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Superconducting fluctuations and giant negative magnetoresistance in a gate-voltage tuned
two-dimensional electron system with strong spin-orbit impurity scattering

Tsofar Maniv* and Vladimir Zhuravlev
Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel

(Received 3 November 2020; revised 20 July 2021; accepted 21 July 2021; published 5 August 2021)

We present a quantitative theory of the gate-voltage tuned superconductor-to-insulator transition (SIT) ob-
served experimentally in the 2D electron system created in the (111) interface between crystalline SrTiO3 and
LaAlO3. Considering two fundamental opposing effects of Cooper-pair fluctuations—the critical conductivity
enhancement, known as paraconductivity, and its suppression associated with the loss of unpaired electrons
due to Cooper-pairs formation—we generalize the standard thermal fluctuations theory to include interaction
between fluctuations within the self-consistent field approximation and quantum tunneling between mesoscopic
superconducting puddles within a phenomenological approach. Relying on the quantitative agreement found be-
tween our theory and a large body of experimental sheet-resistance data, we conclude that spin-orbit scatterings,
via significant enhancement of the interaction between fluctuations, strongly enhance the sheet resistance peak at
high fields and reveal anomalous metallic behavior at low fields, due to mixing of relatively heavy electron bands
with a light electron band near a Lifshitz point. The large enhancement of the interaction between fluctuations
at high fields, where the sheet resistance is strongly amplified, is shown to result in localization of Cooper-pair
fluctuations within mesoscopic puddles.

DOI: 10.1103/PhysRevB.104.054503

I. INTRODUCTION

The electron-doped interface between two insulating per-
ovskite oxides—SrTiO3 and LaAlO3—is known to support
two-dimensional (2D) high mobility electron systems, provid-
ing a great opportunity of tailoring low-dimensional charge
states with exotic transport properties [1]. In particular, it has
been shown recently [2] that the 2D electron system formed
at the LaAlO3/SrTiO3 (111) interface can be smoothly tuned
by gate bias from the superconducting (SC) state deep into
an insulating state with pronounced magnetoresistance (MR)
peaks developed at low temperatures. Similar electrostati-
cally tuned superconductor-to-insulator transition (SIT) was
reported for the LaAlO3/SrTiO3 (001) interface [3], show-
ing however [4,5] no clear indication of MR peaks similar
to those reported for the (111) interface. Earlier studies of
the (111) interface have found coexistence of magnetism and
2D superconductivity [6], and a correlation between super-
conductivity and strong spin-orbit interaction [7]. The linear
magnetic field dependence observed at low perpendicular
fields and its hysteresis have indicated the importance of flux
flow in the detected resistance. These effects persisted deep
into the insulating state, revealing the importance of Cooper-
pair fluctuations even when superconductivity is completely
suppressed. The large smearing of the SC resistive transitions
observed under parallel fields may also reflect a strong SC
fluctuations effect. The transition temperature Tc and the crit-
ical fields, Hc‖, Hc⊥ for both parallel and perpendicular fields,
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respectively, were found [7] to follow nonmonotonic (dome-
shaped) gate-voltage dependence of the spin-orbit interaction.

The phenomenon of SIT has been investigated for many
years, notably in thin films of materials like bismuth [8],
InO [9], MoGe [10], TiN [11], and cuprate superconduc-
tors [12]. Many intriguing phenomena have been associated
with the observation of SIT. Noteworthy examples are: scaling
behavior near a quantum critical point [9,13,14], large MR
peaks [11,14,15], and thermally activated insulating behav-
ior [11,14–16]. However, some of these effects have not been
observed in all materials that exhibit a SIT, making the inter-
pretation of the various SIT phenomena controversial, with no
consensus as to their mechanism and expected behavior.

In this paper we present a scenario of SIT in a 2D electron
system, based on the opposing effects generated by fluctua-
tions in the SC order parameter: On one hand, the singular
enhancement of conductivity due to fluctuating Cooper pairs
in approaching the critical magnetic field (paraconductivity),
and on the other hand, the suppression of conductivity as-
sociated with the loss of unpaired electrons resulting from
Cooper pairs formation. Specializing this scenario to the
LaAlO3/SrTiO3 (111) interface, the strongly enhanced fluctu-
ations effect is due to the remarkable combination of marginal
superconductivity driven by spin-orbit scattering versus the
pair breaking of Zeeman spin-splitting effect embodied in a
2D electron system. Focusing on the parallel field orientation
case enables us to investigate the essence of our model of
SIT without interference from the complex vortex kinetics
and flux lines pinning processes involved in the perpendicu-
lar field case. Furthermore, the striking observations of giant
negative MR in both the (111) and the (001) LaAlO3/SrTiO3

interfaces, driven by spin-orbit coupling under parallel field, at
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FIG. 1. A three-point histogram of the 2D DOS function ex-
tracted in our fitting process from the sheet resistance data for
three values of RN , corresponding to the following values of the
Fermi energy: E 0

F ≡ EF (7.5 k�) = 8.2 meV, E 1
F ≡ EF (10.5 k�) =

7.2 meV, E 2
F ≡ EF (20.5 k�) = 6.5 meV (see Appendix B for de-

tails). The corresponding values of the interaction parameters are:
α(7.5k�) = 0.09, α(10.5k�) = 0.11,and α(20.5k�) = 0.30. The
best fitting value found for the band effective mass is m∗ � 1.6me.

temperatures above the SC transition [17,18], are of special in-
terest here: It has been associated [18] with spin-orbit induced
band mixing between orbitals of different symmetries near a
Lifshitz point in the d-electron interface band structure [19].

We test the validity of the above mentioned SIT scenario
by performing calculations based on an effective mixed-bands
DOS model and comparing the results with the large body
of experimental magnetic sheet resistance (MSR) data pre-
sented in Ref. [2]. The calculations were done within an
extended version of the Fulde-Maki Aslamazov-Larkin theory
of fluctuations in paramagnetically limited superconduc-
tors [20–22], in which the linear time-dependent-Ginzburg-
Landau (TDGL) equation describing free (Gaussian) fluctua-
tions is modified by taking into account interactions between
free fluctuations, self-consistently in the Hartree approx-
imation [23]. Very good quantitative agreement between
theory and experiment has been achieved, confirming our
SIT scenario. Dynamical quantum tunneling of Cooper-pair
fluctuations through GL energy barriers is taken into account,
on equal footing with thermal activation, within a phenomeno-
logical approach, preserving the high level of agreement with

the experiment in the low temperatures region. Our calcula-
tions also reveal how a Lifshitz transition in the d-electron
interface band structure [19,24] can drive large enhancements
of the MSR peak observed at the end of the SIT path [2] upon
gate-voltage variation. This feature is exploited to construct
the mixed-band DOS function around the Lifshitz point from
the gate-voltage dependent MSR data.

II. THE MODEL AND ITS FORMULATION

We model the perovskite oxides electronic interface state
under study here by considering a thin rectangular film
of electrons, subject to strong spin-orbit impurity scatter-
ing [25,26], under a strong magnetic field H , applied parallel
to the conducting plane. We assume, for simplicity of the
analysis, that spin-orbit interaction dominates the impurity
scatterings. Superconductivity in this system is governed both
by the Zeeman spin splitting energy μBH and the spin-orbit
scattering rate 1/τSO ≡ h̄/εSO (see a detailed description in
early papers dealing with similar 3D systems [20,27,28]).
The underlying spin-orbit induced band mixing, which was
evaluated microscopically for the (001) interface by several
authors [18,19,29,30], is taken into account here phenomeno-
logically within a minimal model of 2D DOS function N2D(E )
(see Fig. 1 and a more detailed explanation below).

