as compared
to standard crystals, we identify twice the number of conserved charges that describe topological lattice defects,
namely, disclinations and another type of defects that we dub discompressions. The key implication of these
conservation laws is that both glide and climb motions of lattice dislocations are suppressed, indicating that
dislocation networks may become exceptionally stable. We also generalize our results to other planar incom-
mensurate crystals and quasicrystals.
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I. INTRODUCTION

Twisted bilayer graphene (TBG) [1–4] forms an incom-
mensurate moiré lattice. The description of its electronic
degrees of freedom, to a very good approximation, can be
done using concepts of periodic crystals, due to the weak
scattering between opposite valleys [5–8]. However, struc-
turally, there is no periodicity in the system if the twist angle
takes a generic value. As was demonstrated by Ochoa [9], this
has profound implications for the elasticity theory of TBG.
Phason modes w(x, t ), which correspond to acoustic branches
of the incommensurate lattice, dominate lattice vibrations on
the scale of the moiré period and give rise to an additional
rotational stiffness κ in the elastic energy

Eel → Eel + κ

8

∫
d2x [∂xwy − ∂ywx]2. (1)

While in standard elasticity theory such a term is not allowed
by rotational symmetry [10], in the case of TBG the adhesive
potential between the two layers gives rise to κ > 0. Notice
that the elasticity theory of planar quasicrystals [11–13] can
also be formulated in terms of Eq. (1). The influence of the
rotational term and phason excitations on electron-lattice cou-
plings was discussed in Refs. [9,14], while their role in the
context of electronic nematicity was analyzed in Ref. [15].

Phasons in TBG have a very straightforward interpretation.
Ignoring the structural relaxation of the lattice, they have a
simple relationship with the relative displacement between
layers [9]. To illustrate a twist of the phason mode, we
therefore consider a moiré superlattice with sixfold rotational
symmetry, described in terms of the density profile

�θ (r) =
∑

G

|ρG|ei(G·r−φG ). (2)

G are reciprocal lattice vectors of the moiré superlattice and
φG = w · G. In Fig. 1, we show the density profile with

w = θ ẑ × r for θ = 0 and with an excited phason, i.e., for fi-
nite rotation θ of the moiré pattern. For simplicity, we consider
only the leading harmonics, G1, G2, and G3 ≡ −G1 − G2,
with |ρGi | ≡ ρ and G1,2 denoting the standard primitive vec-
tors of the triangular lattice.

The dynamics of phasons in incommensurate crystals also
differs from that of standard acoustic phonons by the fact that
it is strongly damped at long times [16,17]. This is due to the
friction that opposes the relative motion of the incommensu-
rate mass-density wave. In usual elasticity, this damping does
not occur because the displacement couples to the generator
of translations, i.e. the momentum density. In TBG, however,
anharmonic terms of the adhesion potential between the layers
give rise to a finite damping [18].

In this paper, we discuss the impact of the rotational
stiffness and phason damping on inevitable defects of the
moiré lattice such as dislocations and disclinations. To this
end, we extend the recently formulated fracton formulation of
standard elasticity [19–21] to incommensurate crystals with
overdamped dynamics by developing an appropriate tensor
gauge field theory. The analogy to a tensor version of elec-
tromagnetism allows us to draw general conclusions about
the lattice defect dynamics of TBG. The finite rotational
stiffness of Eq. (1) increases the degrees of freedom com-
pared to standard elasticity theory, giving rise to a type of
defect that we call discompression. As a result, defects of the
moiré lattice, which can be described in terms of fractons, are
governed by an additional conservation law that dramatically
affects the mobility of lattice defects. In particular, we find
that in an incommensurate crystal with phason excitations,
both glide and climb of dislocations are forbidden and the
dynamics of defects is always subdiffusive. This implies that
dislocation networks in twisted bilayer graphene are expected
to be exceptionally stable. We also show that our theory di-
rectly applies to other incommensurate systems such as planar
quasicrystals.
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FIG. 1. Density profile for the triangular moiré superlattice, as
given by Eq. (2), in the cases without rotation [panel (a), �θ=0(r)]
and with a rotation of θ/(2π ) = 0.03 [panel (b), �θ (r)]. The phason
excitation is illustrated by the difference in density profiles, δ�θ (r) =
�θ (r) − �θ=0(r), which is plotted in panel (c), and whose absolute
value is plotted in panel (d). The underlying triangular lattice is a
guide to the eye.

