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It has been shown that many seemingly contradictory experimental findings concerning the superconducting
state in Sr2RuO4 can be accounted for as resulting from the existence of an assumed tetracritical point at near-
ambient pressure at which dx2−y2 and gxy(x2−y2 ) superconducting states are degenerate. We perform both a Landau-
Ginzburg and a microscopic mean-field analysis of the effect of spatially varying strain on such a state. In the
presence of finite xy shear strain, the superconducting state consists of two possible symmetry-related time-
reversal symmetry (TRS) preserving states d ± g. However, at domain walls between two such regions, TRS
can be broken, resulting in a d + ig state. More generally, we find that various natural patterns of spatially
varying strain induce a rich variety of superconducting textures, including half-quantum fluxoids. These results
may resolve some of the apparent inconsistencies between the theoretical proposal and various experimental
observations, including the suggestive evidence of half-quantum vortices.
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I. INTRODUCTION

If it happens that superconducting (SC) orders with two
distinct symmetries are comparably favorable for some mi-
croscopic reason, it is possible to have a two-parameter phase
diagram (e.g., T and isotropic strain ε0) that exhibits a mul-
ticritical point (e.g., at ε = ε� and T = T �) at which the
transition temperatures Tc of the two different orders coincide,
as shown in Fig. 1(a). For instance, a change from s± to
d-wave pairing is thought to occur as a function of doping
in certain Fe-based superconductors [1], and it was recently
conjectured that the layered perovskite Sr2RuO4 (SRO) [2]
under ambient conditions is “accidentally” close to such a
multicritical point involving either dx2−y2 and g-wave [3] or
dxy and s-wave [4,5] pairing. Even though both orders by
themselves transform as one-dimensional irreducible repre-
sentations (irreps) of the point-group symmetries, near such
a multicritical point the system can exhibit a variety of fea-
tures usually associated with a multicomponent SC order that
transform according to a higher-dimensional irrep (e.g., a
p-wave). Conversely, for a SC order parameter that trans-
forms according to a two-dimensional (2D) irrep, the point
of zero shear-strain, εshear = 0, can be viewed as a special
case of such a multicritical point in the T -εshear plane, as
shown in Fig. 1(b). In both cases, the response of the different
components of the SC order parameter to specific compo-
nents of the strain tensor can produce a variety of novel
effects.

Specifically, the proximity of a multicritical point implies
that even small amplitude spatial variations of the strain field
can locally stabilize different distinct forms of superconduct-
ing order in different domains. In this paper, we treat the case
of a tetracritical point involving dx2−y2 (B1g) and gxy(x2−y2 )-

wave (A2g) pairing channels, where, as in Fig. 1(a), for the
uniform case the coexistence regime is a d + ig SC with spon-
taneously broken time-reversal-symmetry (TRS). We study
this problem in the mean-field approximation, both from
an effective field theory (Landau-Ginzburg/nonlinear sigma
model) and a microscopic perspective. Following a similar
line of reasoning as in Ref. [6] (where TRS breaking near
dislocations was investigated), we show that inhomogeneous
strain can lead to a highly inhomogeneous SC state in which
TRS breaking is strongly manifest only along a network of
domain walls separating regions in which the local strain
favors one or another TRS preserving combination of the d
and g order parameters. However, this only occurs when the
unstrained system is close enough to the tetracritical point—in
a sense that we make precise. We also show that appropriate
strain patterns can induce an order parameter texture with a
spontaneous fractional magnetic flux that equals a half super-
conducting flux quantum in under a range of circumstances.

The results we obtain are quite general as they follow
largely from symmetry considerations. As an application of
these ideas, we explore their implications for the still vexed
problem of settling the symmetry of the superconducting state
in SRO [2]. Here, there are a number of proposals, each of
which can plausibly account for a subset of the experimental
observations. Triplet pairing of any sort has seemingly been
ruled out by recent nuclear magnetic resonance (NMR) ex-
periments [7–9]. Moreover, recent ultra-sound measurements
[10,11], taken at face value, require a two-component order
parameter arising from the system in the absence of strain
being accidentally tuned to a multicritical point involving
dxy and s or dx2−y2 & g wave pairing. However, there are at
least two sets of phenomena that seemingly challenge these
theoretical proposals.
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(1) Below a critical temperature Ttrsb, the SC phase ap-
pears to break time-reversal symmetry [12–14] where at zero
shear strain Ttrsb ≈ Tc, while in the presence of substantial
B1g shear strain these two transitions are split, such that
Ttrsb < Tc. However, specific heat measurements under the
same circumstances show no signature of the TRS breaking
transition [15,16]. An additional constraint on theory is the
recent observation [17] that Tc can be depressed with the
application of hydrostatic pressure (i.e., compressive uniform
strain ε0 < 0) without producing a detectable splitting be-
tween Tc and Ttrsb—an observation that was declared to rule
out any theory based on an accidental degeneracy between two
symmetry-distinct superconducting orders.

(2) A somewhat complicated experiment on mesoscale
crystals adduced evidence of the existence of a topological ex-
citation capable of admitting a half-quantum of magnetic flux
[18]. This has been argued [19] to constitute direct evidence
that the SC state is a chiral p + ip state, despite the contrary
evidence from the NMR studies [7–9]. Although additional
evidence of half-quantum vortices has been recently reported
[20], it is still possible that there is an alternative explanation
for the observation that does not involve fractional vortices.
However, taking the result at face value presents us with the
need to identify a route to fractional vortices in a singlet SC.

In this context, our present results provide, as a matter of
principle, possible routes to reconcile both these observations
with the conjectured theoretical scenario.

(1) Despite the fact that the crystals involved in these
experiments are paragons of crystalline perfection, the only
plausible interpretation of the specific heat data is that the
TRS breaking involves a small fraction of the electronic de-
grees of freedom. This can be naturally accounted for by the
theoretically expected extreme sensitivity of the SC order to
local strain, and the fact that the TRS breaking d + ig order
arises only in a network of domain-wall-like regions at which
|ε0 − ε�| and |εshear| are vanishingly small. Moreover, so long
as the typical magnitude of the inhomogeneous strain is larger
than an applied strain, no significant splitting between Tc and
Ttrsb is expected.

(2) The fact that a half-quantum vortex can be the ground
state in the presence of a suitable strain texture similarly
opens the possibility that the experimental evidence of frac-
tional vortices in SRO is likewise consistent with the proposed
scenario.

II. GINZBURG-LANDAU THEORY

A. Setup

We consider a Ginzburg-Landau free energy density [3]
with order parameter (OP) fields �T = (D, G) in the presence
of an external magnetic field �B = �∇ × �A, given by

F = V2 + V4 + K + B2

2
,

V2 = α0�
†� + �†(α · τ)�,

V4 = 1

2
[�†�]2 + β1

2
[�†τ1�]2 + β3

2
[�†τ3�]2

+ β ′
3

2
[�†τ3�][�†�],

K = κ

2
|(−i �∇ − �A)�|2

+ κ ′

2
{[(i∂x − Ax )�†]τ1[(−i∂y − Ay)�] + c.c.}, (1)

where τ is the vector of Pauli matrices.
The complex scalar fields D, G are normalized so that the

stiffness constants are equal, i.e., κd = κg ≡ κ , and that quar-
tic isotropic coupling constant β0 = 1. We used units such that
the Cooper pair charge 2e = 1. The quantity α = (α1, 0, α3)
represents the effect of local strain as a two-component vec-
tor, where α3 = α3(x, y) is proportional to the deviation of
the isotropic (A1g) strain from its critical value ε�

0 and α1 =
α1(x, y) is proportional to the shear (B2g, i.e., xy) strain. The
free energy at �A = �0 respects TRS, has a U (1) symmetry
associated with the overall superconducting phase and, for
α1 = 0, a D4h point-group symmetry that involves both space
and the order parameters. For example, under a rotation by
π/2, x → y and y → −x, D → −D and G → G. The quartic
terms determine the favored form of the ordered state: β3 > 0
favors coexistence of nonzero d and g pairing and β1 > 0
favors the TRS breaking combinations d ± ig. The micro-
scopic Bogoliubov–de Gennes (BdG) calculations reported in
Sec. III A yield β1 & β3 > 0.