We use a reference of frame in which the conducting inter-
face is in its z-x plane, the film thickness (along the y axis) is
d , and E=x̂E , B=̂zH are the in-plane electric and magnetic
fields, respectively. The transport calculations are carried out
in the linear response approximation with respect to the elec-
tric field and impurity scattering is treated in the dirty limit. To
take into account the orbital magnetic field effect one invokes
gauge invariance in evaluating the Cooper-pair fluctuations
kinetic energy (1/2)Dq2, where D is the electronic diffu-
sion coefficient. Since the film thickness d is much smaller
than the Cooper-pair coherence length, this can be done
approximately by replacing q2 with q2

z + 〈(qx + 2e
h̄c Hy)2〉 =

q2 + ( 2e
h̄c H )2〈y2〉 + 2qx

2e
h̄c H〈y〉 = q2 + 2(edH/h̄)2, where the

average is over the narrow film dimension.
Starting with the Nambu field operators:

�(r; τ ) ≡

⎡⎢⎢⎢⎢⎣
ψ↑(r; τ )

ψ↓(r; τ )

ψ
†
↑(r; τ )

ψ
†
↓(r; τ )

⎤⎥⎥⎥⎥⎦, �†(r; t ) ≡ [ψ†
↑(r; τ ) ψ

†
↓(r; τ ) ψ↑(r; τ ) ψ↓(r; τ )], (1)

the Nambu-Gor’kov time-ordered Green’s functions 4 × 4 matrix is defined by:

G(r, r′; τ, τ ′) ≡ −〈Tτ�(r; τ )�†(r′; τ ′)〉 ≡
(G11(r, r′; τ, τ ′) G12(r, r′; τ, τ ′)

G21(r, r′; τ, τ ′) G22(r, r′; τ, τ ′)

)
, (2)

where Tτ is the time ordered operator and τ, τ ′ are imaginary (Matsubara) time variables. The 2 × 2 Green’s functions and
anomalous Green’s functions submatrices relevant to our problem are:

G11(r, r′; τ, τ ′) = −
〈

Tτ

(
ψ↑(r; τ )ψ†

↑(r′; τ ′) ψ↑(r; τ )ψ†
↓(r′; τ ′)

ψ↓(r; τ )ψ†
↑(r′; τ ′) ψ↓(r; τ )ψ†

↓(r′; τ ′)

)〉
,

G21(r, r′; τ, τ ′) = −
〈

Tτ

(
ψ

†
↑(r; τ )ψ†

↑(r′; τ ′) ψ
†
↑(r; τ )ψ†

↓(r′; τ ′)

ψ
†
↓(r; τ )ψ†

↑(r′; τ ′) ψ
†
↓(r; τ )ψ†

↓(r′; τ ′)

)〉
.
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In terms of these Green’s functions we write the reduced subset of Gor’kov’s equations in real space, describing s-wave
spin-singlet pairing, as:

[(h̄∂τ − ξ̂ )σ0 − σzμBH]G11(r, r′; τ, τ ′) − ∫
d2r′′V (r, r′′)G11(r′′, r′; τ, τ ′) − iσy�(r, τ )G21(r, r′; τ, τ ′) = σ0δ(τ − τ ′)δ(r − r′)

(3)

iσy�
∗(r, τ )G11(r, r′; τ, τ ′) + [(h̄∂τ + ξ̂ )σ0 + σzμBH]G21(r, r′; τ, τ ′) +

∫
d2r′′V (r, r′′)G21(r′′, r′; τ, τ ′) = 0 (4)

where ξ̂ = −h̄2(∂2
x + ∂2

z )/2m∗ − EF , EF is the Fermi energy, m∗ is the electronic band effective mass, μB = eh̄/2me is the Bohr
magneton, σ0, σy, σz are the 2 × 2 unity, and the y, z Pauli matrices, respectively, and �↓↑(r, τ ) = −�↑↓(r, τ ) ≡ �(r, τ )—the
components of the order-parameter matrix responsible for spin-singlet pairing. In these equations the impurity-scattering matrix
is given by [25,26]:

V (r, r′) = 1

d

∑
n

∫
d2 p

(2π )2

∫
d2q

(2π )2 exp

{
ip·
[

1

2
(r + r′) − Rn

]
+ iq·(r − r′)

}
(iVSO[̂p × q̂]·σ ), (5)

where Rn is a position vector of an impurity and [̂p × q̂]·σ = ±|̂p × q̂|σy, depending on whether [̂p × q̂] is oriented par-
allel (+) or antiparallel (−) to the y axis. The strong spin-orbit interaction of the Ti 3d conduction electrons with lattice
ions in SrTiO3 [31] motivates our use of Eq. (5) as the spin-orbit impurity scattering matrix of free electrons in the
LAO/STO (111) interface.

The temporal Fourier transform, with the fermionic Matsubara frequency, ωn = (2n + 1)πkBT/h̄, of the integral equation for
the normal state Green’s functions matrix G̃ (0)

11 (r, r′; ωn) in the presence of the spin-orbital impurity scattering, obtained from
Eq. (3) with �(r, τ ) = 0, is written as:

G̃ (0)
11 (r, r′; ωn) = G (0)

11 (r, r′; ωn) +
∫

d2r1

∫
d2r2G (0)

11 (r, r1; ωn)V (r1, r2)G̃ (0)
11 (r2, r′; ωn), (6)

where the Green’s functions matrix in the absence of the impurity potential satisfies:

[(ih̄ωn − ξ̂ )σ0 − σzμBH]G (0)
11 (r, r′; ωn) = σ0δ(r − r′). (7)

In attempting to find the desired linear TDGL equation, we focus our attention on the pairing self-consistency equation, to first
order in the pair-potential expansion. In terms of the Nambu 2 × 2 anomalous Green’s functions matrix, this equation takes the
form:

Tr
〈
iσyG̃ (1)

21 (r, r; τ, τ )
〉
impg = �∗(r, τ ), (8)

where 〈
G̃ (1)

21 (r, r; τ, τ )
〉
imp =

∫
d2r′′

∫ β

0
dτ ′′〈G̃ (0)T

11 (r, r′′; τ ′′ − τ )iσyG̃ (0)
11 (r, r′′; τ ′′ − τ )

〉
imp�

∗(r′′, τ ′′),

g < 0 is the BCS coupling constant, and the average is over impurity positions.

Fourier transforming, both spatially and temporally, with
wave vector q and bosonic Matsubara frequency �ν =
2νπkBT/h̄ � 0, respectively, the self-consistency pairing
equation (8) can be transformed (for details see Ref. [32]) into
the following frequency and wave number dependent linear
GL equation:

ln
( T

Tc0

)
+ a+ψ (1/2 + f− + x + y)

+ a−ψ (1/2 + f+ + x + y) − ψ (1/2) = 0, (9)

where x ≡ h̄Dq2/4πkBT and y ≡ h̄�ν/4πkBT . Here Tc0

is the mean-field SC transition temperature at zero mag-
netic field, ψ is the digamma function, f± = δH2 +
β ±

√
β2 − μ2H2, a± = (1 ± β/

√
β2 − μ2H2)/2 are dimen-

sionless functions of the magnetic field H , with the ba-
sic parameters: β ≡ εSO/4πkBT, μ ≡ μB/2πkBT, δ ≡
D(de)2/2πkBT h̄, where D ≡ h̄EF /m∗εSO is the electron dif-
fusion coefficient.

Note that in the single-band model employed in the above
calculations the presence of the spin-orbit interaction does
not influence Tc0, which is given by the simple BCS expres-
sion, Tc0 � 2eγ TDe−1/|g|N2D , where γ � 0.5772, and N2D =
m∗/2π h̄2 is the single electron DOS. Note also that in Eq. (9)
the explicit logarithmic singularity at T = 0 is canceled by the
asymptotic logarithmic divergence of the digamma function
for T → 0, a result equivalent to the removal of the Cooper
singularity by finite magnetic field or/and by �ν > 0.