The impact of topological lattice defects on the mechanical
and electronic properties of graphene and bilayer graphene
has been widely discussed [22–24]. Lattice disorder has also
been recognized as a key ingredient in TBG, with experi-
ments reporting sharp variations of the twist angle and of
uniaxial heterostrain over relatively short length scales, which
are manifested in local elecronic properties [25,26]. Here,
we focus on the topological defects of the emergent moiré
incommensurate lattice in TBG. While its elastic properties
derive from those of the coupled graphene layers, we adopt
a coarse-grained low-energy description, as in Ref. [9], that
does not require mapping the defects of the moiré lattice onto
individual carbon atoms.

Defects of two-dimensional lattices can be efficiently cap-
tured in terms of a dual description of elasticity theory,
where disclinations emerge as effective charges, dislocations
as dipoles of these charges, and elastic forces between them
are transmitted by gauge fields [27–32]. This approach readily
demonstrates why dislocations in commensurate lattices can
glide in the direction of the Burgers vector b, but not climb
perpendicular to it [31]. While defects in aperiodic crystals
were discussed in Ref. [33–35], their dynamics remains an
open problem.

A very elegant formulation of this duality was recently
achieved in Refs. [19–21,36–39]. It was recognized that the
dual formulation of the usual elasticity theory is, in fact, a
fracton field theory. Fracton phases describe quantum phases
of matter with excitations of restricted mobility [40]. If con-
sidered in isolation, a fracton is immobile, either along certain
directions or as a whole. It can only move collectively, via
interactions with other degrees of freedom. Fractons were
initially discussed in the context of nonergodic quantum glass
models [41] and stabilizer codes for self-correcting quantum
memory [42]. More recently, it was recognized that fractons
can be efficiently described in terms of tensor gauge theories

[43]. The restricted mobility of fractons emerges in terms of
dipole conservation laws and gives rise to anomalous, sub-
diffusive hydrodynamics [44–47].

II. ELASTICITY THEORY OF TWISTED
BILAYER GRAPHENE CRYSTALS

We start with the action of elasticity theory [10,29], sup-
plemented by the rotational stiffness of Eq. (1). To include
dissipative dynamics, we use the Schwinger-Keldysh formal-
ism [48]:

S = 1

2

∫
x,t,t ′∈C

wi(x, t )D−1(t − t ′)wi(x, t ′)

− 1

2

∫
x,t∈C

[
Ci j,k
wi j (x, t )wk
(x, t ) + κϑ2

w(x, t )
]
.

(3)

Here,
∫

x,t∈C = ∫
C dt

∫
V d2x indicates that the time integration

has to be performed on the round-trip Keldysh contour, while
the spatial integration goes over the crystal volume V . wi j ≡
1
2 (∂iw j + ∂ jwi ) is the symmetric phason strain, the elastic
constants Ci j,k
 are summarized in Ref. [9], and the bond
angle variation is ϑw ≡ 1

2εi j∂iw j . Damping enters through the
nonlocal-in-time contribution

D−1(t − t ′) = −δ(t − t ′)∂2
t ′ + γ (t − t ′), (4)

where we assume Ohmic damping Imγ R(ω) = γ0ω for the
retarded self-energy. Without damping, the equation of motion
become elastic wave equations, while the dynamics becomes
diffusive at large γ0. For further details on the Keldysh form-
lism, see the Appendix.

We shall use a notation that will prove efficient in two
dimensions. In it, we always start with lower index vectors
or tensors Ai. The raising of their indices we define as a
contraction with the Levi-Civita symbol:

Ai ≡ εi jA j . (5)

From Ai = (Ax, Ay) and Ai ≡ εi jA j we see that the upper
index vector Ai = (Ay,−Ax ) is the lower index vector ro-
tated in the clockwise direction by π/2. This ensures that
A · B = AiBi = AiBi. On the other hand, (A × B)z = AiBi =
−AiBi and in particular AiAi = 0. The divergence and two-
dimensional curl may likewise be expressed in this notation
as

∇ · A = ∂iAi,

(∇ × A)z = ∂iA
i = −∂ iAi. (6)

For single-valued functions f , ∂i∂
i f = 0. For multivalued

functions, the partial derivative do not commute at the branch
cuts. The most important benefit of this notation, reminiscent
of the van der Waerden spinor notation [49], is that the cor-
respondence between elasticity and tensor electromagnetism
[19–21,36] amounts to simply raising all the indices.

