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Strange metal from incoherent bosons
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The breakdown of the celebrated Fermi liquid theory in the strange metal phase is the central enigma of
correlated quantum matter. Motivated by recent experiments reporting short-lived carriers, along with the ubiq-
uitous observations of modulated excitations in the phase diagram of cuprates, we propose a phenomenological
boson-fermion model for this phase. Along with the fermions, we consider fluctuating bosons emerging from
the remnants of a pair density wave as additional current carriers in the strange metal phase. These bosonic
excitations are finite-momentum Cooper pairs and thus carry twice the electronic charge, and their net spin can
either be zero or one arising from the two spin-1/2 electrons. We show in a perturbative calculation within Kubo
formalism that such a model displays a T log T dependence of the resistivity with temperature and manifests
the Drude form of the ac conductivity. Furthermore, such bosons are incoherent and hence do not contribute to
the Hall conductivity. Finally, the bosons emerging from finite-momentum pairs of spin-triplet symmetry also
reproduce the recently observed linear-in-field magnetoresistance in the optimally doped and overdoped cuprates
[P. Giraldo-Gallo et al., Science 361, 479 (2018); J. Ayres et al., Nature 595, 661 (2021)].
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I. INTRODUCTION

One common thread among diverse strongly correlated
materials is the emergence of an anomalous metallic state
upon destroying superconductivity (SC) [1–4]. This emergent
state is referred to as bad metal when the conventional quasi-
particle concept becomes invalid at high temperatures [1,5,6],
whereas in strange metal, such anomaly extends down to very
low T [7]. Particularly in cuprates, over a vast temperature-
doping region, the resistivity shows a linear-in-T dependence
from low temperature up to the melting point of the mate-
rial [1,8–11], thus manifesting both bad and strange metallic
characteristics. This behavior was recently associated with
the “Planckian” dissipation rate, h̄τ−1 ∼ kBT , which is the
maximal dissipation rate allowed by the laws of quantum
mechanics [12–15]. Interestingly, for frequencies lower than
such dissipation rate, i.e., ω < τ−1, the optical conductivity
remarkably follows the classic Drude form [14,16], in addi-
tion to showing a linear-in-T resistivity.

Recently, the strange metal (SM) is gaining impetus with
the observation of mysterious incoherent carriers in the opti-
mally doped and overdoped cuprates [17,18]. Over the region
where the dc resistivity is most linear, there is a significant
reduction of the Hall carriers [19,20], suggesting short-lived
carriers responsible for the transport. Furthermore, at high
magnetic fields, the magnetoresistance also displays a linear-
in-field evolution in hole-doped cuprates [21,22] which is
further confirmed in other compounds [23–25]. Such in-
coherent conductivity is insensitive to the magnetic field’s
orientation, again implying a vanishing Hall conductivity
[22]. Thus, the mysterious SM phase acquires another ele-
ment: On the one hand, it shows linear-in-T resistivity with
the optical conductivity following the classic Drude form, and

with an additional incoherent transport component insensitive
to the orientation of the magnetic field. On the other hand, the
experimental result since the dawn of the cuprates [26–28]
exhibits a second transport time h̄τ−1

H ∼ T 2 which controls
the cotangent of the Hall angle [29] over the whole phase
diagram. A consistent theory for strange metal must reconcile
all these unusual behaviors, which still remains a fundamental
challenge in condensed matter physics.

Early attempts to demystify the strange metal phase rely
on the rationale that the fermionic excitations are primarily
responsible for its odd transport properties. These theories
capture some basic features of the SM phase; for example,
the marginal Fermi liquid theory [30], among others [31–33],
can heuristically describe the temperature dependence of lon-
gitudinal conductivity and the Hall angle [34]. More recently,
the Hall transport time, τH , is satisfactorily described by the
presence of quasielectrons with an anisotropic transport time
around the Fermi surface [35–38]. It is also highlighted that
interactions can improve nesting near the hot spots in the spin
fermion model [39,40], which can lead to T -linear resistivity
with a broad Drude component [41]. Furthermore, such a
model can capture the T 2 dependence of the cotangent of the
Hall angle [42]. However, most theories presently encounter
difficulties in accounting for the linear-in-T resistivity and
the corresponding Planckian limit of the scattering rate. Fur-
thermore, the Drude form of the optical conductivity, along
with the recent report of incoherent nonorbital contribution
to transport [22] remains to be addressed. Given that situ-
ation, a regime of very strong coupling, obtained by either
holographic techniques [43–48] or other transport methods
[49–54], has been invoked to account for some of these ob-
served properties.
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To address this challenging problem, an intuitive phe-
nomenological model is imperative. Motivated by the recent
discovery of incoherent carriers [17,18] along with the ubiq-
uitous observations of spatially modulating patterns [55,56]
in the phase diagram of cuprates, we introduce a strange
metal model that provides a significant perspective shift.
We propose bosons emerging from the spatially undulating
electron-electron pairs as additional current carriers in the
strange metal phase. These bosonic excitations are remnants
of a pair density wave (PDW) state and consequently carry
twice the charge of an electron, including a finite wave vector
linked to its vestigial periodicity. The net spin of the boson
due to its constituent spin-1/2 electrons, consequently, can
either have a spin-singlet or spin-triplet symmetry. Therefore,
the fermionic quasielectrons are not the sole charge carriers in
this phase. We show that the charged bosons become diffusive
and incoherent as they interact with the underlying fermions.
Within this scenario, the quasielectrons around the Fermi sur-
face naturally account for the observed coherent transport in
the material, since they react to the magnetic field according
to the Hall lifetime τH . In contrast, the bosons provide a natu-
ral explanation for the incoherent transport reported recently,
which we discuss below.

II. THE MODEL

We propose a model consisting of quasielectrons scat-
tering off each other via hydrodynamic fluctuations as well
as charge-two bosons. The bosons originate from pairs of
high-energy electrons, which interact with the low-energy
quasielectrons with strength gI , and with themselves with
strength gb. With the application of an external magnetic field,
the corresponding gauge-invariant Hamiltonian becomes

Ĥ =
∑
k,α

c†
k,α

[
(k − eA)2

2m
− εF

]
ck,α + Ve−e

+
∑

q

b†
q

[
1

4
(Q0 + δq − 2eA)2 + μ0

]
bq

− 1

2

∑
k,α,α′

c†
k,α (�σαα′ .H)ck,α′ + gb

∑
q,p,k

b†
kbk+qb†

p−qbp

+ gI

∑
k,q,α

[b†
qck,αc−k+q,±α + H.c.], (1)

where c†
k,α is the creation operator for conduction electrons,

α is the spin projection of the electrons, and b†
q is the cre-

ation operator for charge-two bosons. The bosons carry the
finite-momentum Q0, which is the remnant ordering wave
vector of the fluctuating PDW state. Our idea is that such
finite-momentum bosons with wave vector Q0 are forming
at intermediate temperatures under strong coupling. Once the
finite-momentum Cooper pair fluctuations are formed, gauge
invariance imposes the vector potential associated to Q0. We
have used q = Q0 + δq such that δq � Q0. The quantities e
and m are, respectively, the elementary charge and the quasi-
electron mass, whereas A is the vector potential associated
with the magnetic field given by H = ∇ × A. The quantities
εF and μ0 denote, respectively, the chemical potential of the

electrons and the bare bosonic mass term. The next term refers
to the coupling of the electron spins to the Zeeman field,
where �σαα′ are the Pauli matrices. The term Ve−e represents the
interactions between the electrons and the environment that
can consist of other types of hydrodynamic modes or impuri-
ties. Finally, the last two terms in Eq. (1) are, respectively, the
boson-boson interaction and the fermion-boson interaction.
In the interaction term that contains gI , we allow for the
possibility of the bosons to be either spin zero or spin 1.

III. RESULTS

We study the electromagnetic response of the system
within the Kubo formalism, considering not only the elec-
tronic but also the bosonic response to the electromagnetic
field. The Feynman diagrams contributing to the charge trans-
port properties and the self-energy corrections are presented
in Fig. 2. The bosons originate from the strongly coupled
electrons, and hence the effective mass of these bosons is
expected to be smaller than the strongly correlated fermionic
quasiparticles. Consequently, the bosonic carriers dominate
the longitudinal conductivity in our model. However, since the
bosonic excitations have a particle-hole symmetry, the Hall
conductivity vanishes for these bosons, as shown in our subse-
quent analysis. Therefore, the Hall conductivity is dominated
by the fermionic quasiparticles, giving a T 2 dependence of the
cotangent of the Hall angle [35,36].

Naturally, charged bosons have a markedly different be-
havior from fermions. At low temperatures, fermions scatter
around the Fermi surface, and scattering with finite wave vec-
tors affects only small regions of the Fermi surface, creating a
transport anisotropy commonly referred to as “hot spots” and
“cold spots” [57]. The hot spots are shown by the circles in
Fig. 1(a). Such fermions participate both in the transport and
in the Drude weight [16,38,58]. On the other hand, bosons
do not have a Fermi surface and, consequently, they scatter
uniformly through other species in the sample. Therefore, the
bosonic pathway of charge transport is protected against short
circuit of hot regions by the cold ones, unlike the fermionic
counterpart [57].

A momentum relaxation mechanism is necessary to ob-
tain a steady current flow upon applying an external electric
field [59]. The incoherent bosons are dynamical fluctuations
with a particle-hole symmetry and therefore are in a hy-
drodynamic regime. Consequently, incoherent bosons have a
lifetime linked to its transport time. Moreover, these finite-
momentum bosons described by b†

q = c†
kc†

−k+q are made of
pairs of electrons on the Fermi surface of Fig. 1(a). Thus, these
bosons itinerant on a lattice are akin to phonons, paving the
way for multiple scattering mechanisms to decay the current
[60]. Consequently, the two species (fermions and the finite-
momentum bosons) contribute to the transport, and both terms
must be included to obtain the total optical sum rule. The
present study is devoted to a careful analysis of the finite-
momentum bosonic contribution to the transport. In contrast,
zero-momentum bosons require other mechanisms that can
break the Galilean symmetry, as in the case of paraconduc-
tivity [61,62].

