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We consider the superconductor-semiconductor nanowire hybrid Majorana platform (“Majorana nanowire”) in
the presence of a deterministic spatially slowly varying inhomogeneous chemical potential and a random spatial
quenched potential disorder, both of which are known to produce nontopological almost-zero-energy modes
mimicking the theoretically predicted topological Majorana zero modes. We study the crossover among these
mechanisms by calculating the tunnel conductance while varying the relative strength between inhomogeneous
potential and random disorder in a controlled manner. We find that the entire crossover region manifests abundant
trivial zero modes, many of which showing the apparent “quantization” of the zero-bias conductance peak at
2e2/h, with occasional disorder-dominated peaks exceeding 2e2/h. We present animations of the simulated
crossover behavior and discuss experimental implications. Additionally, in order to simulate the realistic disorder
in experimental nanowires, we also study in depth the case of disorder arising from random individual static
impurities along the wire, and consider crossover associated with such impurity effects. Our results, when
compared qualitatively with existing Majorana nanowire experimental results, indicate the dominant role of
random disorder in the experiments. It turns out that all three mechanisms may produce trivial zero-bias peaks
in the tunnel conductance, and the crossover among these physical mechanisms (i.e., when more than one
mechanism is present in the system) is smooth and continuous, making it difficult a priori to conclude which
mechanism is dominant in a particular sample just by a casual inspection of the zero-bias conductance peaks.
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I. INTRODUCTION

Following the predicted possible realization of non-
Abelian Majorana zero modes (MZMs) in superconductor-
semiconductor hybrid platforms in the presence of the
superconducting proximity effect, spin-orbit coupling, and
spin splitting [1–4], a large number of experiments from many
different groups reported the observation of zero-bias con-
ductance peaks (ZBCPs) in tunneling spectroscopy of InAs
and InSb nanowires, presumably as evidence for the predicted
topological MZM [5–21]. Recent experiments [11,15,16]
have even reported ZBCPs with the approximate conductance
value of 2e2/h, which is the predicted topologically quantized
value for MZM conductance [22–25]. This created consid-
erable excitement in the community that perhaps the elusive
non-Abelian MZM has finally been observed.

It was, however, quickly realized that topological MZMs
are unlikely to have been observed in these tunneling mea-
surements. First, the current nanowires may be simply too
short, most likely shorter than the superconducting coher-
ence length, and thus, the system is most likely not in the
topological regime. Second, there is no evidence for a bulk
gap opening (or more generally, no sign for a topological
quantum phase transition to the MZM-carrying topological
superconducting phase) when the ZBCP shows up, which is
a necessary topological requirement by virtue of the bulk-
boundary correspondence. Third, no signature of the predicted
MZM oscillations [26], associated with the overlap of the

Majorana wave functions from the two wire ends, has
ever been reported. Fourth, no nonlocal experimental fea-
ture, for example, correlated ZBCPs from tunneling at both
ends [27–29], has ever been observed, casting doubt on
the nonlocal topological nature of the observed ZBCPs
just from one end of the nanowire. Fifth, the observed
ZBCPs are typically not stable as a function of system
parameters such as applied tunnel barrier, magnetic field,
and gate voltages, casting doubt on their robust topological
nature. Although these features indicate serious difficul-
ties with the MZM interpretation of the observed ZBCPs,
perhaps the most compelling argument against the MZM in-
terpretation of the experimentally observed ZBCPs is that
two persuasive non-MZM physical mechanisms have been
theoretically identified which produce nontopological (i.e.,
trivial) ZBCPs generically in nanowires, and these trivial
ZBCPs appear consistent with all the observed features in
the tunneling measurements, leading to a consensus that
the reported ZBCPs so far are most likely trivial and not
topological.

These two trivial ZBCP mechanisms of nontopological
origin, which we have recently dubbed “bad” and “ugly”
[30], are, respectively, a slowly varying chemical potential
due to the presence of an inhomogeneous potential and ran-
dom spatial disorder arising from unknown impurities and
defects in the system. The possibility that an inhomoge-
neous chemical potential could give rise to subgap fermionic
states was pointed out early in the Majorana nanowire
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literature [31–33], but its importance in determining the tunnel
conductance measurements was not immediately appreciated.
Following the experiment by Deng et al. [10], where a claim
was made for the observation of Majorana bound states (a
different name for MZMs) from coalescing Andreev bound
states (ABSs) in the InAs quantum dot-nanowire-Al hybrid
system, it was pointed out that the observations are more
consistent with almost-zero-energy trivial ZBCPs arising from
nontopological fermionic subgap states induced by the inho-
mogeneous potential associated with the quantum dot. This
is the “bad” scenario for ZBCPs, where trivial ABSs produce
rather stable zero-energy states in nanowires, often giving rise
to ZBCPs with values close to 2e2/h value [34–36]. Similar
trivial ZBCPs arise from a smooth slowly spatially varying
potential along the wire also. We will refer to these inhomo-
geneous potential-induced ZBCPs as “bad” zero modes for
notational convenience. (The truly topological MZMs will be
referred to as “good” following the nomenclature introduced
in Ref. [30].)

The fact that random disorder by itself could produce
ZBCPs in the nanowire mimicking MZM behavior was also
pointed out early [37–41], but its relevance to the experimental
tunneling spectroscopy has only been appreciated recently
[30,42]. In particular, we recently established that random
disorder in the nanowire by itself can produce relatively stable
trivial ZBCPs with a high probability of achieving ∼2e2/h
conductance value. We will refer to these disorder-induced
ZBCPs as “ugly” for descriptive brevity as in our recent
publications [28,30]. They are also sometimes referred to as
“class D” peaks alluding to their connection to antilocalization
effects in systems breaking time-reversal invariance and spin
rotational symmetry [42].

Since the superconductor-nanowire hybrid systems are
likely to have both inhomogeneous potentials and random
disorder, neither of which is intentional and therefore not
controllable, it is important to consider their interplay by
taking into account both mechanisms together. This is pre-
cisely what we do in this work by calculating the tunnel
conductance and the local density of states (LDOS) of the
Majorana nanowire including both bad and ugly mechanisms
and using a tuning parameter to study the crossover between
the two, going from the completely bad situation (with only
potential inhomogeneity) to the completely ugly situation
(with only random disorder) in a controlled manner. We
find the ubiquitous presence of trivial zero modes throughout
the crossover region, often with ZBCP values ∼2e2/h, thus
considerably complicating the interpretation of experimental
results where ZBCPs, particularly with conductance ∼2e2/h
value, are assumed to be synonymous with the existence
of topological good MZMs. We present, for the sake of a
direct comparison, results for the pristine “good” situation
also, where neither disorder nor inhomogeneous potential is
present in the nanowire leading, therefore, to the presence of
topological MZMs in the system. In addition, we present the
calculated tunnel conductance and the LDOS of the nanowire
in the crossover between two ugly cases arising from dif-
ferent random disorder configurations, which also manifests
the ubiquitous trivial ZBCPs throughout the crossover re-
gion, for a complete story of crossover physics. We also
present, in the Supplemental Material [43], animations show-
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FIG. 1. (a) The schematic for the three-terminal device of the
SC-SM hybrid nanowire. (b) The crossover between the bad ZBCP
and the ugly ZBCP controlled by α. V1(x) transforms from an in-
homogeneous potential at α = 0 to a random disorder potential at
α = 1. (c) The crossover between two distinct ugly ZBCPs con-
trolled by α. V2(x) transforms from a random disorder potential at
α = 0 to another random disorder potential at α = 1.

ing the simulated conductance and LDOS results with varying
amounts of inhomogeneous potential and random disorder.
These crossover results should help better understand experi-
mental results, where both inhomogeneous chemical potential
and random disorder are invariably present.