B. Nonlinear sigma model

In the special case, α j = β j = 0 for all j > 0 and β ′
3 =

0, κ ′ = 0, the free energy has a global SU (2) symmetry that
relates the two components of the order parameter. Not too
close to Tc, and to the extent that this symmetry is not too
strongly broken, the variations of the magnitude of the order
parameter are unimportant. This allows us to associate the
relevant order parameter values with a point on a Bloch sphere
n̂ ∈ S2 via the isomorphism between CP 1 and S3/U (1), i.e.,

� = |�|eiχZ,

Z =
[

cos
(

θ
2

)
e−iφ/2

sin
(

θ
2

)
e+iφ/2

]
,

ni = Z†τiZ. (2)

Here, defining χd and χg to be the phases of D and G respec-
tively, χ = 1

2 [χd + χg] and φ = [χg − χd ] are the overall and
relative SC phases and θ = 2 arctan[|G|/|D|]. Note that OPs
� which differ only by their global phases χ are mapped onto
the same point on the Bloch sphere.

More generally, to the extent that it is possible to ignore
variations in the magnitude of �, the problem reduces to a
nonlinear sigma model with a weakly broken U (1) × SO(3)
symmetry, derived in Appendix A

F = Kκ + Kκ ′ + Kn̂

+ V0(|�|) + α̃ · n̂ + β̃1

2
[n1]2 + β̃3

2
[n3]2 + . . . ,

Kκ = κ̃

2
| �∇χ + �a − �A|2,

Kκ ′ = κ̃ ′n1

∏
μ=x,y

[
∂μχ + aμ − [n̂ × ∂μn̂]1

2n1
− Aμ

]
,
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Kn̂ = κ̃

2

∣∣∣∣ �∇n̂
2

∣∣∣∣
2

+ κ̃ ′n1

{
[n̂ × ∂xn̂]1

2n1

[n̂ × ∂yn̂]1

2n1
− ∂xn̂

2
· ∂yn̂

2

}
, (3)

where [n̂ × ∂μn̂]1 = n2∂μn3 − n3∂μn2 is the first component
of the vector n̂ × ∂μn̂, while κ̃ ≡ |�|2κ , α̃ ≡ |�|2〈α1, 0, α3 +
β ′

3|�|2〉, β̃ j ≡ |�|4β j , and . . . signifies terms that would come
from higher-order terms in the Ginzburg-Landau theory. Im-
portantly, �a is the Berry connection associated with the motion
of n̂ on the Bloch sphere

�a ≡ Z†

(
1

i
�∇Z

)
. (4)

The corresponding Berry curvature is related to the Pontrya-
gin density

�∇ × �a = 1
2εμν[n̂ · (∂μn̂ × ∂ν n̂)]. (5)

C. Ground state

Let us first determine the ground state of a system in the
presence of a uniform strain vector α using the Ginzburg-
Landau free energy (1). For calculational convenience, we will
consider the case β ′

3 = 0 and β1 = β3 = β > 0 [in which case
the free energy is invariant under a U (1) symmetry associated
with rotations of n̂ around n2]. The general case is analyzed in
Appendix B.

The potential term V of the Ginzburg-Landau free energy
can be rewritten as a sum of two terms

V2 = −|�|2(α0 + α · m),

V4 = 1
2 |�|4(1 + βm2), (6)

where m is the projection of the normalized vector n̂ onto the
ê1-ê3 plane and m ≡ |m| =

√
n2

1 + n2
3, where n j ≡ n̂ · ê j . The

potential is minimized when m points in the same direction as
α so that the potential term is given by

V = −|�|2(α0 + αm) + 1
2 |�|4(1 + βm2), (7)

where α ≡ |α|. Since 0 � m � 1, the values of |�| and m that
minimize V are uniquely determined for α0 � α/β � 0,

|�|2 = α0, m = α

βα0
, (8)

which corresponds to two distinct values n̂ (related by time-
reversal symmetry) with n2 = ±√

1 − m2. For α/β > α0 �
−α, we have

|�|2 = α0 + α

1 + β
, m = 1, (9)

so that n2 = 0. Finally, |�| = 0 for α < −α0. Henceforth, we
restrict our attention to the case α0 > 0 so |�| > 0 and that
the nature of the ground state is determined by the value of
α/βα0.

In the limit of small strain α � βα0 so that m ∼ 0, n̂ points
in the ±ê2 direction, which corresponds to a TRSB d ± ig
state. Conversely, if α � βα0 so that m = 1, the Bloch vector
n̂ points in the same direction as α as denoted by the solid
black dot in Fig. 2. This corresponds to a TRS preserving state

FIG. 1. (a) Schematic phase diagram as a function of two
parameters—taken here to be isotropic strain (ε0) and T , in the neigh-
borhood of a tetracritical point at which the transition temperatures
to SC states with d-wave (i.e., B1g) and g-wave (i.e., A2g) coincide.
(b) A similar schematic phase diagram—now where the x-axis sig-
nifies symmetry breaking shear strain, εshear—for a system which at
zero strain favors a SC order parameter the transforms according to
a two-dimensional irrep., px and py (i.e., Eu symmetry). All figures
are colored in the online version.

determined by the local strain. From now on, when we discuss
a situation in which the strain is nonzero, we shall implicitly
assume that α � βα0 and thus the uniform ground state is as
in Eq. (9).

D. Domain walls

We now consider the behavior of the order parameter �

in the presence of spatially varying strain. As it simplifies
the analysis, we will do this in the context of the nonlinear
sigma model (3). To begin with, we consider a domain wall
separating a region at y < 0 in which the shear strain favors
d − g pairing (α1 < 0) from a region at y > 0 that favors

FIG. 2. Domain walls. The figure is the Bloch sphere represen-
tation of possible transitions across the domain wall where α1(y) →
±α1 as y → ±∞, and α3(y) ≡ α3 > 0 is constant. The dashed blue
arrow represents a TRS preserving transition through a pure d state.
The solid green arrow represents a general TRSB transition restricted
to a 2D plane intersecting the Bloch sphere, the angle of which
relative to the ê1-ê3 plane is denoted by ω. In particular, if ω = π/2,
then only the relative phase φ changes from φ = π → 0. All figures
are colored in the online version.
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d + g (α1 > 0). We consider the system to be translationally
invariant in the directions parallel to the domain wall.

Far from the domain wall, the relative phase φ(y) and am-
plitudes are determined by the strain. Thus, at long distances,
the only property of the order parameter texture that can
depend on the nature of the domain wall is the change in the
global phase δχ . If we choose the global phase such that the
order parameter is real at y → −∞, across the domain wall
the order parameter must change from d − g to eiδχ (d + g).

If TRS is preserved everywhere (i.e., if the order parameter
can be chosen to be real), then the only possible values of δχ

are 0 and π . Any other value of δχ requires TRSB on the
domain wall, which consequently means that there must be
two symmetry-related optimal values ±δχ .

Below we discuss the derivation of δχ in several cases.
This is done by minimizing the free energy in Eq. (3) in the
presence of a given strain texture. To be concrete, we will
consider the case in which α3(y) = α3 is a constant and α1(y)
changes sign across the domain wall such that α1(y) → ±α1
as y → ±∞ with α > βα0 [21]. The result can be expressed
as a trajectory on the Bloch sphere, as shown in Fig. 2, where
the arrow indicates the direction of evolution as y varies from
−∞ to +∞.

To begin with, consider some general results that follow
without explicit calculation.

