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Effect of midgap states on the magnetic exchange interaction mediated by a d-wave superconductor

Atousa Ghanbari, Eirik Erlandsen

, and Jacob Linder

Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

® (Received 14 January 2021; revised 26 July 2021; accepted 27 July 2021; published 4 August 2021)

We theoretically study the indirect interaction between two ferromagnetic contacts located on the surface of
a d-wave superconductor. When the magnets are connected to a {010} edge of the superconductor we find an
oscillating RKKY interaction that varies in sign as the distance between the magnetic contacts is varied. However,
when coupling the magnets to an {110} edge of the superconductor, we find that the presence of midgap states
qualitatively changes the results. The ground state of the system is then found to always favor alignment of
the magnets as this configuration most strongly suppresses the midgap states, leading to a larger condensation
energy, which dominates over the intrinsic RKKY interaction.
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I. INTRODUCTION

Superconductors with d-wave symmetry have an
anisotropic order parameter, which drops to zero along
some nodal directions [1-3]. A {110} edge of a dy_p
superconductor has been shown to feature dispersionless
surface states with zero energy, called midgap states [4]. The
appearance of midgap states for such an edge is related to
the fact that the order parameter in a 45° rotated coordinate
system takes the form d,,, introducing opposite signs for the
pair potential experienced by particles undergoing specular
and Andreev reflections at the surface. The {110} edge
also gives rise to a zero bias conductance peak [S], which
is a result of the presence of the midgap states [6]. Such a
zero-bias conductance peak has been experimentally observed
in the high-7, cuprate superconductors [7-10] and has been
important in determining the pairing symmetry of these
superconductors.

The indirect exchange interaction between two localized
spins, mediated by the itinerant electrons of a host mate-
rial, was first introduced by Ruderman, Kittel, Kasuya, and
Yosida, and is known as the RKKY interaction [11-13].
In this indirect exchange interaction, itinerant electrons of
the host material scatter off a localized spin, and the wave
functions of the scattered electrons interfere with each other
giving rise to alternating regions with high density of spin
up/down. This leads to the well-known RKKY oscillations
in the spin-spin interaction strength, which decrease with the
distance R between the two localized spins as R~?, where D
is the dimensionality of the system. RKKY interaction has
been investigated in various materials ranging from normal
metals [11,13], to one- and two-dimensional electron gases
[14,15], two-dimensional structures like graphene [16-20],
and topological insulators [21-23].

For a system consisting of magnetic impurities embedded
in a superconductor, the influence of superconductivity on the
indirect impurity-impurity interaction has also been studied
[24,25]. For a conventional s-wave superconductor, when the
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distance between the impurities is larger than the supercon-
ducting coherence length, the interaction between them is
found to be antiferromagnetic in character and suppressed
compared to the normal metal case. The suppression is caused
by the superconducting gap reducing the number of states
close to the Fermi level that can mediate the interaction.
Below the coherence length, the behavior is similar to the
normal metal case with an oscillatory RKKY interaction that
changes sign with distance. However, nonperturbative treat-
ments have shown that Yu-Shiba-Rusinov (YSR) bound states
can give rise to mainly antiferromagnetic behavior even at
distances shorter than the coherence length [26]. Further, for
impurities on the surface of a three-dimensional topological
insulator with proximity-induced s-wave superconductivity,
the RKKY interaction favors the impurity spins to be in-plane
and antiparallel [27]. For a spin-valve structure consisting of
two ferromagnetic insulators connected by an s-wave super-
conductor, experiments have shown that anti-alignment of the
magnets is still favored [28].

Conventional s-wave superconductors do however typi-
cally have coherence lengths far exceeding the decay length
of the RKKY interaction. On the other hand, d-wave su-
perconductors can feature very short coherence lengths of
the order of nanometers [29], offering an intriguing plat-
form for studying the interplay between superconductivity
and RKKY interaction, as the characteristic length scales of
both phenomena are comparable. RKKY interaction between
magnetic impurities mediated by a d-wave superconductor
with an anisotropic order parameter of the type d,>_,» has
lead to similar behavior as in the s-wave case [30]. Further,
for a spin-valve structure involving a d,2_,> superconductor,
nodal quasiparticles close to the Fermi surface have been
observed to mediate interaction that favors anti-alignment of
the magnetic insulators for a sufficiently large superconductor
thickness [31].