In addition to the crossover with the potential disorder, we
also study the crossover with the local impurity disorder since
it is more likely to happen in real experiments [44]. In this
case, the chemical potential is modified by a single impurity
or a bunch of impurities located randomly in the nanowire.
We find that although the underlying mechanism of impurity
disorder is different from potential disorder, the results are
qualitatively similar.

The rest of this paper is organized as follows: In Sec. II,
we describe the crossover models we use. In Sec. III, we
briefly describe the underlying theory and the calculational
details, presenting and discussing our detailed results for the
calculated tunnel conductance as a function of bias voltage
and applied magnetic field in Sec. IV. We conclude in Sec. V.
Appendix A provides the conductance of a different set of
realizations of potential disorder. Appendix B provides the
calculated LDOS at the two ends of the nanowire as well as in
the middle of the wire for a comparison with the correspond-
ing conductance results presented in Sec. IV and Appendix A.
The Supplemental Material contains detailed animations for
the crossover conductance behavior as a continuous function
of the tuning parameter controlling the crossover [43].

II. CROSSOVER MODEL

In this section, we briefly revisit three types of ZBCPs—the
good, the bad, and the ugly—as first introduced in Ref. [30] by
presenting their Hamiltonians and the corresponding mech-
anisms. The experimental device that we are theoretically
simulating is a three-terminal superconductor-semiconductor
(SC-SM) hybrid nanowire as shown in Fig. 1(a). The
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semiconductor which is covered by a grounded s-wave pairing
superconductor is attached with two normal leads with the
bias voltages (VL and VR) applying to the left and right end,
respectively. We assume the nanowire has a spatially constant
proximitized superconductivity induced by the parent SC gap
�0 but may have an inhomogeneous chemical potential V (x)
as we will discuss later.

We note that this single-band 1D nanowire model is
the minimal realistic model that can represent the essential
physics, and is already sufficient to describe all the crossover
physics. Using other more detailed models, e.g., a multiband
model [45,46], does not change the physics of the topo-
logical superconductivity qualitatively, but just unnecessarily
complicates the calculation. In fact, given that any realistic
information about the actual experimental Majorana nanowire
situation (e.g., the carrier density, the number of occupied
subbands, the in situ spin-orbit coupling strength, the amount
of disorder, or the applicable g factor in the hybrid structure)
is unknown at this stage, it is more reasonable to obtain gen-
eral and generic results based on the parametrized minimal
model used in the current paper, particularly since recent
work has shown that detailed realistic simulations provide
results similar to that obtained from this minimal model,
which already includes the essential physics of spin-orbit
coupling, proximity superconductivity, Zeeman splitting, fi-
nite wire length, and disorder [44,47]. We emphasize that,
unlike the Kitaev 1D chain model, our minimal model in-
cludes all the relevant physical ingredients of the experimental
superconductor-semiconductor hybrid structure.

A. Good ZBCP

The good ZBCP is the ideal case of the pristine nanowire
without any inhomogeneous potential or disorder. This
pristine limit can be described by the standard Bogoliubov–
de Gennes (BdG) Hamiltonian of the superconductor-
semiconductor hybrid nanowire [1–4],

Hnanowire = 1

2

∫ L

0
dx �̂†(x)

[(
− ∂2

x

2m∗ − iαR∂xσy − μ

)
τz

+ VZσx + �(ω)

]
�̂(x), (1)

where �̂(x) = (ψ̂↑(x), ψ̂↓(x), ψ̂†
↓(x),−ψ̂

†
↑(x))ᵀ represents a

position-dependent Nambu spinor, and �σ and �τ are vectors
of Pauli matrices that act on the spin space and particle-hole
space, respectively. L is the wire length, m∗ is the effective
mass of the conduction band, αR is the strength of Rashba-type
spin-orbit coupling, and VZ is the Zeeman field applied along
the nanowire.

The self-energy term �(ω), which accounts for the proxim-
itized superconductivity in the semiconductor by integrating
out the degrees of freedom in the parent superconductor
[48,49], is

�(ω) = −γ
ω + �0τx√
�2

0 − ω2
, (2)

where ω is the energy in the retarded Green’s function for
the BdG Hamiltonian, �0 is the pairing energy of the par-

ent superconductor, and γ is the effective SC-SM coupling
(tunneling) strength producing the SC proximity effect in the
SM nanowire. The simpler version without the self-energy
of SC is obtained by replacing the �(ω) in Hamiltonian (1)
by a constant s-wave pairing � to represent the proximitized
superconductivity in the semiconductor. This simpler version
will be useful if we only focus on the states near zero energy.

Without loss of generality, we choose the set of parameters
corresponding to the experimental platform of the InSb-Al
hybrid system [50] as a representative example (which does
not qualitatively affect the essential physics, and the parame-
ters for the alternate InAs-Al structure are very similar): the
effective mass m∗ = 0.015me with me being the electron rest
mass, the parent SC gap �0 = 0.2 meV, the effective SC-SM
coupling strength γ = 0.2 meV, the Rashba-type spin-orbit
coupling strength αR = 0.5 eV Å, and the chemical potential
μ = 1 meV. These are typical numbers for Majorana nanowire
systems in real units.

We focus on the long-wire limit with L = 3 μm to avoid
the misleading finite-size effect as topological effects cannot
manifest at all in short wires. (We do warn, however, that
the current experimental nanowires may actually be in the
short-wire limit.) We emphasize that for short wires, ∼1 μm,
no topological physics is expected in the system since the
Majorana separation between the two ends of the wire then
is shorter than the coherence length. To evaluate the effective
length of the nanowire, we estimate the coherence length at
zero magnetic field from the BCS theory [51] by

ξ = h̄vF

π�
, (3)

where vF = αR +
√

α2
R + 2μ

m∗ [4] is the Fermi velocity, and
� ∼ γ�0

γ+�0
[49] is the proximity-induced SC gap. In our

particular choice of parameters, Fermi velocity is around
2.4 × 105 m/s and the proximity-induced gap is roughly
0.1 meV. Thus, the coherence length is roughly 0.5 μm.
Therefore, a one-micron nanowire has an effective length of
2ξ , which is short. Our 3-micron wire length choice makes
the dimensionless wire length to be 6 in units of the coher-
ence length. We mention that the actual coherence length in
experimental nanowires is unknown at finite magnetic field of
topological interest since it has never been directly measured.

We calculate our theoretical results at zero temperature
under the aforementioned parameters unless otherwise stated.
Inclusion of temperature is straightforward in the theory [52]
and is an unnecessary complication—typical experiments are
carried out at 20–25 mK which should be well represented by
our zero-temperature theory.

B. Bad ZBCP

We omit the effect of the electrostatic potential arising
from various gate voltages in the pristine “good MZM” limit.
However, this is too ideal in the realistic scenario: The charge
impurity and various gate voltages may induce an inhomo-
geneous smooth confining potential in the semiconductor
[31,33,34,53]. This inhomogeneous potential is a common
mechanism that gives rise to the bad ZBCP [30] in the tun-
neling spectroscopy, which could easily be mistaken as the
topological Majorana zero mode.
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Since the details of this inhomogeneous chemical potential
are usually not precisely known in experiments, without loss
of generality [33], we model the inhomogeneous chemical
potential Vbad(x) in the form of the Gaussian function

Vbad(x) = Vmax exp

(
− x2

2σ 2

)
, (4)

where σ and Vmax define the linewidth and height of the peak
of the inhomogeneous potential. In the following calculations,
we choose σ = 0.4 μm and Vmax = 1.2 meV. Therefore, the
inhomogeneous potential can be construed to give an effective
chemical potential μ − Vbad(x) in Hamiltonian (1). We show
an example of Vbad(x) in Fig. 1(b) at α = 0.