A. Dual gauge theory

Building on the approach of Refs. [19–21], the first step
in formulating a dual description is to introduce the fields
∂twi → πi, Ci j,k
wk
 → σi j , and κϑw → M through a series
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of Hubbard-Stratonovich transformations. They can be asso-
ciated with momentum, stress, and torque, respectively. This
yields the real-time action

S = 1

2

∫
x,t∈C

[
C−1

i j,k
σi j (x, t )σk
(x, t ) + κ−1M2(x, t )
]

− 1

2

∫
x,t,t ′∈C

πi(x, t )�(t − t ′)πi(x, t ′) + Sw, (7)

where the retarded version of � is �R(ω) = ω2/(ω2 + iγ0ω).
The last term

Sw =
∫

x,t∈C
[πi(∂twi ) − σi jwi j − Mϑw] (8)

still contains the original phason field.
The next step is to decompose wi = w̃i + w

(s)
i into a

smooth part w̃i and a singular part w
(s)
i due to topological

defects. After integrating out the smooth part, we obtain the
constraint

∂tπ j = ∂i�i j, (9)

which resembles Newton’s second law with a non-symmetric
stress

�i j = σi j + 1
2εi jM, (10)

consisting of the symmetric stress tensor σi j and the torque M.
Whereas σi j also appears in ordinary crystals, the torque only
arises due to the finite rotational stiffness.

The last step is to introduce (tensorial) gauge potentials that
enforce the constraint (9):

�i j = −∂t Ai j − ∂ iφ j,

π j = −∂iAi j .
(11)

These gauge potentials are invariant under the gauge transfor-
mations

Ai j �→ Ai j + ∂ i� j,

φ j �→ φ j − ∂t� j .
(12)

The stress-strain coupling Eq. (8) now takes the familiar form
of a charge/current-potential coupling:

Sw =
∫

x,t∈C
(Ai jJi j − φ jQ j ). (13)

Due to the tensorial nature of the gauge fields, the charge
density

Qj = ∂ i∂iw
(s)
j (14)

is a vector and the corresponding current density,

Ji j = (∂i∂t − ∂t∂i )w
(s)
j , (15)

a tensor. Demanding the invariance of Eq. (13) under the
gauge transformations yields the continuity equation:

∂t Q j + ∂ iJi j = 0. (16)

B. Electromagnetic analogy

Let us develop, in analogy to Refs. [19–21,36] for standard
elasticity, a physically illuminating electromagnetic analogy

of the conserved vector charge Qj . Consider a single charge

Qj (x, t ) = qjδ(x − r(t )) (17)

at position r(t ) that moves with velocity v(t ) = ṙ(t ). Equation
(16) is then fulfilled by

Ji j (x, t ) = viq jδ(x − r(t )). (18)

Inserting this into the action (13) yields the Lorentz force

Fi = δSw/ δri = −(
�i

j + viπ j
)
q j . (19)

The problem behaves like the electrodynamics of non-
symmetric tensor electric fields �i

j and vector magnetic fields
πi. This analogy also helps us understand why the over-
damped dynamics of the phasons does not spoil the entire
gauge description. The dissipative propagator �(t − t ′) for
πi(t ) in Eq. (7) translates, in standard electromagnetism, to
a frequency-dependent magnetic permeability �(ω), which
clearly does not violate the gauge description of electromag-
netism.

Besides the effects of dissipation, a crucial new aspect
of the incommensurate moiré lattice elasticity is the vector
continuity equation (16) that can be rephrased in terms of two
conserved scalar densities:

ρ (
) = ∂ jQ j,

ρ (t ) = ∂ jQ j,
(20)

with continuity equations

∂tρ
(
) + ∂ j∂

iJi j = 0,

∂tρ
(t ) + ∂ j∂ iJi j = 0.

(21)

The transverse density ρ (t ) also appears in standard elasticity,
where it was identified as the density of disclinations, with
Qi denoting the Burgers vector density [19,30]. The longitu-
dinal density ρ (
) is the new conserved charge present only in
incommensurate crystals.