To take into account the effect of the spin-orbit induced
band mixing [18,24], we replace the constant N2D with a
minimal model of piecewise DOS function N2D(E ), con-
sisting of a relatively heavy, high energy, electron band
with DOS, m∗/2π h̄2, and a lighter, low energy, electron
band, separated by an energy interval ∼εSO, in which
N2D(E ) ≡ (m∗/2π h̄2)ν(E ) interpolates between the two
pieces (see Fig. 1).

The self-consistency pairing equation (9) enables us
to evaluate the wave number and frequency dependent
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Cooper-pair fluctuation propagator: D(q,�ν ). The static
(�ν = 0) propagator D(q,�ν = 0) ≡ 1/N2D(EF )�(x; εH )
can be written in terms of the well-known function of
the dimensionless fluctuation kinetic energy variable x ≡
h̄Dq2/4πkBT [20]:

�(x; εH ) = εH + a+[ψ (1/2 + f− + x) − ψ (1/2 + f−)]

+ a−[ψ (1/2 + f+ + x) − ψ (1/2 + f+)] (10)

and the Gaussian critical shift parameter:

εH ≡ ln
( T

Tc0

)
+a+ψ

(
1

2
+ f−

)
+a−ψ

(
1

2
+ f+

)
−ψ (1/2).

(11)
The parameter εH should be corrected due to interaction

between fluctuations [33]. The correction can be evaluated
analytically from the cubic term of the GL equation in-
troduced in Appendix A and is given by [see Eq. (A13)]:
αF (H )η(H )

∫ xc

0 dx/�(x; εH ), where

α ≡ 1/h̄π3DN2D(EF ) (12)

and xc ≡ h̄Dq2
c/4πkBT . The cutoff wave number qc typically

satisfies xc < 1, so that one may exploit the linear approxima-
tion �(x; εH ) = εH + η(H )x, where

η(H ) = a+ψ ′( 1
2 + f−

)+ a−ψ ′( 1
2 + f+

)
. (13)

The Hartree self-consistent field (SCF) approximation
amounts to replacing εH , appearing in the interaction correc-
tion, with the “dressed” critical shift parameter ε̃H , leading to
the SCF equation:

ε̃H � εH + αF (H ) ln

(
1 + η(H )xc

ε̃H

)
, (14)

where the logarithmic factor is obtained from the integral over
x by using the linear approximation of �(x; ε̃H ), and the field
distribution function of the interaction F (H ) is given by the
Matsubara sum [see Eq. (A14)]:

F (H ) = 1

η(H )

∞∑
n=0

κn(κ2
n + μ2H2)

[κn(κn − 2β ) + μ2H2]3 , (15)

where κn = n + 1/2 + 2β + δH2. Equation (14) has no so-
lution with ε̃ � 0 (see Ref. [33]), indicating the absence of
a genuine SC phase transition due to the interaction between
fluctuations. Indeed, as shown in Fig. 3, all solutions of the
SCF equation (14) satisfy ε̃h > 0, implying that the critical
divergence of the free fluctuations propagator is strictly re-
moved. This also eliminates the critical divergence from both
the Aslamazov-Larkin (AL) and the suppressed normal-state
conductivities (see below).

III. QUANTUM FLUCTUATIONS AT LOW
TEMPERATURES

For temperatures above Tc, the magnetic sheet resistance
(MSR), calculated by considering only thermal fluctuations
(see Sec. IV for details), accounts quantitatively well for the
experimental MSR data reported in Ref. [2] (see Fig. 2).
However, in the low temperatures regime well below Tc, large
deviations between the calculated and measured MSR data
are seen, with the calculated MSR peak quickly narrowing

FIG. 2. Calculated sheet resistance as a function of field H for
different temperatures, obtained within the framework of the thermal
fluctuations theory in the SCF approximation (dashed lines, with
temperature labels), plotted together with the corresponding exper-
imental data (full circles) extracted from [2]. The gate voltage Vg

employed corresponds to RN = 7.5 k� (zero-field sheet resistance
at T = 1 K). The fitting parameters used are: Tc0 = 0.4 K, β0 = 8,
α = 0.1, δ̃0 = 0.028 (see Appendix B).

upon decreasing temperature, as compared to the rather broad
experimental MSR peak. This discrepancy is due to the fact
that at low temperatures ε̃H , determined by Eq. (14), is not
significantly different from εH in the vicinity of the critical
point εH = 0. The reason, as illustrated by Fig. 3, is in the
progressive narrowing of F (H ) [Eq. (15)] upon decreasing
temperature, having too small tail intensity in the vicinity of
the free-fluctuations critical field.

We argue that the observed broadening at very low tem-
peratures is due to quantum fluctuations effect similar to the
quantum phase slips reported for SC nanowires [34–37], a
phenomenon which was also reported for ultrathin granular
SC film [38,39]. We invoke a phenomenological approach
describing dynamical tunneling of Cooper pairs through
energy barriers, separating SC puddles [40], on equal foot-
ing with thermal activation across the same barriers. Thus,

FIG. 3. The field distribution function (1 + TQ/T )FU (H ), calcu-
lated at T = 1 mK for TQ = 0 and TQ = 80 mK. Inset: “Bare,” εH

(dashed line), and “dressed,” ε̃H (solid line), critical shift parameters,
calculated at T = 1 mK and TQ = 80 mK.
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we introduce a unified quantum-thermal (QT) fluctuations
partition function:

ZU
fluct =

∏
q

∫
D�qD�∗

qe− τU
h̄ [̃εU

H + ηU (H )h̄
4πkBT Dq2]|�q|2N2D(EF )

,

where 1/τU is the combined QT attempt rate, defined
by: h̄/τU ≡ kBT + h̄/τQ, with 1/τQ = kBTQ/h̄ the tunnel-
ing attempt rate [̃εU

H , and ηU (H ) will be defined be-
low]. The corresponding Gaussian, unified QT-fluctuations
propagator is given by: DU (q; εU

H ) = kB(T + TQ)/N2D(EF )

(εU
H + h̄Dq2ηU (H )

4πkBT ).
The inherent dynamics of the quantum tunneling of

Cooper-pair fluctuations is introduced to the equilibrium
Gorkov-GL functional integral through imaginary time [41].
Consistency requires that the introduction of an excess
quantum-tunneling “temperature,” TQ, into the unified QT
fluctuation propagator, should be complemented by intro-
duction of a bosonic excitation Matsubara frequency shift
�ν/2 = πkBTQ/h̄ into the definitions of the electron-pairing
functions FU (H ), εU

H , ηU (H ), under summation over the
fermionic Matsubara frequency ωn = (2n + 1)πkBT/h̄. Thus,
one evaluates these unified QT functions from the respective
thermal functions: F (H ), εH , η(H ), by introducing the shift
n → n+TQ/2T under the summations over n in Eq. (15) and
by shifting the argument of the digamma function and its
derivative with the same additive constant TQ/2T in Eqs. (11)
and (13), respectively. The corresponding unified Hartree
SCF equation (14) reads: ε̃U

H = εU
H + αFU (H )(1 + TQ/T ) ln

(1 + xcηU (H )
ε̃U

H
).