C. Ugly ZBCP

Besides the bad ZBCP, another type of trivial ZBCP is
the ugly ZBCP arising from random disorder in the chemical
potential of the nanowire. Potential disorder is unintentional
and unavoidable due to the imperfect sample quality, subband
occupation [45], etc. Thus, we model potential disorder as
the randomness in the chemical potential Vugly(x) which is
drawn from an uncorrelated Gaussian distribution with the
mean value of zero and variance of σ 2

μ. Spatially dependent
random potential disorder also gives an effective chemical
potential μ − Vugly(x) in Hamiltonian (1). We sketch a rep-
resentative random disorder Vugly(x) in Fig. 1(b) at α = 1.
Note that the inhomogeneous potential producing bad ZBCP
is deterministic, varying smoothly spatially, whereas potential
disorder, producing ugly ZBCP, is spatially random; although
impurities may give rise to both effects, their physical origins
are qualitatively different as are their effects on the Majorana
physics. We also emphasize that neither is “noise” in the usual
sense, which is the random temporal variation of current and
voltage in electronic systems.

Because weak potential disorder preserves the topologi-
cal properties of the nanowire which does not induce the
trivial ZBCP, and strong potential disorder completely de-
stroys the hybrid nanowire model, which should be instead
described by a random matrix approach in a class D ensemble
[37,42,54–57], and leaves almost no signature in the con-
ductance spectrum, we focus on intermediate disorder with
σμ/μ ∼ 1. We clarify that all following results are presented
just for one particular random realization, without taking the
ensemble average, which is the appropriate theory for low-
temperature nanowire experiments.

We also mention that there have been several theoretical
studies in the literature already, focusing on the cases with
just inhomogeneous potential or just disorder, but ours studies
both appearing together in the system.

D. Crossover between the bad and the ugly ZBCP

We introduce the first type of crossover: the crossover
between the bad ZBCP and the ugly ZBCP [Fig. 1(b)], and
the second type of crossover between one ugly ZBCP and an-
other ugly ZBCP with different potential disorder realizations
[Fig. 1(c)]. In Figs. 1(b) and 1(c), we use the tuning parameter
α to control the crossover.

The first type of crossover [Fig. 1(b)] is the case where
the nanowire starts with showing the bad ZBCP arising from
the inhomogeneous potential denoted by Vbad(x) and ends up
with showing the ugly ZBCP arising from random potential
disorder denoted by Vugly(x). We interpolate the two limits lin-
early such that the nanowire experiences an effective potential
V1(x; α) continuously during the crossover as per

V1(x; α) = (1 − α)Vbad(x) + αVugly(x). (5)

Therefore, α = 0 corresponds to the inhomogeneous potential
that gives rise to the strictly bad ZBCP, and α = 1 corresponds
to random disorder in the chemical potential that gives rise to
the strictly ugly ZBCP. When α ∈ (0, 1), the nanowire lies
in an intermediate state [e.g., Fig. 1(b) at α = 0.5] which is
of our interest. In this crossover regime, which is the likely
generic experimental situation, the ZBCP is neither strictly
bad nor strictly ugly but is some kind of a complicated com-
bined bad-ugly mixture depending on the value of α. We
present representative results at several α along with two ex-
treme cases of α = 0 and 1 in Sec. IV. For a complete process
of the crossover, we refer to an animation in the Supplemental
Material to show the crossover continuously [43].

E. Crossover between two distinct ugly ZBCPs

The second type of crossover [Fig. 1(c)] involves two ugly
ZBCPs arising from two distinct potential disorder realiza-
tions denoted by V (1)

ugly(x) and V (2)
ugly(x). Similar to the first

type of crossover in Eq. (5) between the bad ZBCP and the
ugly ZBCP, we also interpolate the two limits of the ugly
ZBCPs linearly. Namely, the nanowire is in the presence of
an effective potential

V2(x; α) = (1 − α)V (1)
ugly(x) + αV (2)

ugly(x) (6)

during the crossover. Therefore, α = 0 or 1 corresponds to
either one of the predetermined random realizations, and α ∈
(0, 1) corresponds to an intermediate state. We also present
representative results at several α along with two extreme
cases of α = 0 and 1 in Sec. IV. The continuous process of
the crossover is shown in the form of an animation in the
Supplemental Material as well [43].

In fact, the linear interpolation of two predetermined disor-
der realizations actually decreases the variance of the original
potential disorder from 1 [e.g., Fig. 1(c) at α = 0 and 1] to
1 − 2α + 2α2 [e.g., Fig. 1(c) at α = 0.5]. However, this is
not an issue because such disorder inside the nanowire is, in
principle, susceptible to many sources, and, thus, the chemical
potential is unknown a priori. There is no particular reason
why the disorder variance is conserved as system parameters
change to vary the disorder from one to another realization.
For example, the electrostatic potential in the nanowire may
be different even when the device undergoes a charge jump
with all gate voltages returning to the initial state [15,16].
Theoretically, we are simulating a nanowire that was initially
in the presence of one particular random potential disorder and
is now in the presence of another distinct random potential
disorder. Thus, it is not guaranteed that disorder will conserve
its strength throughout the process of the voltage switch in the
laboratory.
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Nevertheless, we have also carried out the variance-
conserving crossover calculations between two ugly scenarios
following the interpolation as per

V2(x; α) = √
1 − αV (1)

ugly(x) + √
αV (2)

ugly(x), (7)

but the results are qualitatively the same as that obtained from
the model of Eq. (6). There is no current experimental infor-
mation on the detailed forms of available Vbad and Vugly and
therefore, of V1 [Eq. (5)] and V2 [Eqs. (6) and (7)]. Our results
are therefore of qualitative validity in the generic system.

F. Crossover with impurity disorder

Besides the aforementioned potential disorder, where a
Gaussian spatially random potential in the Hamiltonian repre-
sents the disorder, which is present throughout the nanowire,
we also consider the effect of the random localized impurities,
which we call the impurity disorder model in this paper as
opposed to potential disorder defined by a random potential.

We first start with the simplest case—single-impurity
disorder—where only one impurity resides in the nanowire,
and it is located in the middle of the nanowire, i.e., 1.5 μm
of a 3 μm nanowire as we stated before. Therefore, only
the chemical potential at the middle point in the nanowire is
changed by

V (x) = V δx,x0 , (8)

where x0 = L/2, and δi, j is Kronecker’s delta function. We
tune the strength of impurity disorder V from a large neg-
ative value to a large positive value to study the crossover
physics. Note that although we refer to this case as “disorder”
because it arises from an impurity, there is nothing random
about Eq. (8), which simply denotes an onsite potential of
strength V .

Similarly, we also consider double-impurity disorder,
where only two impurities exist in the nanowire. For simplic-
ity, we make the two impurities of equal strength and place
them spatially symmetrically at one-third and two-thirds of
the nanowire length, i.e., at 1 and 2 μm of a 3 μm nanowire.
Thus, the chemical potential is changed by

V (x) = V
(
δx,x0 + δx,x1

)
, (9)

where x0 = L/3 and x1 = 2L/3. Again, the disorder strength
V is the tuning parameter during the crossover, and there is
nothing random about this “disorder.”