When the coupling between the bosons is stronger than the
damping coefficient, our key findings are encapsulated in the
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FIG. 1. (a) The Fermi surface observed in overdoped cuprates
with the hot spots denoted by brown circles. (b) A skeleton phase
diagram in the temperature-doping plane. The T ∗ sets the PDW
energy scale in the system, which vanishes at the quantum critical
point, xc. For larger dopings, the Fermi liquid behavior is established.
The strange metal phase is expected to reside in the quantum critical
fan in between these two regions. The energy scale that separates the
two distinct regions is μ0/γ , where μ0 is the doping-dependent bare
bosonic mass term, and the γ is the Landau damping coefficient of
the diffusive bosons. Depending on the size of Q0, a slightly different
phase diagram (details in Appendix A 3) is possible, in which the
theory is valid up to a low temperature but not down to T = 0.

phase diagram of Fig. 1(b). Above a threshold temperature
T > μ0/γ , we find a T log T resistivity and a vanishing Hall
conductance (where γ is the Landau damping coefficient of
the diffusive bosons to be defined shortly). Here, μ0 is the
doping-dependent bare mass of the boson, which vanishes
at the quantum critical point or a critical phase. We em-
phasize that our phenomenological study cannot distinguish
between a quantum critical point and quantum critical phase
as observed in Ref. [7]. Furthermore, when T > μ0/γ , the
incoherent bosons contribute to the Drude-like conductivity.
On the other hand, when the temperature is below T < μ0/γ ,
the traditional Fermi liquid behavior is established due to the
additional presence of a fermionic pathway [36,37]. The ratio
of the bare bosonic mass, μ0, to the damping strength of the
bosons determines the crossover from the strange metallic to
conventional metal regime, as exhibited in Fig. 1(b).

A. Boson scattering via the fermions

We consider the scattering process of bosons from elec-
trons as the predominant one. Evaluating the diagram in

(a) (b)

(c) (d)

FIG. 2. Feynman diagrams corresponding to the transport prop-
erties and the interactions of the bosons among themselves and with
the fermions of the model defined in Eq. (1): (a), (b), and (d) repre-
sent contributions to the bosonic self-energy in the present theory,
whereas (c) stands for the diagram associated with the current-
current correlation function.

Fig. 2(a) (detailed calculations are given in Appendix A), we
note that such a polarization bubble is proportional to g2

I and
produces a Landau damping term. This distinctive feature is
typical of a charge-two boson with finite momentum, which
couples to electrons in the same way as a PDW. After in-
tegrating out the electronic degrees of freedom, the bosonic
propagator reads

D−1(q, iωn) = γ |ωn| + q2 + μ(T ). (2)

Here, ωn is the Matsubara frequency, where the Landau damp-

ing constant is given by γ = g2
IN (εF )/(2π

√
(2kF Q0)2 − Q4

0),
where N (εF ) is the density of states at the Fermi energy,
kF is the corresponding Fermi momentum, and μ(T ) is the
bosonic “mass term” at finite temperatures. This form of the
bosonic Green’s function is valid for all the frequencies below
ωc ≈ kF Q0.

Next, we comment on the effects of fermion-boson vertex
corrections in the present theory. Recent studies of the anti-
ferromagnetic quantum critical point (QCP) [63,64] in two
spatial dimensions obtained that the vertex corrections yield
logarithmic divergences. Such divergences renormalize the
dynamical exponent at the QCP from the initial z = 2 towards
a smaller value. In the present study of bosons with a finite
wave vector, two different situations can emerge. In the first
one, the bosons cannot generate hot spots if the wave vector
Q0 is either too small or too large to connect distinct parts
of the Fermi surface. In this scenario, the Landau damping
remains unchanged, whereas the vertex corrections become
irrelevant (for details, see Appendix A 2). Hence, it gives
both quasi-linear-in-T resistivity and a broad Drude compo-
nent extending to zero temperature. In the second scenario,
if the bosons create hot spots by connecting different parts
of the Fermi surface, the vertex corrections should become
relevant and effectively change the dynamical exponent z
near the QCP. Nevertheless, this renormalization of z is ex-
pected to occur only at very low temperatures near the QCP
[65]. Above this temperature, other damping sources (see
Appendix A 3) can regularize the vertex corrections and
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recover the above temperature dependence with the Drude
form of ac conductivity over a broad temperature range.

From Eq. (2), it becomes clear that the bosons are diffusive
near the critical point (or critical phase) where the bare mass
of the boson vanishes. Moreover, the form factor of the elec-
tron pairs does not have a qualitative influence on the diffusive
behavior of the bosons. We have checked numerically, e.g.,
that a d-wave form factor for the electron pairs also leads to
such a Landau damping term, albeit with a different coeffi-
cient. We show below that the bosonic propagator of Eq. (2)
can contribute to the incoherent part of the resistivity that was
recently reported in Refs. [18,22].

Our perturbation calculation strategy is as follows: The
boson-boson interactions gb renormalize the “mass term” and
the Landau damping coefficient γ . Consequently, we evalu-
ate first-order self-energy corrections due to the diagram in
Fig. 2(b) in Sec. III C. Similarly, the self-energy corrections
for the second order are evaluated by the diagram of Fig. 2(d)
in Sec. III D. This will give us the temperature dependence of
the mass term and the Landau damping coefficient.

B. Kubo formula for the conductivity

Since the charge-two boson directly couples to the elec-
tromagnetic field, the main bosonic contribution to the
longitudinal resistivity is given within the Kubo formula by
the diagram in Fig. 2(c) (see Appendix C for a detailed eval-
uation of this diagram). The leading-order contribution to the
conductivity is given by

σi j (ω) = T

ωn

∑
εn

∫
dx
∫

dx′{−δi jδ(x − x′)D(εn, x, x′)

+ v̂iD(εn, x, x′)v̂ jD(εn + ωn, x′, x)}, (3)

where the analytical continuation iωn → ω + iδ needs to be
performed, the indices i, j refer to the spatial directional, and
v̂x = (−i∂x − iH∂ky ) and v̂y = (−i∂y + iH∂kx ) are the veloc-
ity kernels. The longitudinal conductivity (independent of the
magnetic field H) is then given by

σ (0)
xx (ωn) = T

ωn

∑
εn

1

L

∑
q

[
Q2

0D(εn, q)D(εn + ωn, q)

+ D(εn, q)
]
. (4)

Note that since the bosons have a finite momentum, the ve-
locity kernels in Eq. (3) become proportional to Q0, which
results in a prefactor for the above integral. Thus, performing
the corresponding integration, we find in the first regime, i.e.,
γ T � μ, that the optical conductivity becomes

σxx(ω) = σ b
0 τ(

1 − i γω

2μ

) , (5)

with σ b
0 = Q2

0/(2π2γ ). Strikingly, Eq. (5) is reminiscent
of a Drude conductivity, with the scattering rate given by
h̄τ−1 = (2μ/γ ).

However, in the second regime, i.e., γ T 
 μ, the optical
conductivity does not exhibit the traditional Drude form:

σ (ω) = Q2
0μ

12π2γ 2T 2

(
1 − i

γω

2μ

)
. (6)

We will show in the next section that this latter regime (non-
Drude-like) is never obtained if the coupling strength between
the bosons is larger than the Landau damping parameter.

C. Renormalization of the bosonic “mass term”

In order to figure out the temperature dependence of
the static resistivity, we evaluate the renormalization of the
bosonic “mass term” due to its scattering with strength gb.
This is given by the diagram in Fig. 2(b), which is propor-
tional to the number of bosons, Nb = T

∑
νn

∑
q D(νn, q).

The bosonic mass term of Eq. (2) is renormalized by

μ = μ0 + gbNb, (7)

where μ0 is the bare mass term. The leading-order correction
to the mass term evaluates to (for details refer to Appendix B)

μ =
{
μ0 + g̃bT log

(
γ T
μ0

)
for γ T 
 μ0

μ0 for γ T � μ0,
(8)

where we have defined g̃b = gb/(4π ). Therefore, for an
intermediate- to strong-coupling regime, i.e., g̃b � γ , we will
always have γ T � μ. For this reason, the second regime
displaying the non-Drude form of the optical conductivity
is not attained if the coupling is stronger than the damping.
In the main text, we mainly focus on the g̃b � γ regime.
The possibility of the other theoretical limits is explored in
Appendix C 1. Thus, plugging the temperature dependence of
the bosonic mass term calculated in Eq. (8) back into Eq. (5),
the static ω → 0 becomes

ρxx(T ) =
⎧⎨
⎩

4π2μ0

Q2
0

+ 4π2 g̃b

Q2
0

T log
(

γ T
μ0

)
for γ T 
 μ0

4π2μ0

Q2
0

for γ T � μ0.
(9)

Therefore, we obtain a T log T regime for the resistivity when
γ T � μ0, with no saturation at large temperatures, thus cap-
turing the bad metal regime. The first term is a T -independent
contribution that can vanish when the bosons become critical.
Consequently, the above temperature dependence of the resis-
tivity can extend down to zero temperature, thereby describing
qualitatively the strange metal regime in the optimally doped
and overdoped cuprates. To further confirm our analytical
results, we perform numerical integration to obtain the static
resistivity as a function of temperature. Figure 3(a) shows
an approximate linear-in-T behavior of the resistivity for the
following parameter choices: γ = 1.0, Q0 = π/2, μ0 = 0.05,
and g̃b = 1.0. As can be seen, there is a very good match be-
tween the numerical and the approximate analytical behavior.
Similarly, in Fig. 3(b) we show the results for a larger inter-
action parameter g̃b = 1.5, which again displays a quasilinear
dependence with temperature, albeit with a different slope (for
details, see Appendix C).

Moreover, our calculations reveal that the incoherent trans-
port due to the charged bosons contributes to the Drude-like
response at finite frequencies. Furthermore, in this regime, the
transport momentum relaxation rate, τ−1, scales linearly with
temperature up to logarithmic corrections. In Fig. 3(a), we
present the full optical conductivity as a function of frequency
ω for the following parameter choices: γ = 1.0, Q0 = π/2,
μ0 = 0.05, and g̃b = 1.0. The real part of the optical conduc-
tivity exhibits a sharp peak at a low temperature, T = 0.07,
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FIG. 3. The T log T dependence of the resistivity obtained from
the analysis of the model. In all the plots, we set the Landau damping
constant equal to γ = 1.0 and the temperature-independent mass
term μ0 = 0.05. The temperature is given in units of μ0/γ . The
following physical constants are set to unity: h̄ = 1, kB = 1, and
e = 1. Besides, we choose also the input parameters (a) g̃b = 1.0 and
(b) g̃b = 1.5. Above T > μ0/γ the approximate linear-in-T behavior
sets in. We also compare both the numerical and the analytical
expressions in these plots which are in good agreement with each
other.

similar to ac conductivity experiments in the “good strange
metal” regime. The peak broadens progressively as the tem-
perature increases to T = 0.7, as presented in Figs. 4(b)–4(d).
We obtain from Eq. (9) a longitudinal conductivity that varies
as T −1 (up to logarithmic corrections), which participates in a
Drude-like response at finite frequency.

D. Higher-order terms in the self-energy

We now turn to the next-to-leading-order correction re-
garding the mass-term renormalization, namely, the rainbow
diagram represented in Fig. 2(d). In addition, the imaginary
part from this diagram renormalizes the Landau damping
constant γ in Eq. (2). The corresponding polarization bubble

(a) T=0.07

σ'(ω)
σ"(ω)

0

0.5

1.