(1) Away from the multicritical point: Consider the case in
which α3 > βα0. In this case, |D| is everywhere larger than
|G| and even at the “center” of the domain wall, defined as
the point y = 0 where α1(0) = 0, there is no local tendency
to TRSB. The optimal order parameter texture lies in the
ê1-ê3 plane—as indicated by the dashed blue trajectory in
Fig. 2. Here the G component of the order parameter van-
ishes at y = 0 and is negative on one side and positive on
the other. Obviously, the analogous considerations apply for
α3 < −βα0, with the role of D and G interchanged. In this
case, TRS is preserved everywhere and δχ = π .

(2) Broad domain wall near the multicritical point: If
|α3| < βα0, then near the center of the domain wall, the lo-
cal terms in the free energy favor a TRSB solution d ± ig.
Moreover, if the strain fields vary slowly on the scale of the
superconducting coherence length, then the order parameter
will be well approximated by the uniform state corresponding
to the local value of the strain. Thus, the order parameter
texture is not confined to the ê1-ê3 plane, as shown by the solid
green trajectory. This implies that both components of the or-
der parameter remain nonzero everywhere, and thus that δφ =
δχg − δχd = ±π . However, how much of this phase change
is accommodated by changing the phase of D or G depends on
energetics; if the D wave order is everywhere dominant, then
δχd ≈ 0 and hence δχ ≈ π/2, while if the D and G are of
nearly equal strength, then |δχg| ≈ |δχg| and hence δχ ≈ 0.
Clearly, for intermediate cases, 0 < |δχ | < π/2.

(3) Narrow domain wall near the multicritical point: Here,
the nature of the solution depends on a host of microscopic
details. Since “narrow” and “broad” refer to the width of the
domain wall relative to the superconducting coherence length,
and given that the superconducting coherence length diverges
as T → Tc, at least near Tc this is likely the most physically
relevant situation. We will thus treat this case more explicitly
below.

0 4

α1/βα0

0.0

−0.1

−0.2

−0.3

δχ
/π α3/βα0

0.20

0.60

0.65

1.00

FIG. 3. Global phase. The change δχ in the global phase across
a narrow domain wall where the xy component of the strain α1 is dis-
continuous. The domain wall is characterized by α1(y) = α1sign(y),
while α3(y) = α3 is constant. δχ is shown as a function of α1/βα0.
The different curves correspond to different fixed values of the uni-
form component of the strain, α3/βα0. All figures are colored in the
online version.

As an explicit model of a narrow domain wall, let α1(�r) =
α1sign(y) where α1 > 0 and α3(�r) ≡ α3 � 0 be a constant.
We consider paths in which as y goes from −∞ to ∞, n̂(y)
follows a trajectory that lies in a plane ω intersecting the
Bloch sphere—of the sorts illustrated by the different colored
paths in Fig. 2. When this plane is perpendicular to ê2, TRS is
preserved (dashed blue line) while all other trajectories break
TRS. A more complete solution of the problem does not result
in qualitative changes in the conclusions. With these sim-
plifications, the domain wall energies �F can be computed
analytically (see Appendix C).

We can then find the plane ω with minimum domain wall
energy for each set of values α1, α3 and compute the cor-
responding change in global phase δχ , as shown in Fig. 3.
For α3 � βα0 (i.e., away from the multicritical point), TRS
is preserved everywhere, such that δχ = 0. Conversely, if
α3 < βα0, (near the multicritical point), TRS breaking near
the domain wall is possible, yielding 0 < |δχ | < π/2.

E. Topological point defects

The domain walls we discussed are natural strain patterns
that are plausibly generic in real materials. In addition, be-
cause there are two components of the strain-dependent vector
α, one can also conceive of vortex-like defects with point-like
cores in two dimensions or line-like cores in three dimensions.
Here, we consider a pattern of strain such that along any path
encircling the origin, α(�r) rotates by 2π . Given such a strain
pattern, we can use the nonlinear sigma model to explore the
properties of the resulting SC order parameter texture that
results.

1. Vorticity and associated flux

Far from the defect core, the form of the SC order pa-
rameter (up to its overall phase) is essentially determined by
the local pattern of strain. Regardless the SC order parameter
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texture, the current density �J = −δF/δ �A can be computed
exactly from the nonlinear sigma model (3) since variations in
magnitude |�| do not couple to the vector potential �A. From
this it follows that

Jx = κ̃[∂xχ + ax − Ax]

+ κ̃ ′n1

[
∂yχ + ay − [n̂ × ∂yn̂]1

2n1
− Ay

]
(10)

and similarly for Jy. Far from the core under most circum-
stances �J → �0; indeed, beyond a London penetration depth it
vanishes exponentially. Thus, we can invert Eq. (10) to obtain
an expression for �A in terms of the SC order parameter texture
valid wherever �J is negligible. Then, by integrating the vector
potential �A along a contour C that encloses the origin at a
distance, we obtain an expression (modulo an additive integer)
for the enclosed flux � in units of the superconducting flux
quantum �0 = h/2e:

�

�0
= �

4π
− κ ′

4π

∮
C

[n̂ × ∂μn̂]1Tμν drν,

T =
[
κ ′n1 κ

κ κ ′n1

]−1

, (11)

where � is the solid angle enclosed by the contour of n̂ on the
Bloch sphere.

Note that when [n̂ × ∂μn̂]1 = 0 along C, the second term
vanishes and thus the flux quantum captured is expressed
entirely in terms of the Berry phase �/4π . In particular, since
strain stabilizes a TRS preserving state, we will typically be
interested in situations in which n̂ · ê2 = 0 far from the defect
core, insuring that this condition is satisfied. In this case,
whenever n̂ follows a trajectory that encircles the origin [as
in Fig. 4(b)], there must be an associated half-flux quantum of
flux bound to the defect.

2. Example of a strain-induced half-quantum fluxoid

We now consider an explicit version of such a strain texture
[Fig. 4(a)], consisting of four domains separated by domain
walls that intersect at the origin. Thus, we take α3(x, y) =
α3F3(x) and α1(x, y) = α1F1(y), where Fj (r) = −Fj (−r), and
Fj (r) → 1 as r → ∞. We further assume that α j > βα0, i.e.,
far away from the origin we are in the large strain regime
where the preferred order parameter is set by the strain and
TRS is preserved. As indicated by the labels, the D component
is enhanced compared the G component for x > 0. For x < 0,
the G component is favored. The combination d + g is favored
for y > 0, while d − g is favored for y < 0.

Let us now consider a closed path C encircling the origin
[Fig. 4(a)], where the preferred SC state (up to the global
phase) is denoted in each quadrant, e.g., D + g denotes a
TRS preserving SC state with dominant D component. Since
the contour C is far away from the origin, the domain walls
between quadrants are narrow, and the strain is always suffi-
ciently large such that TRS breaking is never favored locally.
Figure 4(b) shows the trajectory of the order parameter on
the Bloch sphere, in which each segment of the contour is
color/style- coded to correspond to that in the top diagram.
We then see that the OP � wraps around by 2π while being

(a)

(b)

FIG. 4. A strain induced half quantum fluxoid. (a) Real-space
contour around a topological point defect, along which the strain
vector α winds by 2π . The dashed cross shows the location of
a π mismatch in the phase of the order parameter. D + g in the
x > 0, y > 0 quadrant represents order parameter with a dominant
D component and a smaller G component, and similarly in the other
quadrants. (b) Corresponding trajectory of the order superconducting
order parameter along the Bloch sphere. TRS is preserved along the
path. Each segment of the contour is color/style-coded so that the
same colors/line styles in the bottom and top figure correspond to
each other. All figures are colored in the online version.

confined to the ê1-ê3 plane and thus [n̂ × ∂μn̂]1 = 0 along the
contour. Eq. (11) thus implies that this strain texture captures
a half quantum of flux.