C. Interpretation of the charges

The charges of the elastic gauge theory are topological
lattice defects that make the displacement field wi multivalued
[32]. We can write the singular part of a dislocation displace-
ment field as

w(s,Q)(x) = ImLog(z)

2π
b, (22)

where z = x1 + ix2, Log(z) is the principal branch of the
logarithm with a branch cut along the negative x1 axis, and
b = b1ê1 + b2ê2 is the Burgers vector. At the origin the partial
derivatives do not commute, yielding Qj (x) = b jδ(x), which
confirms that the vector charge is the Burgers vector density.

Next, we construct a disclination from a Dirac string of
dislocations. By integrating

∫ 0
−∞ d x′

1 w(s,Q)(x1 − x′
1, x2), ig-

noring all except the singular parts, and setting b1 = 0 and
b2 �= 0, we obtain

w(s,t )(x) = −b2
Im[zLog(z)]

2π
ê2, (23)

with Qj = b2δ2 j�(−x1)δ(x2), ρ (
) = b2�(−x1)δ′(x2), and
ρ (t ) = b2δ(x). This confirms that ρ (t ) is the density of
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FIG. 2. Various defects for a triangular lattice and the relations
between them. (a) Positive disclination (b2 = 2/

√
3). (b) Nega-

tive disclination (b2 = −2/
√

3). (c) Dislocation as a dipole of
disclinations. (d) Positive discompression (b1 = 1/2). (e) Negative
discompression (b1 = −1/2). (f) Dislocation as a dipole of discom-
pressions. The table summarizes the fusion rules that explain how
to represent charges in terms of Dirac strings of dipoles of other
charges.

disclinations. In addition, the result for ρ (l ) implies that a
disclination also corresponds to a Dirac string along the neg-
ative x1 axis made of dipoles [∼δ′(x2)] of the longitudinal
charge.

Similarly, we may consider a Dirac string of dislocations
whose Burgers vectors point along the branch cut, instead of
perpendicular to it (b1 �= 0 and b2 = 0),

w(s,
)(x) = −b1
Im[zLog(z)]

2π
ê1. (24)

The charges are Qj = b1δ1 j�(−x1)δ(x2), ρ (
) = −b1δ(x),
and ρ (t ) = b1�(−x1)δ′(x2). Since w(s,
) points parallel to the
Dirac string, and its jump in value is proportional to the
distance from the origin, it represents an abrupt change in
the strain. We shall thus call this defect a discompression.

Below Eq. (23) we showed that a disclination is equivalent
to a Dirac string of discompression dipoles. The result for ρ (t )

implies, in turn, that a discompression equals a Dirac string
of disclination dipoles. These “fusion rules” for the various
defects are sketched in the lower part of Fig. 2.

In Fig. 2, we show these defects for a triangular lat-
tice. Disclinations and discompressions are energetically very
expensive as both come along with macroscopic regions
of compression or bond-angle mismatch. More formally,
both are forbidden as single charges by an appropriate gen-
eralization of Weingarten’s theorem [32]. Hence, a moiré
lattice is charge neutral with regards to ρ (t,
), while their
dipoles and higher moments remain perfectly valid excita-
tions. Figure 2(c) illustrates the known fact that a dislocation
corresponds to a dipole of disclinations [panels (a) and (b)]
with dipole moment perpendicular to the Burgers vector b.
Our analysis shows that a dislocation [Fig. 2(f)] can also
emerge from two discompressions of opposite charge [panels
(d) and (e)]. The dipole moment is now oriented along the
Burgers vector. Single discompressions of Figs. 2(d) and 2(e)
can be generated in terms of a Volterra process where we
cut along the negative x1 axis and displace matter above and
below the cut in opposite directions parallel to the cut, before
glueing back together. This is distinct from disclinations of
Figs. 2(a) and 2(b) where the displacement is perpendicular to
the cut and opens a wedge.

D. Consequences of the continuity equations

Equation (16) implies the conservation of the total Burgers
vector. Let us analyze this vector conservation law in terms of
the continuity equations (21) of the scalar densities that both
contain two spatial derivatives. This implies, in addition to
the conservation of the total disclination and discompression
charges, that both of their total dipole moments are conserved
as well:

d

dt

∫
d2x xk ρ (
,t ) = 0. (25)

Both charges are therefore immobile fractons. Only correlated
movements at fixed dipole density are allowed.