IV. SHEET CONDUCTANCE UNDER PARALLEL
MAGNETIC FIELD

A. Fluctuation paraconductivity

In the calculation of the paraconductivity we adopt a
modified version of the formalism developed by Fulde
and Maki [20] for calculating the AL contribution [22].
The method of calculation, which was first proposed by
Schmidt [42], exploits the TDGL functional L(�, A) of the

order parameter �(r, t ) and the vector potential A(r, t ), to find
the Cooper-pairs current density:

j(r, t ) = ∂L(�(r, t ), A(r, t ))

∂A(r, t )
. (16)

A key ingredient in this approach is the inverse fluctu-
ation propagator (in wave-vector-frequency representation)
D−1(q+2eA/h̄, ω), mediating between the order parameter
and the GL functional. In the Gaussian approximation, inher-
ent to the Fulde-Maki approach, the relation is quadratic, i.e.:

L(�, A) =
(

1

2π

)2 ∫
d2q

(
1

2π

)∫
dω

× |�(q, ω)|2D−1(q+2eA/h̄, ω)

and the AL time-ordered correlator is given by:

QAL(i�ν )

= (4eN2DD)2d

(
1

2π

)2 ∫
d2qkBT

∞∑
μ=−∞

× q2
xC(q,�μ + �ν )D(q,�μ + �ν )C(q,�μ)D(q,�μ),

(17)

where �μ = 2μkBT/h̄,�ν = 2νkBT/h̄, μ = 0,±1,±2, ...,

ν = 0, 1, 2, .... are bosonic Matsubara frequencies. Here the
electrical current is generated along the x axis, qz, qx are
the fluctuation (in-plane) wave-vector components along the
magnetic and electric field directions, respectively, q2 ≡ q2

z +
q2

x , and C(q̃,�μ) ≡ [∂D−1(q̃,�μ)/∂Ax]/4DeN2Dq̃x, with q̃ =
|̃q|, q̃ ≡ q + 2eA/h̄. Note that in Eq. (17) we use for both
C(q,�μ) and D(q,�μ) the notations employed in Sec. I for
the fluctuation propagator, where the orbital magnetic field
effect is implicitly included, whereas in the above defini-
tion of C(q̃,�μ) it is explicit. A simple calculation yields:
C(q,�μ) = η(x, y; H )/4πkBT , where η(x, y; H ) is obtained
from η(H ), defined in Eq. (13), by replacing f± with f± +
x + y. Thus, performing the summation over the bosonic
Matsubara frequency �μ in Eq. (17) and the analytic contin-
uation i�ν → ω + iδ, the retarded correlator QR

AL(ω) can be
written in the form:

QR
AL(ω) = kBT

(
2e

h̄

)2( 1

2πd

)∫ ∞

0
xdx

∑
n=0,±1,±2,....

�′(x + |n + y|; ε̃h)

�(x + |n + y|; ε̃h)

�′(x + |n|; ε̃h)

�(x + |n|; ε̃h)
, (18)

where y = ih̄ω
2πkBT , and:

�(x + y; ε̃h) ≡ ε̃h + a+(h)[ψ (1/2 + f−(h) + x + y) − ψ (1/2 + f−(h))]

+ a−(h)[ψ (1/2 + f+(h) + x + y) − ψ (1/2 + f+(h))].

Using Eq. (18) the desired static sheet conductivity is read-
ily calculated to be:

σALd = 1

4

(G0

π

) ∫ ∞

0

(
�′(x; ε̃h)

�(x; ε̃h)

)2

dx (19)

where G0 = e2/π h̄ is the conductance quantum. Thus, within
the unified QT fluctuations approach, the static AL sheet con-
ductivity is given by:

σU
ALd =

(
1 + TQ

T

)1

4

(G0

π

) ∫ ∞

0

(
�′

U (x; ε̃U
H )

�U (x; ε̃U
H )

)2

dx, (20)
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where �U (x; ε̃U
H ) is obtained from Eq. (10) by replacing ε̃H

with ε̃U
H , and by shifting the argument of all the digamma

functions in Eq. (10) with the additive constant TQ/2T .

B. Cooper-pair fluctuations suppressed normal state
conductivity

The idea, first exploited by Larkin and Varlamov [43]
for the zero field case, is to replace the electron number
density Ne in the simple Drude formula for the conduc-
tivity σ = Nee2τ/m∗, with the number density of electrons
occupying quasiparticle states minus the number density
�Ne of electrons paired into SC puddles. Since �Ne = 2ns,
where ns is the number density of Cooper pairs in SC pud-
dles, the corresponding correction to the Drude conductivity
is given by: δσDOS = −2(nse2/m∗)τSO. The subscript DOS
indicates that this contribution to the conductivity is asso-
ciated with the suppression of the normal electrons DOS
by Cooper-pair fluctuations [44]. The number density, ns =
(1/d )

∫ 〈|ψ (q)|2〉d2q/(2π )2 [43], is obtained from the super-
fluid momentum distribution function

〈|ψ (q)|2〉 � 2EF /π2kBT �(x; ε̃H ) (21)

so that:

δσDOSd � −4(G0/π )
∫ xc

0
dx/�(x; ε̃H ). (22)

The unified QT fluctuations version of the DOS con-
ductivity can be derived by introducing quantum fluc-
tuations into the superfluid momentum distribution func-
tion as follows: 2EF /π2kBT �(x; ε̃H ) → 2EF /π2kB(T +
TQ)�U (x; ε̃U

H ), resulting in the following expression:

δσU
DOSd � −4

(G0

π

) ∫ xc

0

dx(
1 + TQ

T

)
�U

(
x; ε̃U

H

) . (23)

The quantum limit of the sheet conductivity, i.e., the T → 0
limit of σU

AL + δσU
DOS, should be carefully checked to ensure

that they are physically meaningful at very low temperatures.
It has been shown, indeed (see Ref. [32]), that both σU

AL and
δσU

DOS have well defined quantum (T → 0) limit.
It is important to note that the phenomenological approach,

based on the simple Drude formula, used above in deriving
Eq. (22) for the DOS conductivity, is to a good approximation
equivalent to the result derived by Larkin-Varlamov [43] by
means of a fully microscopic (diagrammatic) approach in
the dirty limit. For the sake of simplicity of the compari-
son we show it here by neglecting the interaction between
fluctuations and considering the zero field case. In the
phenomenological approach we use in the Drude formula:
δσ DOS = −2nse2τSO/m∗, the fluctuation Cooper-pair density
ns = d−1(2π )−2

∫
d2q〈|ψ (q)|2〉, with the appropriate form of

Eq. (21) for the momentum distribution function:

〈|ψ (q)|2〉 = (
2EF

π2kBT

)
1

ε + h̄D
4πkBT q2

(24)

where ε = ln(T/Tc0).

Performing the integration: ns = 1
d

1
h̄D ( 2EF

π2 )
∫ xc

0 dx 1
ε+x the

DOS conductivity is:

δσ DOSd � −0.4

(
e2

h̄

)
ln
(xc

ε

)
. (25)

The corresponding result of the microscopic calculation,
which includes all diagrams contributing to the DOS conduc-
tivity [43], can be written as:

δσ DOS
xx � − e2

2dh̄
κ (kBT τ/h̄) ln

(xc

ε

)
.

In the dirty limit, kBT � h̄/τ , κ (kBT τ/h̄) → 56ζ (3)/π4 �
0.7, and:

δσ DOSd � −0.35

(
e2

h̄

)
ln
(xc

ε

)
(26)

in good agreement with Eq. (25).

V. COMPARISON WITH THE EXPERIMENT

Combining all contributions to the sheet conductivity,
Eqs. (20) and (23), including the normal-state conductivity
σn, we have:

σU d = σnd + σU
ALd + δσU

DOSd. (27)

Determination of the normal-state conductivity σn can re-
flect on the strong negative MR reported in Ref. [17] for
temperatures well above the SC transition. Thus, in our fit-
ting procedure we assume a field-dependent normal state
conductivity contribution σn(H, T ), which produces negative
MR similar to that observed in Ref. [17], by employing
the quadratic function: σn(H, T ) = σ0 + σ0(H/Hn(T ))2, with
two adjustable parameters σ0, Hn(T ), where the latter is tem-
perature dependent. Employing an extensive fitting procedure,
as described in detail in Appendix B, the resulting calculated
MSR, best fit to the experimental data sets [2], are shown in
Fig. 4. Very good quantitative agreement between the calcu-
lated and measured data is seen for the entire data presented.
The decreasing magnitudes of the normal-state MR curves,
shown in Fig. 4, with increasing temperature are seen to be
in qualitative agreement with the experimental negative MR
data, presented in Ref. [17] for temperatures well above Tc.