At an intuitive level, the same conclusion can be reached
by considering the nature of the order parameter texture along
the various line segments in Fig. 4(a). Since it is energetically
favorable to keep the dominant piece of the SC order parame-
ter uniform, the overall phase (δχ ) is constant along any of
the segments other than the red one (dashed cross), along
which the dominant portion of the order parameter changes
sign, favoring δχ = π . Of course, this change in phase will
in actuality be spread out along the entire path, but this argu-
ment captures the π phase mismatch along the close path that
results in a half-quantum vortex.
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III. MICROSCOPIC ANALYSIS

We now address these same issues from a more mi-
croscopic perspective in the context of Bardeen-Cooper-
Schrieffer (BCS) mean-field theory. Specifically, we solve
the self-consistency equations for a generic 2D Hamiltonian
with attractive d- and g-wave interactions, and with spatially
varying band-structure parameters that encode the same pat-
terns of spatially varying strain discussed above.

Let the full Hamiltonian Hfull = H0 + H1 be defined on a
2D square lattice. The free Hamiltonian H0 is characterized
by the (single-band) TRS-preserving hopping matrix t so that

H0 = −
∑
�r′,�r,s

[t (�r′, �r) + μ]c†
�r′sc�rs (12)

and the attractive (pairing) interaction term H1, assumed to be
spatially uniform, is

H1 = −
∑

τ=d,g

λτ

∑
�r

P†
τ (�r)Pτ (�r),

P†
τ (�r) =

∑
�r′,s,s′

fτ (�r′ − �r)c†
�r′s′ [iσ2]s′sc

†
�rs, (13)

where λτ > 0 with τ = d or g encodes the strength of the
interaction in the designated symmetry channels. Here fτ
are TRS preserving form factors that transform according to
the requisite distinct irreducible representations of the point-
group symmetry

fd (�r) = 1

4
δ(r = 1)[x2 − y2],

fg(�r) = 3
√

3

32
δ(r =

√
5)[xy(x2 − y2)], (14)

where the factor of the Kronicker-δ in each expression is
1 when �r connects, respectively, first and fourth nearest-
neighbor sites. The hopping matrix elements can likewise be
expressed in terms of these and the local strain as

t (�r + �r′, �r) = δ(r′ = 1) + tδ(r′ =
√

2)

+ gs(�r) � fs(�r′) + gd ′ (�r) � fd ′ (�r′), (15)

where gs(�r) and gd ′ (�r) parametrize, respectively, the spa-
tial profile of the isotropic and shear strain, and � is the
symmetrization of the product term, e.g., gs(�r) � fs(�r′) ≡
1
2 [gs(�r) + gs(�r + �r′)] fs(�r′). Here, fs(�r) and fd ′ (�r) are form
factors with isotropic and shear [xy] symmetry of the under-
lying lattice, which we take to be

fs(�r) = δ(r = 2), fd ′ (�r) = δ(r =
√

2)[xy]. (16)

We construct a mean-field BCS trial Hamiltonian H , given
by

H =
∑
�r′,�r,s

T (�r, �r)c†
�rsc�rs +

∑
�r′,�r

[�(�r′, �r)c†
�r′↑c†

�r↓ + H.c.]. (17)

The full self-consistency field equations (SCFs) can then be
derived by extremizing the resulting variational free energy
in the standard fashion—details are given in Appendix D. It
should be noted that in order to guarantee that the results
satisfy the equation of continuity, i.e., �∇ · �J = 0, it is generally

(a)

(b)

FIG. 5. (a) Phase diagram of the microscopic Hamiltonian,
Eqs. (12) and (13), as a function of the interaction strengths λd , λg,
calculated within self-consistent mean-field theory, in the absence
of strain. Near degeneracy λd ∼ λg, the middle portion denotes the
TRSB d + ig state, while the bottom and top regions represent a pure
d and pure g state, respectively. Three representative points (I, II,
III), one in each phase, are used in further calculations. (b) The top
two panels depict the evolution of the uniform state at point (I) with
shear gd ′ and isotropic gs strain. The solid line represents the relative
phase φ given by the left y-axis, while the dashed lines represent the
amplitudes |D|, |G|, given by the right y-axis. Similarly, the bottom
two panels represent the evolution of the uniform state for sample
points (II) and (III) under shear gd ′ strain. All figures are colored in
the online version.

insufficient to only solve the SCFs for the gap function—
both T and � must be determined self-consistently (see
Appendix E for a proof).

A. Uniform states

To begin with, we study the uniform case tuned close to
the multicritical point. In Fig. 5(a) we show the mean-field
ground-state phase diagram of the microscopic model defined
above as a function of the pairing interactions, λd and λd , in
the absence of “strain” (i.e., for gs = gd ′ = 0), for t = 0.4 and
for the chemical μ chosen so that the mean electron density
per site is n ≈ 0.3. There are three distinct phases in this case:
a pure d wave phase for λd sufficiently larger than λg, a pure
g wave phase for sufficiently large λd , and a relatively narrow
coexistence phase centered at the line λd = λg. The later phase
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has a relative phase φ = ±π/2, i.e., it is a d ± ig phase, for
all parameters studied here.

To illustrate the effect of shear strain, we chose representa-
tive points in the phase diagram indicated by the three points
in Fig. 5(a), and explore the evolution of the ground-state
order upon application of uniform strain, i.e., nonzero gd ′

or gs. Shown in Fig. 5(b) are the magnitude of the d and g
components of the order parameter, |D| and |G|, as well as the
relative phase, φ, for these three cases as follows.

(1) The top two panels of Fig. 5(b) show the evolution with
strain of the case in which we are most interested—the strain-
free ground state has d ± ig pairing. As the shear strain gd ′ is
varied, |D| and |G| remain comparable, although both increase
slightly, roughly in proportion to |gd ′ |2—which is a density
of states effect. More dramatically, the relative phase evolves
smoothly, up to a critical value at which TRS is restored, i.e.,
where φ reaches either 0 or π , which marks the point of a
transition to d + g or d − g pairing, respectively. In contrast,
as a function of the isotropic strain gs, the evolution from the
d + ig state to a pure g or pure d state involves a change of
the relative amplitudes |D| and |G|, while the relative phase
φ = ±π/2 remains constant.

(2) The lower two of Fig. 5(b) represent the shear strain
evolution under conditions in which at zero strain either the d
or g component is absent. In both cases, the component that is
dominant at zero strain remains dominant; indeed, its overall
magnitude increases in much the same way as in the top panel.
As required by symmetry, the component that vanished in the
absence of strain exhibits an initial linear increase in magni-
tude with increasing strain. However, in this case, the relative
phase is a discontinuous function of strain; the ground-state
always preserves TRS and jumps from being d + g to d − g
as the sign of the strain changes.

We relate these results to the Ginzburg-Landau theory as
follows: In the absence of strain, the system is tuned to the
tricritical condition α1 ≈ α3 ≈ 0 when λd ≈ λg. Moreover,
since the system exhibits d + ig order in this case, the req-
uisite inequalities β1 > 0, β3 > 0 are automatically satisfied.
The shear strain can be identified with α1 ∝ gd ′ . Conversely,
even relatively small values of |λd − λg|/|λd + λg| > 0.1 are
enough to produce a sufficiently large value of α3 such
that even at T = 0, |α| > β/|α0|. Also notice that we have
taken relatively strong interactions; this condition becomes
exponentially more restrictive the weaker the overall cou-
pling |λd + λg|. The extent to which the system needs to be
“fine-tuned” near to the tetracritical point is quantified as the
narrowness of this coexistence phase in the zero-temperature
phase diagram.