1.5

σ(
ω

)

(b) T=0.2
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(c) T=0.4
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0
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(d) T=0.7

0 1 2 3
0.
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0.03

0.04

ω

FIG. 4. Real and imaginary parts of the optical conductivity
σ (ω) = σ ′(ω) + iσ ′′(ω) for the following parameter choices: γ =
1.0, g̃b = 1.0, and μ0 = 0.05. (a) T = 0.07, (b) T = 0.2, (c) T =
0.4, and (d) T = 0.7. The temperature is given in units of μ0/γ .
The following physical constants are set to unity: h̄ = 1, kB = 1, and
e = 1. Here, σ (ω) shows the traditional Drude form with the width of
the real part increasing with temperature. Thus, the T log T resistivity
from the incoherent bosons contributes to a Drude-like response at
finite frequencies.

reads

�2(q0) = g2
bT 2

∑
νn,ωn

∑
p,q

D(νn − ωn + q0,−p + k)

× D(νn, k)D(ωn, p), (10)

where q0 is the incoming frequency that is assumed to be a
small parameter during the evaluation. The real part of the
same renormalizes the mass term of the bosonic propagator.
When γ T 
 μ0 the expansion of the mass term up to second
order is given by (details presented in Appendix D)

μ ≈ μ0 + gb

4π
T log

(
γ T

μ0

)
+ 2c1γ λ

π2 log2 (γ T/μ0)
, (11)

where λ = min[μ0, γ T ]. The first term is the temperature-
independent mass term. The second term comes from the
first-order correction and leads to a T log(T ) dependence as
evaluated in the previous section. Finally, the third term is the
second-order correction calculated from the real part of the
bubble in Eq. (10). Interestingly, since we are in the regime
γ T/μ0 
 1, the third term decays as 1/ log2(γ T/μ0). As a
result, only the temperature dependence of T log T remains
relevant for the mass term.

Similarly, the imaginary part of the self-energy due to gb

renormalizes the Landau damping coefficient. This is given
by

γ̃ ≈ γ + c1γ

π log2 (γ T/μ0)
. (12)

The first term γ is the temperature-independent Landau
damping coefficient. The imaginary part for the first-order
renormalization vanishes. The second-order correction due to
Eq. (10) is given in the second term. Here also the correction
due to the second-order term again decays as 1/ log2(γ T/μ0)
with γ T/μ0. Therefore, in this regime, the second-order terms
are negligible.

Next, evaluating the same quantities in the regime γ T �
μ0, we get

μ ≈ μ0 + c2λ(γ T )4

2π6γμ4
0

, (13)

γ̃ ≈ γ + c2(γ T )3

4π5γμ4
0

. (14)

The second-order contributions from Eq. (10) are in the
second term. Since we are in the regime γ T/μ0 � 1, the
second-order contributions decays as (γ T/μ0)4. Therefore, in
this regime, both the mass term and the Landau damping coef-
ficient γ remain temperature independent. The constants c1 =
0.323 and c2 = 0.284 are evaluated by employing numeri-
cal techniques. Therefore, in both regimes, the higher-order
terms are small compared to the first-order ones and, there-
fore, we can safely ignore their effects from now on in our
analysis. Moreover, the vertex-correction diagram at second
order in the coupling gb is of the same order of magni-
tude as the bosonic self-energy �2 and, as demonstrated in
Appendix D 1, we can also ignore this contribution in our
analysis.
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E. Hall conductivity

We begin the discussion on the effect of magnetic field on
the charged bosons with the Hall conductivity. The linear-in-
H term in Eq. (3) leads to the following expression for the
Hall conductivity, which is given by

σ (1)
xy = 1

ωn
Im

{
T
∑
εn

1

L

∑
q

iH[qxD(εn, q)∂qyD(εn + ωn, q)

− ∂qyD(εn, q) qxD(εn + ωn, q)]

}
. (15)

Evaluating this term with Eq. (2), we obtain that it naturally
vanishes (details can be found in Appendix E). This result is
not surprising, since the bosons are incoherent and the theory
has a particle-hole symmetry. This can be confirmed by noting
that the bosonic propagator in Eq. (2) is symmetric under ω →
−ω transformation. The emergence of particle-hole symmetry
of the charged incoherent bosons in this study also implicates
a tendency towards the vanishing Hall conductivity.

F. Second moment of conductivity

The contribution quadratic in H of the conductance in
Eq. (3) writes

σ (2)
xx = −H2

ωn
Im

{
T
∑
εn

∑
q

[
∂qx D(εn + ωn, q)∂qx D(εn, q)

]}
.

(16)

This orbital contribution from Eq. (16) is calculated in
Appendix F and, in the regime γ T � μ, it reads

σ (2)
xx = 8γ 2Q2

0T 2H2

5π2μ5
. (17)

Again, we emphasize that the second regime, γ T 
 μ, is
never realized when the interaction between the electrons is
stronger than the Landau damping coefficient. For complete-
ness, we provide the corresponding expressions for the same
in Appendix F. Armed with the expression for σ (0)

xx , σ (1)
xx , and

σ (2)
xx , we proceed to evaluate the magnetic field dependence of

the magnetoresistance.

G. Magnetoresistance

For a system with vanishing Hall conductivity σxy, the
magnetoresistance (MR) is evaluated (details provided in
Appendix G 3) through

�ρxx

ρxx(0)
= ρxx(H ) − ρxx(0)

ρxx(0)
= σxx(0) − σxx(H )

σxx(H )
, (18)

where σxx(0) denotes the conductance measured at zero
magnetic field. The longitudinal conductivity, however, has
contributions from both σ (0)

xx and σ (2)
xx . In order to proceed,

the mass renormalization due to the Zeeman field needs to
be evaluated. Two cases then arise due to the symmetry of the
spins of the electron pairs.

1. Spin-zero case

First, let us consider that the diffusive bosons have spin
zero; i.e., the spins of the electron pairs have the symmetry
of a singlet. The Zeeman coupling to the spin of the electrons

[diagram in Fig. 2(a)] renormalizes the bosonic mass term.
The resulting renormalization is independent of the magnetic
field H and is given by

μ = μ0 + μT , (19)

where μT = g̃bT log(γ T/μ0) (details provided in
Appendix G 1). On the other hand, since the orbital
contribution in Eq. (16) gives a term quadratic in H , it
leads to an H2 dependence of the MR (evaluated in detail
in Appendix G 1). The regimes are then determined by the
maximum among μ0 and μT . The MR is given by

�ρxx

ρxx(0)
= κ

β
H2, (20)

where κ/β ≡ −32γ 2T 2/(5μ4), with μ = max(μ0, μT ). In
both regimes, the magnetoresistance has a quadratic depen-
dence on the magnetic field. Thus, particle-particle pairs with
singlet symmetry contribute to the magnetoresistance as the
conduction electrons would do, typical of the conventional
Landau Fermi liquid theory [10].

2. Spin-one case

Next, we consider the situation where the spins of the
particle-particle pairs have a triplet symmetry. In this scenario,
the boson scattering off conduction electrons generates a mass
correction due to the Zeeman field H given by

μ = μ0 + μT + μH , (21)

where μH = αH and α is a constant. For a compre-
hensive evaluation of this mass renormalization, refer to
Appendix G 2. Again, the regimes will be determined by the
maximum among μ0, μT , and μH . As a result, we have a
regime where the mass term couples linearly to the magnetic
field. Taking the limit γ T/μ � 1 in Eq. (17), the orbital
contribution becomes negligible in this regime. Hence, the
spin-one contribution to the magnetoresistance becomes

�ρxx

ρxx(0)
=
{

α
μ0+μT

H when max(μ0, μT , μH ) = μH

κ
β

H2 otherwise,
(22)

where κ/β ≡ −32γ 2T 2/(5μ4), with μ = max(μ0, μT ). For
a detailed evaluation of all these quantities, refer to
Appendix G 3 b.

Note that μH 
 μT can be recast in the form H 
 ηT .
Here, η can be considered as a constant prefactor up to
logarithmic corrections [66]. Consequently, in this high-field
regime, we have a linear-in-H magnetoresistance. However,
in the low-field regime, H � ηT , we have a quadratic H
dependence of the magnetoresistance.

Lastly, we comment on the scaling of the in-plane magne-
toresistance with that observed experimentally. The in-plane
MR is given by

�ρxx = ρxx(H, T ) − ρxx(0, 0). (23)

Near the QCP, �ρxx follows a quadrature dependence
[22,25,67,68], i.e., �ρxx = √

a2T 2 + b2H2, where a and b are
constants. In the low-field and high-field limits, this quantity
can be easily obtained. We calculate the same for our theory,
while restricting our attention to the case when the bosons
emerge from pairs of electrons that have spin-triplet symme-
try. Consequently, the mass term is given by Eq. (21). Again,
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as we mentioned before, the maximum among μ0, μT , and μH

determines the different regimes in the present theory. There-
fore, the leading-order contribution to this quantity becomes

�ρxx ∝
{

H for H 
 ηT
H2

T for H � ηT,
(24)

where, up to logarithmic corrections, η is just a constant.
The detailed evaluation is presented in Appendix G 4. As a
result, although our calculations cannot determine exactly the
quadrature dependence for �ρxx, a similar scaling behavior is
found in the low-field and high-field limits.

H. Comparison of results with experiments

Here we comment on the relevance of the results for the
proposed boson-fermion model for the various experiments
in overdoped cuprates. From the early days of cuprates,
a linear-in-T resistivity is observed, which extends over a
very wide temperature regime [1,6,7]. Here we show that
finite-momentum charge-two bosons lead to a quasilinear de-
pendence of resistivity with temperature over an extensive
parameter regime.

Second, in overdoped cuprates, line shapes of the optical
conductivity as a function of frequency remarkably follow
the classic Drude form [16]. The ac conductivity for the
finite-momentum bosons reproduces such a Drude-like re-
sponse at finite frequencies if the boson-boson interaction is
larger than the Landau damping coefficient. Furthermore, a
close relationship between the scattering rates of the charge
carriers and linear-in-T behavior is established across sev-
eral families of overdoped cuprates [12,13]. The Planckian
dissipation within the holographic framework appears to be
a highly generic feature of the dense many-body entangled
quantum matter [43–48]. However, within such a holographic
duality approach, it is still undecided whether a fixed point
can produce incoherent transport contributing to the Drude
conductivity.

Third, the Hall conductivity for such bosons vanishes due
to the particle-hole symmetry. This fact could explain the
recent studies where the number of Hall carriers gradually de-
creases, as the doping is reduced from the overdoped region to
the underdoped regime [19,20]. Similarly, vanishing Hall con-
ductivity is reported in the normal state of the stripe-ordered
cuprates [69,70], and in two-dimensional superconducting
thin films [71,72].

Finally, recent studies [22] on overdoped cuprates reveal an
unusual dependence of magnetoresistance with the magnetic
field. When the magnetic field is higher than the temperature
scale, the MR shows a linear dependence with the magnetic
field. However, it displays a quadratic evolution of the MR
at the low-field regime. Remarkably, our calculations unveil
that the incoherent bosons can explain such a behavior of
the MR if the particle-particle pairs have the symmetry of a
triplet, whereas if the pairs have the symmetry of a singlet,
the incoherent bosons have the usual quadratic form.