As explained in Ref. [2], since labeling each data set
according to the measured gate voltage Vg is not a unique
procedure, they are instead labeled by RN —the correspond-
ing sheet resistance measured at zero field and sufficiently
high temperature (T = 1 K). The best fitting carrier den-
sity n2D(RN ) (∼0.5 × 1013 cm−2 ) and band effective mass
m∗ � 1.6me are found in good quantitative agreement with
the carrier density and cyclotron mass, respectively, extracted
from Shubnikov-de Haas (SdH) oscillations measurements
reported in Ref. [24]. Note that the above value of n2D(RN ),
as extracted in our fitting, is a small fraction of the measured
inverse Hall coefficient e/RH ≡ nHall

2D (RN ) reported in Ref. [2]
(∼1014 cm−2). The situation is quite similar to that reported
for the LaAlO3/SrTiO3 (001) interface (see Refs. [45,46]).
The large difference between the carrier densities extracted
from the two methods was attributed [24,47] to contributions
to transport of at least two bands with greatly different mobil-
ities, a band contributing minority carriers with high mobility,

054503-6



SUPERCONDUCTING FLUCTUATIONS AND GIANT … PHYSICAL REVIEW B 104, 054503 (2021)

FIG. 4. Calculated sheet resistance as a function of field H for
RN = 7.5 k� (a), RN = 10.5 k� (b), and RN = 20.5 k� (c), for
different temperatures (dashed lines), plotted together with the corre-
sponding experimental data (full circles) extracted from Ref. [2]. The
temperature T used in each curve is labeled. Insets: The normal-state
MR curves extracted in the fitting process for each RN value. Temper-
atures follow those of the respective main figures, in increasing order
with the decreasing magnitude of the MR. The corresponding values
of TQ(T ) can be found in Table II. Note the dramatic appearance of
resistance at low fields in panel (c) resulting from quantum tunneling
effect enhanced by the sharply decreasing electronic DOS.

dominating the SdH oscillations and superconductivity, and
majority-carriers band with low mobility, which dominate the
Hall resistance.

The key parameter in our theory is the fluctuations-
interaction parameter α(RN ), which depends on the

normal-state sheet resistance parameter RN , through N2D(EF )
[see Eq. (12)]. For the values of RN , presented in Fig. 4, α(RN )
shows a moderate rise upon increasing RN from 7.5 k� to
10.5 k� and a significantly larger ascent upon increasing
RN from 10.5 k� to 20.5 k� (see Fig.( 1)). This has two
important consequences seen in Fig. 4 (see also Appendix B);
a large enhancement of the MSR peak at high fields, and
strong amplification of the quantum tunneling induced
resistance at low fields, which characterizes anomalous
metallic behavior [48]. The corresponding negative normal
state MR curves, shown in Fig. 4, are seen to exhibit
similar enhancements upon increasing RN , indicating the
sharing roles between Cooper-pair (bosonic) fluctuations
and (fermionic) quasiparticles in driving the system to
insulator. The implication with regard to N2D(EF ) is that,
since N2D(EF ) ∝ 1/α(RN ), its relatively large drop upon
downshifting the Fermi level from EF (RN = 10.5 k�) to
EF (RN = 20.5 k�) reflects electron transfers between bands
of considerable effective mass ratio [24] (see Fig. 1), which
is, however, significantly smaller than that calculated for the
(001) interface in Refs. [18,19].

The absence of pronounced MSR peak reported experi-
mentally for the (001) interface is attributed to the relatively
large DOS at the Fermi energy, see, e.g., the DOS at the
upper band edge shown in Ref. [18], that is: N2D(E0

F ) ≈
0.3 × 1013 cm−2 meV−1, which is about an order of magni-
tude larger than our result for the (111) interface at the upper
band edge, shown in Fig. 1.

VI. LOCALIZATION IN MESOSCOPIC
SUPERCONDUCTING PUDDLES

The sheet-resistance peaks shown in Fig. 4 at high
field reflect localization of Cooper-pair fluctuations within
mesoscopic puddles created in response to the driving electric
force. This can be seen by considering the Cooper-pairs am-
plitude correlation function (that is proportional to the static
fluctuation propagator in real space), namely:

g(ρ) ≡ 〈ψ∗(r)ψ (r + ρ)〉 =
(

1

2π

)2 ∫
d2q〈|ψ (q)|2〉eiq·ρ

after exploiting Eq. (21) for 〈|ψ (q)|2〉 with the linear approx-
imation of �(x; ε̃H ), i.e.,

g(ρ) � 4

πη(H )

(εSO

EF

)
n2D

∫ qc

0

qdq

ξ−2
H + q2

J0(qρ), (28)

where

ξH =
√

h̄D

4πkBT

η(H )

ε̃H
(29)

is the fluctuations correlation length.
Note that the corresponding superfluid density: ns =

g(0) � (2/πη(H ))(εSO/EF )n2D ln[1 + (qcξH )2], is spatially
uniform, due to the averaging over the fluctuations configu-
rations. The underlying mesoscopic structure is revealed by
the correlation function g(ρ). It is proportional to the prob-
ability amplitude for Cooper-pair fluctuations at any point r
to propagate a distance ρ from r. Its dependence on ρ has
a decaying envelope, modulated by an oscillatory function
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FIG. 5. Blue curves: Fluctuation propagator in real space at a distance ρ (measured in units of ρ0) from an arbitrary source position, for
different fields H , calculated for parameters characterizing Fig. 4(c) with TQ = 80 mK. Brown curves: The same as the blue curves but with
TQ = 0. Insets: The fluctuation propagator presented by the blue curves in the main figures, normalized by the respective superfluid densities.
Note the apparent saturation of the puddle’s size upon increasing the field above H = 3 T, which reflects increasing values of (ξU

h )−1 above
the cutoff qc.

associated with the sharp cutoff qc (see Fig. 5). The length
scale of this attenuation is the correlation length ξH [Eq. (29)],
which can also be regarded as a length of localization of
Cooper-pair fluctuations.

The dependence of ξH on the field H is through the
interaction-modified critical shift parameter ε̃H (which also
plays the role of an energy gap in the fluctuation spectrum)
and the correction factor η(H ) to the stiffness parameter.
Thus, by increasing the field H toward the sheet-resistance
peak region, the localization length ξH diminishes (see
Fig. 5) since the gap ε̃H increases whereas the stiffness
η(H )h̄D/4πkBT decreases (see Fig. 3).

In the presence of quantum tunneling, i.e., for a finite TQ,
g(ρ) → gU (ρ):

gU (ρ) � 4(εSO/EF )n2D

π (1 + TQ/T )ηU (H )

∫ qc

0

J0(qρ)qdq

(ξU
H )−2 + q2

, (30)

where

ξU
H = ρ0

√
ηU (H )

ε̃U
H

(31)

and ρ0 ≡ √
h̄D/4πkBT . Thus, as quantum tunneling of

Cooper pairs enhances ε̃H and diminishes η(H ), it is

concluded that tunneling shortens the localization length. This
also implies diminishing superfluid density due to tunneling
(see Fig. 5), which is consistent with the tendency of phase
slips to suppress superconducting order.

VII. DISCUSSION

The main message of this paper to the current under-
standing of the various SIT phenomena is in proposing the
concept of suppressed carrier DOS by Cooper-pairs formation
as a dominant origin of the insulator side of the SIT. The
good quantitative agreement found between the calculated
MSR and a very large body of experimental data provided in
Ref. [2] supports this proposal. Another important message
of this paper (which contrasts the conventional wisdom in this
field, see, e.g., a discussion in Ref. [48]) concerns the success-
ful implementation of the AL paraconductivity, generalized to
include self-consistently the interaction between fluctuations,
and the effect of quantum tunneling between SC puddles, in
temperatures range well below the mean-field SC transition.