B. Domain walls

We next address the domain wall behavior for a system
near and away from the multicritical point. To circumvent
the difficulty of large coherence lengths at small interaction
strength, we use large interaction strengths λd = 3.2 and λg =
4.9, chosen such that in the absence of strain, the uniform
system is near the multicritical point, i.e., in a d + ig state.
We then introduce an x-dependent shear strain with a domain
wall along the y-axis, along which the system is translationally

FIG. 6. Domain walls. The top panel shows the behavior of the
SC order parameter across a domain wall at which the shear strain
gd ′ (x) changes sign when the system is detuned from the multicritical
point such that gs(x) = 0.3. The bottom panel shows the same sort of
domain wall for a system near the multicritical point so that gs(x) =
0. The spatial variation of gd ′ , shown in the mini-plot, is of the form
gd ′ (x) = 0.4 tanh(x/l ) where l = 5 and |x| � L = 50. The solid line
represents the relative phase φ with values given by the left y-axis,
while the dashed lines are the amplitudes of the D and G components
with values given by the right y-axis. All figures are colored in the
online version.

invariant. As a specific example, we take gd ′ = 0.4 tanh(x/l )
where l = 5 and |x| � L = 50. We take gs(x) to be constant.

Figure 6 (top) shows the profiles of the order parameters
and relative phase φ as a function of x in the case gs = 0,
i.e., near the multicritical point. φ twists through π/2 passing
through the domain wall, indicating the TRS is broken there.
Figure 6 (bottom) shows a TRS preserving domain wall for
gs = 0.3, i.e., away from the multicritical point.

C. Half-quantum vortex

Finally, to construct a tractable situation in which the
previously discussed phenomenological analysis leads to a
half-quantum vortex, we consider the previous system on an
infinite cylinder with periodic boundary conditions in the x-
direction and translational invariance along the y-direction.
The circumference of the cylinder (in the x-direction) is 400
sites. We then vary the microscopic terms [gs(x) and gd ′ (x)]
corresponding the evolution of α1 and α3 shown in Fig. 4.
Solving the full SCF equations, we obtain D(x) and G(x) as
shown in Fig. 7.

The results corroborate the expected behavior from the
Ginzburg-Landau theory. Notice that the x-labels on top of
Fig. 7(a) indicate the expected state at each position along
the contour. Most importantly, the relative phase φ winds by
2π around the cylinder, from which it follows that δχ = π .
This result is translated into a trajectory on the Bloch sphere
in Fig. 7(b). Note that the trajectory of the order parameter is
close to the ê1-ê3 plane, but deviates from it somewhat in parts
of the trajectory, indicating that TRS is broken in certain re-
gions along the path. Correspondingly, in this calculation, we
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(a)

(b)

FIG. 7. Half-quantum vortex pinned by strain texture. (a) The be-
havior of the OP � = (D, G) as a function of x. The two components
of the strain, gs(x) ∝ α3 and gd ′ (x) ∝ α1, are shown on the right.
The domain walls are of the form ± tanh(x/l ) with l = 5, and the
cylinder’s circumference is 400 sites. The solid line represents the
relative phase φ given by the left vertical axis, while the dashed lines
represent that amplitudes |D| and |G| (right vertical axis). The bottom
horizontal axis represents the x position, while the top horizontal axis
is labeled with the uniform state corresponding to the given strain
texture at that position. (b) Trajectory of the OP � = (D, G) pro-
jected onto the unit Bloch sphere. The arrow represent the direction
of the contour. The gray circle line emphasizes the ê1-ê3 plane. All
figures are colored in the online version.

expect the flux induced by the strain pattern to deviate slightly
from �0/2 [see Eq. (11) and the discussion that follows].

IV. CONCLUSION

In this paper we primarily explored the effect of inhomoge-
neous strain on the superconducting OP textures of a system
tuned close to a tetracritical point at which two different
superconducting components have equal Tc’s. Such a tetracrit-
ical point can arise due to symmetry—when in the absence of
strain the two components form a two-dimensional irreducible
representation of the point group symmetries. However, we
have primarily focused on the case in which the tetracritical
point arises from tuning a symmetry preserving parameter
near to a critical value—a situation that might arise acciden-
tally in a small subset of superconducting materials.

In this situation, even relatively small local strain can
readily detune the system from the tetracritical condition
sufficiently that a single component OP is locally favored.

However, if on average the system is near enough to this
critical value, it is also natural to find domain walls between
regions of different dominant strain in which the system is
approximately tetracritical. This, in turn, can lead to TRS
breaking on such domain walls, and thus to a state which
globally breaks TRS but in which the symmetry breaking is
locally significant only on a network of such domain walls.
We also showed that appropriate patterns of inhomogeneous
strain can bind a half-quantum vortex.

These results may have interesting implications for a num-
ber of materials that show evidence for either an exact or a
near-degeneracy of two SC orders, including UPt3 [22–24],
URu2Si2 [25,26], UTe2 [27], doped Bi2Se3 [28,29], certain
Fe-based superconductors [30–32], and of course SRO. Most
importantly, such a near degeneracy necessarily implies an
enhanced sensitivity to variations in local strain, which can
lead to a variety of otherwise unexpected behaviors. Note,
however, that half-quantum vortices and other topological
defects can also arise as dynamical excitations in multicom-
ponent superconductors in the absence of any strain effects
[33–39].

It is worth noting that while our results are quite gen-
eral, they are obtained within mean-field theory, and neglect
thermal fluctuations of the superconducting order parameter.
These can lead to interesting effects close to the Tc in multi-
component superconductors [40–43].

This study was undertaken with the SC state of SRO
in mind. It is well established that the SC state is highly
strain-sensitive. There are also a variety of experimental
observations—ultra-sound anomalies key among them—that
are most naturally consistent with an assumed near degen-
eracy between a d and g wave SC component. However, a
variety of other experimental results appear, at first, difficult to
reconcile with this scenario [14,17,18,44]. The present results
suggest a route to understanding some of these additional
observations. This includes a suppressed thermodynamic sig-
nature of the TRS breaking transition and the possibility of
half-quantum vortices, even though some aspects of the actual
experiment [18]—for instance the dependence on an in-plane
field—still need be addressed.

As mentioned in the Introduction, a key issue concerns the
strain-induced splitting between the SC and the TRS breaking
transitions. It has been found that x2 − y2 (B1g) shear strain
can produce a significant increase in Tc, with a small decrease
in Ttrsb [15]—i.e., a split transition—while hydrostatic pres-
sure (which produces A1g strain) can produce a pronounced
depression of Tc but no detectable splitting of the transition
[17]. These observations are trivially accounted for if one
assumes that α3 has a strong (albeit quadratic) dependence
on shear strain but only weakly dependent on isotropic strain
while α0 depends on both components of the strain.

How stringent a condition this places on the isotropic strain
dependence of α3 depends on the magnitude and character of
the strain inhomogeneities, i.e., the width of the SC transition.
To the extent that we can ignore the effect of xy (B2g) shear
strain (i.e., for α1 ≈ 0), it follows that so long as there are
regions of d and regions of g wave SC, there must be domain
walls between them at which TRS breaking can arise. Thus, a
spilt transition will be apparent only when the mean value of
α3 is greater than its variance.
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The present considerations are encouraging in the sense
that they illustrate a plausible explanation of a set of previ-
ously puzzling experiments in SRO. However, it is important
to reiterate that this analysis sheds no insight of what is prob-
ably the most vexing aspect of the proposed scenario: why
are these two symmetry distinct forms of SC order nearly
degenerate with one another without need of any fine-tuning?
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APPENDIX A: DERIVATION OF NONLINEAR
SIGMA MODEL

Here, we review an efficient method of deriving the non-
linear sigma model in Eq. (3). Suppose that the OP � = �(q)
depends smoothly on parameter q. Then its change �(q) →
�(q + δq) can be expressed as an infinitesimal rotation along
with a change in the Berry phase γ , i.e.,

�(q + δq) = eiδγU (q)δq�(q), (A1)

where U (q)δq ≡ exp[−iH (q)δq] ∈ SU (2) is the infinitesimal
rotation with

H (q)δq = 1
2 (n̂ × δn̂) · τ. (A2)

Therefore, we can write

(−i∂μ − Aμ)� = (∂μχ + aμ − Aμ − Hμ)�, (A3)

Hμ = 1
2 (n̂ × ∂μn̂) · τ. (A4)

Using the (anti)commutation relations of the Pauli matrices,
we can then efficiently derive the nonlinear sigma model, e.g.,

�†H2
μ� = |�|2

2
tr
[
H2

μ(τ0 + n̂ · τ)
]

(A5)

= |�|2
∣∣∣∣∂μn̂

2

∣∣∣∣
2

. (A6)

Similarly, we have

�†Hμ� = 0, (A7)

Re[�†Hxτ1Hy�] = −n1

(
∂xn̂
2

· ∂yn̂
2

)
, (A8)

Re[�†Hμτ1�] = 1

2
[n̂ × ∂xn̂]1. (A9)

APPENDIX B: GENERAL GROUND STATE

Here, we present the exact solution of the ground state of
the general Ginzburg-Landau free energy in the presence of
a uniform strain vector α. To provide a more intuitive picture
of the general ground state, this section first treats the less
restrictive case where β1 �= β3 but β ′

3 = 0. We then present
the ground state in full generality.