As the gapped band structure of a superconductor sup-
presses the RKKY interaction, it is of interest to investigate
the effect the presence of midgap states have on the
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FIG. 1. Schematic illustration of a d-wave superconductor with
midgap surface states mediating the indirect exchange interaction
between two ferromagnetic contacts. We will consider configurations
where the magnetization of the two magnets is either parallel (P) or
antiparallel (AP). For comparison, the ferromagnetic contacts will
also be attached to the lower, nondiagonal edge of the supercon-
ductor. The lengths indicated on the figure will in the main text be
specified by the number of atomic distances.

interaction. We therefore consider a d,>_,» superconductor and
calculate the exchange interaction between two ferromagnetic
contacts located on a diagonal {110} edge, as illustrated in
Fig. 1. The superconductor is modelled by an extended BCS
tight-binding Hamiltonian on a square lattice and connected
to the metallic magnets through a hopping term across the
interface. The results are obtained through a self-consistent
solution of the Bogoliubov-de Gennes (BdG) equations [32].
To put the results into context, we consider the cases of
a normal metal and an isotropic s-wave superconductor, in
addition to the d-wave superconductor. In all three cases,
we investigate the interaction between ferromagnetic contacts
located on both diagonal and nondiagonal edges.

For magnetic contacts located on a diagonal edge of a
d-wave superconductor, we find that the system always favors
alignment of the two magnets. The variation in the strength
of the magnetic exchange interaction as we vary the distance
between the magnets is small compared to the magnitude of
the interaction itself. We attribute these results to the aligned
magnets more efficiently suppressing the midgap states than
the anti-aligned configuration. Although the aligned magnets
induce a stronger spin splitting in the superconductor, sup-
pressing the gap, the reduction of the midgap states leads to
an overall larger gap and increased condensation energy. The
parallel magnet configuration is therefore the ground state of
the system.

The paper is organized as follows. In Sec. II we introduce
the model and methodology. Then, in Sec. III we present and
discuss the results. Finally, in Sec. IV we provide a summary
of the findings. The phase diagram of our d-wave supercon-
ductor model for a square system with continuous boundary
conditions is included in the Appendix.

II. MODEL AND METHODS

By means of a tight-binding Hamiltonian on a square lat-
tice, we model the attractive electron-electron interaction in a

superconductor:
sc i
H> =— Z 1ijCigCja — Z Williq — Z Uiniyniy
(i,)),a i,a i
+ Z Viinighjor + Z V,';'nianjot- (D
(ij)a7a’ (ij).
Here, | is a creation operator creating an electron with spin

«a on lattice site i = (iy, iy). The hopping amplitude is denoted
by t;;, and p; is the chemical potential. The third term rep-
resents on-site attractive interactions between opposite spins,
where the number operator is n;, = c}a Ciq- This term gives rise
to conventional spin singlet isotropic s-wave superconduc-
tivity. The fourth and fifth terms represent nearest-neighbor
interaction between opposite or equal spins, respectively.
These terms can give rise to d-wave, p-wave, or extended
s-wave pairing for an attractive interaction potential. For the
purposes of this paper, we will set V/; to zero as we will not be
interested in the possibility of equal spin pairing. As shown
in the Appendix, the above model without Vl/] can give rise
to a d-wave superconductor for a suitable choice of chemical
potential.

A. Analytical methods

Through a mean-field treatment, we simplify the interac-
tion terms. The on-site part of the interaction becomes

- Z Uinipniy = — Z Ui(cjref (ciyeir) + cipein (cficl))
i i

— {ciyein el ). 2
Defining the superconducting gap for the on-site interaction
as A; = —Uji(c;ciy), we obtain

— Z Unjyn;, = Z(CJTCL A +cipein AT) + Hj, (3

where we have defined
1A

HS =
0 Ui

“

i

The on-site interaction U; will be taken to a constant U > 0 in
the superconductor, and zero elsewhere. Once again, perform-
ing a mean-field treatment, the attractive nearest-neighbor
interaction term becomes

Z Viiniahjor = Z Vij(c.;arcja<ciacja’>

(ij),aa’ (ij).aza’
+ CiaCjor (Chychy) = (Clch ) (i)
&)
We then define the nearest-neighbor pairing amplitude
F}‘;a = (Ciacjrx/>» (6)

transforming Eq. (5) into

S0 V(e el FE + i (FE) ) +HE ()
(ij) atar
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where
2

Hi == ) VylF5" ®)

(i.)). a7’
As Y ih Vij|FijN|2 =2 ih Vji|Fi]¢,T|2, we can rewrite HJ =
— Z<i,j> |FUN|2(V,<]» + Vi), and similarly