Beyond the simple single-impurity and double-impurity
disorder, which are completely deterministic, we also study a
more complicated case where a small portion of the nanowire
is occupied by many impurities at random different sites.
These impurities are randomly spatially distributed in the
nanowire with equal strength of disorder but random signs. In
this case, the randomness lies in the positions of impurities
and their signs, but not in their strength in contrast to our
Gaussian random potential disorder of Sec. II C. In Sec. IV,
we study the cases where 10% and 30% sites of the nanowire
are randomly occupied by impurities of random sign,
respectively.

Finally, we consider a mixed case with both potential dis-
order and impurity disorder; impurities are placed throughout
the nanowire. This is a different type of disorder from the

Gaussian potential disorder which induces the ugly ZBCP;
however, we will show later in Sec. IV that by changing the
strength of the onsite impurity potential disorder, we obtain
the same qualitative results as in creating the ugly ZBCP case
arising from a Gaussian random disorder potential. Thus, our
disorder results for the ugly ZBCP are universal as long as the
underlying potential is random independently of the specific
random model we use.

III. THEORY

A. Local density of states

To explicitly show the presence or absence of the gap
closing and reopening features in the bulk region, and the end-
to-end correlation (or lack thereof) at two ends in the good,
bad, and ugly cases, we resort to the local density of states in
the middle of the nanowire and at both ends of the nanowire.
We first discretize the BdG Hamiltonian using a fictitious
lattice constant a0 = 10 nm and replacing the derivatives with
the finite differences to construct a tight-binding model [58].
Thus, the LDOS corresponding to the tight-binding model at
the energy ω and position xi is defined as

LDOS(ω, xi ) = − 1

π
Im

[
trσ,τ

(
1

ω + η − H

)]
i,i

, (10)

where trσ,τ is a partial trace over the spin and particle-hole
space, Im[. . . ] takes the imaginary part, H is the Hamiltonian
of the nanowire, the subscript i, i takes the ith diagonal term in
the matrix, and η is a standard positive infinitesimal required
to ensure the causality.

We show the LDOS of the Hamiltonian in the pristine limit
as well as the aforementioned crossovers in Appendix B. For
distances larger than a0 our calculated LDOS corresponds to
the continuum system of interest, and the details of the tight-
binding prescription become coarse-grained.

B. Tunnel conductance

To simulate the experimental measurements of the tunnel-
ing spectroscopies, we also calculate the tunnel conductance
based on the Blonder-Tinkham-Klapwijk formalism [59–61].
We first attach two semi-infinite normal leads on both ends of
the nanowire [Fig. 1(a)], where the Hamiltonian of the lead
takes the same form as that of the nanowire except for the
superconducting term (i.e., no proximitized superconductivity
in normal leads). The chemical potential of the lead is 25 meV,
and the tunnel barrier height at the normal-superconductor
(NS) junction interface is 10 meV following the choice in
Ref. [28]. Then we assume a propagating wave in the nor-
mal lead and calculate the S matrix at the NS interface. The
calculation of the S matrix is done with the help of the Python
scattering matrix package Kwant [62]. Details of the tunnel-
ing conductance calculation are not provided since they are
standard and can be found in the literature [29,32,33,58,63].

IV. RESULTS

A. Crossover between bad and ugly ZBCPs

In this section, we first present the results for the calculated
tunnel conductance as a function of the Zeeman splitting
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FIG. 2. The differential conductance as a function of Zeeman
field VZ and bias voltage Vbias from the left end (left panels) and right
end (right panels) for different static cases. The common parame-
ters are as follows: chemical potential μ = 1 meV, parent SC gap
�0 = 0.2 meV, spin-orbit coupling α = 0.5 eV Å, wire length L =
3 μm, dissipation is 10−4 meV, and zero temperature. The TQPT
is at VZ = 1.02 meV and the corresponding line cuts in the trivial
regime (red) and the topological regime (cyan) are shown right to
the color plot of the conductance. (a), (b) The pristine wire without
the self-energy of SC. The proximitized � = 0.2 meV. (c), (d) The
pristine wire with the self-energy of the SC. The SC-SM coupling
strength γ = 0.2 meV. (e), (f) The bad ZBCP in the presence of
the inhomogeneous potential with Vmax = 1.2 meV and σ = 0.4 μm.
(g), (h) The ugly ZBCP in the presence of random potential disorder
with σμ = 1 meV. (i), (j) The ugly ZBCP in the presence of another
random potential disorder with σμ = 1 meV. The corresponding
LDOSs are shown in Fig. 14.

and bias voltage in the pristine wire limit corresponding to
Hamiltonian (1) as shown in Figs. 2(c) and 2(d). These results
correspond to the good (i.e., topologically protected) Majo-
ranas. Figures 2(c) and 2(d) show the tunnel conductances
measured from the left and right end, respectively. On the right

of the color plot of conductance, we show two line cuts in
the trivial regime at VZ = 0.8 meV (red) and the topological
regime VZ = 1.29 meV (cyan). The conductances measured
from two ends in this ideal case show a perfect end-to-end cor-
relation because of the nonlocal topological nature of MZMs.
The ZBCPs shown here are all topological good ZBCPs with a
robust quantized plateau of 2e2/h above the topological quan-
tum phase transition (TQPT) at VZ = 1.02 meV where the
bulk gap closes. The good ZBCP also manifests an increas-
ing Majorana oscillation as the Zeeman field increases above
the TQPT because the dimensionless separation between the
two end Majoranas decreases with increasing Zeeman field
because of the decrease in the topological gap. In addition,
we present the corresponding LDOSs at two ends and in the
middle of the nanowire in Figs. 14(d), 14(e), and 14(f) in
Appendix B. We find the bulk gap closing and reopening
features are very prominent showing up in the middle of the
nanowire at the TQPT, but not at the wire ends, as shown in
Fig. 14(e).

However, the pristine wire limit rarely applies in the labo-
ratory; therefore, a more realistic scenario is the nanowire in
the presence of an inhomogeneous potential and/or disorder.
In Fig. 3, we show a representative result of the tunnel con-
ductance in the crossover between the bad ZBCP [Figs. 2(e)
and 2(f)] arising from the inhomogeneous potential and the
ugly ZBCP [Figs. 2(g) and 2(h)] arising from random po-
tential disorder. In Fig. 3, the left (right) panels show the
tunnel conductances measured from the left (right) end of
the nanowire with the corresponding line cuts in the trivial
regime (red) and topological regime (cyan), respectively. At
α = 0 [Figs. 2(e) and 2(f)], when there is no disorder by
definition, the nanowire shows a bad ZBCP with a quantized
plateau at the left end [Fig. 2(e)] below the TQPT, which is
the quasi-Majorana arising from the inhomogeneous potential
[64]. The conductance at the right end [Fig. 2(f)] does not
show any trivial ZBCPs because the right end of the nanowire
does not have inhomogeneity to confine a quasi-Majorana.
When disorder is introduced by increasing α, for example for
α = 0.5 [Figs. 3(e) and 3(f)], the system is in the intermediate
crossover between the bad ZBCP and the ugly ZBCP, where
the conductance spectrum at the left end shows the remnants
of the bad ZBCP with an almost-quantized plateau in the
trivial regime, while the conductance spectrum at the right end
manifesting a disappearing segment of ZBCP (1.02 < VZ <

