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Fractional Shapiro steps without fractional Josephson effect
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It is widely believed that superconducting junctions involving topological insulators and hosting Majorana-like
bound states may exhibit an unusual “fractional” (4π -periodic) ac Josephson effect. Accordingly, “fractional”
Shapiro steps on the current-voltage characteristics of such junctions are expected to occur under external
microwave radiation. Here, we microscopically evaluate Shapiro steps in topologically trivial highly transparent
superconducting weak links. The key features recovered within our analysis—including, e.g., the so-called
“missing” Shapiro steps—turn out to be similar to those observed in topological Josephson junctions. Our results
demonstrate that caution is needed while interpreting experimental results for superconducting weak links in
terms of Majorana physics.
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I. INTRODUCTION AND MOTIVATION

Over recent years a great deal of attention was paid to
experimental and theoretical investigations of superconduct-
ing junctions involving topological insulators, which can host
nontrivial gapless bound states. Such Majorana-like states are
believed to exhibit rather exotic physical properties and are
also regarded as promising in the context of topologically
protected quantum computation [1].

Theoretically a doublet of Majorana-like bound states was
identified in point contacts formed by p-wave superconduc-
tors [2] as well as in junctions composed of two conventional
(s-wave) superconductors connected to each other via two-
and three-dimensional topological insulators [3,4]. In all these
cases the energies of these Majorana-like modes EM

± depend
on the superconducting phase difference ϕ across the junction
as [2–4]

EM
± (ϕ) = ±δ cos

ϕ

2
. (1)

For reasons and under conditions to be specified below, it
is widely believed that junctions hosting such Majorana-like
modes exhibit an unusual 4π -periodic current-phase rela-
tion (CPR) [2,3] IM ∝ sin ϕ

2 , which is fundamentally different
from the standard 2π -periodic Josephson CPR IJ = Ic sin ϕ.
If so, one is bound to conclude that—having in mind the
Josephson relation ϕ̇ = 2 eV (where e defines electron charge
and V stands for bias voltage)—the supercurrent oscillation
frequency in such junctions equals to eV , i.e., to a half of the
standard Josephson frequency ωJ = 2 eV .

The presence of Majorana-like bound states (1) could then
be detected experimentally, e.g., by observing resonances in
the form of current jumps (the so-called Shapiro steps [5–7])
on the junction I-V curve under the influence of external

microwave radiation. Pronounced Shapiro steps at frequencies
ω = ωJ/2 were indeed detected in a number of microwave
experiments performed with HgTe- and BiSb-based supercon-
ducting junctions [8–10].

Very generally, internal properties of any weak link be-
tween two conventional superconductors—no matter how
complicated these properties are—may influence its critical
current and the form of CPR but not its periodicity in ϕ. The
latter, in turn, is fundamentally determined by the periodicity
of the charge space [11] reciprocal to the phase one. At subgap
energies and temperatures the charge space of our problem
remains effectively 2e-periodic, which immediately enforces
2π -periodic in ϕ CPR.

In light of this, 4π -periodic CPR could be regarded as
quite unusual since, in that case, the charge transfer be-
tween superconducting condensates on both sides of the
junction should be provided by quasiparticles with charge e
rather than by Cooper pairs with charge 2e. It remains un-
clear to us which physical mechanism could be responsible
for such kinds of charge transfer between two conventional
superconductors.

For completeness, we also remark that general effective
actions [11–14] describing superconducting junctions with ar-
bitrary transmissions do, of course, include 4π -periodic terms
in the Josephson phase ϕ. However, such (nonlocal in time)
terms account for dissipative currents and have nothing to do
with the supercurrent flowing across the weak link.

Below we will consider a purely ballistic superconducting
weak link (or an SNS junction) with N fully transparent
conducting channels and normal state conductance 1/RN =
N e2/π . Provided the thickness of a normal (N) layer d con-
necting two superconducting (S) electrodes is much smaller
than the coherence length d � ξ0 ∼ vF /� the junction hosts
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FIG. 1. A pair of Andreev bound states EA
±(ϕ) in short ballistic

SNS junctions.

a pair of subgap Andreev bound states

EA
±(ϕ) = ±� cos

ϕ

2
(2)

in each of N conducting modes, see also Fig. 1. Here and
below � stands for the superconducting order parameter in
the electrodes and vF is the Fermi velocity. Since the phase
dependence of the bound states energy (2) is identical to that
for Majorana-like states (1), ballistic SNS junctions can serve
as a convenient playground to test some ideas and approaches
to superconducting junctions based on topological insulators.

In equilibrium CPR of short ballistic SNS junctions takes
the well-known 2π -periodic in ϕ form [15]

I = IS (ϕ) = π�

eRN
sin

ϕ

2
tanh

(
�

2T
cos

ϕ

2

)
. (3)

Exactly the same relation also holds for short symmetric
SINIS junctions at resonance for arbitrary (including very
low) transmissions of SN interfaces [16]. The relation (3) can
also be recovered from a simple formula [17,18]

I = 2eN
∑
±

∂EA
±

∂ϕ
f±, (4)

where f± ≡ fF (EA
±) = 1/[1 + exp(EA

±/T )] are the Fermi fill-
ing factors [19] for both Andreev bound states. This formula
indicates that equilibrium CPR in weak links with d � ξ0 can
be associated only with discrete Andreev levels (2), whereas
continuous electron spectrum does not play any role in this
limit.

Making use of this observation, the same formula with
EA

± → EM
± was employed [2–4] in order to identify the con-

tribution from Majorana-like states (1) to the supercurrent
flowing across the junctions involving topological insulators.
In equilibrium, this contribution is again 2π -periodic in ϕ, just
like CPR in Eq. (3).

One may be tempted to extend the formula (4) to describe
the ac Josephson effect. Following the authors [2], by sweep-
ing the phase ϕ sufficiently slowly, but not too slowly, one
would be able to drive the system in such a way that it has
no time to relax to its ground state, thereby always occupying
one of the states (1) and leaving another one empty. Assuming
δ < � (which typically requires violation of time-reversal
symmetry) and eV < � − δ to separate Majorana-like levels

FIG. 2. Schematics of multiple Andreev reflection process in
ballistic SNS junctions.

from the continuum of states [3] and substituting the filling
factors f− = 1 and f+ = 0 into Eq. (4) with EA

± → EM
± one

immediately arrives at the contribution to the supercurrent in
the desired form IM ∝ sin(ϕ(t )/2).

In our view, this procedure cannot yet be regarded as a
rigorous derivation and in any case it should be verified by
means of an elaborate quantum kinetic analysis. This analysis
should fully account, e.g., for the effect of multiple Andreev
reflection (MAR) [20], which is known to play a crucial role
in junctions with not very low transmissions. Fortunately, in
the case of ballistic SNS junctions considered here, such de-
tailed microscopic theory is already well established [21–26].
This theory demonstrates that MAR serves as a key charge
transfer mechanism across such junctions setting in already at
arbitrarily small bias voltages V = ϕ̇/2e.

The process of multiple Andreev reflection is schemat-
ically illustrated in Fig. 2. After each traverse across the
junction a quasiparticle (hole) gets accelerated by eV , suffers
Andreev reflection at one of the two NS interfaces, and even-
tually leaves the junction after m ≈ 2�/eV such traverses. As
a result, the distribution functions f +(E ) and f −(E ) for quasi-
particles moving, respectively, in and opposite to the current
direction deviate strongly from the equilibrium distribution
function fF (E ). They read (see, e.g., Ref. [26])

f ±(E ) =
∞∑

m=0

fF (E ∓ meV )[1 − A(E ∓ meV )]

×
m−1∏
l=0

A(E ∓ leV ),

where A(E ) is the Andreev reflection probability. At T, eV �
� one arrives at the I-V curve in the form [23]

Ī = V

RN
+ 2�

eRN
sgnV, (5)

where sgnx equals to 1, 0, and −1, respectively for x > 0,
x = 0, and x < 0. The last term in Eq. (5) represents an excess
current due to MAR and holds at arbitrary values of d . In the
absence of inelastic relaxation this fairly large current sets in
at any nonzero applied voltage V .

In the limit of short SNS junctions one also finds [24]

I (t ) = V

RN
+ Ic| sin(ϕ/2)|sgnV, ϕ = 2 eV t, (6)

where Ic = π�/(eRN ) is the junction critical current at T →
0. We observe that CPR (6) remains strictly 2π -periodic and
no 4π -periodic supercurrent component occurs at nonzero
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voltages. Averaging Eq. (6) over time, we again recover
Eq. (5).

As we already discussed, in the presence of external mi-
crowave radiation with frequency ω the junction I-V curve
exhibits Shapiro steps which occur under the condition
[25–27] 2 keV = nω or, equivalently, at

ω = k

n
ωJ , (7)

where k and n are positive integer numbers. For clarity,
in what follows we will distinguish integer and fractional
Shapiro steps corresponding to respectively integer and non-
integer values of the ratio k/n in Eq. (7). The values k � 2
(irrelevant in the tunneling limit) reflect the presence of higher
harmonics of the Josephson current due to nonsinusoidal
CPR, whereas the numbers n � 2 correspond to multipho-
ton processes which gain importance at higher ac signals or
smaller microwave frequencies.