The presence of disorder-induced spatial inhomogeneity, in
the form of SC islands, which has been extensively discussed
in the SIT literature [49–52], is reflected in our approach
by the Fourier transform to real space of the fluctuation
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FIG. 6. Upper panel: σAL, −δσDOS, and σn contributing to the
sheet conductance as functions of field H , calculated with the pa-
rameters used in Fig. 4(c), i.e., for RN = 20.5 k� (α = 0.3). Lower
panel: The same as upper panel, calculated with the parameters used
in Fig. 4(b), i.e., for RN = 10.5 k� (α = 0.11). Note the crossing of
σAL and −δσDOS at the onset of the respective MSR peak for each RN

value, shown in Fig. 4.

propagator D(q; ε̃H ), which reveals the underlying structure of
mesoscopic SC puddles. The physical picture emerging from
analyzing this correlation function is as follows: Upon in-
creasing the magnetic field towards the sheet-resistance peak
region the 2D SC fluctuations system breaks into mesoscopic
puddles of localized Cooper-pair fluctuations, which consume
much of the unpaired mobile electrons dominating the normal
state conductivity. The localization arises from enhancement
of the energy gap ε̃H of the fluctuations spectrum and suppres-

sion of their effective stiffness coefficient h̄Dη(H ) occurring
upon increasing magnetic field. In parallel with this localiza-
tion process upon increasing field, the paraconductivity σAL

decreases more sharply than −δσDOS, so that at the point
of their crossing (see Fig. 6) one observes the onset of the
insulating state, shown in Fig. 4.

However, in this fields range, where the AL conductivity
is negligible, and dynamical quantum tunneling diminishes
the localized Cooper-pairs puddles, the reinforced conduc-
tivity of the unpaired mobile electrons considerably smears
the sheet resistance peak developed at very low temperatures.
On the other hand, in the low-fields region, where the AL
conductivity is dominant, finite resistance is generated (even
at zero temperature) by quantum tunneling due to enhanced
localization of Cooper pairs in SC puddles.

Notwithstanding the general nature of the proposed mech-
anism for SIT, the role played by spin-orbit scattering in
this system is found quite unique: It strongly mixes rela-
tively heavy electron bands with a lighter electron band and
so sharply suppresses the effective DOS upon downshift-
ing the chemical potential across a Lifshitz point. The latter
effect is associated with strong enhancement of interaction
between Cooper-pair fluctuations, which at low temperatures,
significantly enhances the sheet resistance peak at high fields
and strongly amplifies the vanishing resistance in the low
fields region [48].
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APPENDIX A: INTERACTION BETWEEN FREE
(GAUSSIAN) FLUCTUATIONS

Interactions between free (Gaussian) fluctuations are in-
troduced by taking into account higher-order terms in the
pair-potential expansion of Eq. (4). The leading-order contri-
bution to the interaction is the cubic term in this expansion
obtained by substituting the first order term to Eq. (3) and then
back to Eq. (4). Exploiting the Hartree decoupling amounts
to linearization of the cubic term resulting in the following
correction to G21:

δG (3)
21 (r, r′; τ, τ ′) ≡ G (3)

21 (r, r′; τ, τ ′) − G (1)
21 (r, r′; τ, τ ′) (A1)

with:

δG (3)
21 (r, r′; τ, τ ′) =

∫
d2r′′

∫ β

0
dτ ′′

∫
d2r1

∫ β

0
dτ1

∫
d2r2

∫ β

0
dτ2

× G (0)T
11 (r, r′′; τ ′′ − τ )iσ (0)

y G (0)
11 (r1, r′′; τ ′′ − τ1)iσyG (0)T

11 (r1, r2; τ2 − τ1)iσyG (0)
11 (r′, r2; τ2 − τ ′)

× [kBT D(r′′−r′, τ ′′ − τ ′)�∗(r2, τ2) + kBT D(r2−r1, τ2 − τ1)�∗(r′′, τ ′′)], (A2)

where 〈�∗(r2, τ2)�(r1, τ1)〉 = kBT D(r2−r1, τ2 − τ1) ≡ DT (r2−r1, τ2 − τ1) and D(r2−r1, τ2 − τ1) is the free (Gaussian) fluc-
tuation propagator, whose spatial-temporal Fourier transform, extracted from Eq. (9), is given by:

D(q,�ν )−1 = N2D

[
ln (T/Tc0) + a+ψ (1/2 + f+ + x + y)

+a−ψ (1/2 + f− + x + y) − ψ (1/2)

]
. (A3)
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The corresponding corrected self-consistency pairing equation in the momentum-energy domain is given by:∫
d2re−iq·r

∫ β

0
dτei�ντ

[
Tr
〈
iσyG̃ (1)

21 (r, r; τ, τ )
〉
imp

+Tr
〈
iσyδG (3)

21 (r, r; τ, τ )
〉
imp

]
g = �∗(q,�ν ) (A4)

with the kernel δS̃ (3) of the cubic term defined by:∫
d2re−iq·r

∫ β

0
dτei�ντ

〈
δG̃ (3)

21 (r, r; τ, τ )
〉
imp ≡ 2�∗(q,�ν )N2D

∫
d2q′

(2π )2 DT (q′)kBT
∞∑

n=−∞
δS̃ (3)(q, q′; ωn,�ν − ωn), (A5)

where DT (q′) ≡ kBT D(q′, 0). Now, the crucial importance of the correction term is near the vanishing of the “bare” linear term
at the critical point, where q = 0, �ν = 0. Thus, exploiting also the critical divergence of DT (q′) at q′ = 0, the dependence of
the electronic kernel δS̃ (3)on the very small wave vectors q, q′ and frequency �ν of the fluctuations can be safely neglected, so
that in Eq. (A5) one may assume that: δS̃ (3)(q, q′; ωn,�ν − ωn) ≈ δS̃ (3)(q = 0, q′ = 0; ωn,−ωn) ≡ δS̃ (3)(ωn) and rewrite it in
the form: ∫

d2re−iq·r
∫ β

0
dτei�ντ

〈
δG̃ (3)

21 (r, r; τ, τ )
〉
imp ≈ 2�∗(q,�ν )

∫
d2q′

(2π )2 DT (q′)kBT
∞∑

n=−∞
N2DδS̃ (3)(ωn), (A6)

where the undressed kernel, i.e., prior to inserting the self-energy and vertex corrections, is given by:

N2DδS (3)(ωn) =
∫

d2 p

(2π )2 G
(0)T
11 (p, ωn)iσyG (0)

11 (−p,−ωn)iσyG (0)T
11 (p, ωn)iσyG (0)

11 (−p,−ωn)

with

G (0)
11 (p, ωn) =

(
G(0)

− (p, ωn) 0

0 G(0)
+ (p, ωn)

)
=
(

(ih̄ωn − ξp − μBH )−1 0

0 (ih̄ωn − ξp + μBH )−1

)

δS (3)(ωn) =
(

0 δS (3)
↑↓ (ωn)

δS (3)
↓↑ (ωn) 0

)
≡
(

0 δS (3)
− (ωn)

δS (3)
+ (ωn) 0

)
and

N2DδS (3)
− (ωn) = −

∫
d2 p

(2π )2 G(0)
− (p, ωn)G(0)

+ (−p,−ωn)G(0)
− (p, ωn)G(0)

+ (−p,−ωn),

N2DδS (3)
+ (ωn) =

∫
d2 p

(2π )2 G(0)
+ (p, ωn)G(0)

− (−p,−ωn)G(0)
+ (p, ωn)G(0)

− (−p,−ωn).

Note the symmetry property of the (singlet pairing) kernel components:

δS (3)
+ (ωn) = −δS (3)

− (ωn), Tr[δS (3)(ωn)] = δS (3)
↓↑ (ωn) − δS (3)

↑↓ (ωn) = 2δS (3)
+ (ωn).