D Vil i+ ciacjo (FS))
(ij),aa’
=Y (e}, ch Bl + e (1D, + Vi, 9)
(ij)
In the following, we will take the nearest-neighbor interac-
tion to be V;; =V;; =V < 0 (corresponding to an attractive
interaction) in the superconductor and zero elsewhere. The
mean-field extended tight-binding Hamiltonian now takes the

form
HyS = Hy — Z 1€ o — Z MiMig
(i,j).a i«
+ Z(C;CLAi + CNC,'»TAT)
i
Tt Tyt
+2) V(e B 4 ciney (FIHT), (10)
(i)
where Hy = Hy + H{.
The metallic ferromagnets that are attached to the su-

perconductor are described by the following tight-binding
Hamiltonian:

FM i
H™ =— Z tjCh o — Z,Minm
(i.j) i

=Y B (0ap clycip-

idap

an

The last term represents the coupling between the spin of an
electron at site i and the local magnetic exchange field, giving
rise to ferromagnetism. The local exchange field 4? is taken
to produce a spin splitting in the z direction in spin space,
giving rise to a magnetization that could in general be either
in-plane or out-of-plane in real space. Our model does not
separate these cases as the magnetism is simply introduced
through a spin splitting. Orbital effects on the superconductor
arising from the magnets, not considered in this model, can be
limited by keeping the magnetization in-plane [33]. The Pauli
matrices are denoted by o, and the index § separates the local

J

—it+ Y hf 0
B — 0 —wi =2 sh
v 0 —(A)*
(Ad)* 0

Writing the Hamiltonian on matrix form H =
Hy + %W"'SW, and  introducing the matrix P,
we diagonalize the Hamiltonian H =H,+

IWTP'PSPTPW = Hy + 1W'S,W. The eigenvectors of S

exchange field of each of the two magnets with § = L, R for
the leftmost and rightmost magnet, respectively. The sign of
the local exchange field can be either the same or opposite
for the two magnets, giving rise to parallel (P) or antiparallel
(AP) ferromagnets. Outside of the magnets, the local magnetic
exchange field is set to zero. The coupling between the mag-
nets and the superconductor is introduced by having a nonzero
hopping amplitude #;; across the ferromagnet-superconductor
interfaces. The region outside of the superconductor and mag-
nets is considered to be vacuum and decoupled from the rest
of the system with a vanishing hopping amplitude.

After diagonalization, the free energy of the system will be
expressed as

1 2N 1 2N
F=Hy—3 ZE -3 Zln(l +e Py, (12)
n=1 n=1

where E, is the quasiparticle energy associated with quantum
number 7n, and N is the number of lattice sites. The magnetic
exchange interaction is computed as the difference in free en-
ergy between the configurations with parallel and antiparallel
magnets

J=F" - F (13)

which includes both the RKKY interaction mediated by the
quasiparticles as well as the effect of the magnetic configura-
tions on the condensation energy of the superconductor.

The Hamiltonian H = HS® + H™ is diagonalized by
means of the BdG method in order to compute the eigenvalues
E, and eigenstates y,,. The diagonalized Hamiltonian will then
take the form

1 2N 2N
H= Ho—3) Et D E,va
n=1

n=1

(14)

In order to perform the diagonalization, we start by rewriting
the Hamiltonian as H = Hy + % Zi ; th,- ;B where we have
introduced the basis

s)

Here, h;; is a 4 x 4 matrix that takes the following form for

i#j

" . .
Bi=[cj,T Ci{i cip iyl

— 0 0 —2VF,
3 0 —t  2VF; 0
M=o vy o+ o |0 U9
—V(F) 0 0 i
and fori = j
0 A
—A; 0
: : 1
i = s h 0 17
0 i+ 2 by
[
are
o) =l¢j, - @ @Rl
o =l Vi @ Xl (18)
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such that

P =[®, @, Dyy]. (19)

We next use P'W = W along with
W =1y .. v, (20)

and the relations between the quasiparticle operators that are
not independent of each other. There are then 2N remain-
ing independent quasiparticle operators with corresponding
eigenvalues. The creation and annihilation operators {c', c}
can then be expressed in terms of quasiparticle creation and
annihilation operators {y ', y}:

W el
Cir = Z UinVn + w?jnyrj’ Cij = Z VinYn Xf,,)/,j,

n=1 n=l

N 2N
P foocl = .
CiT = Za)i,nyn + U:nyrj ) Cil, - Z Xi,nyn + V:n‘}/n‘ ’
n=1 n=1

1)
Inserting these relations into the definition of the gap for the
on-site interaction, we obtain the self-consistent gap equation