Hence, fractional Shapiro steps are routinely expected even
in topologically trivial Josephson junctions and the observa-
tion of such steps (e.g., at ω = ωJ/2) alone is by no means
sufficient to make any definite conclusion about the presence
of a 4π -periodic in ϕ contribution to CPR. In addition to frac-
tional Shapiro steps, in experiments [8–10] missing integer
Shapiro steps at ω = ωJ were reported at low-enough frequen-
cies, whereas at higher ω these steps were clearly detected.
With the aid of a phenomenological model it was argued
[28] that such observations actually support the 4π -periodic
Josephson effect scenario. We will return back to this issue
below in Sec. VIII.

The structure of the paper is as follows. In Sec. II we out-
line our general formalism, which is then employed in Sec. III
to evaluate electric current across ballistic SNS junctions for
a arbitrary time dynamics of the Josephson phase. In Sec. IV
we reconstruct a complete description of ac Josephson effect
in SNS junctions biased by a constant external voltage. The
effect of an external ac signal on both CPR and the Josephson
critical current is discussed in Sec. V. Sections VI and VII are
devoted to the analysis of both integer and fractional Shapiro
steps, respectively, in the voltage- and current-biased regimes.
Discussion of our key observations is presented in Sec. VIII.
Some technical details of our calculation are relegated to
Appendixes A, B, C, and D.

II. BASIC FORMALISM

In what follows we will consider a short SNS junction
with d � ξ0. This system can be conveniently described
within the standard technique combining quasiclassical Eilen-
berger equations [29,30] with Zaitsev boundary conditions
[31] matching quasiclassical propagators on both sides of the
junction. Making use of this approach it is straightforward to
derive a general expression for the effective action [12] that
accounts for arbitrary configurations of the Josephson phase
ϕ(t ) and holds for any junction transmission distribution.

As we are aiming at describing nonstationary and nonequi-
librium processes it is necessary to resort to the Keldysh
technique and introduce two phase variables ϕ1(t ) and ϕ2(t )
defined, respectively, on the forward and backward parts of
the Keldysh contour. Then the Keldysh version of the effective

action reads [13,14]

iSt [ϕ] = 1

2

∑
n

Tr ln

[
1 + Tn

4
({Q̌L(ϕ), Q̌R} − 2)

]
. (8)

Here the summation runs over the junction conducting chan-
nels with arbitrary transmission coefficients Tn, Q̌L,R are 4 × 4
Green-Keldysh matrices for the left and right superconducting
electrodes. The product of these matrices implies time con-
volution and curly brackets denote anticommutation. These
matrices are expressed through quasiclassical propagators as

Q̌R = ǧ =
(

ĝR ĝK

0 ĝA

)
(9)

and

Q̌L(ϕ)(t, t ′) = ĽM̌+(t )Ľǧ(t, t ′)ĽM̌−(t ′)Ľ. (10)

The retarded, advanced, and Keldysh components of the ma-
trix (14) are in turn 2 × 2 matrices in the Nambu space

ĝR,A,K (ε) =
(

gR,A,K (ε) f R,A,K (ε)
− f R,A,K (ε) −gR,A,K (ε)

)
, (11)

and we also define the matrices

M̌± =
(

exp [±iϕ1(t )τ̂3/2] 0
0 exp [±iϕ2(t )τ̂3/2]

)
, (12)

Ľ = 1√
2

(
1̂ 1̂

1̂ −1̂

)
, τ̂3 =

(
1 0
0 −1

)
. (13)

The retarded and advanced propagators obey the following
conditions:

(gR(ε))2 − ( f R(ε))2 = 1, lim
ε→±∞ gR(ε) = 1, (14)

gR(−ε) = (gR(ε))∗, f R(−ε) = −( f R(ε))∗, (15)

gA(ε) = −(gR(ε))∗, f A(ε) = −( f R(ε))∗, (16)

whereas the Keldysh components read

gK (ε) = 2 Re[gR(ε)] tanh
ε

2T
, (17)

f K (ε) = 2 Re[ f R(ε)] tanh
ε

2T
. (18)

In the case of conventional superconducting electrodes we
have

gR,A(ε) = ε ± iγ

ξR,A(ε)
, f R,A(ε) = �

ξR,A(ε)
, (19)

where ξR,A(ε) = ±
√

(ε ± iγ )2 − �2 and γ controls the
strength of inelastic relaxation. In the absence of inelastic
relaxation it is necessary to keep γ infinitesimally small.

To proceed let us introduce the “classical” and “quantum”
phases in as standard manner as ϕ+ = (ϕ1 + ϕ2)/2 and ϕ− =
ϕ1 − ϕ2, respectively. A general expression for the current
operator expectation value can be defined in terms of the path
integral

〈Î (t )〉 = 2ie
∫

Dϕ±
δ

δϕ−(t )
eiSc[ϕ±]+iSt [ϕ±], (20)

which should be evaluated under the conditions 〈ϕ̇+(t )〉 =
2 eV (t ) and 〈ϕ̇−(t )〉 = 0, where V (t ) is the voltage across the
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junction. The expression (20) can also be employed in the
presence of electron-electron interactions in which case the
charging term Sc should be added to the effective action St

(8).
Perhaps we can add that the above effective action formal-

ism is equally convenient for the analysis of higher cumulants
of the current operator. The current-current correlation func-
tion as well as higher current correlators are obtained by
applying consecutive derivatives δ/δϕ−(t ) under the path in-
tegral (20). In the particular case of relatively small phase
fluctuations this procedure was implemented in Ref. [32].

Here the “classical” phase variable ϕ+(t ) = 2e
∫ t dt ′V (t ′)

cannot anymore be regarded as small which makes the whole
problem rather complicated to deal with. On the other hand, in
the absence of electron-electron interactions the path integral
in Eq. (20) is evaluated trivially and we obtain

I (t ) = −2e
δSt [ϕ±]

δϕ−(t )

∣∣∣∣
ϕ−=0, ϕ+(t )≡ϕ(t )=2e

∫ t dt ′V (t ′ )
. (21)

From now on we will make no distinction between the phase
variables ϕ+(t ) and ϕ(t ).

III. ELECTRIC CURRENT FOR BALLISTIC JUNCTIONS

In the interesting for us limit Tn = 1 the action (8) be-
comes simpler. With the aid of the normalization condition

Q̌2
L(t, t ′) = Q̌2

R(t, t ′) = δ(t − t ′), in this limit we have

iSt [ϕ] = 1

2

∑
n

Tr ln

[
1

4
(Q̌L(ϕ) + Q̌R)2

]

= NTr ln

[
1

2
Ǐ (Q̌L(ϕ) + Q̌R)

]
, (22)

where the matrix Ǐ is defined as

Ǐ =
(

τ̂3 0
0 −τ̂3

)
. (23)

Expanding the argument of the logarithm in Eq. (22) up to the
first order in ϕ−(t ) and symmetrizing the resulting expressions
with respect to the phase variables, we get

iSt = NTr ln[Q̌0 + Q̌1]. (24)

Here the matrices Q̌0 and Q̌1 read

Q̌0 =
(

âR âK

0 −âA

)
, Tr ln[Q̌0] = 0, (25)

Q̌1(t, t ′) = ϕ−(t )

8

(
0 −b̂A(t, t ′)

b̂R(t, t ′) b̂K (t, t ′)

)
+
(

τ̂3b̂K (t, t ′)τ̂3 τ̂3b̂R(t, t ′)τ̂3

−τ̂3b̂A(t, t ′)τ̂3 0

)
ϕ−(t ′)

8
,

(26)

where we define

âR,A,K (t, t ′) =
(

gR,A,K (t, t ′) cos
[

ϕ(t )−ϕ(t ′ )
4

]
f R,A,K (t, t ′) cos

[
ϕ(t )+ϕ(t ′ )

4

]
f R,A,K (t, t ′) cos

[
ϕ(t )+ϕ(t ′ )

4

]
gR,A,K (t, t ′) cos

[
ϕ(t )−ϕ(t ′ )

4

]), (27)

b̂R,A,K (t, t ′) =
(

gR,A,K (t, t ′) sin
[

ϕ(t )−ϕ(t ′ )
4

]
f R,A,K (t, t ′) sin

[
ϕ(t )+ϕ(t ′ )

4

]
f R,A,K (t, t ′) sin

[
ϕ(t )+ϕ(t ′ )

4

]
gR,A,K (t, t ′) sin

[
ϕ(t )−ϕ(t ′ )

4

]). (28)

Combining Eq. (21) with Eqs. (24) to (26), we arrive at the
general expression for the current

I (t ) = ieN
4

∫
dt ′Tr[b̂R(t, t ′)X̂ K (t ′, t ) + b̂K (t, t ′)X̂ A(t ′, t )

− X̂ K (t, t ′)τ̂3b̂A(t ′, t )τ̂3 + τ̂3X̂ R(t, t ′)τ̂3b̂K (t ′, t )],

(29)

where

X̂ R = (âR)−1, X̂ A = −(âA)−1, (30)

and

X̂ K = −X̂ R ◦ âK ◦ X̂ A (31)

are the matrix elements of the inverse matrix

Q̌−1
0 ≡ X̌ =

(
X̂ R X̂ K

0 X̂ A

)
. (32)

The expression (29) has an explicit causal nature and remains
valid for an arbitrary dependence of the applied voltage V (t )
on time. The general result (29) coincides with those derived
previously [21,22] by directly solving the Eilenberger equa-
tions.