E. Energetics and equations of motion

Thus far we analyzed conservation laws that follow from
the gauge invariance of the dual theory. To understand the
actual dynamics of defects requires, however, an analysis of
the energetics of vector charges. To this end we determine
the equations of motion of the gauge fields that mediate the
stresses. The Euler-Lagrange equation of Ai j is

∂t �̃i j (t ) =
∫

dt ′ �R(t − t ′)∂iπ j (t
′) − Ji j (t ), (26)

with �̃i j = C−1
i j,k


σk
 + εi jκ
−1M. It is the analog of Ampere’s

law in electrodynamics. The analog of Gauss’s law ∂ i�̃i j =
Qj follows from the variation of the potential φ j and demon-
strates that Qj is indeed the source of stress.

We can use Ampere’s law to determine the dynamics
of the quadrupolar moments. To achieve this, we first con-
tract the Euler-Lagrange equation (26) with δi j and εi j .
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This gives

∂tC
−1
ii,k
σk
 = ∂i(�

Rπi ) − Jii, (27)

2

κ
∂t M = ∂i(�

Rπ i ) − J i
i , (28)

where

(�Rπ j )(x, t ) =
∫

dt ′ �R(t − t ′)π j (x, t ′). (29)

Now we use the conservation laws (21), partially integrate
the quadrupolar moments twice, and then use the equations of
motion. This yields

d

dt

∫
V

|x|2ρ (t ) (21)= −
∫

V
xkxk∂

j∂ iJi j

= −2
∫

V
Jii +

∫
V

∂ j (2xiJ
ji − |x|2∂iJ

i j )

(27)= 2
∫

V
∂tC

−1
ii,k
σk


+
∫

V
∂ j (2xiJ

ji − |x|2∂iJ
i j − 2�Rπ j ) (30)

and

d

dt

∫
V

|x|2ρ (
) (21)= −
∫

V
xkxk∂ j∂

iJi j

= −2
∫

V
J i

i +
∫

V
∂ j

(|x|2∂iJ
i
j − 2xiJ

j
i

)

(28)= 4

κ

∫
V

∂t M

+
∫

V
∂ j

(|x|2∂iJ
i
j − 2xiJ

j
i − 2�Rπ j

)
. (31)

Finally, we rewrite the sources by exploiting the Euler-
Lagrange equations of the action (7), C−1

i j,k

σk
 = wi j and M =

κϑw, and thus obtain

d

dt

∫
d2x |x|2ρ (
,t ) = d

dt
S(
,t ). (32)

The source terms for disclination quadrupoles is

S(t ) = 2
∫

d2x ∂iwi (33)

and corresponds to a costly volume change of the system. In
turn,

S(
) = 4
∫

d2x ϑw (34)

for discompression quadrupoles corresponds to a global
twist. These quadrupoles can easily be interpreted if
one considers an isolated dislocation Qj (x) = b jδ(x −
r(t )) whose

∫
d2x |x|2ρ (t ) = 2bjr j (t ) and

∫
d2x |x|2ρ (
) =

−2b jr j (t ). Thus the quadrupolar moments are the compo-
nents of the dislocation position parallel and perpendicular to
the Burgers vector. Equation (32) was obtained up to boundary
terms. The boundary terms vanish or, more physically, cannot
be changed by local operations that act in the bulk of the
medium. Thus Eq. (32) expresses how in the bulk the sources

of changing quadrupolar moments are the energetically costly
compression and disorientation of the crystal.

In our analysis we freely used expressions that are valid
only on-shell, such as the conservation laws (16), (21), (25),
(32), equations of motion (A8), (26), C−1

i j,k

σk
 = ∂iw j , M =

κϑw, expressions for the sources S(t ) and S(
), etc. They can
all be formulated as rigorous statements that apply to the
respective path-integral averages. This is proved by using the
Schwinger-Dyson equations.

From Eq. (32) we may therefore conclude that a climb,
i.e., the motion perpendicular to b j of a dislocation, is ac-
companied by an energetically costly change in the volume
of the crystal. In addition, a glide, i.e., the motion parallel
to b j of a dislocation, is accompanied by an energetically
costly change of the orientation of the crystal. While the first
result holds in any crystal, the second is due to the nonzero
rotational stiffness of incommensurate ones. In its presence
the motion of dislocations is forbidden entirely instead of just
being restricted to one direction.