Inserting impurity scattering corrections, bridging pairing vertices, as well as self-energy corrections, ωn → ω̃n = ωn +
(1/2τSO)sgn(ωn), we have:

N2DδS̃ (3)
↓↑ (ωn) = (|ω̃n| − iIsgn(ωn))3

∫
d2 p

(2π )2 G(0)
↓↓(p, ω̃n )̃s↓↑(ωn)G(0)

↑↑(−p,−ω̃n )̃s↑↓(ωn)G(0)
↓↓(p, ω̃n )̃s↓↑(ωn)G(0)

↑↑(−p,−ω̃n),

N2DδS̃ (3)
↑↓ (ωn) = −(|ω̃n| + iIsgn(ωn))3

∫
d2 p

(2π )2 G(0)
↑↑(p, ω̃n )̃s↑↓(ωn)G(0)

↓↓(−p,−ω̃n )̃s↓↑(ωn)G(0)
↑↑(p, ω̃n )̃s↑↓(ωn)G(0)

↓↓(−p,−ω̃n),

where G(0)
↑↑(p, ωn) ≡ G(0)

− (p, ωn), G(0)
↓↓(p, ωn) ≡ G(0)

+ (p, ωn), and the two possible vertex renormalization factors, s̃+(ωn) ≡
s̃↓↑(ωn), s̃−(ωn) ≡ s̃↑↓(ωn), are given by (see Ref. [32]):

s̃±(ωn) ≈ |ωn| + aH + b ∓ iIsgn(ωn)

(|ωn| + aH )2 − b2 + I2
, (A7)

where aH ≡ b + 2D(edH/h̄)2, b ≡ 1/2τSO, and I ≡ μBH/h̄. Thus, we may rewrite now the linearized cubic term in Eq. (A4) in
the more explicit form:∫

d2re−iq·r
∫ β

0
dτei�ντ Tr

〈
iσyδG (3)

21 (r, r; τ, τ )
〉
imp ≈ 4kBT (N2D/h̄3)

∞∑
n=0

Re[̃s+(ωn)|̃s+(ωn)|2]
∫

d2q′

(2π )2 DT (q′)�∗(q,�ν ), (A8)

where s̃+(ωn) is given in Eq. (A7).
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TABLE I. Values of the basic microscopic parameters of the model extracted in the fitting process from the experimental sheet resistance
data reported in Ref. [2] for three values of RN .

RN (k�) β0 α ν (EF ) εSO (meV) n2D (cm−2) EF (meV)

7.5 14 0.09 1.00 3.2 0.55 ×1013 8.2
10.5 12.5 0.11 0.77 2.87 0.48 ×1013 7.2
20.5 11 0.30 0.29 2.52 0.43 ×1013 6.5

We therefore expand D(q,�ν = 0)−1 [Eq. (A3)] to first order in q2 to find that:

D(q, 0)−1 � N2D

[
εH + h̄D

4πkBT
η(H )q2

]
, (A9)

where the finite-field critical shift parameter εH is defined in Eq. (11). The effect of the interaction term near the critical point
can be now included in a modified form of Eq. (A9), by using Eq. (A8), i.e.,

DT (q)−1kBT � N2D

[
εH + h̄D

4πkBT
η(H )q2 + (4kBT/h̄3)

∞∑
n=0

(ωn + aH + b)[(ωn + aH + b)2 + I2]

[(ωn + aH )2 − b2 + I2]3

∫
d2q′

(2π )2 DT (q′)

]
. (A10)

The interaction term includes, as a factor, the thermal fluctuation propagator DT (q′), which is proportional to 1/N2D(EF ).
DT (q) may be determined by solving numerically the complicated integral equation (A10). A much more practical approach is
to use the well-known SCF approximation, employed, e.g., in a similar situation by Ulla and Dorsey in Ref. [23]. In this scheme
the third term within the large brackets in Eq. (A10), associated with the linearized cubic term, is absorbed in the field-dependent
critical shift parameter εH to form the interaction-modified critical shift parameter:

ε̃H ≡ εH + (
4kBT/h̄3) ∞∑

n=0

Re[̃s+(ωn)]|̃s+(ωn)|2
∫

d2q′

(2π )2 DT (q′), (A11)

and then, by considering DT (q′) on the RHS of Eq. (A10) as a function of ε̃H : DT (q; ε̃H ) � (kBT/N2D)[̃εH + h̄D
4πkBT q2η(H )]−1, it

can be evaluated by solving Eq. (A11) for ε̃H , after replacing there DT (q′) with DT (q′; ε̃H ). The resulting equation, determining
ε̃H , can be conveniently rewritten in terms of the following dimensionless parameters:

δ0 ≡ D(deH∗
c‖0)2

2πkBT ∗
c h̄

, μ0 ≡ μBH∗
c‖0

2πkBT ∗
c

, β0 ≡ h̄b

2πkBT ∗
c

, x0 ≡
(

h̄Dq2
c

4πkBT ∗
c

)
(A12)

and the reduced field and temperature, h ≡ H/H∗
c‖0, t ≡ T/T ∗

c , respectively, as

ε̃h = εh + αF (h)
∫ x0t−1

0

dx

ε̃h/η(h) + x
� εh + αF (h) ln

(
1 + η(h)x0

t ε̃h

)
, (A13)

where α is defined in Eq. (12) in the main text, T ∗
c = 0.212 K and H∗

c‖0 = 4.5 T are characteristic parameters determining the
scales of the SC transition temperature and the critical parallel field (at zero temperature), respectively, and x0 ≡ h̄Dq2

c/4πkBT ∗
c .

The function F (h) is obtained from Eq. (A10) and is given by:

F (h) = 1

η(h)

∞∑
n=0

(n + 1/2 + 2β + δh2)[(n + 1/2 + 2β + δh2)2 + μ2h2]

[(n + 1/2 + δh2)(n + 1/2 + 2β + δh2) + μ2h2]3
(A14)

with β = β0/t, μ = μ0/t,and δ ≡ δ0/t .

APPENDIX B: THE FITTING PROCESS

Focusing on three representative RN values (see
Table I) of the extensive experimental sheet-resistance
data reported in Ref. [2], we have exploited the data
provided in Ref. [7] to select values for the basic
(gate-voltage dependent) microscopic parameters of
our theoretical model; β0(RN ) ≡ εSO(RN )/4πkBT ∗

c and
δ0(RN ) ≡ D(RN )(deH∗

c‖0)2/2πkBT ∗
c h̄. The dimensionless

Zeeman splitting parameter Ĩ0 ≡ μBH∗
c‖0/2πkBT ∗

c was
selected to coincide with the free-electron value: Ĩ0 = 2.4.
Given the uncertainty involved in determining the numerical

values of εSO(RN ) from the current literature, we allow for
some freedom in their selection in order to facilitate the fitting
process.

The key interaction parameter α(RN ) [see Eq. (12)] is re-
lated to β0(RN ) through:

α(RN ) = α0

κ (RN )ν(EF )
, (B1)

where

κ (RN ) ≡ η2D(RN )

β0(RN )
(B2)
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α0 = 2/π3 = 0.0645, η2D(RN ) ≡ h̄2n2D(RN )/4πm∗kBT ∗
c ,

and n2D(RN ) = k2
F /2π is the effective interface carrier den-

sity, with kF the Fermi wave number.
Another important, gate-voltage dependent parameter

is the dimensionless cutoff x0 ≡ (T/T ∗
c )xc. Its evaluation

(through qc) is beyond the scope of our theory, however its
dependence on the gate voltage can be expressed through the
connecting function κ (RN ) [Eq. (B2)], i.e.,

x0(RN ) = x̃0κ (RN ), (B3)

where x̃0 ≡ Ec/2kBT ∗
c is a free adjustable parameter (best

fitting value: x̃0 = 0.015), independent of RN , with Ec ≡
h̄2q2

c/2m∗. Its value influences mainly the high field behavior
through the DOS conductivity, and its optimal selection is
closely connected to the selected value of the normal state
conductivity parameter σn.