IV. TIME-INDEPENDENT BIAS VOLTAGE

Let us first consider the limiting case of a constant bias
voltage V applied directly to the junction. Obviously, the
Josephson phase then depends linearly on time, i.e., ϕ(t ) =
2eV t . As it was demonstrated in Ref. [23], in this particular
case it is possible to explicitly invert the matrices in Eq. (30)
and recover the exact expression for the current I (t ) across the
junction [23,24].

As compared to Ref. [23], here we pursue a different ap-
proach outlined in Appendix A. Introducing the notation

aR(ε) = f R(ε)

1 + gR(ε)
, (33)

which has to do with the so-called Riccati parametrization
(see, e.g., Ref. [30])

f R = 2aR

1 − (aR)2
, gR = 1 + (aR)2

1 − (aR)2
, (34)

and employing the (corresponding to MAR) multiplicative
structure of the resulting expressions (A14), from Eq. (29) we
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arrive at the final result

I (t ) =
∞∑

l=−∞
Il e

−2ielV t , (35)

where

Il=0 ≡ Ī = V

RN
− 1

eRN

∞∑
n=1

∫ ∞

−∞
dε tanh

ε

2T
(1 − |aR(ε)|2)

∏
1�m�n

|aR(ε + meV )|2, (36)

Il>0 = − 1

eRN

∞∑
n=1

∫ ∞

−∞
dε tanh

ε

2T
(1 − |aR(ε)|2)

∏
1�m�n

|aR(ε + meV )|2
∏

n+1�k�n+2l

aR(ε + keV )

− 1

eRN

∫ ∞

−∞
dε tanh

ε

2T
(1 − |aR(ε)|2)

∏
1�k�2l

aR(ε + keV ), I−l = I∗
l . (37)

The results (35) to (37) fully conform to those of
Refs. [23,24]. As expected, the current I (t ) (35) is strictly
2π -periodic in ϕ(t ) = 2eV t for any nonzero V and no 4π -
periodic component occurs.

Equation (36) provides a general expression for the average
current Ī . As we already discussed, it is characterized by the
current jump at V = 0 caused by MAR. This excess current
also persists at all larger voltages. Provided inelastic relax-
ation effects remain weak and can be neglected, combining
Eqs. (36) and (19) we obtain [23]

Ī = V

RN
+ 2�(T )

eRN
tanh

�(T )

2T
sgnV, eV � �(T ) (38)

and [20–22]

Ī = V

RN
+ 8�(T )

3eRN
tanh

eV

2T
, eV � �(T ). (39)

Temperature effects do not eliminate the current jump
although diminish its amplitude. However, nonvanishing in-
elastic relaxation, if present, smears this jump making the
linear junction conductance Ī/V finite in the limit V → 0
[23].

At small voltages and temperatures eV , T � � and for
weak inelastic relaxation Eqs. (35) to (37) can be combined
reducing to a simple expression for the total current defined in
Eq. (6). We will explicitly make use of this result further be-
low. Finally, at high voltages eV � � and low T one readily
finds [24]

I (t ) � Ī − π�2 ln 2

2e2V RN
cos(2eV t ). (40)

V. SUPERCURRENT UNDER AC SIGNAL

As a next step we consider a somewhat different physical
situation assuming now that our SNS junction is exposed to
external microwave radiation which generates an ac voltage
signal

V (t ) = Vac cos(ωt ) (41)

across the junction. Here Vac scales with the intensity of exter-
nal radiation and ω is the radiation frequency. The Josephson
phase then oscillates in time and takes the form

ϕ(t ) = ϕ̄ + 2α sin(ωt ), α = eVac/ω. (42)

In this state with zero average voltage V̄ the junction can
still carry a nonvanishing dc supercurrent, which is now af-
fected by external radiation. To evaluate this supercurrent one
can employ the general formula (29) combined with Eq. (42).
However, in contrast to the case of a constant in time bias
voltage considered above, here it is not possible to exactly
invert the corresponding matrices in Eq. (29) and one should
resort to certain approximations. Physically the main com-
plication is that in the presence of an external ac field the
quasiparticle distribution function in the contact area is driven
out of equilibrium and in a general case can only be evaluated
numerically by resolving a self-consistent quantum kinetic
equation which simultaneously accounts for Andreev reflec-
tion as well as photon absorption and emission processes.
The corresponding analysis was carried out in Ref. [26]. The
influence of external radiation on both CPR and the critical
Josephson current in superconducting point contacts was pre-
viously studied in Ref. [33].

A substantial simplification of the problem can be achieved
if the supercurrent is evaluated within the adiabatic approx-
imation which we will employ here. Assuming that the
frequency ω is small enough to obey the condition

ω � 2|EA
±(ϕ̄)|, (43)

and neglecting (typically rather small) geometric capacitance
of our junction one finds the time-dependent current I (t ),
which reads [32]

I (t ) � IS[ϕ(t )] + C∗(ϕ̄)ϕ̈(t ), (44)

where IS (ϕ) is defined in Eq. (3) and C∗(ϕ̄) represents the
renormalized junction capacitance. In the low-temperature
limit it takes the form [32]

C∗ = π

16�RN cos4(ϕ̄/4)
(45)

outside an immediate vicinity of the point ϕ̄ = π and formally
diverges at ϕ̄ → π , thus signaling the failure of the adiabatic
approximation for EA

±(π ) = 0.
Substituting the phase ϕ(t ) in the form (42) into Eq. (44),

making use of Eq. (3), and averaging the resulting expression
over time, in the limit T → 0 we obtain an obvious relation
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FIG. 3. Zero-temperature current-phase relation Ī (ϕ̄) [normal-
ized by Ic ≡ Ic(0)] for α = 0 (magenta), 0.6 (orange), and 1.2 (blue).

(cf. also Ref. [33])

Ī (ϕ̄) = 8�

eRN

∞∑
m=1

m(−1)m+1

4m2 − 1
J0(2mα) sin(mϕ̄), (46)

where J0(x) is the zero-order Bessel function. For α < π/2
there exists the phase interval 2α − π � ϕ̄ � π − 2α where
the series (46) can be summed up exactly with the result

Ī (ϕ̄) = IcJ0(α) sin(ϕ̄/2). (47)

Outside this interval CPR Ī (ϕ̄) (46) can be evaluated nu-
merically. The corresponding dependencies are illustrated in
Figs. 3 to 5 for different values of α. We observe that Eq. (47)
is fully confirmed under its validity conditions, whereas be-
yond them CPR develops qualitatively new features including,
e.g., negative current states within the interval 0 < ϕ̄ < π . For
α � 1.345 CPR reaches its absolute maximum at ϕ̄ = π − 2α

in which case the junction critical current Ic(α) ≡ max|Ī (ϕ̄)|
reads

Ic(α) = Ī (π − 2α) = IcJ0(α) cos α. (48)

For α � 1.345 and 0 < ϕ̄ < π the absolute maximum of
|Ī (ϕ̄)| is reached at negative current values (cf. Fig. 4) and
the system switches to the π -junction state which persists up
to α � 2.9, where Ic(α) achieves its second local minimum

FIG. 4. The same as in Fig. 3 for α = 1.345 (magenta), 1.5
(orange), and 2.0 (blue).

FIG. 5. The same as in Fig. 3 for α = 2.8 (magenta), 3.1 (or-
ange), and 3.6 (blue).

(see Fig. 6). In this regime for 1.7 � α � 2.7 the part of
CPR with dĪ/dϕ̄ > 0 is well approximated by the dependence
Ī/Ic = −a cos(ϕ/2) with a � 0.46. At α � 2.9 CPR again
describes a 0-junction state (cf. Fig. 5).

In the limit of large values of α � 1 CPR can be approxi-
mately described by keeping only the first term (m = 1) in the
series (46) which takes the form

Ī (ϕ̄) � 8Ic

3π3/2
√

α
sin ϕ̄ cos

(
2α − π

4

)
. (49)

This dependence works reasonably well except in the
immediate vicinity of the points α = 3π/8 + π p/2 (p =
0,±1,±2, ...) where terms with m > 1 in Eq. (46) need to
be retained as well.