1.4 meV) is the remnant of the good topological Majorana,
but suppressed strongly by disorder. The topological ZBCP
reappears above around VZ = 1.4 meV because of an effective
disorder-induced shift in the TQPT to a higher Zeeman field.
At α = 1 [Figs. 2(g) and 3(h)], where disorder is strong, the
nanowire manifests the trivial ugly ZBCP with the conduc-
tance peak above 2e2/h at the left end. At the right end, there
are only sporadic ZBCPs with arbitrary values of conduc-
tances below 2e2/h, unlike the bad ZBCPs at α = 0 whose
conductances are almost quantized at 2e2/h, which explains
the terminology of “quasi-Majorana” often used to describe
this nontopological ZBCP. The whole crossover regime, α =
0 to 1, is thus smooth in going from purely inhomogeneous
potential induced quasi-Majorana to trivial disorder-induced
zero bias peaks, and in between both effects may manifest,
complicating interpretation.
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FIG. 3. The tunnel conductance measured from the left end (in
the left panels) and right end (in the right panels) of the nanowire in
the crossover between the bad ZBCP [Figs. 2(a) and 2(b) for α = 0]
arising from an inhomogeneous potential and ugly ZBCP [Figs. 2(g)
and 2(h) for α = 1] arising from random disorder. From the top to
the bottom panels, more disorder is blended with the inhomogeneous
chemical potential. The corresponding line cuts in the trivial regime
(red) and the topological regime (cyan) are shown right to the color
plot of the conductance. Refer to Fig. 2 for other parameters. The
corresponding LDOSs are shown in Fig. 15.

A generic feature throughout the crossover region from
α = 0 to 1 is the absence of any end-to-end correlation (Fig. 3)
below the TQPT because the trivial ABS is a fermionic state
which does not have the nonlocal property of the topological
MZM. Near the ugly region [α > 0.8 in Figs. 3(i) and 3(j)],
the end-to-end correlation even disappears above the putative
TQPT (VZ = 1.02 meV) since the topological regime is sup-
pressed by strong potential disorder. However, near the bad
region [α = 0.2 in Figs. 3(a) and 3(b)], the end-to-end corre-
lation is restored above the TQPT along with the appearance
of Majorana oscillation, which indicates the metamorphosis
from the trivial ABS to the topological MZM as the Zeeman

field increases in the inhomogeneous potential without the
presence of very strong disorder. We also note that the bad
ZBCP arising from the inhomogeneous potential shows con-
siderable stability with the Zeeman field even in the presence
of some disorder (i.e., α = 0.5). Thus, it may be possible
to observe topological MZMs in nanowires in the crossover
regime with both inhomogeneous potential and random dis-
order present in the system, as long as the disorder is not
particularly strong, and the experiment is probing the topolog-
ical regime above TQPT. For strong disorder, however, only
ugly trivial ZBCPs survive with all MZM effects completely
suppressed as already emphasized in the literature [65].

We also calculate the crossover LDOS between the bad
ZBCP and the ugly ZBCP in Fig. 15 of Appendix B. Similarly
to the local conductance in Fig. 3, we see the lack of the end-
to-end correlation below the TQPT. In particular, the LDOS
in the middle of the nanowire clearly shows the gap closing
and reopening features. At α = 0 [Fig. 2(h)], we see sharp gap
closing and reopening features at the TQPT (VZ = 1.02 meV),
which indicates the same transition from the trivial ABS to the
topological Majorana bound state as the reappearance of the
end-to-end correlation in the local conductance in Figs. 2(e)
and 2(f) does. However, as α increases (from the top to bot-
tom panels of Fig. 15), more potential disorder is blended
with the inhomogeneous chemical potential, suppressing the
topological Majorana physics. Thus, we notice the gap closing
and reopening features gradually becoming ambiguous, i.e.,
the gap closing and reopening do not happen simultaneously.
This ambiguity becomes worse in the ugly region at α = 1
[Fig. 14(k)] as the gap closes and reopens at different Zeeman
fields, which indicates that the TQPT is strongly renormalized
by strong disorder.

B. Crossover between ugly ZBCPs

In Fig. 4, we present the tunnel conductance in the
crossover between two ugly ZBCPs, arising from distinct
disorder configurations, using the simple linear interpolation
of Eq. (6). Namely, we start with the random potential disorder
configuration in Figs. 2(g) and 2(h) corresponding to α = 0,
and let it transform into another set of realizations of potential
disorder in Figs. 2(i) and 2(j) corresponding to α = 1. At these
two limits, they are both ugly ZBCPs without any end-to-
end correlation, which is similar to the previous crossover
between the bad ZBCP and the ugly ZBCP. The crossover
now is between different disorder configurations, which may
actually happen experimentally as various gate voltages are
tuned in the nanowire during the experiment, causing arbitrary
disorder annealing parametrized by our crossover parameter
α. However, during the crossover, one additional noteworthy
feature is the ubiquitous presence of the trivial ZBCPs: The
conductance peaks show arbitrary values between 0 and 4e2/h
at random ranges of Zeeman fields in the trivial regime at
different α’s. The ubiquitous trivial ZBCPs in the crossover
from α = 0 to 1 resemble the experimentally observed ZBCPs
during a cycle of voltage switch or a cycle of heat-up and
cool-down [15,16], which are arising from the slowly varying
disorder inside the sample as the impurities move around
during voltage and field annealing. We present an animation
that shows the random appearance and disappearance of the
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FIG. 4. The tunnel conductance measured from the left end (in
the left panels) and right end (in the right panels) of the nanowire
in the crossover between two ugly ZBCPs [Figs. 2(g) and 2(h) for
α = 0 and Figs. 2(i) and 2(j) for α = 1] using the simple linear
interpolation of Eq. (6). From the top to the bottom panels, potential
disorder becomes closer to the realization of Figs. 2(i) and 2(j). The
corresponding line cuts in the trivial regime (red) and the topological
regime (cyan) are shown right to the color plot of the conductance.
Refer to Fig. 2 for other parameters. The corresponding LDOSs are
shown in Fig. 16.

ugly ZBCPs in the Supplemental Material [43] corresponding
to Fig. 4.

In Appendix B, we also present the LDOS in Fig. 16
corresponding to the local conductance in Fig. 4. Similarly
to the crossover between the bad ZBCP and the ugly ZBCP,
we find the absence of the end-to-end correlation at two ends,
and the gap closing and reopening features are also not sharp
(i.e., the bulk gap does not reopen immediately after it closes)
throughout the crossover (which can be seen from LDOS
in the middle of the nanowire as shown in in the middle
panels of Fig. 16) because of the ubiquitous zero-energy An-
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FIG. 5. The tunnel conductance measured from the left end (in
the left panels) and right end (in the right panels) of the nanowire in
the crossover between two ugly ZBCPs [Figs. 2(g) and 2(h) for α = 0
and Figs. 2(i) and 2(j) for α = 1] using the variance-conserving inter-
polation of Eq. (7). From the top to the bottom panels, the potential
disorder becomes closer to the realization of Figs. 2(i) and 2(j). The
corresponding line cuts in the trivial regime (red) and the topological
regime (cyan) are shown right to the color plot of the conductance.
Refer to Fig. 2 for other parameters. The corresponding LDOSs are
shown in Fig. 17.

dreev modes in the trivial regime in the presence of potential
disorder.

In addition to the linear interpolation, we also use the
variance-conserving interpolation and present the tunnel con-
ductance in the crossover between the same two ugly ZBCPs
in Fig. 5. We show several values of α between 0.2 and 0.8,
and we find that the key feature of the ubiquitous ZBCPs does
not change in this new crossover model. We also provide the
crossover in the presence of another set of potential disorder
realization in Figs. 12 and 13 to show the generality and
ubiquity of the trivial ZBCPs in Appendix A along with their
corresponding LDOS in Figs. 18 and 19 in Appendix B.
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FIG. 6. The tunnel conductance measured from the left end (in
the left panels) and right end (in the right panels) of the nanowire
as the potential disorder increases from a weak regime [(a), (b) with
σμ = 0.4 meV] to a very strong regime [(g), (h) with σμ = 5 meV].
The corresponding line cuts in the trivial regime (red) and the (nom-
inal) topological regime (cyan) are shown right to the color plot of
the conductance. Refer to Fig. 2 for other parameters.