A similar dependence on RN characterizes the dimension-
less diamagnetic energy parameter δ0 ≡ (T/T ∗

c )δ, i.e.,

δ0(RN ) = δ̃0κ (RN ), (B4)

where δ̃0 ≡ Ed/2kBT ∗
c and Ed ≡ (deH∗

c‖0)2/m∗is the diamag-
netic energy, which depends on the effective width of the
interface region. The latter contains only a few atomic layers
so that d ∼ 1 nm. The mean-field transition temperature at
zero field, Tc0, is treated here as an adjustable parameter (best
fitting value: Tc0 = 0.43 K) due to the lack of detailed micro-
scopic calculations of the basic SC parameters characterizing
the complex LaAlO3/SrTiO3 (111) interface.

The best fitting values of the spin-orbit energy parameter
εSO(RN ) (see Table I), obtained in our fitting process, decrease
monotonically with the decreasing values of the gate voltage
Vg (or the increasing values of RN ) on the LHS of the dome-
shaped curve of εSO vs Vg shown in Ref. [7]. The magnitude of
the largest fitted value of εSO (i.e., 3.2 meV at RN = 7.5 k�) is
by a factor of two smaller than the maximum found in Ref. [7]
on the basis of mean-field calculation of the critical field Hc‖
vs εSO and its determination vs Vg from resistivity measure-
ments. The differences are likely to be due to the failure
of the mean-field approximation in the fluctuation-controlled
phenomenon under study.

Thus, examining the sheet-resistance data presented in
Ref. [2], we may roughly identify εSO(7.5 k�) with the top
of the dome-shaped εSO vs Vg curve shown in Ref. [7].
This enables us to start constructing the DOS function
N2D(E ) from the best fitting parameters α(RN ) [Eq. (B1)] and
κ (RN ) [Eq. (B2)]. Exploiting Eq. (12) of the main text, one
may find N2D(EF ) from the values of α(RN ), provided the

diffusion coefficient D is known. The latter, D ≈ 1.8 ×
10−4 m2/s, is found by exploiting the weak antilocalization
relation: eD = εSO(RN )/4HSO(RN ) [7] (with HSO–the spin-
orbit field, estimated to be about 4.5 T at RN = 7.5 k�), and
our best fitting value for εSO(7.5 k�) � 3.2 meV. Assuming
for the range of the RN values investigated that εSO(RN ) is a
linear function of the carrier density n2D(RN ), we have found
the best fitting value κ (RN ) ≡ κ = 0.8. These results enable
us finding numerical estimates for both the carrier density
n2D and the effective mass m∗ by solving the consequent
coupled equations:

h̄2n2D

m∗εSO
= κ = 0.8, (B5)

π
h̄3n2D

εSOm∗2
= D = 1.8 × 10−4

(
m2

s

)
(B6)

yielding n2D(7.5 k�) � 0.55 × 1013 cm−2, and m∗ � 1.6me,
where me is the free-electron mass.

An independent determination of the effective mass m∗,
which provides a self-consistent test of the fitting procedure,
can be made by exploiting Eq. (12) with the best fitting values
of ν(EF ) and α(RN ) at RN = 7.5 k�, together with the weak
antilocalization value of D found above. The resulting
equation for m∗, after substituting the best fitting
values: ν(EF ) = 1 and κ = 0.8 in Eq. (B1), reads:
2h̄/π2Dm∗ = 0.0875, where D ≈ 1.8 × 10−4 m2/s.
The result, m∗ � 1.5me, agrees quite well with the
value found above. It is also found to be in very
good agreement with the cyclotron effective mass
(m∗

c = 1.6me) reported in Ref. [24] using SdH oscillations
measurements.

Our next step in constructing the DOS function N2D(E )
is to exploit the best fitting values of α(RN ) for the different
values of RN investigated (with κ = 0.8) in Eq. (B1) and then
extract the corresponding values of ν(EF ) (see Table I). The
corresponding values of the carrier density and Fermi energy
can be found from the respective relations:

n2D(RN ) = 4π
m∗kBT ∗

c

h̄2 κβ0(RN ), (B7)

EF (RN ) = π
h̄2n2D(RN )

m∗ . (B8)

Comparing the results for the carrier density n2D(RN ),
shown in Table I, to the data reported in Ref. [2] for the
measured inverse Hall coefficient e/RH ≡ nHall

2D (RN ), we find
the former smaller than the latter by one to two orders of

TABLE II. Values of the parameters extracted in the fitting process, which determine the temperature and field dependencies of the normal-
state MR and of the quantum tunneling attempt rate TQ, for the different values of RN .

RN = 7.5 (k�) RN = 10.5 (k�) RN = 20.5 (k�)

T (mK) Tq (mK) Hq (T) Hn (T) T (mK) Tq (mK) Hq (T) Hn (T) T (mK) Tq (mK) Hq (T) Hn (T)

30 78 8 6 30 80 7.3 5.5 30 89 6.5 3
90 70 10 8 130 68 10 6 121 81 7 3.5
212 52 20 12 230 56 15 8 212 72 8 5
303 40 25 14 330 45 18 9 303 60 10 6.5
485 0 30 20 430 22 25 12 394 50 20 8
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magnitude. However, the values of n2D(RN ) shown in Table I
(i.e., ∼0.5 × 1013 cm−2) are seen to be in good agreement
with the sheet carrier density nSdH

2D , determined from the SdH
oscillations measurements, reported in Ref. [24]. The large
difference between the carrier densities extracted from the two
methods could be attributed to contributions to transport of at
least two bands with different mobilities (see the main text for
the detailed explanation).

The dimensionless diamagnetic energy, δ0(RN ), can be
used for determining the effective film thickness d in our
model, in order to estimate the width of the actual inter-
face. So using the diffusion coefficient D ≈ 1.8 × 10−4 m2/s
and our fitting value, δ0(7.5 k�) = 0.028(̃δ0 = 0.035), in the
above expression for δ0(RN ), we find for the film thickness
d ≈ 0.8 nm, which is quite a reasonable result.

The normal-state conductivity contribution σn(H, T ),
defined in the main text with the two adjustable parameters
σ0 and Hn(T ) (see Table II), can be tested vs the negative MR
observed in Refs. [17] and [18]. Using the usual definition of
the MR, i.e., MR(H, T ) ≡ [ρn(H, T ) − ρn(0, T )]/ρn(0, T ),
where ρn(H, T ) = 1/σn(H, T ), our model yields the
expression:

MR(H, T ) = − (H/Hn(T ))2

1 + (H/Hn(T ))2 , (B9)

which is plotted in Fig. 4 of the main text for the different RN

values investigated here.
Finally, the large body of experimental data analyzed in

this fitting process enables us to determine the tempera-
ture and field dependence of the phenomenological quantum
tunneling “temperature” parameter TQ(T, H ). For the field

FIG. 7. Tunneling attempt rate TQ (in mK units) vs T for RN =
7.5, 10.5, and 20.5 k�, plotted on the basis of the parameters shown
in Table II.

dependence we have selected a particular form, i.e.,

TQ(T, H ) = TQ(T )

[
1 −

(
H

HQ(T )

)2]
, (B10)

which reflects the expected [36] decreasing quadratic depen-
dence of the SC order parameter on increasing field [see
Table II for the values of TQ(T ) and HQ(T )]. The temperature
dependence at zero field, TQ(T ), for the three values of RN , is
shown in Fig. 7. It is seen to qualitatively follow the expected
decreasing order parameter with increasing temperature that
would have been measured locally within a superconducting
fluctuation puddle. The somewhat larger values of TQ(T ) at
larger RN , which reflect larger tunneling attempt frequency
of fluctuations across GL energy barriers, seems to be a rea-
sonable outcome of the respective larger interaction coupling
constant α between Gaussian fluctuations.
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