The dependence of the critical current on α at T → 0
is displayed in Fig. 6. We observe that—in contrast to the
case of Josephson tunnel junctions [6]—Ic(α) does not vanish
at any finite value of α, it demonstrates oscillations which
decay with increasing α as Ic(α) ∝ 1/

√
α. The local minima

of Ic(α) correspond to consecutive transitions between 0-
and π -junction states. Note that such transitions take place
at nonzero values of the critical current. A similar feature

FIG. 6. Zero-temperature critical current Ic(α) normalized by
Ic ≡ Ic(0). The current Ic(α) remains nonzero at any finite value
of α. Local minima of this dependence correspond to consecutive
transitions between 0- and π -junction states.
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was recently predicted [34,35] for X -junctions driven out of
equilibrium by applying a temperature gradient. Hence, this
feature is likely to be generic for junctions with nonsinusoidal
CPR. We also note that the behavior of the critical current
Ic(α) displayed in Fig. 6 is fully consistent with that reported
previously [33]. To extend our analysis beyond the adiabatic
limit (43) it is necessary to include resonances associated
with excitation of the system from the lower Andreev state
to the upper one by absorption of l photons (l = 1, 2, . . . ,)
with frequency ω < 2�. This resonant process boosts the
(negative) contribution to the supercurrent generated by the
upper Andreev level and, hence, causes narrow dips on CPR
[33] at the phase values ϕ̄ = ϕl (l = 1, 2, . . . ,) obeying the
condition lω = |EA

+(ϕl ) − EA
−(ϕl )|. Obviously, these dips are

not captured within our simple adiabatic approximation. They,
however, do not lead to any qualitative modifications of the
dependence of the critical current on α in Fig. 6. At even
higher frequencies ω � 2� the critical current gets further
decreased due to pairbreaking effects.

Finally, we stress that the above results apply in the inter-
esting for us low-temperature limit T � �. With increasing
temperature CPR quickly approaches the sinusoidal form and
the adiabatic approximation yields vanishing critical current at
the values of α where the Bessel function J0(2α) has its zeros.
On the other hand, at not too low temperatures nonequilibrium
effects caused by external radiation may also stimulate the
supercurrent [22], i.e., under certain conditions the critical
current in the SNS junctions may actually increase in the
presence of an ac signal [22,33].

VI. SHAPIRO STEPS

Let us now assume that our SNS junction is biased by an
external voltage V (t ) which contains both constant in time and
ac parts, i.e.,

V (t ) = V + Vac cos(ωt + ϑ ), (50)

where ϑ is an arbitrary phase. Accordingly, for the Josephson
phase we now get

ϕ(t ) = 2e
∫ t

dt ′V (t ′) = 2eV t + 2α sin(ωt + ϑ ). (51)

As before, here the parameter α (42) effectively controls the
strength of microwave radiation effects.

The overall effect of external microwave radiation on the
I-V curve in fully transparent SNS junctions was addressed
in Ref. [26]. The physics behind this effect is transparent:
While suffering MAR inside the junction quasiparticles and
holes may now also absorb and emit photons with frequency
ω. As a result of such processes, the quasiparticle energy as
well as its distribution function may change during the MAR
cycle which, in turn, yields three major consequences [26]:
(i) Reduction of zero-bias conductance and excess current
(particularly pronounced at smaller bias voltages eV � 2�),
(ii) substantial modification of the subharmonic gap structure
on the I-V curve, and (iii) appearance of Shapiro steps at
microwave radiation frequencies (7).

Despite some previous efforts [25–27] a detailed micro-
scopic theory of Shapiro steps in ballistic SNS junctions is
not yet completed. Below we will employ our formalism to
achieve some progress in this direction.

A. Small microwave signals

We first assume that this parameter is small, α � 1, and
evaluate the effect of external radiation on the I-V curve
perturbatively in α. The linear in α corrections δX̂ R,A,K to
(already evaluated in the previous section) matrices X̂ R,A,K

read

δX̂ R = −X̂ RδâRX̂ R, δX̂ A = X̂ AδâAX̂ A, (52)

δX̂ K = −X̂ RδâK X̂ A − X̂ RδâRX̂ K + X̂ KδâAX̂ A. (53)

We also expand the matrices âR,A,K and b̂R,A,K [cf. Eqs. (27)
and (28)] up to the linear in α terms

δâR(t, t ′) = −α

2

(
gR(t, t ′) sin eV (t−t ′ )

2 [sin(ωt + ϑ ) − sin(ωt ′ + ϑ )] f R(t, t ′) sin eV (t+t ′ )
2 [sin(ωt + ϑ ) + sin(ωt ′ + ϑ )]

f R(t, t ′) sin eV (t+t ′ )
2 [sin(ωt + ϑ ) + sin(ωt ′ + ϑ )] gR(t, t ′) sin eV (t−t ′ )

2 [sin(ωt + ϑ ) − sin(ωt ′ + ϑ )]

)
,

δb̂R = α

2

(
gR(t, t ′) cos eV (t−t ′ )

2 [sin(ωt + ϑ ) − sin(ωt ′ + ϑ )] f R(t, t ′) cos eV (t+t ′ )
2 [sin(ωt + ϑ ) + sin(ωt ′ + ϑ )]

f R(t, t ′) cos eV (t+t ′ )
2 [sin(ωt + ϑ ) + sin(ωt ′ + ϑ )] gR(t, t ′) cos eV (t−t ′ )

2 [sin(ωt + ϑ ) − sin(ωt ′ + ϑ ))

]

and similarly for aA,K and bA,K . Combining all these expres-
sions with Eq. (29) we arrive at the linear in α correction to
the I-V curve of our voltage-biased SNS junction due to the
presence of external radiation. It is easy to observe that this
correction differs from zero only under the condition ω = kωJ

with k = 1, 2, . . . , giving rise to integer ϑ-dependent Shapiro
steps δIk (ϑ ).

Explicit analytic expressions for δIk are specified in Ap-
pendix B, cf. Eq. (B1). They take the form

δIk (ϑ ) = ak cos ϑ + bk sin ϑ, (54)

implying that the overall magnitude of the kth Shapiro step

is δIk = 2
√

a2
k + b2

k . Employing Eq. (B1) one can evaluate
δIk numerically for different values of radiation frequency ω,
temperature T , and effective inelastic relaxation rate γ .

Figure 7 demonstrates the dependence of integer Shapiro
steps δIk on k at three different values of T and the external ra-
diation frequency ω = 0.5� in the limit of very weak inelastic
relaxation γ = 0.01� in which case the phase coherence
remains well preserved. We observe that δIk demonstrates
decaying oscillations with increasing k. In addition, there is
an overall decrease of δIk with increasing T at any given
k due to temperature smearing. Note that such oscillations

054521-7



ARTEM V. GALAKTIONOV AND ANDREI D. ZAIKIN PHYSICAL REVIEW B 104, 054521 (2021)

FIG. 7. The magnitude of integer Shapiro steps δIk [normal-
ized by I0 = α�/(2eRN )] evaluated from Eq. (B1) for ω/� = 0.5,
γ /� = 0.01, and different values of T/� = 0.1 (diamonds), 1
(squares), and 3 (circles). Inset: The same for ω/� = 0.5, T/� =
0.1, and γ /� = 0.2.

disappear completely even at low values of T as soon as
inelastic relaxation becomes more pronounced. This effect is
illustrated in the inset of Fig. 7 demonstrating δIk decaying
monotonously with increasing k.

Figure 8 displays the dependence of the magnitude of
Shapiro steps on k at different values of ω for γ = 0.01� and
T = 0.1�. We again observe decaying oscillations of δIk with
increasing k.

B. Beyond perturbation theory

The above perturbative in α procedure is sufficient to evalu-
ate all integer Shapiro steps with ω = kωJ , whereas to recover
fractional Shapiro steps (7) with n > 1 corresponding to mul-
tiphoton processes it is necessary to proceed to higher orders
in α. Accordingly, for α � 1 such fractional steps remain
parametrically smaller than the integer ones and, hence, can
be neglected in this limit. Note, however, that for small values

FIG. 8. The same as in Fig. 7 for T/� = 0.1, γ /� = 0.01, and
different values of ω/� = 0.1 (squares), 0.3 (diamonds), and 1.2
(circles). The steps indicated by diamonds are shifted by 0.4 upwards
to avoid overlapping.

of the bias voltage V the parameter α = eVac/ω ∼ Vac/V is,
in general, not at all small, thus making any perturbation
theory in α insufficient. The task at hand is to go beyond such
perturbation theory and evaluate both integer and fractional
Shapiro steps for arbitrary values of α.

To accomplish this goal one again has to compute the
inverse matrices X̂ R,A = (âR,A)−1 and substitute the result into
Eq. (29) for the current. The procedure in the presence of
an ac signal (50) is outlined in Appendix C. Here, however,
we take a somewhat different route. We will first give a sim-
ple estimate for fractional Shapiro steps which turns out to
be sufficient for α � 1. Then we will specifically address the
interesting, for us, low-bias regime, in which case one can
develop a more accurate calculation that will be applicable
for all values of α.

Our simple estimate for the magnitude of (fractional)
Shapiro steps δI 1

n
which occur at ω = ωJ/n is outlined in

Appendix D. It yields

δI 1
n

Ic
∼ J2

n/2(α/2) for even n,

|J(n+1)/2(α/2)J(n−1)/2(α/2)| for odd n, (55)

where, as above, Jn(x) are Bessel functions.
All these Shapiro steps correspond to k = 1. The magni-

tude of other fractional Shapiro steps δI k
n

decays with growing
k similarly to integer Shapiro steps considered above.