F. Sub-diffusive hydrodynamics

Thus far we have analyzed the motion of isolated dipoles
and quadrupoles. The situation becomes more complicated for
higher-order multipoles. However, using the hydrodynamic
description of fractons [44–47] one readily finds that there
cannot be a Fick’s law where gradients of the vector charges
yield currents (i.e., Ji j ∝ ∂iQ j or ∝ ∂ iQ j), leading to ordinary
diffusion of all charges. If this were true, the mere existence
of scalar charges would induce a current Jii ∼ ρ (
,t ), which is
not allowed. Expanding in gradients, the leading symmetry-
allowed term connects Ji j with a third spatial derivative of
Qj . This gives rise to a coupled dynamics of the two scalar
densities that form two subdiffusive modes with dispersions
ω = iB±k4.

III. GENERALIZATION TO GENERIC PLANAR
QUASICRYSTALS AND INCOMMENSURATE CRYSTALS

Finally, we demonstrate that our results are not restricted
to TBG and apply directly to planar quasicrystals and incom-
mensurate crystals with two length scales. To this end we
relate the elastic gauge theory with rotational term considered
in the main text to the elasticity theory of two-dimensional
quasicrystals. In these systems, the low-energy elastic vari-
ables are doubled compared to periodic crystals [11–13]. In
addition to the phonons u, there are phasons w that can be
shown to have a rotational stiffness like in Eq. (1). The de-
fects of the system are characterized by two Burgers vectors
bu = ∮

d u and bw = ∮
dw [12]. Our results imply that pure

displacement dislocations can glide, whereas those that in-
volve bw cannot. This remains true even in the presence of
phonon-phason coupling.

A symmetry analysis of the problem yields the following
result for the elastic energy [11–13]:

Eel = 1
2Ci j,k
ui juk
 + Ri j,k
ui jwk
 + 1

2 Ki j,k
wi jwk
, (35)

where ui j = 1
2 (∂iu j + ∂ jui ) is the usual symmetric strain ten-

sor describing phonons and wi j = ∂iw j is the non-symmetric
phason tensor.
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For the moment, let us focus on the case of a 12-fold
symmetric planar quasicrystals that has the special property
of no phonon-phason mixing, i.e., Ri j,k
 = 0 [13]. Because of
the high rotational symmetry, the elastic constants Ci j,k
 have
the same form as those of isotropic media:

Ci j,k
 = λ δi jδk
 + μ (δikδ j
 + δi
δ jk ). (36)

On the other hand,

Ki j,k
 = K1δikδ j
 + K2(δi jδk
 − δi
δ jk ) + K̃3ε
S
i jε

S
k
, (37)

where εS
11 = εS

22 = 0 and εS
12 = εS

21 = 1. We note that Ki j,k


satisfies only the major index symmetry Ki j,k
 = Kk
,i j , but not
the minor ones Ki j,k
 �= Kji,k
 and Ki j,k
 �= Ki j,
k .

To make contact with our system (3), we merely have to
recognize that Ki j,k
 can be rewritten as

Ki j,k
 = C̃i j,k
 + κ

4
εi jεk
, (38)

where

C̃i j,k
 = λ̃ δi jδk
 + μ̃ (δikδ j
 + δi
δ jk ) + K̃3ε
S
i jε

S
k
 (39)

is the minor-index-symmetric part that satisfies C̃i j,k
 =
C̃ji,k
 = C̃i j,
k and has λ̃ = K2 and μ̃ = 1

2 (K1 − K2). The
minor-index-antisymmetric part plays the role of a rotational
term with stiffness

κ = 2(K1 + K2). (40)

Thus the phonon displacement field ui behaves like in the
elasticity theory of a conventional crystal, while the phason
wi is governed by an elastic energy identical to the one of
twisted bilayer graphene, given in Eq. (1) or (3). Hence all
our conclusions about the mobility of defects of the phason
modes carry over.

The situation is more complicated for quasicrystals with
fivefold or eightfold symmetry. In these cases, Ci j,k
 is still
isotropic, as in Eq. (36), and Ki j,k
 still has the form (37),
although with K̃3 = 0 in the case of fivefold symmetry, and
can therefore be decomposed according to Eq. (38). Most
significantly, a phonon-phason coupling of the form

Ri j,k
 = R(δi1 − δi2)[δi jδk
 + δikδ j
 − δi
δ jk] (41)

is allowed. Consequently, one has to redo the whole gauge
formulation.