IV. DISCUSSION

This paper provides an intuitive model that accounts for
the multiple transport anomalies in the strange metal phase.
The universal observations of charged or neutral modulated

excitations in the cuprates [55,73] along with the closeness
of finite-momentum Cooper pairing to the uniform pairing
state [74–78] strongly hints at remnant PDW fluctuations in
the SM phase. Initially, it is suggested that the pseudogap is a
transition towards a “fluctuating” pair density wave (PDW)
phase [75,79], which could readily lead to the presence of
charge-two finite-momentum bosons in the strange metal
phase. Another recent proposal suggests that the pseudogap
can result from fractionalizing a PDW state [80,81]. Here,
the gap opening at T ∗ results from a deconfining transition
of a PDW order parameter into an SC and charge density
wave fields. The fluctuations of the gauge field associated
with the fractionalization produce the pseudogap. At T = 0,
this involves a coherent superposition of particle-particle and
particle-hole orders. Here again, preformed PDW pairs can
exist above T ∗. Several microscopic models [75,76,82,83] are
also introduced to examine the possibility of such PDW sates.
In the presence of either time-reversal or parity symmetry,
the strong correlation between electrons becomes an essen-
tial ingredient for the generation of the PDW states [75,84].
Nevertheless, these PDW pairs are typically expected to have
a singlet spin symmetry. A few recent studies explore the
feasibility of the PDW states in the triplet channel as well
[85–87], and some proposals have suggested to fractionalize
a stripe [88,89] or a spin density wave order [90]. However, at
low temperatures the superconducting phase could potentially
preempt the fluctuating PDW pairs and, consequently, lead to
dissipationless conduction below Tc.

Consequently, on top of usual fermionic carriers, we
invoked the presence of charge-two bosonic excitations
emerging from such fluctuating finite-momentum Cooper
pairs in the SM phase. We show that such bosons contribute
to an approximate linear-in-T resistivity and lead to a broad
Drude component in the optical conductivity. Since the bosons
are incoherent, they do not contribute to the Hall conductivity,
thereby explaining the missing number of carriers reported
in the cuprates in the regions where longitudinal resistivity
is linear in T [19,20]. If bosons emerge from spin-one pairs
of fermions, they also produce a linear-in-H magnetoresis-
tance. Of course, our model also contains fermions, which
provide an additional part of the transport. The scattering
around the Fermi surface has to show a form of anisotropy
in the transport lifetime, according to which both the c-axis
magnetoresistance [35–38] and the fermionic quasiparticle
lifetime (extracted from the cotangent of the Hall angle
[26,27] cot θH ∼ τ−1

H ∼ T 2) can be successfully reproduced.
As a final remark, we note that since incoherent charge-two

bosons contribute to the Drude peak observed in the optical
conductivity, these pairs could also be a good candidate for ex-
plaining the missing spectral weight in the superfluid density
that is present in this region of the phase diagram [58,91,92].
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FIG. 5. (a) The leading-order boson propagator correction, given
by Eq. (A1). The solid line is the bare electronic Green’s function, G.
The wavy lines are the finite-momentum bosons with ordering wave
vector Q0. (b) Comparison of imaginary part of �(ω) for numerical
and approximate analytical evaluations for low temperature, T =
0.07, and gI = 1, Q0 = π/2. (c) Same for the higher temperature,
T = 0.35. The following physical constants are set to unity: h̄ = 1,
kB = 1, and e = 1.

APPENDIX A: SCATTERING THROUGH FERMIONS

In this section, we formally show that the scattering
through fermions leads to a diffusive imaginary part of the
self-energy of finite-momentum bosons. Figure 5(a) shows
the relevant Feynman diagram. The bosons emerge from the
pairs of fermions with finite-momentum Q0. The wavy lines
represent the bosons, and the solid lines denote the fermions.
The expression for the diagram reads as

�(ωn, Q0) = g2
I

L

∑
k

T
∑
εn

G(−εn,−k)G(εn + ωn, k + Q0)

+G(−εn,−k)G(εn − ωn, k − Q0). (A1)

Here L is the volume of the system, T is the temperature, and
gI is the interaction strength between the finite-momentum
bosons and fermions. The frequencies εn and ωn are fermionic
and bosonic Matsubara frequencies, respectively. The
Green’s functions, G, denote the free fermionic propagators
given by

G−1(k, ωn) = iεn − ξk, (A2)

where ξk = h̄2k2/2me. For simplicity of notations, we set
h̄2/2me = 1, from now on. In order to perform the Matsubara
summation, we go to the complex plane by performing the
substitution iεn → z. The first term of the right-hand side of
Eq. (A1) becomes

�(ωn, Q0) = −g2
I

L

∑
k

∮
C

dz

2π i

nF (z)

(z + ξ−k )(z + iωn − ξk+Q0 )
.

(A3)

The integral is evaluated using the residue theorem and we
obtain

�(ωn, Q0) = −g2
I

1

L

∑
k

1 − nF (ξ−k ) − nF (ξk+Q0 )

iωn − ξ−k − ξk+Q0

. (A4)

We perform the analytic continuation by letting
iωn → ω + i0+ and then taking the imaginary part,

Im �(ω, Q0) = πg2
I

L

∑
k

[1 − nF (ξ−k ) − nF (ξk+Q0 )]

× δ(ω − ξ−k − ξk+Q0 ). (A5)

The k summation is performed by converting it to an inte-
gral. We can approximate ξk+Q0 ≈ k2 + Q2

0 + 2kF Q0 cos(θ ),
where θ is the angle between Fermi momentum kF and the
ordering wave vector, Q0. Furthermore, we use the flat-band
approximation with the density of states at the Fermi en-
ergy given by N (εF ), and the integral in two dimensions
becomes

Im �(ω, Q0) = g2
IN (εF )

16π

∫ 2π

0
dθ

[
tanh

(
ω + Q2

0 + 2kF Q0 cos(θ )

4T

)
+ tanh

(
ω − Q2

0 − 2kF Q0 cos(θ )

4T

)]
. (A6)

In the limit T → 0, we can approximate tanh(x/T ) ≈ sgn(x). In this low-temperature regime, the integrand in the square brackets
in Eq. (A6), which we simply denote as I (θ ) from now on, is approximately given by

I (θ ) =

⎧⎪⎪⎨
⎪⎪⎩

2 if θ ∈ [ cos−1
( ω−Q2

0
2kF Q0

)
, cos−1

(−ω−Q2
0

2kF Q0

)]
2 if θ ∈ [2π − cos−1

(−ω−Q2
0

2kF Q0

)
, 2π − cos−1

( ω−Q2
0

2kF Q0

)]
0 otherwise.

(A7)

The form of I (θ ) is used to evaluate the integral in Eq. (A6) and it reads as

Im �(ω, Q0) = g2
IN (εF )

4π

[
cos−1

(−ω − Q2
0

2kF Q0

)
− cos−1

(
ω − Q2

0

2kF Q0

)]
. (A8)
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Finally, expanding the function for ω � 2kF Q0, we arrive
at the result

Im �(ω, Q0) = g2
IN (εF )

2π

ω√
(2kF Q0)2 − Q4

0

. (A9)

This shows there is a linear dependence on ω. Performing sim-
ilar calculations for the second term in Eq. (A1), the imaginary
part of the self-energy reads

Im �(ω, Q0) = γ |ω|, (A10)

with γ = g2
IN (εF )

2π
√

(2kF Q0 )2−Q4
0

. We have checked our approximate

expression against numerical evaluation of Eq. (A6). A good
agreement between them is observed in Fig. 5(b) at low tem-
perature, and in Fig. 5(c) at high temperature.

1. Landau damping for electrons near the hot spots

Here we show that the particle-particle bubble evaluated
in the previous section gives a Landau damped form if the
electrons live near the hot spots, as shown in Fig. 1(a) of
the main text. In the top two hot spots of the same fig-
ure the Fermi velocity along the x and y directions changes
from (−vx, vy) → (vx, vy). Consequently, the dispersion
becomes

ξl = −lxvx + lyvy, (A11)

ξl+Q0 = lxvx + lyvy. (A12)

Putting these two in Eq. (A5) we obtain

Im �(ω, Q0) = πg2
I sgn(ω)

4π2

∫ ∞

−∞
dlx

∫ ∞

−∞
dlyδ(ω − 2lxvx )

× [1 − nF (lxvx − lyvy) − nF (lxvx + lyvy)].
(A13)

Defining l̃ = vl , after simplification we obtain

Im �(ω, Q0) = g2
I sgn(ω)

16πvxvy

∫ ∞

−∞
dl̃y

[
tanh

(
ω/2 − l̃y

2T

)

+ tanh

(
ω/2 + l̃y

2T

)]
. (A14)

In the limit T → 0, we can approximate tanh(x/T ) ≈ sgn(x).
In this low-temperature regime, the integrand in the square
brackets in Eq. (A14) has a constant value of 2, when l̃y is
restricted between (−ω/2, ω/2); otherwise it vanishes. There-
fore, performing the integration over l̃y, we get

Im �(ω, Q0) = g2
I

8πvxvy
|ω|. (A15)

Consequently, we obtained Landau damping for the electrons
near the hot spots. We note that such linear-in-ω dependence
is also obtained for particle-particle and particle-hole bubbles
in different contexts [63,93,94].

2. Robustness of Landau damping

We use a generalized form of the fermionic self-energy
and show that the previously obtained Landau damping form

is robust against such perturbations. Suppose this fermionic
self-energy arises from a different physical mechanism,
which is not considered in this paper. Following the nota-
tions in Ref. [63], we assume the self-energy of the form
�lτ = |�(lτ )|sgn(lτ ). Next, we estimate the particle-particle
bubble,

�(qτ , Q0) = ig2
I

8π3vxvy

∫ ∞

−∞
dlτ

∫ ∞

−∞
dl̃x

∫ ∞

−∞
dl̃y

× 1(
i�lτ + l̃x − l̃y

)(
i�lτ +qτ

− l̃x − l̃y
) . (A16)

If qτ > 0 the poles of l̃y are in the opposite half planes if the
lτ is restricted between −qτ � lτ � 0. We close the contour in
the upper half plane and obtain

�(qτ > 0, Q0) = − g2
I

4π2vxvy

∫ 0

−qτ

dlτ

∫ ∞

−∞
dl̃x

× 1(
i�lτ − i�lτ +qτ

+ 2l̃x
) , (A17)

�(qτ > 0, Q0) = − g2
I

8π2vxvy

∫ 0

−qτ

dlτ

× log

(
i�lτ − i�lτ +qτ

+ 2�

i�lτ − i�lτ +qτ
− 2�

)
, (A18)

where � is the UV cutoff. If �lτ − �lτ +qτ
� 2�, then the

logarithm can be approximated as −iπ . The imaginary part
of the � then becomes

Im �(qτ > 0, Q0) = g2
I

8πvxvy
qτ . (A19)

Similarly one can repeat the procedure for qτ < 0 and obtain
the same expression with a negative sign. Therefore, combin-
ing these two, one can write

Im �(qτ , Q0) = g2
I

8πvxvy
|qτ |. (A20)

Therefore, the Landau damping remains unaffected for ar-
bitrary self-energy corrections. These conclusions remain
unaffected if the electrons attain mass away from the putative
hot spots. To recognize this, we replace, in Eq. (A16), with μ1

and μ2 as the general mass of the electrons,

�(qτ , Q0) = ig2
I

8π3vxvy

∫ ∞

−∞
dlτ

∫ ∞

−∞
dl̃x

∫ ∞

−∞
dl̃y

× 1(
i�lτ −μ1 + l̃x−l̃y

)(
i�lτ +qτ

+μ2 − l̃x − l̃y
) .