It is obvious from the above estimate that for α ∼ 1 the
magnitude of fractional Shapiro steps is, in general, of the
same order as that for integer Shapiro steps. Furthermore, the
former can easily exceed the latter for some values of α. For
instance, the ratio between the magnitudes of Shapiro steps δI1

and δI 1
2

which occur, respectively, at ω = ωJ and ω = ωJ/2
reads

δI1

δI 1
2

∼ |J0(α)|
|J1(α)| . (56)

Clearly, for α � 1 the integer Shapiro step always dominates
δI1 � δI 1

2
, whereas for α ∼ 1 we already have δI1 ∼ δI 1

2
or

possibly even δI1 � δI 1
2

since Bessel functions of different
order have different zeros. Hence, for small enough voltages V
the fractional (“4π”) Shapiro step can dominate of the integer
(“2π”) one even though the so-called “4π -Josephson effect”
is totally absent. In fact, this observation should not be taken
as any surprise because it is well known that in the case of
tunnel junctions one has [5–7] δI 1

n
∝ Jn(2α).

At sufficiently small values of the applied voltage eV � �

it is also possible to evaluate the magnitude of fractional
Shapiro steps more accurately by extending Eq. (6) to the
time-dependent bias voltage in the form (50). The accuracy of
this approximation will be discussed below in the next section.
Substituting the phase ϕ(t ) (51) into Eq. (6) and averaging the
resulting current I (t ) over time we obtain

Ī = V

RN
+ Ic

〈∣∣∣sin
[
z + ϑ + α sin

( ω

eV
z
)]∣∣∣

× sgn
[
1 + αω

eV
cos
( ω

eV
z
)]〉

z
. (57)
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FIG. 9. Shapiro steps δI1(α) (green), δI 1
2
(α) (orange), and

δI 1
3
(α) (blue) derived from Eq. (57), respectively, at ω = ωJ , ω =

ωJ/2, and ω = ωJ/3. For α > 0 these three curves reach their first
minima, respectively, at α � 0.862, 1.407, and 1.943 where they
take very small but positive values min(δI1) � 0.006, min(δI 1

2
) �

0.0053, and min(δI 1
3

) � 0.005. Note that the above numbers as well
as the sharp peak feature observed in all these curves may, to a certain
extent, depend on the approximation employed here.

Here we are interested in the ϑ-dependent terms emerging
from Eq. (57) provided ω and eV are commensurate. In this
case the current periodically depends on the phase ϑ reaching
both maximum and minimum values Imax and Imin within the
period π . The magnitude of a Shapiro step is then defined
as δI = Imax − Imin. Three different Shapiro steps δI1, δI 1

2
,

and δI 1
3

corresponding, respectively, to ω = 2 eV , ω = eV ,
and ω = 2 eV /3 are displayed in Fig. 9 as functions of the
parameter α.

In accordance with our perturbative results we observe
that at small values of α the principal Shapiro step δI1 ∝ α

dominates over the fractional ones δI 1
n

∝ αn. On the other
hand, the peaks of all three curves at α ∼ 1 are comparable in
magnitude and each of the Shapiro steps can be significantly
larger than the other ones due to different positions of these
peaks. For instance, at low-enough voltages V within the inter-
val 0.6 � α � 1.3 the fractional Shapiro step δI 1

2
dominates

over δI1, which almost vanishes in the middle part of this
interval. On the other hand, at higher voltages the condition
ω = 2 eV is fulfilled al lower values of α where the inte-
ger step δI1(α) already becomes significant. This behavior is
qualitatively consistent with the one observed in experiments
[8–10] but, of course, it by no means can serve as an evidence
for 4π -periodic CPR in our junctions.

Comparing our simple estimate (55) with more accurate
results following from Eq. (57) we conclude that—in the
agreement with our expectations (see Appendix D)—the for-
mer works reasonably well for α � 1 whereas for larger
values of α the fractional Shapiro steps are better approxi-
mated, e.g., by the formula δI 1

n
∼ IcJ2

n/2(3α), cf. Fig. 9.

VII. CURRENT-BIASED REGIME

Let us now consider a somewhat different physical situa-
tion assuming that our SNS junction is biased by an external

current in the form

I (t ) = I + Iac cos(ωt + ϑ ). (58)

Such a current-biased regime appears to be realized in a num-
ber of recent experiments [8–10]. It is obvious that in this case
the voltage across the junction cannot anymore be constant
and should vary in time V = V (t ) even in the absence of an
ac signal Iac → 0.

Within the adiabatic approximation, i.e., provided the volt-
age V (t ) changes in time slowly enough, it is still possible
to employ the same CPR (6) and (40) initially derived for
the time independent voltage bias. This approximation should
work provided V (t ) does not change significantly during the
whole MAR cycle, i.e., during the period of time

δtmar ∼ 2�

eV (t )

d

vF
(59)

it takes for a quasiparticle to cross the normal layer between
two superconductors ∼2�/[eV (t )] times and escape into one
of the superconducting terminals, see Fig. 2.

In fact, we already made use of this approximation in
the previous section evaluating the I-V curve and Shapiro
steps in the presence of an ac voltage signal (50) simply by
substituting the Josephson phase in the form (51) into CPR
(6). In that case it suffices to require δtmar � 1/ω or, equiv-
alently, d � ξ0eV (t )/ω. Here, we will also assume that V (t )
changes slowly enough and again stick to the same adiabatic
approximation which we verify in the end of our calculation.
Within this approximation and provided eV (t ) remains much
smaller than � the phase and voltage dynamics is controlled
by the following equation:

I + Iac cos(ωt + ϑ ) = ϕ̇/(2eRN ) + Ic| sin(ϕ/2)|sgnϕ̇, (60)

which describes the current balance in our SNS junction.
In the absence of an ac current component, i.e., in the limit

Iac → 0, the solution of this equation can be written in the
form

F (ϕ, a) = eIcRNt, a = I/Ic > 1, (61)

where

F (ϕ, a) = 2√
a2 − 1

[
arctan

(
a tan

(
ϕ

4

)− sgn
[

tan
(

ϕ

4

)]
√

a2 − 1

)
+πχ1 +

(
2 arctan

1√
a2 − 1

− π

)
χ2

]
, (62)

where we defined χn = floor[ϕ/(2πn)] (n = 1, 2) as integer
parts of ϕ/(2πn). This solution allows to determine the oscil-
lating in time voltage across the junction V (t ) = ϕ̇/2e which
reads

V (t ) = IcRN (a2 − 1)

a + sin[
√

a2 − 1|s| − arctan(1/
√

a2 − 1)]
, (63)

where the parameter

s = eIcRNt + 2√
a2 − 1

arctan
1√

a2 − 1
(64)

is defined within the interval

− πb√
a2 − 1

< s <
πb√

a2 − 1
, b = 2

π
arctan

√
a + 1

a − 1
. (65)
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The function V (t ) is continued periodically outside this inter-
val with the period 2πb/(eIcRN

√
a2 − 1).

The average voltage V̄ is determined either by averaging
of Eq. (63) over this period or simply by combining the
asymptotic form F (ϕ � 1, a) � ϕb/

√
a2 − 1 with Eq. (61).

Either of these two ways yields the following I-V curve for
our SNS junction (cf. also [25])

V̄ = π

4
IcRN

√
(I/Ic)2 − 1

arctan
√

I+Ic
I−Ic

. (66)

Bearing in mind the relation IcRN = π�/e we note that the
condition eV̄ � � implies that Eqs. (63) and (66) remain
valid as long as I − Ic � Ic. In this limit from Eq. (66) we
obtain

V̄ � π�

2e

√
(I/Ic)2 − 1, I − Ic � Ic. (67)

In addition, with the aid of Eqs. (59) and (63) we conclude
that our adiabatic approximation holds for sufficiently short
SNS junctions with d � ξ0.

Let us now include an ac current bias into our consider-
ation. Provided the amplitude of an ac signal remains small
as compared to the critical current Iac � Ic one can solve
Eq. (60) perturbatively in Iac. In the first order in this parame-
ter we obtain

δϕ(t ) = 2eRNV (t )
∫ t

dt ′ δI + Iac cos(ωt ′ + ϑ )

V (t ′)
, (68)

where V (t ) is defined in Eq. (63) and δI denotes the correction
to the current flowing across the junction. The time derivative
of the first-order correction to the phase (68) determines an
extra voltage value δV = δϕ̇ ∝ Iac generated by an ac current
signal. It is necessary to verify that the time average 〈δV 〉t =
δϕ(t )/t |t→∞ equals to zero [36,37]. At all frequencies except
for particular values ω = 2ekV̄ this condition is justified for
δI = 0 in which case we are back to the I − V curve (66)
derived in the absence of an ac signal. For ω = 2ekV̄ we arrive
at integer Shapiro steps in the form

δIk (ϑ ) = − IcIacb sin(πb) cos ϑ

π I (b2 − k2)

[
1 +

√
a2 − 1

πa2b

]−1

. (69)

In the interesting for us limit I − Ic � Ic Eq. (69) yields
δIk=1 ∼ Iac and δIk�2 ∼ Iac

√
a − 1/k2, i.e., the amplitudes

of all Shapiro steps with k � 2 contain extra small factor√
a − 1 � 1 and, on top of that, decay quickly with increas-

ing k.
As before, fractional Shapiro steps emerge only in the

higher orders in the ac signal and are mostly pronounced for
sufficiently large values of Iac. In the latter limit Eq. (60) can
easily be resolved perturbatively in Ic. In the lowest order one
can neglect the last term in Eq. (60) and then easily integrate
this equation with the result ϕ(t ) = 2eIRNt + 2α sin(ωt +
ϑ ). Substituting this expression for ϕ(t ) into the last term in
Eq. (60) and averaging the result over time we again arrive at
Eq. (57) with

Ī → I, V → V̄ , α = eIacRN

ω
. (70)

As we already know, this equation describes fractional
Shapiro steps δI 1

n
which occur at frequencies ω = 2eV̄ /n. For

small α one again has δI 1
n

∝ αn, whereas for bigger values of
α the fractional Shapiro steps δI 1

n
(α) are displayed in Fig. 9.