The key generic messages of Figs. 4 and 5 are that (1)
disorder could randomly produce ZBCPs with conductance
values at, below, above 2e2/h; (2) disorder-induced ZBCPs
are unstable, without manifesting any robustness in the Zee-
man field; (3) disorder-induced ZBCPs are uncorrelated for
tunneling from both ends; (4) disorder-induced ZBCPs could
occasionally suddenly disappear with small parameter vari-
ations, reflecting the so-called “charge jumps” or “voltage
switches” associated with random traps in electronic ma-
terials; (5) on a qualitative level, most existing Majorana
nanowire experimental results appear to be consistent with
the system manifesting crossovers between different disorder
configurations as gate voltages are tuned with the observed
ZBCPs being the “ugly” ones.

C. Crossover with the strength of disorder

Besides the crossover between two static potentials (an
inhomogeneous potential to a quenched random potential dis-
order or two distinct quenched potential disorder realizations),
we also present the tunnel conductance spectrum as the poten-

tial disorder strength increases in Fig. 6, where the realization
of potential disorder in each σμ is chosen independently, and
the crossover is not a continuous process from one to an-
other, as opposed to aforementioned crossovers. Qualitatively,
the changing disorder in each realization represents discrete
charge switching events known to be present in semiconductor
nanowires [15].

In Figs. 6(a) and 6(b), where the disorder is in a weak
regime with σμ = 0.4 meV, we find the topological properties
are protected: The topological ZBCP with Majorana oscilla-
tions appears beyond TQPT (VZ > 1.02 meV) and no trivial
ABS is present in the trivial regime (VZ < 1.02 meV). This
is a case of good ZBCP surviving in the presence of weak
disorder because of topological immunity.

When the disorder increases further to an intermediate
regime, σμ = 1 meV as shown in Figs. 6(c) and 6(d), we find
an example of the ugly ZBCP as the trivial ABS emerging in
the trivial regime while the topological MZM is still present,
being protected by a bulk gap beyond TQPT. Thus, both trivial
and topological zero modes may be present in the disordered
system at different Zeeman energies, with the topological
MZMs arising always at higher magnetic field values.

When the disorder continues to increase to the strong
regime, σμ = 2 meV as shown in Figs. 6(e) and 6(f), we
find not only that trivial ABS is induced by strong potential
disorder below TQPT but also the topological MZM is de-
stroyed. In this case, the bulk gap closes before the nominal
TQPT and does not reopen anymore. Therefore, the concept
of the topological superconductivity breaks down in such a
strong-disorder regime. This is the strong-disorder-induced
Anderson localized fixed point of the system where topologi-
cal superconductivity is completely suppressed.

Finally, if the disorder increases to a very strong regime,
σμ = 5 meV as shown in Figs. 6(g) and 6(h), we find almost
nothing in the tunnel conductances from both ends of the
wire. In this case, very strong disorder just destroys the whole
SC-SM nanowire model and leaves nothing in the tunnel con-
ductance spectrum. This is a scenario that should be avoided
in experiments; however, we believe this is what is happening
in many samples in the current stage of experiments, where
very few (∼1%) of the samples produce any subgap conduc-
tance signatures indicating the dominance of strong disorder.
The only solution to this problem is improved materials sci-
ence leading to cleaner samples with less disorder.

D. Crossover with impurity disorder

1. Single-impurity disorder

In this section, we study impurity disorder in contrast to
the random Gaussian potential disorder studied in the last
section. We first present the results of single-impurity disorder
in Fig. 7. The impurity is located in the middle of the wire.
Therefore, we only show the conductance from the left end
since the right end shows an identical conductance because
of the inversion symmetry in the impurity disorder. Here we
do not include the self-energy in the nanowire because we
are only concerned about the effect of impurities, and the
self-energy itself does not play a role in zero-bias states.

From Figs. 7(a) to 7(l), the strength of impurity disorder V
increases from −500 to 500 meV. When the disorder is weak,
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FIG. 7. The tunnel conductance measured from the left end of
the nanowire in the presence of single-impurity disorder located in
the middle of the nanowire (1.5 μm). From (a) to (l), the strength of
impurity V increases from −500 meV to 500 meV. For a comparison,
the pristine case (V = 0) is shown in Fig. 2(a). The corresponding
line cuts in the trivial regime (red) and the topological regime (cyan)
are shown right to the color plot of the conductance. Refer to Fig. 2
for other parameters.

e.g., |V | = 1 meV in Figs. 7(f) and 7(g), the conductances
show a good ZBCP similar to a pristine wire in Figs. 2(a) and
2(b) with the topological MZM emerging beyond the TQPT
and no trivial ABS in the trivial regime. On the right of the
color plot of the conductance, we show the corresponding
line cuts in the trivial regime (red), where no subgap states
appear, and line cuts in the topological regime (cyan) showing

a quantized peak at 2e2/h. Thus, the weak impurity is invisible
in the zero energy states.

As disorder increases, however, we find the emergence
of trivial ABSs induced by impurity disorder in the trivial
regime, e.g., V = 5 meV in Fig. 7(e). But the topological
MZM is still protected by a bulk gap, although the impurity
potential is more than an order of magnitude larger than the
induced SC gap.

When impurity disorder increases to a very large value,
e.g., |V | = 50 meV in Figs. 7(c) and 7(j), the topological
MZM is partially destroyed by impurity disorder, where we
can only find a small segment near VZ ∼ 1.3 meV that shows
a quantized peak. It is, however, quite amazing that even an
impurity potential almost three orders of magnitude larger
than the SC gap still does not destroy the MZM completely,
indicating the fundamentally robust nature of the topological
immunity.

Finally, in the limits of |V | = 500 meV [Figs. 7(a) and
7(l)], the wire is effectively halved because the left and right
partitions are separated from each other by a high potential
barrier or well. Each part serves as an isolated nanowire with
a halved wire length. Therefore, we see a very large Majorana
oscillation beyond TQPT as a result of a shorter effective wire
length. So, only in the limit of an unphysically large impurity
potential, the system is divided into two effective wires, both
with their own end MZMs, leading to enhanced Majorana
oscillations.

2. Double-impurity disorder

In addition to single-impurity disorder, we also show
double-impurity disorder results in Fig. 8, where the two
impurities are located at 1 and 2 μm of the nanowire. Thus,
the inversion symmetry of the nanowire is also preserved and
we only need to show the conductance from one end as we did
before in the case of single-impurity since the conductance
from the other end is identical.

In the weak-disorder regime, e.g., |V | = 1 meV in
Figs. 8(f) and 8(g), we find the good ZBCPs similar to the
pristine case in Figs. 2(a) and 2(b). Again, the zero-energy
subgap spectrum is unaffected by the presence of multiple
weak impurities.

As the double-impurity disorder increases, we find subgap
conductance features similar to those in the previous results
in the presence of single-impurity disorder: the trivial ABS
emerges as shown in Fig. 8(e) and the topological MZM is
only partially destroyed by impurities as shown in Figs. 8(c)
and 8(j). In the limits of |V | = 500 meV, we find very strong
Majorana oscillations because the wire is effectively cut into
three segments by the two impurities with strong disorder V ,
leading to six effective strongly overlapping MZMs at the
ends of the three segmented pieces.