(A21)

Using the same procedure as above we arrive at

�(qτ > 0, Q0) = − g2
I

8π2vxvy

∫ 0

−qτ

dlτ

× log

(
i�lτ − i�lτ +qτ

− μ1 − μ2 + 2�

i�lτ − i�lτ +qτ
− μ1 − μ2 − 2�

)
.

(A22)
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FIG. 6. (a) The scenario when the bosons do not create hot spots since the bosonic wave vector Q0 is smaller than the distinct parts of

the Fermi surface. In this scenario, the T log T behavior of resistivity and Drude form of optical conductivity extend to T = 0 at the critical
dopings. (b) The scenario when the bosons create hot spots by connecting the Fermi surface. In this scenario, the fermion-boson vertex
correction becomes relevant and changes the dynamical exponent of the QCP. However, this happens only at low temperatures near the QCP,
here represented by the blue region. Above this temperature, we can have the same T log T resistivity with Drude conductivity for a broad
temperature regime.

Again, if �lτ − �lτ +qτ
� 2� − μ1 − μ2, we have the same

Landau damping form as found in Eq. (A15).

3. On the fermion-boson vertex corrections

Recent studies of the antiferromagnetic QCP [63,64] in
two spatial dimensions obtained that the fermion-boson vertex
corrections become relevant at low-energy scales and mod-
ify the dynamical exponent close to the QCP. Therefore, it
becomes essential to discuss these vertex corrections in the
present case. Our calculation for the finite-momentum bosons
will follow the results of Ref. [63], and we present it here for
completeness. In the present study, two different situations can
emerge.

In the first one, the bosons cannot generate hot spots if the
wave vector Q0 is either too small or too large to connect
distinct parts of the Fermi surface as shown in Fig. 6(a).
Thus, the fermionic propagator reestablishes the Fermi liquid
behavior of Eq. (A2). In this scenario, the Landau damping
remains unchanged, whereas the vertex corrections become
irrelevant. Hence, the transport properties of the model give
the T log T behavior of the resistivity and a broad Drude
component extending to zero temperature as exhibited in the
phase diagram of Fig. 6(a).

In the second situation, if the bosonic wave vector Q0

creates hot spots by connecting two distinct parts of the Fermi
surface as displayed in Fig. 6(b), the fermionic self-energy is
given by

Im �(ω, Q0) = C|ω|1/2sgn(ω), (A23)

where C is just a constant, and the self-energy has a non-Fermi
liquid behavior. Additionally, in this situation, the vertex
corrections also become relevant. The integral to evaluate the
same is given by

�(0, 0) = i

8π3vxvy

∫ ∞

−∞
dlτ

∫ ∞

−∞
dl̃x

∫ ∞

−∞
dl̃y

× 1(
i�lτ +l̃x−l̃y

)(
i�lτ −l̃x−l̃y

)(
γ |lτ |+l̃2

x + l̃2
y

) .
(A24)

After computing this integral, one obtains a logarithmic di-
vergence from the vertex corrections, thereby affecting the
dynamical exponent near the QCP. However, recent sign-
problem-free quantum Monte Carlo studies suggest that only
within a small temperature regime near the QCP [65] (which
is, in fact, too low to be seen in these simulations) would
these vertex corrections become relevant, which is represented
by the blue region of phase diagram in Fig. 6(b). Further-
more, before reaching such a low-temperature regime, we
point out that this divergence can also be regularized by other
mechanisms of damping, such that �ω 
 C|ω|1/2sgn(ω).
In the cuprates these other sources of damping can have
many different origins, such as nematic fluctuations and
loop-current fluctuations [95], among others. These additional
fluctuations that emerge in these materials can also regular-
ize the fermion-boson vertex without changing the transport
properties.
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FIG. 7. (a) The first-order diagram of the bosonic self-energy.
The wavy lines denote the bosons, which interact with the strength
gb. (b) The temperature dependence of the number of bosons, eval-
uated by solving Eq. (B4) numerically and compared with the
expression arrived at analytically in Eq. (B8). The perfect match
between the two evaluations gives us confidence in our analytical
results. The temperature is in units of μ0/γ . The following physical
constants are set to unity: h̄ = 1, kB = 1, and e = 1.

APPENDIX B: RENORMALIZATION OF THE “MASS”
TERM—NUMBER OF BOSONS

In this section, we present the detailed evaluation of the
leading-order term in the self-energy, which renormalizes the
mass of the bosons. Figure 7(a) shows the relevant diagram,
where the wavy lines represent the bosons, which interact with
other bosons with the interaction strength being represented
by gb. The mass-term renormalization is given by the real part
of this diagram, i.e.,

Nb = 1

L

∑
q

T
∑
νn

1

γ |νn| + q2 + μ
. (B1)

The Matsubara summation over εn is carried out by using the
spectral decomposition of the bosonic Green’s function. The
spectral function A(E , q) is given by [96]

A(q, E ) = −2Im [DR(q, E )] = −2
γ E

(γ E )2 + (q2 + μ)2
.

(B2)

Noting that D(q, νn) = ∫∞
−∞

dE
2π

A(q,E )
iνn−E , the summation is taken

to the complex plane by promoting iνn → z and T
∑

νn →∮
C

dz
2π i nB(z), where C covers the whole of the complex plane.

Therefore, the expression becomes

Nb = 1

L

∑
q

∮
C

dz

2π i

∫ ∞

−∞

dE

2π

A(q, E )nB(z)

z − E
,

Nb = − 1

2π

∫ ∞

0
dq
∫ ∞

−∞

dE

2π
nB(E )

γ E

(γ E )2 + (q2 + μ)2
.

(B3)

After performing the integral over q exactly, Nb becomes

Nb = − 1

4π2

∫ ∞

−∞
dE

[
π

2
sgn(E ) − tan−1

(
μ

γ T

)]
nB(E ).

(B4)

The Bose-Einstein distribution is approximated as

nB(x) =

⎧⎪⎨
⎪⎩

0 if x > T
T
x if |x| < T

−1 if x < −T .

(B5)

Performing the integral in the regime where |E | < T , the
renormalization of the mass term reads

N (1)
b =

{
T
4π

log
(

γ T
μ

)
for γ T 
 μ

μ

2π2γ
for γ T � μ.

(B6)

Similarly, performing the integral for E < −T , we obtain

N (2)
b =

{ 1
4π

(� − T ) for γ T 
 μ

0 for γ T � μ,
(B7)

where � is the ultraviolet energy cutoff of the system. There-
fore, Nb will be independent of temperature in this regime, as
� will be the dominant energy scale. This gives the number
of bosons that condenses to the ground state. The mass term
μ to the first order is given by setting μ = μ0, where μ0 is
the bare mass of the bosons, which is naturally temperature
independent. Therefore, to first order in gb, we obtain

μ =
{
μ0 + gb

(
T
4π

log
(

γ T
μ0

))
for γ T 
 μ0

μ0 for γ T � μ0.
(B8)

The constant terms are absorbed in the μ0, which be-
comes close to zero near the quantum critical point. The
temperature dependence of Nb calculated numerically from
Eq. (B4) and the analytical form displayed in Eq. (B8)
match over a wide range of temperature, as can be seen in
Fig. 7(b).

APPENDIX C: LONGITUDINAL CONDUCTIVITY: KUBO FORMULA

The longitudinal conductivity is given in terms of correlation functions K by [96]

K(ωn)=−T
∑
νn

1

L

∑
q

[D(νn, q)+q2D(νn, q)D(νn+ωn, q)]. (C1)

The first term is the diamagnetic term and the second term is the paramagnetic current-current correlation. The finite-momentum
boson is dominant around q = Q0. Equation (C1) can be approximated by

K(ωn) ≈ −T
∑
νn

1

L

∑
q

[
D(νn, q)+Q2

0D(νn, q)D(νn+ωn, q)
]
. (C2)
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(a)

(b)

FIG. 8. (a) The leading-order diagram to evaluate the conduc-
tivity. (b) The contours used to evaluate the Kubo formula for
finite-momentum bosons. The two dashed lines are the branch cuts.

The optical conductivity is then evaluated by

σ (ω) = −K (ωn)

ωn

∣∣∣∣∣
iωn→ω+i0+

. (C3)

The evaluation of the K is carried out in the following way:
The integral is evaluated in the contour shown in Fig. 8(b).
There are two branch cuts, at z′ = 0 and z′ = iωn. The in-
tegrals over the �1 and �3 contours cancel the diamagnetic
term. Therefore, only the �2 contour contributes to the optical
conductivity. The integral becomes

K (ωn) = −Q2
0

2π iL

∑
q

∮
�2

× dz nB(z)

(iγ z + q2 + μ)((−iz + ωn)γ + q2 + μ)
. (C4)

The poles of z lie outside the �2 contour and hence the full
integrals collapse to the real line integrals along the branch
cuts. The resulting expression becomes

K (ω) = Q2
0

L

∑
q

1

2π i

∫ ∞

−∞
dx

× nB(x − ω/2) − nB(x + ω/2)(
iγ x − iγ ω

2 + q2 + μ
)(−iγ x − iγ ω

2 + q2 + μ
) .

(C5)

The summation over q is converted to an integral and it is
performed by usual means, i.e.,

K (ω) = − Q2
0ω

16π2γ

∫ ∞

−∞
dx

(
∂nB

∂x

)
1

x
log

(−iγ x − iγ ω
2 +μ

iγ x − iγ ω
2 +μ

)
.

(C6)

From the approximate form of the nB given in Eq. (B5), we
obtain

∂nB

∂x
=
{

0 if |x| > T

− T
x2 if |x| < T .