Note that the interesting, for us, parameter range α ∼ 1 (or,
equivalently, Iac ∼ Ic) is now close to the border of applica-
bility of our approach and, hence, for such values of α one
could, in principle, expect some corrections to Eq. (57) which,
however, cannot alter any of our conclusions. In particular, we
may conclude that fractional Shapiro steps can dominate over
integer ones at sufficiently small frequencies ω of an external
ac signal (i.e., for α � 1) also in the current-biased regime.

VIII. DISCUSSION

In this work we constructed a microscopic theory de-
scribing Shapiro steps in topologically trivial ballistic SNS
junctions subject to external microwave radiation of arbitrary
intensity. Our analysis was mainly focused on the most in-
teresting limit of subgap voltages and temperatures revealing
a number of features similar to those observed in recent
experiments [8–10] with superconducting junctions involv-
ing topological insulators. The main such features are (i)
the presence of nonvanishing “n = 0 Shapiro step,” i.e., the
critical current Ic(α) that does not vanish at any finite α,
(ii) the presence of Shapiro steps on the I-V curve at all
voltages and frequencies obeying the condition (7), including
the “fractional” one with ω = ωJ/2 sometimes interpreted as
an evidence for the so-called 4π -periodic Josephson effect,
and (iii) the possibility for the “missing” Shapiro step with
ω = ωJ (along with other Shapiro steps) at certain radiation
intensities and frequencies.

The feature (i) is a direct consequence of a nonsinusoidal
CPR inherent to all types of highly transparent superconduct-
ing weak links at low temperatures T � �. Hence, it is by
no means surprising that this feature has been observed in
experiments [10] where junctions with high quality interfaces
have been employed.

The feature (ii) has to do with multiphoton processes. They
play little role at low intensities of microwave radiation (i.e.,
for α � 1) in which case integer Shapiro steps δIk (α) (with
k � 1) are mainly pronounced, see Figs. 7 and 8. However, at
higher ac signals or smaller microwave frequencies fractional
Shapiro steps δI 1

n
(α) (with n � 2) gain importance reaching

almost the same magnitude as integer ones for α � 1, cf., e.g.,
Fig. 9.

Finally, the feature (iii), i.e., the “missing” Shapiro steps,
can be explained with the aid of our results displayed in Fig. 9.
Obviously, at around α ≈ 1 the step δI1(α) almost vanishes
being much smaller than, e.g., δI 1

2
(α) and δI 1

3
(α). Keeping

the amplitude of an ac signal unchanged and increasing the
radiation frequency ω one decreases α eventually reaching
the regime where δI1(α) becomes of order or even bigger
than fractional Shapiro steps. Then in the experiment one
would observe either “missing” Shapiro step δI1(α) or, to
the contrary, fully restored one respectively at the lower and
higher radiation frequencies ω. This is exactly what has been
observed in the experiments [8–10].
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Thus, our analysis demonstrates that all experimentally
detected features (i), (ii), and (iii) can be reproduced within
a microscopic model describing topologically trivial SNS
junctions with 2π -periodic CPR, cf., e.g., the results pre-
sented in Figs. 6 and 9 of this work and those in Fig. 2 of
Ref. [10]. None of these features actually requires 4π -periodic
CPR which never pops up in our calculation. In addition,
we point out that missing integer Shapiro steps at ω = ωJ—
along with well-pronounced fractional ones—were recently
observed in topologically trivial Josephson junctions based on
InAs quantum wells [38]. It is also well known that Shapiro
steps with odd n = 1, 3, . . . , can be significantly reduced (as
compared to ones with even n = 2, 4, . . . ,) or even vanish
completely due to size effects [39]. Hence, caution is needed
while unambiguously interpreting experimental results for su-
perconducting weak links in terms of Majorana physics.

We believe that all the results obtained here can be directly
applied also to superconducting junctions hosting Majorana-
like bound states (1) in the case of preserved time-reversal
symmetry δ ≈ �. No 4π -periodic CPR is expected for any
voltage bias V in that case. The situation with δ < � may still
deserve a separate microscopic analysis.

Note, however, that also in the later case the treatment
of ac Josephson effect exploiting Eq. (4) generally requires
a more rigorous justification. In the limit of short junctions
this equation is verified only in equilibrium, in which case
it can also be extended to more complicated situations, e.g.,
to hybrid superconducting structures involving triplet pairing
[40,41]. The situation out of equilibrium could be more tricky
since, e.g., the effect of MAR needs to be included into con-
sideration. At not too small junction transmissions MAR sets
in already at low voltages and, as we demonstrated, becomes
an essential ingredient of the whole physical picture. Multiple
Andreev reflection also plays an important role in experiments
[8–10] with junctions involving topological insulators [42]
and, hence, it needs to be properly accounted for in any
theoretical analysis of ac Josephson effect in such structures.
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APPENDIX A: MATRIX INVERSION

To begin with, let us introduce convenient notations for
time dependent quasiclassical propagators employed in our
calculation. These propagators, in general, depend on two
time variables. They can be expressed in terms of the follow-
ing expansion over the voltage harmonics:

x(t, t ′) =
∞∑

n=−∞

∫
dε

2π
x(ε, n)e−iε(t−t ′ )e−ineV (t+t ′ )/2, (A1)

which defines x(ε, n). We will also make use of the notation
z(t, n) which essentially means that

z(t, t ′) = z(t − t ′) exp[−ineV (t + t ′)/2].

Below we will employ the following property. Provided
z(t, t ′) can be represented as a convolution

z(t, t ′) = f (t, m) ◦ g(t, n),
then z(ε, m + n) has only m + n components with

z(ε, m + n) = f
(
ε + neV

2
, m
)

g
(
ε − meV

2
, n
)
. (A2)

To proceed let us express the matrix X̂ R(ε, n) in the form

X̂ R(ε, n) =
(

βR(ε, n) γ R(ε, n)
γ R(ε, n) βR(ε, n)

)
. (A3)

Note that βR(ε, n) differs from zero for even n, while γ R(ε, n)
is nonzero for odd n. Then the matrix equation

(âR ◦ X̂ R)(ε, n) = δn,0 (A4)

can be identically rewritten in terms of the following equa-
tions:

1

2

[
gR
(
ε + (n + 1)

eV

2

)
+ gR

(
ε + (n − 1)

eV

2

)]
βR(ε, n)

+ 1

2
f R
(
ε + (n − 1)

eV

2

)
γ R
(
ε − eV

2
, n − 1

)
+ 1

2
f R
(
ε + (n + 1)

eV

2

)
γ R
(
ε + eV

2
, n + 1

)
= δn,0 (A5)

and

1

2

[
gR
(
ε + (n + 1)

eV

2

)
+ gR

(
ε + (n − 1)

eV

2

)]
γ R(ε, n)

+ 1

2
f R
(
ε + (n − 1)

eV

2

)
βR
(
ε − eV

2
, n − 1

)
+ 1

2
f R
(
ε + (n + 1)

eV

2

)
βR
(
ε + eV

2
, n + 1

)
= 0. (A6)

It is convenient to introduce the variables ζ R(ε, n) and ζ̃ R(ε, n) which read

ζ R(ε, n) =
{
βR(ε, n) for even n,

γ R(ε, n) for odd n,
ζ̃ R(ε, n) = ζ R

(
ε + neV

2
, n
)
. (A7)

Then Eqs. (A5) and (A6) can be rewritten as

1

2

[
gR
(
ε + (2n + 1)

eV

2

)
+ gR

(
ε + (2n − 1)

eV

2

)]
ζ̃ R(ε, n) + 1

2
f R
(
ε + (2n − 1)

eV

2

)
ζ̃ R(ε, n − 1)

+ 1

2
f R
(
ε + (2n + 1)

eV

2

)
ζ̃ R(ε, n + 1) = δn,0. (A8)
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This equation has essentially the structure T̂ ζ̂ R = δn,0, where ζ̂ R is the column composed of ζ̃ R(ε, n) and T̂ is the symmetric
tridiagonal matrix with the elements

Tn,n = 1

2

{
gR

[
ε +

(
n + 1

2

)
eV

]
+ gR

[
ε +

(
n − 1

2

)
eV

]}
,

Tn,n+1 = Tn+1,n = 1

2
f R

[
ε +

(
n + 1

2

)
eV

]
. (A9)

The equations allowing to determine the matrix X̂ A are derived in a similar manner. We introduce

X̂ A(ε, n) =
(

βA(ε, n) γ A(ε, n)
γ A(ε, n) βA(ε, n)

)
, ζ A(ε, n) =

{
βA(ε, n) for even n,

γ A(ε, n) for odd n,
ζ̃ A(ε, n) = ζ A

(
ε − neV

2
, n
)
. (A10)