The end results, however, turn out to be insensitive to
phonon-phason coupling. Specifically, for the phonon field
one finds the usual results [19–21]:

∂tρ
(t )
u + ∂ j∂ iJS

ui j = 0, (42)

d

dt

∫
d2x xk ρ (t )

u = 0, (43)

d

dt

∫
d2x |x|2ρ (t )

u = d

dt
S(t )

u , (44)

where Qu j = ∂ i∂iu
(s)
j , Jui j = (∂i∂t − ∂t∂i )u

(s)
j , ρ (t )

u = ∂ jQu j ,

JS
ui j = 1

2 (Jui j + Ju ji ), and S(t )
u = 2

∫
d2x ∂iui. For the phason

fields one similarly finds that Eqs. (16), (21), (25), and (32)
continue to hold, but with the appropriate Qw j = ∂ i∂iw

(s)
j ,

Jwi j = (∂i∂t − ∂t∂i )w
(s)
j , ρ (
)

w = ∂ jQw j , ρ (t )
w = ∂ jQw j , S(t )

w =

2
∫

d2x ∂iwi, and S(
)
w = 4

∫
d2x ϑw. Therefore, the glide of

defects that have a finite phason Burgers vectors bw = ∮
dw

is suppressed, and the parameter that controls the supression
is the effective rotational stiffness (40).

Details of the phonon-phason coupled gauge theory: It
is convenient to introduce an additional index μ, ν ∈ {u,w}
that differentiates the phonon and phason displacement fields.
That way, uui = ui, uwi = wi, uui j = ui j , uwi j = wi j , and

Cui j,uk
 = Ci j,k
, Cwi j,wk
 = Ki j,k
, (45)

Cui j,wk
 = Cwk
,ui j = Ri j,k
. (46)

The appropriate generalization of the action (3) we may now
write as

S = 1

2

∫
x,t,t ′∈C

uμi(t )D−1
μ (t − t ′)uμi(t

′)

− 1

2

∫
x,t∈C

Cμi j,νk
uμi juνk
. (47)

Next, we introduce the Hubbard-Stratonovich fields ∂t uμi →
πμi and Cμi j,νk
uνk
 → �μi j , integrate out the regular parts of
uμi, and then enforce the constraints ∂tπμ j = ∂i�μi j through
gauge potentials:

�ui j = −∂t A
S
ui j − ∂ i∂ jφu,

πu j = −∂iA
S
ui j, (48)

�wi j = −∂t Awi j − ∂ iφw j,

πw j = −∂iAwi j,
(49)

where AS
ui j = AS

u ji is symmetric. This yields the action

S = −1

2

∫
x,t,t ′∈C

πμi(t )�μ(t − t ′)πμi(t
′)

+ 1

2

∫
x,t∈C

C−1
μi j,νk
�μi j�νk
 + Suw, (50)

where �μ(t − t ′) = ←−
∂t Dμ(t − t ′)

−→
∂t ′ and

Suw =
∫

x,t∈C

[
AS

ui jJ
S
ui j + φuρ

(t )
u

+ Avi jJvi j − φv jQv j
]
, (51)

with the previously defined charges and current densities.
In this action we see why the phonon-phason coupling does

not affect the argument leading to the quadrupolar conser-
vation laws. On the one hand, the charge conservation laws
are a consequence of the local gauge symmetry and from the
form of the source term (51) we immediately see that they are
unaffected by C−1

μi j,νk

or Ri j,k
. On the other hand, let us take a

look at the Euler-Lagrange equations of Aμi j that allowed for
an additional partial integration in Eqs. (30) and (31):

∂t �̃μi j (t ) =
∫

dt ′ �R
μ(t − t ′)∂iπμ j (t

′) − Jμi j (t ). (52)

Once one expresses �̃μi j = C−1
μi j,νk


�νk
 in terms of the orig-

inal fields uμi j , one finds that �̃μi j = uμi j according to the
Euler-Lagrange equations of �μi j . Thus Cμi j,νk
 again drop
out of the argument. Therefore, Cμi j,νk
 formally influence
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the argument only through the symmetry properties that they
entail for �μi j . Physically, however, Cμi j,νk
 also set the en-
ergy scales of glide and climb suppressions.