The examples above of one and two spatially fixed im-
purities are deterministic (similar in some sense to the
inhomogeneous potential situation) and do not involve any
random disorder, which is what we consider now by consider-
ing a certain number of randomly spatially located impurities
along the wire. We consider a certain percentage of the sites
along the nanowire to be randomly occupied by impurities of
equal potential with random signs.
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FIG. 8. The tunnel conductance measured from the left end of the
nanowire in the presence of double-impurity disorder located at 1 and
2 μm of the nanowire. From (a) to (l), the strength of both impurities
V increases from −500 meV to 500 meV. For a comparison, the
pristine case (V = 0) is shown in Fig. 2(a). The corresponding line
cuts in the trivial regime (red) and the topological regime (cyan) are
shown right to the color plot of the conductance. Refer to Fig. 2 for
other parameters.
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FIG. 9. The tunnel conductance measured from the left end (in
the left panels) and right end (in the right panels) of the nanowire
in the presence of 10%-impurity disorder. From the top to the bot-
tom panels, the impurity disorder increases from a weak regime
[(a), (b) with σμ = 1 meV] to a very strong regime [(q), (r) with
σμ = 500 meV]. The corresponding line cuts in the trivial regime
(red) and the (nominal) topological regime (cyan) are shown right
to the color plot of the conductance. Refer to Fig. 2 for other
parameters.
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FIG. 10. The tunnel conductance measured from the left end (in
the left panels) and right end (in the right panels) of the nanowire
in the presence of 30%-impurity disorder. From the top to the bot-
tom panels, the impurity disorder increases from a weak regime
[(a), (b) with σμ = 1 meV] to a very strong regime [(q), (r) with
σμ = 500 meV]. The corresponding line cuts in the trivial regime
(red) and the (nominal) topological regime (cyan) are shown right
to the color plot of the conductance. Refer to Fig. 2 for other
parameters.
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FIG. 11. The tunnel conductance measured from the left end (in
the left panels) and right end (in the right panels) of the nanowire
in the presence of impurity disorder maintaining charge neutrality.
From the top to the bottom panels, the impurity disorder increase
from a weak regime [(a), (b) with σμ = 1 meV] to a very strong
regime [(q), (r) with σμ = 500 meV]. The corresponding line cuts in
the trivial regime (red) and the (nominal) topological regime (cyan)
are shown right to the color plot of the conductance. Refer to Fig. 2
for other parameters.
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3. 10%-impurity disorder

In Fig. 9 we study the case where 10% sites of the nanowire
are randomly occupied by impurities. In the weak-disorder
regime, e.g., V = 1 meV in Figs. 9(a) and 9(b), the con-
ductance resembles the good ZBCP in Figs. 2(c) and 2(d)
and topological ZBCP emerges beyond the TQPT. The line
cuts in the trivial regime (red) and those in the topological
regime (cyan) on the right of the color plot show the absence
of the in-gap fermionic state and a quantized peak of 2e2/h,
respectively. The system is clearly topological and protected
against the weak impurity disorder.

As impurity disorder becomes stronger, e.g., V = 2 meV
in Figs. 9(e) and 9(f), we find the trivial ABS emerging below
the TQPT. Especially, it sometimes even creates a very stable
plateau of trivial ZBCP by accident, e.g., Fig. 9(f), which
shows a peak of 4e2/h in the red line cut.

With further increase in disorder, the topological MZM
in the nanowire is destroyed as shown in Figs. 9(g), 9(h),
9(i), and 9(j). The ZBCPs shown in the tunnel conductance
spectra in these figures are all trivial ABSs induced by impu-
rity disorder. Note that, not surprisingly, the situation here is
qualitatively similar to the random Gaussian potential disorder
case, with the emergence of trivial ZBCPs for V > 2 meV, and
eventually for V > 5 meV, all features of topological MZMs
disappear. For very large V, all subgap conductance features
are suppressed.

At very large impurity disorder, we find there is no stable
ZBCP at all; only crossings of the subgap states appear in
the tunnel conductance spectrum as shown in Figs. 9(m),
9(o), 9(p), and 9(q). In addition, we verify that most of the
realizations of such very large disorder do not produce any
conductance signal as shown in Fig. 9(r), which are consistent
with the results of Gaussian potential disorder as shown in
Figs. 6(g) and 6(h).

4. 30%-impurity disorder

We also present the tunnel conductance of the nanowire in
the presence of 30%-impurity disorder in Fig. 10, where 30%
sites of the nanowire are randomly occupied by impurities.

In contrast to the case of 10%-impurity disorder where
V = 1 meV still gives the good ZBCP, here V = 1 meV
already induces the ugly ZBCP with the trivial ABS emerg-
ing below the TQPT as shown in Fig. 10(b). We find that
the features of 30%-impurity disorder are qualitatively sim-
ilar to that of the 10% disorder, with the difference being
that the threshold of the disorder determining the “weak”
and “strong” regime becomes smaller. Namely, in 30%-
impurity disorder, disorder with V = 1 meV [Figs. 10(a) and
10(b)] is already strong enough to create the ugly ZBCP,
and disorder with V = 50 meV is already a very large
disorder that suppresses all subgap conductance features,
whereas the corresponding thresholds for these two regimes
in the case of 10%-impurity disorder are V = 3 and V =
500 meV, respectively. Thus, both the spatial impurity dis-
tribution and the impurity potential strength are relevant in
determining the topological immunity; a few randomly placed
strongly coupled charged impurities are as effective in de-
stroying the topological protection as many weakly interacting
impurities.

5. Impurity disorder maintaining charge neutrality

In Fig. 11, we show the tunnel conductance spectrum in
the presence of impurity disorder maintaining charge neu-
trality. Although this is a different model of disorder from
the Gaussian potential disorder, we find the features of the
tunnel conductance spectrum are qualitatively the same as the
Gaussian potential disorder shown in Fig. 6. For V = 1 meV
in Figs. 6(a) and 6(b), trivial ABSs are induced manifesting
as ugly ZBCPs. As disorder increases, as shown in Figs. 6(c)
to 6(f), the topological MZMs are suppressed by impurity dis-
order. For very large disorder, as shown in Figs. 6(e) to 6(h),
there are only crossings of the subgap states with no stable
ZBCP, not even any ugly ZBCPs. For most cases of the large
disorder, the tunnel conductance spectrum shows nothing,
which is consistent with the large Gaussian potential disorder
results as shown in Figs. 6(g) and 6(h).

V. CONCLUSION

We theoretically study Majorana nanowires in
superconductor-semiconductor hybrid platforms by focusing
on the crossover behavior of tunnel conductance and
local density of states arising from the interplay among
inhomogeneous potential, random potential disorder, and
local impurity disorder. The main qualitative finding is that
the crossover behavior is dominated by trivial zero modes,
some of which manifest conductance peaks with values
∼2e2/h, mimicking the predicted topological MZM behavior.
A main finding of this work is that the crossover behavior
is smooth, allowing no clear-cut conclusion about which
physical mechanism may be the dominant one in preventing
the emergence of topological superconductivity and end
Majorana zero modes.

For an inhomogeneous potential, as has already been
pointed out in the theoretical literature [47], the 2e2/h trivial
ZBCP may be stable as a function of system parameters even
in the presence of some finite disorder since the emergent An-
dreev bound states, sometimes called quasi-Majoranas in this
context, may remain pinned near zero energy for finite ranges
of parameters (e.g., Zeeman field). The difference between
these crossover trivial zero modes and their topological MZM
counterparts in pristine nanowires is not necessarily the value
of conductance or the existence of zero-bias peaks, which
are ubiquitous in the trivial situation, even in the presence
of some random disorder, but the facts that the topological
MZMs manifest generic end-to-end correlations (i.e., the ob-
served tunnel conductance peak is similar from both ends)
and the topological MZMs manifest generic Majorana os-
cillations (i.e., the zero-bias conductance shows oscillatory
behavior with increasing magnetic field), and that the topo-
logical MZMs are necessarily accompanied by the opening of
a superconducting gap in the bulk.