(C7)

Using Eqs. (C7), the optical conductivity becomes

σ (ω) = − iQ2
0T

16π2γ

∫ T

−T
dx

1

x3
log

(−x − ω
2 − iμ

γ

x − ω
2 − iμ

γ

)
, (C8)

where we defined μ̃ = ω
2 + i μ

γ
. As a result, performing the

integral, we obtain

σ (ω) = − iQ2
0T

16π2γ

[
− 2

μ̃T
+ 1

2μ̃2
log

(
μ̃ + T

μ̃ − T

)

− 1

2μ̃2
log

(
μ̃ − T

μ̃ + T

)
+ 1

2T 2
log

(
μ̃ − T

μ̃ + T

)

− 1

2T 2
log

(
μ̃ + T

μ̃ − T

)]
. (C9)

We expand the above expression in two regimes: For the
first regime, T �

√
ω2/4 + μ2/γ 2, we find that the optical

conductivity displays the Drude form:

σ (ω) = Q2
0

4π2μ
(
1 − i γω

2μ

) . (C10)

We have compared the static conductivity given in the above
equation against the numerical evaluation for the same using
Eq. (C6). This comparison is displayed in the main text. A
remarkable match between the two computations over a wide
range of temperatures is observed. The Drude conductivity is
naturally given by σ (ω) = σ0

τ
1−iωτ

. From that expression, one

can easily read off the σ0 = Q2
0

2π2γ
while the scattering time of

the bosons is given by τ = γ

2μ
.

On the other hand, for the second regime,
T 


√
ω2/4 + μ2/γ 2, the optical conductivity does not

exhibit the traditional Drude form:

σ (ω) = Q2
0μ

12π2γ 2T 2

(
1 − i

γω

2μ

)
. (C11)

In the next section, we discuss the temperature dependence of
the dc conductivity.

1. Static conductivity: The regimes

Next, we elaborate on the regimes of the static conductiv-
ity. Taking a ω → 0 limit, we obtain the static conductivity in
the two theoretical regimes as

ρxx(T ) =
⎧⎨
⎩

4π2μ

Q2
0

for γ T � μ(T )
12π2γ 2T 2

Q2
0μ

for γ T 
 μ(T ).
(C12)

The bosonic mass renormalization is evaluated in Eq. (B8).
Let us define g̃b = gb/(4π ). Next, we find the temperature
scale T ′

1 , where γ T ′
1 = μ0 + g̃bT ′

1 log(γ T ′
1/μ0). Solving for

T ′
1 , we get

T ′
1 = − μ0

g̃bW [−γ /g̃b exp(−γ /g̃b)]
, (C13)

where W [x] is the Lambert W function. For different coupling
strength g̃b, the form for this function is given by

W

[
− γ

g̃b
exp

(
− γ

g̃b

)]
=
{− γ

g̃b
for g̃b � γ

− γ

g̃b
exp
(− γ

g̃b

)
for g̃b < γ .

(C14)
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FIG. 9. The phase diagram for the scenario when bosonic inter-
action strength is weaker than the Landau damping parameter. Here,
we have an intermediate regime bounded by the dotted black curve,
where the optical conductivity does not conform to the conventional
Drude form.

Putting this in Eq. (C13), we get the temperature scale

T ′
1 =

{
μ0

γ
for g̃b � γ

μ0

γ
exp
(

γ

g̃b

)
for g̃b < γ .

(C15)

It can be seen that if g̃b � γ , the temperature scale T ′
1 col-

lapses on μ0/γ . Consequently, we are always in the γ T <

μ(T ) regime. In other words, the γ T > μ(T ) regime is never
attained if the coupling between the bosons is stronger than
that of the Landau damping coefficient. In Fig. 1(b) of the
main text, we have already presented the phase diagram for
this scenario. In this regime, the static conductivity is given
by

ρxx(T ) =
⎧⎨
⎩

4π2μ0

Q2
0

+ 4π2 g̃b

Q2
0

T log
(

γ T
μ0

)
for γ T 
 μ0

4π2μ0

Q2
0

for γ T � μ0.

(C16)

So, the incoherent charged bosons display a T log T resistivity
when γ T � μ0. This contribution also leads to the Drude
form of optical conductivity, as shown in Eq. (C10). The
bosonic contribution becomes independent of temperature be-
low this temperature. However, the presence of conduction
electrons will lead to a quadratic T dependence of resistivity,
just like in the Fermi liquid.

Next, we focus on the situation when the interaction be-
tween the bosons is lower than the Landau damping constant,
i.e., g̃b < γ . In this situation, there will be an intermediate-
temperature regime, μ0/γ < T < T ′

1 , where γ T > μ(T ).
The resulting phase diagram is presented in Fig. 9. The re-
gion bounded by the dotted line can harbor a non-Drude-like
optical conductivity as evaluated in Eq. (C11). The static
conductivity in this limit is given by

ρxx(T ) ≈
⎧⎨
⎩

12π2γ 2

Q2
0 g̃b log(γ T/μ0 )

T for γ T 
 μ0

48π3γ 2

Q2
0μ0

T 2 for γ T � μ0.
(C17)

Consequently, up to logarithmic corrections, we still have
a linear-in-T resistivity even when the bosonic interaction
strength is weaker than the damping and γ T > μ0. However,
such an approximate linear-in-T resistivity does not subscribe
to the Drude form of the optical conductivity. Below this
temperature, the incoherent bosons also contribute to the T 2

resistivity expected in the Fermi liquid regime. Thus, for weak
coupling, the crossover from the strange metallic to Fermi
liquid behavior occurs through this intermediary region.

In the pseudogap phase, the opening of a gap at the temper-
ature T ∗ results from a deconfining transition of a PDW order
parameter into a SC and charge density wave (CDW) fields.
Above T ∗, the incoherent bosons have a bare mass of 2μ0.
This is illustrated in more details in the next section. Using the
bare mass for the bosons, a temperature region T ∗ < T < T ′

0
exists where the non-Drude form of the optical conductivity
survives for weakly coupled bosons, i.e., g̃b < γ .

2. Bosonic bare mass in the ordered side

Near the ordered phase, i.e., just above T ∗ in Fig. 9, the
bosonic propagator attains the bare mass due to the ordered
parameter fluctuations. The Ginzburg-Landau free energy
functional is given by

F[ψ] =
∫

dd x

[
μ0|ψ (x)|2 + b

2
|ψ (x)|4

]
. (C18)

If ψ0(x) minimizes F[ψ], we obtain

ψ0 =
√

−μ0

b
. (C19)

Expanding around the minima ψ (x) = ψ0(x) + δψ (x), where
δψ (x) are the fluctuations. Putting this in Eq. (C18) and noting
that the terms linear in δψ (x) vanish, we obtain

F[δψ] =
∫

dd x[−2μ0|δψ (x)|2 + · · · ]. (C20)

Therefore, the bare mass of the diffusive bosons just above the
T ∗ is given by 2μ0.

APPENDIX D: MODE-MODE COUPLING:
HIGHER-ORDER TERMS IN SELF-ENERGY

The second-order bosonic self-energy diagram—which
renormalizes both the mass term μ, and the imaginary term
of the bosonic propagator, γ —is denoted by �2(q0) where
q0 is the external frequency. We emphasize that the finite-
momentum bosons are dominant around Q0, which is different
from the external frequency in this diagram, q0. The integral
is given by

�2(q0) = g2
b

1

L2

∑
k,p

T 2
∑
ωn,νn

D(νn − ωn + q0, k − p)

×D(νn, k)D(ωn, p). (D1)

Performing the summation over νn and ωn and
using the spectral decomposition, one readily
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obtains

�2(q0) = g2
b

1

L2

∑
k,p

∫ ∞

−∞

dE1

2π

∫ ∞

−∞

dE2

2π

∫ ∞

−∞

dE3

2π
[A(E1, a)A(E2, b)A(E3, d)(nB(E2) − nB(E1))]

(
nB(E3) − nB(E2 − E1)

iq0 − E1 + E2 − E3

)
,

(D2)

where we have defined

a = k2 + μ, (D3)

b = (k − p)2 + μ, (D4)

d = p2 + μ. (D5)

Analytically continuing iq0 → q0 + i0+, the imaginary part of the �2 becomes

Im �2(q0) = −g2
bq0

8π2

1

L2

∑
k,p

∫ ∞

−∞
dE1

∫ ∞

−∞
dE2[A(E1, a)A(E2, b)A(E2 − E1 + q0, d)(nB(E2) − nB(E1))]

∂nB

∂ (E2 − E1)
. (D6)

In the regime where |E2 − E1| < T and expanding the spectral function in the q0 → 0 limit, we obtain

Im �2(q0) = γ g2
bT q0

π2

1

L2

∑
k,p

∫ ∞

−∞
dE1

∫ ∞

−∞
dE2

[
γ E1γ E2

((γ E2)2 + a2)((γ E1)2 + b2)((γ (E2 − E1))2 + d2)

(
nB(E2) − nB(E1)

E2 − E1

)]
.

(D7)

Next, approximating nB(E ) by using Eq. (B5), the integrand will only contribute both |E1| < T and |E2| < T . Making a change
of variables from Ẽ = γ E , we obtain

Im �2(q0) = γ g2
bT q0

π2

1

L2

∑
k,p

∫ γ T

−γ T
dẼ1

∫ γ T

−γ T
dẼ2

1(
Ẽ2

2 + a2
)(

Ẽ2
1 + b2

)
((Ẽ2 − Ẽ1)2 + d2)

. (D8)

Evaluating the integral in the familiar regimes γ T 
 μ and
γ T � μ, we obtain the forms

Im �2(q0) =
{

γ g2
bT 2q0

2
1

L2

∑
k,p

1
abd(a+b+d) for γ T 
 μ

2γ 3g2
bT 4q0

π2
1

L2

∑
k,p

1
a2b2d2 for γ T � μ.

(D9)

Performing the momentum summation, we arrive at expres-
sions for the imaginary part of �2,

Im �2(q0) =
{ c1γ g2

bT 2

16π3μ2 q0 for γ T 
 μ

c2γ
3g2

bT 4

4π5μ4 q0 for γ T � μ,
(D10)

where c1 = 0.323 and c2 = 0.284, which are evaluated nu-
merically. On the other hand, the real part of �2 can be
evaluated by utilizing Kramers-Kronig relations. The external
frequency is taken to be small in the above calculations. Thus,
a frequency cutoff λ = min[μ, γ T ] is used in the Kramers-
Kronig relation. The Kramers-Kronig relation is given by

Re �2(q0) = 2

π
P
∫ λ

0

ωIm �2(ω)

ω2 − q2
0

dω. (D11)

Therefore, the real part of the �2 becomes

Re �2(q0) =
⎧⎨
⎩

c1γ g2
bT 2

8π4μ2

(
λ − q0 tanh−1

(
λ
q0

))
for γ T 
 μ

c2γ
3g2

bT 4

2π6μ4

(
λ − q0 tanh−1

(
λ
q0

))
for γ T � μ,

(D12)

where λ is the cutoff energy scale. Now evaluating the renor-
malization of the μ and γ up to second order for γ T 
 μ0,
we get

μ ≈ μ0 + gb

4π
T log

(
γ T

μ0

)
+ 2c1γ λ

π2 log2 (γ T/μ0)
, (D13)

γ̃ ≈ γ + c1γ

π log2 (γ T/μ0)
. (D14)

Taking the limit γ T/μ0 
 1, it is clear that the second-order
terms are negligible. Next, evaluating the same for γ T � μ0,
we get

μ ≈ μ0 + c2λ(γ T )4

2π6γμ4
0

, (D15)

γ̃ ≈ γ + c2(γ T )3

4π5γμ4
0

. (D16)

Again, taking the limit γ T/μ0 � 1, it becomes clear that the
higher-order terms are negligible compared to the first-order
ones.