It should be noted, however, that the uniform ground state
does not depend on the kinetic terms K and thus we can
always renormalize D, G so that β ′

3 = 0.

1. β1 �= β3 and β′
3 = 0

In the case where β1 �= β3 are positive and β ′
3 = 0, the

potential term of the Ginzburg-Landau free energy can be
rewritten as

V2 = −|�|2(α0 + α1n1 + α3n3), (B1)

V4 = 1
2 |�|4(1 + β1[n1]2 + β3[n3]2), (B2)

where n̂ is the Bloch vector corresponding to the OP �. It
is then clear that the potential V is a strongly joint-convex
function of |�|2, |�|2n3, and |�|2n1. Therefore, convex op-
timization guarantees that the ground state of the uniform
system is unique and given by

|�|2 = α0, ni = αi

βiα0
. (B3)

Provided that [n1]2 + [n3]2 � 1. Conversely, in the case where
the above solution is not feasible, i.e., [n1]2 + [n3]2 > 1, the
unique ground state is given by

|�|2 = α0

1 − λ
‖�|2ni = αi

βi + λ
, (B4)

where λ ∈ [0, 1) is chosen so that [n1]2 + [n3]2 = 1. In partic-
ular, the ground state corresponds to a Bloch vector n̂ which
is in the ê1-ê3 plane and thus does not break TRS.

2. Full generality: V is stable and superconducting

In full generality, we still require that the Ginzburg-Landau
energy is stable, i.e., the potential term V → ∞ in the limit
where |�| → ∞. This corresponds to the condition

4β3 − β ′2
3 > 0. (B5)

Similarly, we are only concerned with nontrivial supercon-
ducting ground states, which correspond to the condition

2α0β3 − α3β
′
3 > 0. (B6)

Therefore, our general ground-state solution is subject to the
two conditions above. The potential term of the Ginzburg-
Landau free energy can be rewritten as

V2 = −|�|2(α0 + α1n1 + α3n3), (B7)

V4 = 1
2 |�|4(1 + β1[n1]2 + β3[n3]2 + β ′

3n3). (B8)

By our stability condition (B5), the potential term V is a
strongly joint-convex function in terms of |�|2, |�|2n1, and
|�|2n3. Therefore, convex optimization guarantees that the
ground state of the uniform system is unique and given by

|�|2 = 2 × 2α0β3 − α3β
′
3

4β3 − β ′2
3

> 0‖�|2n3

= 2 × 2α3 − β ′
3α0

4β3 − β ′2
3

‖�|2n1 = α1

β1
. (B9)

054518-9



YUAN, BERG, AND KIVELSON PHYSICAL REVIEW B 104, 054518 (2021)

Provided that [n1]2 + [n3]2 � 1. Conversely, in the case where
the above solution is not feasible, i.e., [n1]2 + [n3]2 > 1, the
unique ground state is given by

|�|2 = 2

4(β3 + λ) − β ′2
3

×
[

2(β3 + λ)α0 − α3β
′2
3 + 4α3

(β3 + λ)λ

β ′
3

]
‖�|2n3

= 2 × 2(1 − λ)α3 − β ′
3α0

4(β3 + λ) − β ′2
3

‖�|2n1

= α1

β1 + λ
, (B10)

where λ � 0 is chosen so that [n1]2 + [n3]2 = 1. In particular,
the ground state corresponds to a Bloch vector n̂ which is in
the ê1-ê3 plane and thus does not break TRS.

APPENDIX C: NARROW DOMAIN WALL CALCULATIONS

In this section, we present detailed calculations of a nar-
row domain wall between the transition of the TRS states
d − g → d + g. To be more concrete, let us consider the
case where α3(y) = α3 is constant, while α1(y) = α1sign(y)
changes sign as y = −∞ → +∞. The quartic terms are set
to β1 = β3 = β > 0, β ′

3 = 0 as before and the strain vector
magnitude satisfies α � βα0 so that the uniform ground state
at y → ±∞ is denoted by a Bloch vector n̂ pointing in the
same direction as the strain vector α and that the magnitude
|�|2 = α0. Without loss of generality, we shall also assume
that α1, α3 > 0 so that the angle ψ of the strain vector α ≡
α(sin ψ, 0, cos ψ ) satisfies 0 < ψ < π/2 as shown in Fig. 2.

We then calculate the domain wall energy �F of possible
transition paths as illustrated by the dashed blue and solid
green lines in Fig. 2 where the magnitude |�|2 of the OP � is
assumed to be constant and = α0. In particular, the blue arrow
represents a TRS preserving transition, while the green arrow
denotes a TRSB transition restricted to a 2D plane at angle ω

with respect to the ê3-axis.

1. TRS preserving transition

We shall first consider a TRS preserving transition as de-
scribed by the dashed blue path in Fig. 2. Notice that we
implicitly assumed that ψ < π/2. If on the other hand, ψ >

π/2, then we would consider the complement path wrapping
from underneath the Bloch sphere. Since the transition pre-
serves TRS so that the Bloch vector is in the ê1-ê3 plane, we
can restrict the azimuthal angle φ ≡ 0 for y � 0 and φ ≡ π

for y < 0. Therefore, we can rewrite the Ginzburg-Landau
free energy in terms of polar angle θ and average phase χ ,
i.e., if y � 0 so that θ � 0, then

F = V2 + V4 + K, (C1)

V2 = −|�|2[α0 + α cos (θ − ψ )], (C2)

V4 = +1

2
|�|4(1 + β ), (C3)

K = κ

2
|�|2

[
χ̇2 +

(
θ̇

2

)2
]
. (C4)

It is then clear that χ = const and that

κ

2

θ̈

2
= α sin(θ − ψ ), (C5)

θ̇2 + 8α

κ
cos(θ − ψ ) = const. (C6)

Using the boundary conditions θ → ψ and θ̇ → 0 as y → ∞
and that θ = 0 at y = 0, we see that

θ̇2 = 8α

κ
[1 − cos(θ − ψ )]. (C7)

θ̇

2
= −

√
4α

κ
sin

(
θ − ψ

2

)
, (C8)

θ = ψ − 4 arctan

[
tan

(
ψ

4

)
e−y/ξ

]
, (C9)

where ξ = √
κ/4α is the characteristic length of the domain

wall. We can similar solve for the transition in the case where
y � 0 so that, in general,

θ =
{
ψ − 4 arctan

[
tan

(
ψ

4

)
e−|y|/ξ

]}
, (C10)

φ = π

2
(1 − signy). (C11)

We can then calculate the domain wall energy �F = F −
F0 for y � 0 where F0 = F [ψ] is the Ginzburg-Landau free
energy of the uniform ground state, i.e.,

�Ftrs =
∫ +∞

0
[F [χ, θ, φ] − F0]dy (C12)

= κα0

∫ +∞

0

(
θ̇

2

)2

dy (C13)

= κα0

ξ

∫ ψ

0
− sin

(
θ − ψ

2

)
dθ

2
(C14)