Another qualitative finding of the current work is that
disorder typically may produce zero-bias conductance values
slightly higher than 2e2/h (as observed recently [11,15,16])
whereas inhomogeneous smooth potential tends to mostly
produce zero-bias peaks with conductance pinned at 2e2/h
or below [47] even in the presence of some random
disorder.
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Since the realistic disorder in experiments arises from
the presence of random impurities [44], we also study the
crossover with impurity disorder and find qualitatively similar
results for the Gaussian potential disorder.

Based on our results and its qualitative agreement with
much of the existing Majorana nanowire measurements in the
literature, we suggest the following five criteria as the minimal
conditions for any future experimental claim of the possible
observation of topological Majorana zero modes in nanowires
based just on the tunneling spectroscopy: (1) There must be
stable (both in gate voltage and in magnetic field) zero-bias
conductance peak on a generally low subgap conductance
background with a value close to (but not above) 2e2/h at the
lowest experimental temperature; (2) the conductance value
must saturate with lowering temperature and varying tunnel
barrier to a value close to 2e2/h (but not above; in fact, the
expected Majorana conductance under experimental condi-
tions should be slightly below 2e2/h); (3) similar ZBCPs with
“quantized conductance” must be observed in tunneling from
both ends of the wire (the whole tunneling spectra need not
be identical from both ends, but the ZBCPs must be); (4)
there should be some signatures for Majorana oscillations as
the magnetic field increases above the field value where the
ZBCP appears; (5) there should be some signatures of a gap
reopening when the ZBCP shows up. If these five criteria
are not satisfied, chances are very high, as shown explicitly
in the current work, that the system is most likely manifest-
ing nontopological Andreev bound state induced zero modes
in some complicated crossover behavior between inhomo-
geneous chemical potential and random disorder dominated
trivial regimes (or more likely, simply crossover among dis-
tinct random disorder configurations as system parameters
vary, changing the impurity states in the environment). It is
important to emphasize that neither any reported experimen-
tal observation nor any of our trivial zero-mode simulations
satisfy these topological criteria although both often manifest

zero-bias conductance peaks with approximate 2e2/h value
over narrow fine-tuned parameter ranges. The observation
of a ZBCP, even with a value close to 2e2/h, is at best a
necessary condition for the existence of topological Majorana
zero modes, satisfying the sufficient conditions, as discussed
above, and requires more work, particularly in much cleaner
disorder-free samples.

ACKNOWLEDGMENTS

This work is supported by the Microsoft Corporation, the
Laboratory for Physical Sciences, and the University of Mary-
land High-Performance Computing Cluster [66].

APPENDIX A: THE CROSSOVER FROM UGLY TO UGLY
ZBCPs WITH OTHER DISORDER REALIZATIONS

To manifest that the disorder realizations in Figs. 4 and 5
are not unique, we additionally provide another example in
the presence of other disorder realizations. Figures 12 and 13
show the crossover using the linear and variance-conserving
interpolation, respectively. Their corresponding LDOSs are
shown in Figs. 18 and 19.

APPENDIX B: LOCAL DENSITY OF STATES

In this Appendix, we present in Figs. 14 to 19 the LDOSs
corresponding to the tunnel conductance (Figs. 2 to 5) in the
main text and Appendix A (Figs. 12 and 13) to show that the
tunnel conductance and LDOS results are consistent. There-
fore, to avoid showing redundant figures, we have also verified
that the other tunnel conductance spectra, which do not have a
corresponding LDOS presented here, are also consistent with
their LDOS.
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FIG. 12. The tunnel conductance measured from the left end (in
the left panels) and right end (in the right panels) of the nanowire
in the crossover between two ugly ZBCPs using the simple linear
interpolation of Eq. (6). The method to interpolate here is identical
to Fig. 4 but realizations of potential disorder in (a), (b) (α = 0) and
(m), (n) (α = 1) are different.
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FIG. 13. The tunnel conductance measured from the left end (in
the left panels) and right end (in the right panels) of the nanowire
in the crossover between two ugly ZBCPs using the variance-
conserving interpolation of Eq. (7). The method to interpolate here
is identical to Fig. 5 but realizations of the potential disorder in (a),
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bad, the first ugly, and the second ugly) at the left end (left panels), in the middle of the wire (middle panels), and at the right end (right panels).

054510-16



CROSSOVER BETWEEN TRIVIAL ZERO MODES IN … PHYSICAL REVIEW B 104, 054510 (2021)

−0.2

0.0

0.2

V
b
ia

s
(m

eV
)

Left α=0.2

(a)
−4 −3 −2 −1 0

log(LDOS)

Middle

(b)
−4 −3 −2 −1 0

log(LDOS)

Right

(c)
−4 −3 −2 −1 0

log(LDOS)

−0.2

0.0

0.2

V
b
ia

s
(m

eV
)

Left α=0.4

(d)
−4 −3 −2 −1 0

log(LDOS)

Middle

(e)
−4 −3 −2 −1 0

log(LDOS)

Right

(f)
−4 −3 −2 −1 0

log(LDOS)

−0.2

0.0

0.2

V
b
ia

s
(m

eV
)

Left α=0.5

(g)
−4 −3 −2 −1 0

log(LDOS)

Middle

(h)
−4 −3 −2 −1 0

log(LDOS)

Right

(i)
−4 −3 −2 −1 0

log(LDOS)

−0.2

0.0

0.2

V
b
ia

s
(m

eV
)

Left α=0.6

(j)
−4 −3 −2 −1 0

log(LDOS)

Middle

(k)
−4 −3 −2 −1 0

log(LDOS)

Right

(l)
−4 −3 −2 −1 0

log(LDOS)

0 1 2

VZ (meV)

−0.2

0.0

0.2

V
b
ia

s
(m

eV
)

Left α=0.8

(m)
−4 −3 −2 −1 0

log(LDOS)

0 1 2

VZ (meV)

Middle

(n)
−4 −3 −2 −1 0

log(LDOS)

0 1 2

VZ (meV)

Right

(o)
−4 −3 −2 −1 0

log(LDOS)

FIG. 15. The LDOSs (corresponding to Fig. 3) of a wire in the crossover between the bad ZBCP (the first row) and the ugly ZBCP (the
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FIG. 16. The LDOSs (corresponding to Fig. 4) of a wire in the crossover between one ugly ZBCP (the first row) and another ugly ZBCP
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FIG. 17. The LDOSs (corresponding to Fig. 5) of a wire in the crossover between one ugly ZBCP (the first row) and another ugly ZBCP
(the last row) using the variance-conserving interpolation at the left end (left panels), in the middle of the wire (middle panels), and at the right
end (right panels).
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FIG. 18. The LDOS (corresponding to Fig. 12) of a wire in the crossover between one ugly ZBCP (the first row) and another ugly ZBCP
(the last row) using the simple linear interpolation at the left end (left panels), in the middle of the wire (middle panels), and at the right end
(right panels).
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FIG. 19. The LDOS (corresponding to Fig. 13) of a wire in the crossover between one ugly ZBCP (the first row) and another ugly ZBCP
(the last row) using the variance-conserving interpolation at the left end (left panels), in the middle of the wire (middle panels), and at the right
end (right panels).
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