1. Fate of bosonic vertex corrections

Here, we discuss the bosonic vertex correction diagram
at second order in gb and compare it with the self-energy
diagram given by �2 evaluated in the previous section. The
second-order self-energy diagram is shown in Fig. 10(a),
whereas the vertex correction diagram is presented in
Fig. 10(b). Next, we replace the boson-boson bubble in
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(a) (b) (c)

(d) (e) (f)

FIG. 10. (a) The diagram associated with the current-current cor-
relation function with second-order self-energy corrections. (b) The
same with bosonic vertex corrections. (c) The bosonic bubble that
can be replaced with the diagram shown in (f). (d), (e) Again the
current-current correlation function by replacing the bosonic bubble
with the curly line.

Fig. 10(c) using the curly-line composite propagator, as shown
in Fig. 10(f). After this, it can be readily seen that the dia-
grams in Figs. 10(a) and 10(b) can be replaced by those in
Figs. 10(d) and 10(e), respectively. Subsequently, we define
the bosonic composite propagator represented by the curly
line in Fig. 10(f) as F (q, ω). In this notation, the diagram in
Fig. 10(d) becomes

�1 = T 2

L2

∑
k,q,ωn,�n

D3(k, ω)D(k + q, ω + �)F (q,�).

(D17)

Similarly, the diagram in Fig. 10(e) becomes

�2 = T 2

L2

∑
k,q,ω,�

D2(k, ω)D2(k + q, ω + �)F (q,�).

(D18)

Now, after performing analytical continuation, we obtain us-
ing the retarded form of the bosonic Green’s function

T
∑
ωn

D(k, ω) =
∫ ∞

−∞

dω

2π

1

−iω + k2 + μ

= i
∫ ∞

−∞

dlτ
2π

1

lτ + k2 + μ
, (D19)

where in the last step we have made a simple change of
variable. From the last definition, it is clear that

∂D(k + q, ω + �)

∂ (−iω)
= −D2(k + q, ω + �). (D20)

Next, using these previous relations to evaluate �2, we get

�2 = − iT

L2

∑
k,q,�

∫ ∞

−∞

dlτ
2π

D2(k, lτ )∂lτD(k + q, lτ + �)

×F (q,�). (D21)

Integrating by parts, we find

�2 = −2
iT

L2

∑
k,q,�

∫ ∞

−∞

dlτ
2π

D3(k, lτ )D(k + q, lτ + �)

×F (q,�). (D22)

Finally, reverting back to the earlier notation, we get

�2 = −2
T 2

L2

∑
k,q,ωn,�n

D3(k, ω)D(k + q, ω + �)F (q,�)

= −2�1. (D23)

We have already argued in the previous section that the �1

correction due to �2 is negligible in all regimes. Since we find
that �2 if of the same order of magnitude as �1, the vertex
correction diagram in Fig. 10(b) can also be safely ignored in
our analysis.

APPENDIX E: HALL CONDUCTIVITY

To discuss the effect of magnetic field, in the first order
in magnetic field, we calculate the Hall conductivity which is
given by

σ (1)
xy = iH

ωn
T
∑
εn

1

L

∑
q

[
qxD(εn, q)∂qxD(εn + ωn, q)

− qyD(εn, q)∂qyD(εn + ωn, q)
]
. (E1)

For a particle-hole symmetric theory, the Hall conductivity is
naturally expected to vanish. This means that the incoherent
bosons at finite Q do not contribute to the Hall conductivity.
Using the fact that ∂qxD(x) = qxD2(x), only the wave vector
near qx = Q0 will contribute. As a result, we obtain

σ (1)
xy (ωn) = iHQ2

0

ωn
T
∑
εn

1

L

∑
q

[D(εn, q)D2(εn + ωn, q)

−D2(εn, q)D(εn + ωn, q)]. (E2)

Performing the Matsubara summation by using spectral func-
tions, we arrive at

σ (1)
xy (ω) = iHQ2

0

L

∑
q

∫ ∞

−∞

dE1

2π

∫ ∞

−∞

dE2

2π

nB(E1) − nB(E2)

ω(E1 − E2 + ω)

× (A(E1, q)Ã(E2, q) − Ã(E1, q)A(E2, q)),

(E3)

where A(E1, q) is given in Eq. (B2) and Ã(E1, q) is given by

Ã(q, E ) = −2Im
[
D2

R(E , q)
] = − 4γ E (q2 + μ)

(γ E )2 + (q2 + μ)2
.

(E4)
Therefore, taking ω → 0, the expression for the Hall conduc-
tivity becomes

σ (1)
xy (0) = iHQ2

0

L

∑
q

∫ ∞

−∞

dE1

2π

∫ ∞

−∞

dE2

2π
A(E1, q)Ã(E2, q)

×
[

coth
( E1

2T

)− coth
( E2

2T

)
(E1 − E2)2

]
. (E5)

This can be trivially shown to be exactly zero by noting that
the A(E , q), Ã(E , q), and coth(E ) are all antisymmetric func-
tions with respect to E . Since I (−E1,−E2) = −I (E1, E2),
as a consequence, the incoherent bosons will indeed have a
vanishing Hall conductivity.
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APPENDIX F: SECOND MOMENT OF CONDUCTIVITY

The second moment of the conductivity, the term propor-
tional to the square of the field H , is given in terms of the
bosonic Green’s function by

σ (2)
xx (ωn) = −H2

ωn
Im T

∑
εn

1

L

∑
q

∂qyD(εn, q)∂qyD(εn +ωn, q).

(F1)

Using the form of bosonic propagator D(ωn, q), we obtain

σ (2)
xx (ωn)

= −4Q2
0H2

ωn
Im

{
T
∑
εn

1

L

∑
q

D2(εn, q)D2(εn + ωn, q)

}
.

(F2)

The spectral function in Eq. (E4) is used to perform the Mat-
subara summation over εn. After analytical continuation, the
real part of the second moment of conductivity becomes

σ (2)
xx (ωn)= − 4Q2

0H2

ωnL

∑
q

∫ ∞

−∞
dE1Ã(E1, q)Ã(E1 + ω, q)

∂nB

∂E1
.

(F3)

The Bose function is approximated by Eq. (B5) and the mo-
mentum summation is carried out by replacing (q2 + μ) = t ,
i.e.,

σ (2)
xx (ω → 0) = −4T Q2

0H2

π2

∫ ∞

μ

t2dt
∫ ∞

−∞
dE1

γ 2

{(γ E1)2 + t2} .
(F4)

Finally, by performing the integral over E1 and t , and then by
expanding in the two familiar limits, we obtain the expression
for the real part of the static second moment of conductivity,

σ (2)
xx =

⎧⎨
⎩

8γ 2Q2
0T 2H2

5π2μ5 for γ T � μ

5T γ Q2
0H2

16πμ4 for γ T 
 μ.
(F5)

APPENDIX G: POLARIZATION BUBBLE DUE
TO THE ZEEMAN FIELD

1. Singlet case

For particle-particle pairs of singlets, the contribution to
the self-energy due to the Zeeman term is evaluated here. The
correction to the mass term is given by

�(H, Q0) = g2
I

L

∑
k

T
∑
εn

[G(−εn, ξ−k,↑)G(εn, ξk+Q0,↓)

−G(−εn, ξ−k,↓)G(εn, ξk+Q0,↑)], (G1)

where ξk,σ = k2 − σH where σ = ±1. Next, performing the
Matsubara summation over εn, we arrive at the expression
which is independent of magnetic field. The mass term thus
becomes

μ = μ0 + μT , (G2)

where μT = g̃bT log(γ T/μ0). So the mass term has no con-
tribution from the Zeeman field.

2. Triplet case

Here, we calculate the self-energy correction due to the
bosons formed with paired electrons of triplet spin symmetry.
The corresponding expression is given by

�(H, Q0) = g2
I

L

∑
k

T
∑
εn

G(−εn, ξ−k,↑)G(εn, ξk+Q0,↑),

(G3)
where ξk,σ = k2 − σH where σ = ±1, in our units
h̄2/(2me) = 1. Performing the εn summation, we get

�(H, Q0) = g2
I

L

∑
k

{
1 − nF (ξk − H ) − nF (ξk+Q0 − H )

ξk+Q0 + ξk − 2H

}
.

(G4)
Next, using a flat-band approximation, we can write the mo-
mentum summation in the following form:

�(H, Q0) = N (εF )g2
I

4π2

∫ 2π

0
dθ

∫ �

0
dξ

× tanh
(

ξ+ζ−H
2T

)+ tanh
(

ξ−H
2T

)
2ξ + ζ − 2H

, (G5)

where � is the largest energy scale of the system. Addi-
tionally, we have substituted ζ ≡ Q2

0 + 2kF Q0 cos(θ ). Now
at T → 0, we will use that tanh(x/T ) → sgn (x) and then
performing the ξ integral we arrive at

�(H, Q0) = N (εF )g2
I

4π2

∫ 2π

0
dθ

{
log
(
1 − 2H

ζ

)+ log
(− ζ+2�−2H

ζ

)
for ζ � 0

log
(

ζ+2�−2H
ζ

)
for ζ > 0 and H − ζ � 0.

(G6)

Recall that the � is the ultraviolet energy cutoff, and hence,
expanding in H � 2kF Q0 � �, we get

�(H, Q0) = C − N (εF )g2
I

4π2

∫ 2π−p1

p1

dθ
2H

Q2
0 + 2kF cos(θ )

,

(G7)

where p1 ≡ cos−1(Q0/(2kF )) and C is the H-independent
constant. Now integrating over θ , one obtains

�(H, Q0) = C + 2γ

π
coth−1

⎛
⎝ 2kF + Q0√

4k2
F − Q2

0

⎞
⎠H, (G8)

where we have used the definition of γ from Appendix A.
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The constants can be absorbed in the bare bosonic mass,
μ0. Therefore, the total bosonic mass renormalization due to
the Zeeman field H becomes

μ = μ0 + μT + αH, (G9)

where α ≡ 2γ

π
coth−1( 2kF +Q0√

4k2
F −Q2

0

) and we also define μH ≡
αH . Thus, we obtain the mass renormalization due to the
Zeeman field, which is used to evaluate magnetoresistance in
the next section.