= 2κα0

ξ
sin2

(
ψ

4

)
. (C15)

2. TRSB transition

Let us now consider the special TRSB transition as de-
scribed by the path with ω = π/2 in Fig. 2, so that the polar
angle θ of the Bloch vector n̂ remains constants and = ψ <

π/2, while the azimuthal angle φ twists π → 0. Therefore,
we can rewrite the Ginzburg-Landau free energy in terms of
azimuthal angle φ and average phase χ , i.e., if y � 0 so that
0 � φ � π/2, then

F = V2 + V4 + K, (C16)

V2 = −|�|2(α0 + α1 sin ψ cos φ + α3 cos ψ ), (C17)

V4 = +1

2
|�|4[1 + β(1 − sin2 ψ sin2 φ)], (C18)

K = κ

2
|�|2

[
χ̇2 +

(
φ̇

2

)2

− χ̇ φ̇ cos ψ

]
. (C19)

By the Euler-Lagrange equations, it is then clear that if the
average phase χ satisfies the initial condition χ (y → −∞) =
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0, then

χ = φ − π

2
cos ψ. (C20)

In particular, the average phase χ changes by �χ =
−(π/2) cos ψ as φ twists π → 0. We can similarly solve for
φ using the boundary condition φ̇, φ → 0 as y → +∞ so that

κ

2

φ̈

2
= sin φ(α − βα0 cos φ), (C21)

φ̇

2
= −1

ξ
sin

(
φ

2

)√
1 − ε cos2

(
φ

2

)
, (C22)

where ε = βα0/α and ξ = √
κ/4α is the characteristic length

of the domain wall. Notice that by our ground-state discussion
(9), the finite strain α satisfies ε � 1 and thus the square root
is well defined. We can then solve the first-order differential
equation so that

φ = 2 arccos

(
1 − η√

(1 + η)2 − 4ηε

)
, (C23)

where

η = C exp

(
−y

√
1 − ε

2ξ

)
, (C24)

π

2
= φ(η = C). (C25)

We can then calculate the domain wall energy �F = F −
F0 for y � 0 where F0 = F [ψ] is the Ginzburg-Landau free
energy of the uniform ground state, i.e.,

�Ftrsb =
∫ +∞

0
[F [χ, θ, φ] − F0]dy (C26)

= κα0 sin2 ψ

∫ +∞

0

(
φ̇

2

)2

dy (C27)

= κα0

ξ
sin2 ψ

×
∫ π/2

0
sin

(
φ

2

)√
1 − ε cos2

(
φ

2

)
dφ

2
. (C28)

This can be solved analytically if necessary with the substi-
tution x = cos (φ/2). In particular, in the extreme large strain
limit α � βα0, the domain wall energy is approximated by

�F ≈ 2κα0

ξ
sin2 ψ sin2

(π

8

)
. (C29)

3. General TRSB transition

Let us finally consider a general TRSB transition as de-
scribed by the solid green path in Fig. 2. To simplify the
problem, we will only consider general TRSB transitions
which occur in a 2D plane as shown in Fig. 8, where the transi-
tion plane is at an arbitrary angle ω with respect to the vertical
plane. If ω = 0, then the transition corresponds to the TRS
preserving transition (dashed blue arrow), and if ω = π/2,

FIG. 8. General TRSB domain wall. The top figure is the Bloch
sphere representation of a general TRSB transition through the do-
main wall α1(y) = α1sign(y). The arrow representing the transition
path is assumed to be in a plane at angle ω with respect to the ê1-ê3

plane. The bottom figure is the transition rotated of angle ω about
the +x-axis in the clockwise direction. All figures are colored in the
online version.

then it corresponds to the special TRSB transition. Since the
Ginzburg-Landau free energy has a global SU (2)-symmetry,
we can rotate the system about the +x-axis of angle ω in the
clockwise direction so that the transition occurs in a plane
parallel to xy-plane and thus can be parametrized in terms of
azimuthal angle φ, while the polar angle θ is held fixed, as
shown in Fig. 8. This corresponds to using the rotated order
parameter �̃ = U� where U ∈ SU (2) corresponds to the de-
scribed rotation R. We then rewrite the Ginzburg-Landau free
energy so that if α = Rα is the rotated strain vector and ϕ ≡
π/2 − φ is the azimuthal angle relative to the +y-axis, then

F = V2 + V4 + K, (C30)

V2 = − |�|2(α0 + α cos2 θ )

− |�|2α sin2 θ cos (ϕ − � ), (C31)
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V4 = +1

2
|�|4(1 + β ) (C32)

− 1

2
|�|4β

(
sin θ cos θ

cos ψ

)2

(cos ϕ − cos � )2,

K = κ

2
|�|2

[
χ̇2 +

( ϕ̇

2

)2

+ χ̇ ϕ̇ cos θ

]
. (C33)

Here θ is held fixed and φ transitions in a manner such that

ϕ ≡ π

2
− φ = −� → 0 → �. (C34)

As y goes from −∞ → 0 → +∞, where θ,� are deter-
mined by the boundary condition ∗ ∗ ∗α ∝ n̂(y → +∞), i.e.,

sin ψ = sin θ sin �, (C35)

cos ψ cos ω = sin θ cos �, (C36)

cos ψ sin ω = cos θ. (C37)

In particular, θ = π/2,� = ψ for the TRS preserving tran-
sition, and θ = ψ,� = π/2 for the special TRSB transition.

By the Euler-Lagrange equations, it is then clear that if the
global phase χ satisfies the initial condition χ (y → −∞) =
0, then

χ = φ

2
cos θ − 1

2

(π

2
+ �

)
cos θ. (C38)

Hence, the average phase χ changes by �χ = −� cos θ as
y = −∞ → ∞. We can similarly solve for ϕ so that

ϕ̇

2
= −1

ξ
sin

(ϕ − �

2

)

×
√

1 − (ε sin2 ω) sin2
(ϕ − �

2
+ �

)
, (C39)

where ε = βα0/α � 1 and ξ = √
κ/4α is the characteristic

length of the domain wall. It should be noted that the equa-
tion can be solved analytically for arbitrary ε � 1, albeit in
implicit form, i.e., f (ϕ) = y for some function f . It should
be noted that the explicit form ϕ = ϕ(y) is not necessary to
compute the domain wall energy �F . Indeed, we have

�F =
∫ +∞

0
[F [χ, θ, φ] − F0]dy (C40)

= κα0 sin2 θ

∫ +∞

0

(
φ̇

2

)2

dy (C41)

= κα0

ξ
sin2 θ

×
∫ �/2

0
sin x

√
1 − (ε sin2 ω) sin2 (� − x)dx. (C42)

In the extreme large strain limit α � βα0, the domain wall
energy is approximated by

�F ≈ 2κα0

ξ
sin2 θ sin2

(�

4

)
. (C43)

APPENDIX D: FULLY SELF-CONSISTENT EQUATIONS

In this section, we derive the full self-consistency field
equations (SCFs) for the full Hamiltonian Hfull = H0 + H1 de-
fined in Eqs. (12) and (13). Let us first write the corresponding
BCS Hamiltonian H as

H =
∑
�r′,�r,s

T (�r′, �r)c†
�r′sc�rs

+
∑
�r′,�r

(��r′,�rc†
�r′↑c†

�r↓ + H.c.) (D1)

= [c†
↑ c↓]Ĥ

[
c↑
c†
↓

]
, Ĥ =

[
T �

�† −T̄

]
. (D2)

To simplify notation, let us introduce the notation 1�r = |�r〉〈�r|
for the projection operator and the one-particle density matri-
ces (1-pdms) [45] of the BCS Hamiltonian H , i.e.,

γ (�r′, �r) = 〈c†
�r↑c�r′↑〉 = 〈c†

�r↓c�r′↓〉, (D3)

α(�r′, �r) = 〈c�r↓c�r′↑〉 = −〈c�r↑c�r′↓〉. (D4)

The Hartree-Fock energy 〈Hfull〉 = 〈H0〉 + 〈H1〉 can then be
computed via Wick’s theorem so that

〈H0〉 = 2tr(T γ ), (D5)

〈H1〉 = −2
∑

τ=d,g

λτ

∑
�r

tr(2 fτ α
†1�rα f †

τ 1�r

+ f †
τ γ 1�rγ fτ 1�r + γ 1�r f †

τ γ fτ 1�r ). (D6)

The self-consistency field equations (SCFs) can then be de-
rived from extremizing the variational free energy δF ≡
δ〈Hfull〉 − T δSH = 0 and written in operator form

T = t −
∑

τ=d,g

λτ

∑
�r∈�

[( fτ 1�r f †
τ γ 1�r + H.c.)