Making use of Eq. (16) we can rewrite the equation −(X̂ A ◦ âA)(ε, n) = δn,0 in the form

1
2 ζ̃ A(ε, n)

{
gR
[
ε − (n − 1

2

)
eV
]+ gR

[
ε − (n + 1

2

)
eV
]}∗

+ 1
2 ζ̃ A(ε, n − 1)

{
f R
[
ε − (n − 1

2

)
eV
]}∗ + 1

2 ζ̃ A(ε, n + 1)
{

f R
[
ε − (n + 1

2

)
eV
]}∗ = δn,0. (A11)

Equation (A11) can again be expressed as T̂ ζ̂ A = δn,0 with

Tn,n = 1
2

{
gR
[
ε − (n + 1

2

)
eV
]+ gR

[
ε − (n − 1

2

)
eV
]}∗

,

Tn,n+1 = Tn+1,n = 1
2

{
f R
[
ε − (n + 1

2

)
eV
]}∗

. (A12)

The inversion procedure for tridiagonal and block tridiagonal matrices is outlined in Ref. [43]. Employing the theorem 2.3
from Ref. [43] one can explicitly evaluate the inverse of tridiagonal matrix T̂ , defined by Eq. (A9). To be more specific, let us
choose T̂nk with −N � n, k � N , i.e., we are now dealing with a (2N + 1) × (2N + 1) square matrix where N is large. Then,
employing the second Eq. (14), we set

gR
[
ε + eV

(−N − 1
2

)] = gR
[
ε + eV

(
N + 1

2

)] = 1. (A13)

All the other functions involved in the matrix elements are defined in Eqs. (A9). Making use of the theorem 2.3 from Ref. [43]
together with the first Eq. (14), we get

(T̂ −1)0,0 = 1, (T̂ −1)n,0 =
∏

n�k�−1

(
− f R

[
ε + eV

(
k + 1

2

)]
1 + gR

[
ε + eV

(
k + 1

2

)]), if n < 0

(T̂ −1)n,0 =
∏

0�k�n−1

(
− f R

[
ε + eV

(
k + 1

2

)]
1 + gR

[
ε + eV

(
k + 1

2

)]), if n > 0. (A14)

Introducing the notation (33), employing the multiplicative structure of Eqs. (A14) together with the relationship

{gR(ε + neV ) − g[ε + (n + 1)eV ]}ζ̃ R
(
ε + eV

2
, n
)

+ f R(ε + neV )ζ̃ R
(
ε + eV

2
, n − 1

)
− f R[ε + (n + 1)eV ]ζ̃ R

(
ε + eV

2
, n + 1

)
= −2 sgn n ζ̃ R

(
ε + eV

2
, n
)
, (A15)

from Eq. (29) we recover Eqs. (35) to (37).

APPENDIX B: SHAPIRO STEPS AT SMALL MICROWAVE SIGNALS

Employing the perturbative in α procedure outlined in Sec. VI A and making use of Eqs. (14) and (15), we arrive at general
expressions for Shapiro current steps δIk at ω = 2 keV which take the form

δIk = Re

{
πα

16eRN

∑
n,p,q

∫ ∞

−∞

dε

2π
(sign p − sign n)ζ̃ R(ε, q)ζ̃ A(ε, p)F̃ (ε, q)

× ζ̃ R[ε − (p + n)eV, n]Z ′
(
ε − (p − q + n)

eV

2
, p + q + n

)
+ πα

16eRN

∑
n,m

∫ ∞

−∞

dε

2π
ζ̃ R(ε − neV, n)Z ′

(
ε − (n − m)eV

2
, n + m

)˜̃F (ε, m)ζ̃ R(ε, m)
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+ πα

16eRN

∑
n,m

∫ ∞

−∞

dε

2π
sign n ζ̃ R

(
ε − (n + m)eV

2
, n

)
Z ′′(ε, n + m)ζ̃ A

(
ε + (n + m)eV

2
, m

)

− πα

4eRN

∑
n

∑
p+q=n

∫ ∞

−∞

dε

2π
Y ′
(

ε − (p − q)eV

2
, n

)
ζ̃ R(ε, q)ζ̃ A(ε, p)F̃ (ε, q)

+ πα

4eRN

∑
n

∫ ∞

−∞

dε

2π
Y ′′(ε, n)ζ̃ R

(
ε − neV

2
, n
)}

. (B1)

Here we defined

Z ′(ε, n + m) = {
gR
[
ε + (k − 1

2

)
eV
]+ gR

[
ε + ( 1

2 − k
)
eV
]− gR

[
ε + (k + 1

2

)
eV
]

− gR
[
ε − (k + 1

2

)
eV
]}

eiϑδ(2k − n − m) + [ f R(ε + keV ) + f R(ε − keV )]eiϑ

× [δ(2k − 1 − n − m) − δ(2k + 1 − n − m)] (B2)

and

Z ′′(ε, n + m) = {
gK
[
ε + (k − 1

2

)
eV
]+ gK

[
ε + ( 1

2 − k
)
eV
]− gK

[
ε + (k + 1

2

)
eV
]

− gK
[
ε − (k + 1

2

)
eV
]}

eiϑδ(2k − n − m) + [ f K (ε + keV ) + f K (ε − keV )]eiϑ

× [δ(2k − 1 − n − m) − δ(2k + 1 − n − m)]. (B3)

Similarly we defined

Y ′(ε, n) = {
gR
[
ε + (k + 1

2

)
eV
]+ gR

[
ε + (k − 1

2

)
eV
]− gR

[
ε − (k + 1

2

)
eV
]

− gR
[
ε − (k − 1

2

)
eV
]}

eiϑδ(2k − n) + [ f R(ε + keV ) + f R(ε − keV )]eiϑ

× [δ(2k + 1 − n) + δ(2k − 1 − n)] (B4)

and

Y ′′(ε, n) = {
gK
[
ε + (k + 1

2

)
eV
]+ gK

[
ε + (k − 1

2

)
eV
]− gK

[
ε − (k + 1

2

)
eV
]

− gK
[
ε − (k − 1

2

)
eV
]}

eiϑδ(2k − n) − [ f K (ε + keV ) + f K (ε − keV )]eiϑ

× [δ(2k + 1 − n) + δ(2k − 1 − n)]. (B5)

In addition, we employed the definitions

F̃ (x, q) = F1

(
x − eV

2

)
+ F2

(
x + eV

2

)
, if q > 0,

F̃ (x, q) = F1

(
x − eV

2

)
+ F1

(
x + eV

2

)
, if q = 0,

F̃ (x, q) = F1

(
x + eV

2

)
+ F2

(
x − eV

2

)
, if q < 0, (B6)

and

˜̃F (x, m) = F2

(
x + eV

2

)
− F1

(
x − eV

2

)
, if m > 0,

˜̃F (x, m) = F1

(
x + eV

2

)
− F1

(
x − eV

2

)
, if m = 0,

˜̃F (x, m) = F1

(
x + eV

2

)
− F2

(
x − eV

2

)
, if m < 0, (B7)

where

F1(x) = tanh
( x

2T

) 1 − |aR|2(x)

1 − (aR∗)2(x)
,

F2(x) = − tanh
( x

2T

)aR∗(x)

aR(x)

1 − |aR|2(x)

1 − (aR∗)2(x)
= −aR∗(x)

aR(x)
F1(x). (B8)
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The functions ζ̃ R,A were already introduced in Appendix A. They read

ζ̃ R
(
ε + eV

2
, l
)

=

⎧⎪⎨⎪⎩
(−1)l

∏
1�k�l aR(ε + eV k), if l > 0,

1, if l = 0,

(−1)l
∏

l+1�k�0 aR(ε + eV k), if l < 0,

(B9)

ζ̃ A
(
ε − eV

2
, l
)

=

⎧⎪⎨⎪⎩
(−1)l

∏
1�k�l aR∗(ε − eV k), if l > 0,

1, if l = 0,

(−1)l
∏

l+1�k�0 aR∗(ε − eV k), if l < 0.