3. Magnetoresistance

In this section, we explicitly show the calculations to arrive
at the magnetoresistance for diffusive bosons. The magne-
toresistance quantifies the change of resistance due to the
application of the magnetic field and is given by

�ρxx(H )

ρxx(H = 0)
= ρxx(H ) − ρxx(0)

ρxx(0)
. (G10)

The complete resistivity tensor in terms of the conductivity
is written as [97]

ρxx = σxx

σ 2
xx + σ 2

xy

. (G11)

Notice that, for incoherent transport, we have shown in
Appendix E that σxy = 0 and hence the expression for the
magnetoresistance in terms of conductivity simply reads

�ρxx(H )

ρxx(H = 0)
= σxx(0) − σxx(H )

σxx(H )
. (G12)

Next is the expression for σxx = σ (0)
xx + σ (2)

xx , where σ (0)
xx is al-

ready calculated in Eqs. (C10) and (C11) and σ (2)
xx is evaluated

in Eq. (F5).

a. Singlet case

Here, the renormalization of the mass term is independent
of the magnetic field and is given by μ = μ0 + μT . The
regimes are given by the maximum of μ0 and μT . So the
expression for the magnetoresistance becomes

�ρxx(H )

ρxx(0)
= κH2

β + κH2
, (G13)

where β and κ are the coefficients of H in σ (0)
xx and σ (2)

xx ,
respectively. We consider that the interaction between the
bosons is larger than the Landau damping coefficient, i.e.,
g̃b > γ . In this scenario, if we take the limit γ T/μ � 1 in
Eqs. (F5) and (C10), it becomes clear that σ (2)

xx is negligible
compared to the σ (0)

xx . Hence, we have the leading contribution
to the MR by taking the limit κ/β � 1,

�ρxx(H )

ρxx(0)
≈ κ

β
H2, (G14)

where in the first regime when μ0 > μT the constant is given
by κ

β
≡ − 32γ 2T 2

5μ4
0

. By contrast, when μ0 < μT , the constant is

given by κ
β

≡ − 32γ 2T 2

5(μ0+μT )4 . Thus, the bosons arising from the
singlet pairing of electrons have the same dependence on H
as the conduction electrons would in the typical Fermi liquid.

FIG. 11. The different regimes in the temperature, doping, and
magnetic field plane. The mass-term renormalization for the particle-
particle pairs is given by μ = μ0 + μT + μH . The maximum of the
three mass scales determines the regime: In regime 1, the mass is
dominated by μ0; similarly, in regimes 2 and 3, it is dominated by
μT and μH , respectively.

When the interaction between the bosons is weaker than
the Landau damping expanding in κ/β 
 1, the magne-
toresistance becomes independent of H for singlet particle-
particle pairs.

b. Triplet case

Next, we perform the calculation of the renormalization
of the mass term when the bosons emerge from pairs of
high-energy electrons that have spin-triplet symmetry. The
bosonic mass correction due to the Zeeman field is evaluated
in Eq. (G9). Similarly, the expressions for σ (0)

xx in terms of μ

are evaluated in Eq. (C12) and the same for σ (2)
xx are evaluated

in Eq. (F5). Notice we have different regimes depending on
the renormalization of the mass term from bosonic interac-
tions and the Zeeman field. These regimes are illustrated in
Fig. 11 in the magnetic field, hole doping, and temperature
plane. The different scenarios arise because the mass term
is either dominated by μ0, μT , or μH . We elaborate on the
different possibilities one by one in the following.

c. g̃b � γ and μT � μH

First, if the interaction between the bosons is larger than
the Landau damping coefficient, i.e., g̃b > γ , we are always
in γ T � μ. Additionally, if we are in a regime dominated
by the magnetic field scale, i.e., μT � μH (see regime 3 in
Fig. 11), the mass correction coming from the Zeeman field
is given by μ = μ0 + μT + αH in Eq. (G9). Therefore, the
magnetoresistance evaluates to

�ρxx(H )

ρxx(0)
=

Q2
0

4π2(μ0+μT ) − Q2
0

4π2(μ0+μT +αH ) − σ (2)
xx (H )

Q2
0

4π2(μ0+μT +αH ) + σ
(2)
xx (H )

. (G15)

If we take the limit γ T/μ � 1 in Eq. (F5), it is clear that
the σ (2)

xx becomes negligible. Therefore, the equation for MR
becomes

�ρxx(H )

ρxx(0)
≈

1
μ0+μT

− 1
(μ0+μT +αH )
1

μ0+μT +αH

,
�ρxx(H )

ρxx(0)
= α

μ0 + μT
H.

(G16)
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Therefore, we obtain a linear-in-H magnetoresistance in
regime 3 of Fig. 11. Note that μH 
 μT can be interpreted as
H 
 ηT , where η = μ0+g̃b log(γ T/μ0 )

α
. Thus up to logarithmic

corrections η is just a constant. We emphasize that this a sim-
ilar high-field regime where linear-in-H magnetoresistance is
observed [22].

d. g̃b � γ and μT � μH

Second, we still keep the interaction between the bosons
stronger than the Landau damping coefficient, i.e., g̃b > γ .
However, if the temperature correction is larger than the mag-
netic field scale, i.e., μT 
 μH , the mass correction coming
from the Zeeman field is independent of the field and is given
by μ = μ0 + μT (see regime 2 in Fig. 11). Consequently, the
evaluation of magnetoresistance becomes similar to the one
performed for the singlet in Appendix G 3 a:

�ρxx(H )

ρxx(0)
≈ κ

β
H2, (G17)

where κ
β

≡ − 32γ 2T 2

5(μ0+μT )4 . Again for μH � μT it can be written
as H � ηT . Therefore, in the low-field regime there is a
quadratic H dependence of magnetoresistance.

e. g̃b � γ for μT � μ0 and μH � μ0

Similarly, if the temperature or field correction of the
bosonic mass term is smaller than the bare bosonic mass, i.e.,
μT � μ0 and μH � μ0, the mass correction coming from
the Zeeman field is independent of the field and is given by
μ = μ0 (see regime 1 in Fig. 11). Again, the magnetoresis-
tance becomes

�ρxx(H )

ρxx(0)
≈ κ

β
H2, (G18)

where we get κ
β

≡ − 32γ 2T 2

5μ4
0

. So again we have an H2 depen-
dence of magnetoresistance in regime 1 of Fig. 11. In this
regime we have already established the conventional Fermi
liquid behavior.

Therefore, when the interaction between the bosons is
stronger than the Landau damping coefficient the MR is given
by

�ρxx(H )

ρxx(0)
=
{ κ

β
H2 in regimes 1 and 2
α

μ0+μT
H in regime 3,

(G19)

where the coefficient κ/β is different in regimes 1 and 2.
Notice that such an H evolution of magnetoresistance was
recently observed in overdoped cuprates [22].

f. g̃b < γ

When the coupling is weaker than the Landau damping,
a temperature regime survives where μ � γ T (for details,
refer to Appendix C 1). We demand the limit μ/(γ T ) � 1
and recognize that σ (0)

xx is negligible. Consequently, we use
the expression of σ (2)

xx from Eq. (F5) in the expression of MR
in Eq. (G12). We notice that the MR becomes independent of
H in all the temperature regimes for g̃b < γ .

4. On the quadrature form of the magnetoresistance

This section provides more details in order to compare the
scaling of the in-plane magnetoresistance with that observed
experimentally. The in-plane MR is given by

�ρxx = ρxx(H, T ) − ρxx(0, 0) = 1

σxx(H, T )
− 1

σxx(0, 0)
,

(G20)
where in the second equality we have used the fact that the
Hall conductivity vanishes. Near the QCP, �ρxx experimen-
tally displays a quadrature dependence [22,25,67] as follows:

�ρxx =
√

a2T 2 + b2H2, (G21)

where a and b are constants. As we explained in the main text,
in the low-field and high-field limits, this quantity scales as

�ρxx ∝
{

H for H 
 T
H2

T for H � T .
(G22)

Although our phenomenological model cannot determine ex-
actly the quadrature dependence of Eq. (G21), our results for
the scaling behavior in both low-field and high-field limits
can suggest a similar quadrature ansatz. We concentrate on
the physical regime when the interaction between the bosons
is stronger than the Landau damping parameter, i.e., g̃b � γ ,
i.e., μ 
 γ T . We also restrict our attention to the case when
the bosons emerge from pairs of high-energy electrons that
have spin-triplet symmetry. Consequently, the mass term is
given by Eq. (G9). The maximum among μ0, μT , and μH

determines the regime, as shown in Fig. 11. Let us first focus
on regime 3 of Fig. 11, where the mass term is dominated by
μH . Mathematically, we are in the regime μH 
 μT 
 μ0,
or H 
 ηT , where up to logarithmic corrections, η is only a
constant. Using the form of σ (0)

xx from Eq. (C12) and σ (2)
xx from

Eq. (F5) in Eq. (G20), we get

�ρxx = 1
Q2

0
4π2(μ0+μT +μH ) + σ

(2)
xx

− 4π2μ0

Q2
0

. (G23)

Since the interaction between the bosons is stronger than
the Landau damping parameter, i.e., g̃b � γ , by taking
(γ T )/μ � 1 in Eq. (F5), σ (2)

xx → 0. Consequently, we get

�ρxx ≈ 4π2

Q2
0

(μT + μH ). (G24)

Therefore, in the high-field regime H 
 ηT (i.e., regime 3 of
Fig. 11), the leading-order H dependence is given by

�ρxx ∝ H. (G25)

The next regime is when the mass term is dominated by μT

(i.e., regime 2 in Fig. 11). Notice that this is the low-field
regime, H � ηT . Here, we have

�ρxx = 1
Q2

0
4π2(μ0+μT ) + 8γ 2Q2

0T 2H2

5π2(μ0+μT )5

− 4π2μ0

Q2
0

. (G26)

However, we cannot ignore σ (2)
xx to get the leading-order H

dependence, since σ (0)
xx is independent of the field. Expanding
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in powers of H , we obtain

�ρxx = 4π2μT

Q2
0

− 128π2

5Q2
0g̃3

b log((γ T )/μ0)3

H2

T
. (G27)

Therefore, in the low-field regime H � ηT , the leading-order
scaling is given by

�ρxx ∝ H2

T
. (G28)

Next, in regime 1 of Fig. 11, the mass term is dominated
by μ0. In the latter regime, the in-plane magnetoresistance is
given by

�ρxx = 4π2μT

Q2
0

− 128π2

5Q2
0g̃3

b log((γ T )/μ0)3

H2

T
. (G29)

Therefore, in the Fermi liquid regime, the leading-order scal-
ing is given by

�ρxx ∝ H2T 2

μ3
0

. (G30)

Finally, combining Eqs. (G25), (G28), and (G30), we have the
scaling of �ρxx, to leading order in H , as

�ρxx ∝

⎧⎪⎪⎨
⎪⎪⎩

H for regime 3
H2

T for regime 2
H2T 2

μ3
0

for regime 1,

(G31)

which is identical to the scaling observed from the quadrature
dependence in Eq. (G22). We conclude that, although our cal-
culations cannot determine exactly the quadrature dependence
of �ρxx presented in Eq. (G21), we can find a similar scaling
behavior in the low-field and high-field limits.
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