+ 1�r f †
τ γ fτ 1�r + fτ 1�rγ 1�r f †

τ ], (D7)

� = −2
∑

τ=d,g

λτ

∑
�r

( fτ 1�rα f †
τ 1�r + tr), (D8)

where tr implies the transpose term = 1�r f †
τ α1�r fτ =

1�rα f †
τ 1�r fτ , and we used the fact that α, fτ are symmetric,

i.e., αT = α, f T
τ = fτ . The proposed format of writing the

SCFs in operator form has the advantage of working in any
basis set, and in particular, we can work in real space |�r〉 or
momentum space |�k〉. This will simplify our algebra later on.
The corresponding BdG equations can similarly be written as

γ = unE u† + v̄(1 − nE )vT , (D9)

α = −1

2

[
u tanh

(
βE

2

)
v† + transpose

]
, (D10)

where nE is the diagonal matrix with entries of the Fermi
distribution nE = (eβE + 1)−1 and u, v are chosen so that the
following unitary matrix W diagonalizes the first quantized
Hamiltonian Ĥ , i.e.,

Ĥ = W

[
E 0
0 −E

]
W †, W =

[
u −v̄

v ū

]
. (D11)
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Notice that the BdG Eqs. (D9) can also be written in the more
compact form [45]

� = W

[
nE 0
0 1 − nE

]
W †, (D12)

where

� =
[

γ α

α† 1 − γ̄

]
= 1

eβĤ + 1
. (D13)

Uniform system in momentum space

The full SCFs can be further simplified in a uniform sys-
tem, so that the 1-pdms γ , α (D3), hopping matrix t and form
factors fτ are diagonalized in �k-space. In particular,

γ (�k) = 〈c†
�k↑c�k↑〉 = 〈c†

�k↓c�k↓〉, (D14)

α(�k) = 〈c−�k↓c�k↑〉 = −〈c�k↑c−�k↓〉. (D15)

In this case, the SCFs (D7) are reduced to

T (�k) = t (�k) −
∑

τ=d,g

λτ ( fτ (�k)� fτ γ � + H.c)

+�γ | fτ |2� + | fτ (�k)|2�γ �
)
, (D16)

�(�k) = −4
∑

τ=d,g

λτ fτ (�k)�α f †
τ �, (D17)

where we use the notation �· · ·� as the average value summed
over �k-space, i.e.,

�h� =
∫

(−π,π]2

d2�k
(2π )2

h(�k). (D18)

Notice that the specific form of our �-function (D16), i.e.,
�(�k) = D fd (�k) + G fg(�k) for complex constants D, G implies
that the SCFs indeed yield a two-component OP theory. Sim-
ilarly, the BdG equations are reduced to

γ (�k) = 1

2

(
1 + T (�k)

E (�k)

)
n(�k)

+ 1

2

(
1 − T (�k)

E (�k)

)
[1 − n(�k)], (D19)

α(�k) = − �(�k)

2E (�k)
tanh

(
βE (�k)

2

)
, (D20)

where n(�k) = (eβE (�k) + 1)−1 is the Fermi distribution of the
Bogoliubov quasiparticles with dispersion relation

E (�k) =
√
T (�k)2 + |�(�k)|2. (D21)

APPENDIX E: ∇ · J = 0 IN BCS THEORY

Let H[ψ] denote the BCS Hamiltonian with parameters
ψ = (ξ,�). Let the particular choice of parameter ϕ be such
that H[ϕ] satisifes the full self-consistency equations with
respect to the full Hamiltonian Hfull, i.e.,

∂

∂ψ

∣∣∣∣
ψ=ϕ

〈Hfull〉ψ = 1

β

∂

∂ψ

∣∣∣∣
ψ=ϕ

S[ψ], (E1)

where S[ψ] is the von Neumann entropy of H[ψ] defined
by S = −tr(ρ log ρ) where ρ is the Gibbs distribution of the
BCS Hamiltonian H[ψ], and 〈· · · 〉ψ is the thermal average at
temperature T with respect to the BCS Hamiltonian H[ψ].

We shall subsequently show that at any temperature and
every lattice site �r, the charge density ρ(�r) is constant in BCS
theory, i.e.,

∂ρ(�r)

∂t

∣∣∣∣
t=0

= 0. (E2)

As a corollary, we can apply the continuity equation ∂tρ(�r) =
∇ · J (�r) ≡ ∑

�r′ J (�r′, �r) to obtain

〈∇ · J (�r)〉ϕ ≡
∑
�r′∈�

〈J (�r′, �r)〉ϕ = 0. (E3)

Indeed, let us introduce the notation for gauge transfor-
mation at lattice site �r, i.e., if M is an operator, e.g., the full
Hamiltonian Hfull or the BCS Hamiltonian H[ψ], then define

M(s) = eisρ(�r)Ae−isρ(�r), s ∈ R. (E4)

In this case, notice that

H[ϕ](s) = H[ϕ(s)], (E5)

where ϕ(s) denote the parameters

T (�r′′, �r′)(s) = T (�r′′, �r′)eis[δ(�r′′,�r)−δ(�r′,�r)], (E6)

�(�r′′, �r′)(s) = �(�r′′, �r′)eis[δ(�r′′,�r)+δ(�r′,�r)]. (E7)

Also notice that the BCS partition function Z[ϕ(s)] is in-
dependent of s since the trace is invariant under unitary gauge
transforms and thus〈

∂Hfull(s)

∂s

〉
ϕs

= 1

Zϕ

tr

(
e−βH [ϕs]

∂Hfull(s)

∂s

)
(E8)

= + 1

Zϕ

∂

∂s
tr[e−βH [ϕs]Hfull(s)] (E9)

− 1

Zϕ

tr

(
Hfull(s)

∂

∂s
e−βH [ϕs]

)
. (E10)

The first term is = 0 since the trace is invariant under unitary
transforms. Setting s = 0, we see that

−
〈

∂Hfull(s)

∂s

∣∣∣∣
s=0

〉
ϕ

= 1

Zϕ

tr

(
Hfull

∂

∂s

∣∣∣∣
s=0

e−βH [ϕs]

)
(E11)

= ∂

∂s

∣∣∣∣
s=0

1

Zϕ

tr(Hfulle
−βH [ϕs] ) (E12)

= ∂

∂s

∣∣∣∣
s=0

〈Hfull〉ϕs (E13)

= ∂ϕs

∂s

∣∣∣∣
s=0

∂

∂ψ

∣∣∣∣
ψ=ϕ

〈Hfull〉ψ (E14)

= 1

β

∂ϕs

∂s

∣∣∣∣
s=0

∂

∂ψ

∣∣∣∣
ψ=ϕ

S[ψ] (E15)

= 1

β

∂

∂s

∣∣∣∣
s=0

S[ϕs]. (E16)
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Notice that S[ϕs] is independent of s since the trace is invariant under unitary gauge transforms. Hence, the right-hand side is
= 0 and thus we arrive at the statement 〈

∂ρ(�r)

∂t

∣∣∣∣
t=0

〉
ϕ

= −
〈

∂Hfull(s)

∂s

∣∣∣∣
s=0

〉
ϕ

= 0. (E17)
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