(B10)

APPENDIX C: ARBITRARY MICROWAVE SIGNALS

Provided the phase ϕ(t ) is defined in Eq. (51), we may write

cos
ϕ(t ) − ϕ(t ′)

4
= 1

2
eieV (t−t ′ )/2

[ ∞∑
k,l=−∞

Jk+l

(α

2

)
Jk−l

(α

2

)
eikω(t−t ′ )+ilω(t+t ′ )

+
∞∑

k,l=−∞
Jk+l+1

(α

2

)
Jk−l

(α

2

)
ei(k+ 1

2 )ω(t−t ′ )+i(l+ 1
2 )ω(t+t ′ )

]
+ c.c. (C1)

Here the parameter α is not necessarily small. We also have

cos
ϕ(t ) + ϕ(t ′)

4
= 1

2
eiϑ+ieV (t+t ′ )/2

[ ∞∑
k,l=−∞

Jk+l

(α

2

)
Jk−l

(α

2

)
eikω(t+t ′ )+ilω(t−t ′ )

+
∞∑

k,l=−∞
Jk+l+1

(α

2

)
Jk−l

(α

2

)
ei(k+ 1

2 )ω(t+t ′ )+i(l+ 1
2 )ω(t−t ′ )

]
+ c.c. (C2)

Similarly to Eq. (A1) let us define

x(t, t ′) =
∞∑

n,m=−∞

∫
dε

2π
x(ε, n, m)e−iε(t−t ′ )e−ineV (t+t ′ )/2e−imω(t+t ′ )/2. (C3)

For the convolution z(t, t ′) = x(t, n, m) ◦ y(t, k, l ) we then have

z(ε, n + k, m + l ) = x

(
ε + keV

2
+ lω

2
, n, m

)
y
(
ε − neV

2
− mω

2
, k, l

)
. (C4)

The relationship defining the inverse matrix X̂ R can be expressed in the form

(âR ◦ X̂ R)(ε, n, m) = δn,0δm,0, (C5)

where for even and odd values of m we have, respectively,

âR(ε, n, m) = 1

2
δn,0

∑
k

Jk+ m
2

(α

2

)
Jk− m

2

(α

2

)[
gR
(
ε + eV

2
− kω

)
+ gR

(
ε − eV

2
− kω

)](1 0
0 1

)

+ 1

2
(δn,1e−iϑ + δn,−1eiϑ )

∑
l

J m
2 +l

(α

2

)
J m

2 −l

(α

2

)
f R(ε − lω)

(
0 1
1 0

)
, (C6)

and

âR(ε, n, m) = 1

2
δn,0

∑
k

Jk+ 1
2 + m

2

(α

2

)
Jk+ 1

2 − m
2

(α

2

)
×
{
−gR

[
ε + eV

2
−
(

k + 1

2

)
ω

]
+ gR

[
ε − eV

2
−
(

k + 1

2

)
ω

]}(
1 0
0 1

)
+ 1

2

(
δn,1e−iϑ − δn,−1eiϑ

)∑
l

J m
2 +l+ 1

2

(α

2

)
J m

2 −l− 1
2

(α

2

)
f R

[
ε −

(
l + 1

2

)
ω

](
0 1
1 0

)
. (C7)
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As before, we define

X̂ R(ε, n, m) =
(

βR(ε, n, m) γ R(ε, n, m)
γ R(ε, n, m) βR(ε, n, m)

)
, (C8)

where βR differs from zero for even n whereas γ R is nonzero for odd n. We again introduce

ζ R(ε, n, m) =
{
βR(ε, n, m) for even n,

γ R(ε, n, m) for odd n,
ζ̃ R(ε, n, l ) = ζ R

(
ε + neV

2
+ lω

2
, n, l

)
, (C9)

and compose the column

ζ̂ R(ε) =

⎛⎜⎜⎜⎜⎜⎝
...

ζ̃ R(ε, n − 1, . . .)
ζ̃ R(ε, n, . . .)

ζ̃ R(ε, n + 1, . . .)
...

⎞⎟⎟⎟⎟⎟⎠, (C10)

where the dots in ζ̃ R(ε, n, . . . , ) indicate that the index l is running in its range.
The system of equations (C5) can then be expressed in the form

T̂ ζ̂ R = δk,0δn,0, (C11)

where the matrix T̂ has the block tridiagonal structure

T̂ =

⎛⎜⎜⎜⎜⎝
D̂1 −eiϑ ÂT

2
−e−iϑ Â2 D̂2 −eiϑ ÂT

3
. . .

. . .
. . .

−e−iϑ ÂN−1 D̂N−1 −eiϑ ÂT
N

−e−iϑ ÂN D̂N

⎞⎟⎟⎟⎟⎠,

similar to that discussed in Ref. [43] and the indices k and n again correspond, respectively, to frequency and voltage harmonics.
The factors e±iϑ factors can be eliminated by means of a unitary transformation

T̂ = Û †T̂0Û , T̂0 =

⎛⎜⎜⎜⎜⎝
D̂1 −Â2

−Â2 D̂2 −Â3
. . .

. . .
. . .

−ÂN−1 D̂N−1 −ÂN

−ÂN D̂N

⎞⎟⎟⎟⎟⎠, (C12)

with Û being a diagonal unitary matrix with elements Unn = eiφn . Equation (C12) holds for φn+1 − φn = ϑ . Provided the
difference k − l is even, for the elements D[n]

kl (ε) of the matrix D̂n we get

D[n]
kl (ε)= 1

2

∞∑
s=−∞

Js+ k−l
2

(α

2

)
Js+ l−k

2

(α

2

){
gR

[
ε+
(

n+ 1

2

)
eV +

(
l + k

2
−s

)
ω

]
+ gR

[
ε+
(

n− 1

2

)
eV +

(
l + k

2
−s

)
ω

]}
, (C13)

whereas for odd values of k − l we obtain

D[n]
kl (ε) = 1

2

∞∑
s=−∞

Js+ 1+k−l
2

(α

2

)
Js+ 1+l−k

2

(α

2

){
gR

[
ε +

(
n − 1

2

)
eV +

(
l + k − 1

2
− s

)
ω

]

−gR

[
ε +

(
n + 1

2

)
eV +

(
l + k − 1

2
− s

)
ω

]}
. (C14)

The above equations indicate that the symmetry relation D[n]
kl (ε) = D[n]

lk (ε) is obeyed.
Likewise, the elements A[n]

kl (ε) of the matrix Ân, respectively, for even and odd values of the difference k − l read

A[n]
kl (ε) = −1

2

∑
s

J k−l
2 +s

(α

2

)
J k−l

2 −s

(α

2

)
f R

[
ε +

(
n − 1

2

)
eV +

(
l + k

2
− s

)
ω

]
(C15)

and

A[n]
kl (ε) = −1

2

∑
s

J k−l+1
2 +s

(α

2

)
J k−l−1

2 −s

(α

2

)
f R

[
ε +

(
n − 1

2

)
eV +

(
l + k − 1

2
− s

)
ω

]
. (C16)

These equations imply that the matrix A[n]
kl is symmetric for even k − l and antisymmetric for odd k − l .
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APPENDIX D: ESTIMATE FOR FRACTIONAL SHAPIRO STEPS

The matrix Q̌−1
0 ≡ X̌ defined in Eq. (32) can be identically rewritten as

X̌ = X̌0 +
∞∑

m=1

(−1)mX̌0(δǎX̌0)m. (D1)

Here X̌0 is the inverse matrix Q̌−1
0 evaluated for ǎ0 = δ(t − t ′) and δǎ = ǎ − ǎ0.

To illustrate the idea of our estimate let us consider one of the terms in Eq. (29), e.g., the term containing the combination
τ3X̂ Rτ3b̂K . One of the contributions to the current (proportional to δǎ) generated by this term takes the form [cf. the first term in
the square brackets in Eq. (C2)]

ieN
4

∫
dt ′ f K (t − t ′) f R(t ′ − t )eieV (t+t ′ )+iϑ

∞∑
p,l=−∞

Jp+l

(α

2

)
Jp−l

(α

2

)
eipω(t+t ′ )+ilω(t ′−t ). (D2)

Under the condition eV = −pω the dependence of the combination (D2) on t + t ′ drops out and it depends only on the time
difference t − t ′. Performing the Fourier transformation we receive the contributions containing the integrals

∼
∑

l

∫
dε

2π
f K (ε) f R(ε + lω). (D3)

It is easy to see that the main contribution to this sum is provided by the term with l = 0. To demonstrate that let us consider the
combination

ieN
4

∫ ∞

−∞

dε

2π
f K (ε)[ f R(ε) + f A(ε)] = ieN�2

4

∫ ∞

−∞

dε

2π
tanh

ε

2T
[R−2

+ (ε) − R−2
− (ε)], (D4)

entering into the expression for the current. Keeping track of a small imaginary part ±iγ in the expressions for
R±(ε) =

√
(ε ± iγ )2 − �2 and making use of the Sokhotski-Plemelj theorem, for the combination (D4) we obtain

eN�2
∫ ∞

−∞

dε

2π
tanh

ε

2T

γ ε

[(ε + iγ )2 − �2][(ε − iγ )2 − �2]
= eN�2

8

∫ ∞

−∞

dε

ε
tanh

ε

2T
[δ(ε + �) + δ(ε − �)]

= eN�

4
tanh

�

2T
∼ Ic. (D5)

Thus we observe that the main contribution to the integral with l = 0 in Eq. (D3) comes from ε = ±� since the expression under
this integral strongly peaked at these two values of ε. The terms with l �= 0 contain no such peaks, hence, their contributions are
smaller and can be safely neglected.

Substituting the estimate (D5) into Eq. (D2) and identifying n = −2p we arrive at the result for the magnitude of fractional
Shapiro steps δI 1

n
which occur at ω = ωJ/n with even n:

δI 1
n

∼ IcJ2
n/2(α/2). (D6)

Repeating the whole analysis with the second term in the square brackets of Eq. (C2) we recover the analogous estimate for
odd values of n:

δI 1
n

∼ IcJ(n+1)/2(α)J(n−1)/2(α/2). (D7)

Finally, we note that the above simple analysis includes only linear in δǎ terms in the formal series (D1). Hence, one may
expect that the estimates (D6) and (D7) should work reasonably well for α � 1 and may become less accurate for bigger values
of α.
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