IV. CONCLUSIONS

The dual formulation of elasticity theory that exploits the
concept of fractons allows for rather general insights into
the mobility of dissipative incommensurate crystals, such as
twisted bilayer graphene. In particular, we find that these
systems have, in distinction to the usual crystals, completely
immobile dislocations in the low defect density limit that
become subdiffusive in the high-density limit. Hence, while
the electronic properties of graphene can, to a very good
approximation, be treated using concepts of periodic crystals
[5–8], the incommensurate nature of the material is much
more visible in its mechanical properties. In order to estimate
whether the effects discussed here are quantitatively relevant,
we follow Ref. [9]. Here, κ is shown to be of the order of
10eV/nm2 sin(�/2). For twist angles � ∼ 1◦ this yields κ ∼
0.1eV/nm2. Hence, on the length scale of the moiré crystal
∼10nm, this stiffness is clearly relevant in a wide temperature
regime.

Our results are not unique to twisted bilayer graphene. As
we demonstrate in Sec. III, they can be generalized to generic
planar quasicrystals and incommensurate crystals. The lack of
mobility of defects stabilizes networks of defects, such as the
soliton network discussed in Ref. [9]. Another implication is
that these incommensurate systems should mechanically be
rather brittle.

The power of the formalism that led to the results of this
work is drawn primarily from the deep intuition that follows
from the analogy to electromagnetism, including multipole
expansions or the electromagnetism of dissipative media. An
interesting open question is how the properties of these de-
fects, and particularly the discompressions, impact the global
mechanical properties of TBG, as well as its local electronic
spectrum, where stable defect configurations on the electronic
spectrum are expected to lead to localized bound state for-
mation. For isolated disclinations and discompressions one
might even expect topologically protected bound states in the
electronic spectrum [50].

Note added. Recently, we became aware of interesting
related works concerned with a fracton description [51] and
topologically protected defect motion [52] of quasicrystals.
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APPENDIX: SCHWINGER-KELDYSH FORMULATION OF
THE ELASTICITY THEORY

In order to include damping of fractons, we perform the
analysis on the Keldysh contour [48]. We consider the gener-
ating functional:

W [hi] =
∫

Dw eiS[w]−i
∫
C hi (t )wi (t ). (A1)

Here,
∫

x,t∈C · · · = ∫
C dt

∫
V d2x · · · indicates that the time in-

tegration has to be performed on the round-trip Keldysh
contour, while the spatial integration goes over the volume V .
The action of the problem is given in Eq. (3), where the damp-
ing term enters through the nonlocal-in-time contribution

D−1(t − t ′) = −δ(t − t ′)∂2
t ′ + γ (t − t ′), (A2)

with the friction selfenergy term γ (t ). Let w+
i (t ) and w−

i (t )
refer to the phason modes on the upper and lower contour,
respectively. Transforming the Keldysh degrees of freedom to
quantum and classical fields

w
c,q
i (t ) = 1√

2
(w+

i (t ) ± w−
i (t )), (A3)

the self-energy as function of frequency takes the form

γ (ω) =
(

0 γ R(ω)
γ A(ω) γ K (ω)

)
. (A4)

We assume Ohmic damping

Imγ R(ω) = γ0ωe−|ω|/ωc (A5)

with upper cutoff ωc. The real part of γ R(ω) is determined
via a Kramers-Kronig transformation, where constant terms
γ R(0) have to be subtracted. In addition,

γ K (ω) = −2 coth
( ω

2T

)
Imγ R(ω) (A6)

follows from the fluctuation-dissipation theorem. Hence, the
retarded Fourier transform is at low energies given by

DR(ω) = 1

ω2 + iγ0ω
. (A7)

At low frequencies, the damping term is the dominant one.
The equations of motion for the displacement fields wi are

∂2w j

∂t2
=

∫
dt ′ γ R(t − t ′)w j (t

′)

+ ∂i
[
Ci j,k
wk
 + 1

2εi jκϑw

]
. (A8)

For strong damping and long times
∫

dt ′ γ R(t − t ′) → −γ0∂t ,
and the dynamics is diffusive. When we perform the Hubbard-
Stratonovich transformations, we obtain Eq. (7) with

�(t − t ′) = ←−
∂ t D(t − t ′)

−→
∂ t ′ . (A9)

The retarded version of � becomes

�R(ω) = ω2

ω2 + iγ0ω
. (A10)

In the limit γ0 → 0, �R(ω) → 1.
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