2N
Ai = —U: Y [(X}Vin — Vi@ ) f(En) + i}, 1. (22)

n=1

For the nearest-neighbor pairing amplitudes, we introduce
a simplified notation FuN = F;;. Further, Fj;1; is expressed
as F'" and likewise Fy:; = F,™ and so on. Inserting the
expressions from Eq. (21) into the definitions of the pairing
amplitudes, we obtain

2N
F* = @] Vizen — VinXiae ) En) 4 Vin Xiis )s
n=1
2N
F;‘ix = Z[(w;kix.nvi,n - Uiﬁ,nXiTn)f(En) + Uiiﬁ.nxl‘fn],
n=1
2N
+
FY* = 1@} Vigsn = Vi Xies ) En) + VinXiis o).
n=1
2N
+y
F;' Y= Z[(w;’ly,nvi,n - Uij:j),nX:n)f(En) + Ui:l:)“,nX;fn]-
n=1

(23)

As we are interested in the effect of the midgap states
on the indirect interaction between two ferromagnetic leads
connected to the superconductor, establishing the presence of
midgap states is of importance. This can be achieved by calcu-
lating the single particle local density of states (LDOS), which
should have a peak around zero energy in the presence of
midgap states. The number of charges on lattice site i is given
by p; = Za (c}acm), but this quantity can also be expressed
as p; = fj;o N;(E)f(E)dE. Here N;(E) is the local density
of states at site i, and f(E) is the Fermi-Dirac distribution
with energy E measured relative to the chemical potential.
AtT =0, we have f(E) =1 for E < 0 and f(E) = 0 when
E > 0. Comparing the above two expressions for the number

of charges on lattice site i, the LDOS can then be expressed as

2N
Ni(E) =Y [(loinl* + i) 8(E + Ey)
n=1
+ (vinl® + via) 8(E — E]. (24)

Another quantity of interest is the magnetization on lattice
site i, M; = (S;). Here, the spin operator is defined as S; =
D up ¢! apcig. The magnetization in the z direction can then
be expressed as

2N
M; =Y [(vial® + 1inl® = @inl® = vial®)f (En)

n=1

+ lwial* = 1xinl*]. (25)

B. Computational methods

The computational part of this study consists of numer-
ically diagonalizing the Hamiltonian and self-consistently
solving the equations for either the on-site superconducting
gap [Eq. (22)] or the nearest-neighbor pairing amplitudes
[Eq. (23)], depending on whether the superconductor is taken
to be of the isotropic s-wave type or the d-wave type. Iterative
solution of these equations require an initial value for the gap
function/pairing amplitudes, and a convergence criterion in
order to determine when a solution has been obtained. In this
paper, the convergence criterion was that the relative change
in the gap/pairing amplitudes from one iteration to the next
should be less than 1 x 10~ for the d-wave and 1 x 1073 for
the s-wave state. The initial values for the d-wave state are
listed in the Appendix and the initial value for the s-wave gap
A was set to 0.5¢.

III. RESULTS AND DISCUSSION

We first investigate the presence of midgap surface states,
i.e., zero-energy states existing on an edge of a superconduc-
tor. As displayed in Fig. 2, we calculate the LDOS for different
points on an s-wave and a d-wave superconductor without
magnetic contacts. One of the points is located at the diagonal
edge, one of the points is in the bulk, and the third point is
on the lower horizontal edge. Only on the diagonal edge of
the d-wave superconductor, Fig. 2(bl), there is a peak around
zero-energy signaling the presence of midgap states. In this
figure, the chemical potential has been set to us = 0.7¢, which
gives rise to an asymmetric density of states around E = 0 for
our tight-binding model as the gap in the electron spectrum is
opened away from the middle of the band.

As the presence of midgap states has been established,
we move on to results for the indirect interaction between
magnetic leads attached to a normal metal, an s-wave super-
conductor, and finally a d-wave superconductor.

A. Normal state

To put the results for the superconductors into context, we
start with the case of magnetic leads connected by a normal
metal (V = U = 0). The indirect exchange interaction J is
presented in Fig. 3. For the horizontal edge, the result is the
expected RKKY oscillations that are damped with increasing
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FIG. 2. Local density of states (LDOS) for different points of an s-wave superconductor (a) and a d-wave superconductor (b), showing the
presence of midgap states on the diagonal edge of the d-wave superconductor. In both cases the size of the structure is L,s = 34 and L,s = 30.
For the s-wave results we have taken U/t = 2 and V = 0, while for the d-wave results we have taken U = 0 and V/t = —1. In both cases we

have set the chemical potential ug = 0.7z.

distance between the magnets. For the diagonal edge, the
results are more peculiar, showing an enhanced interaction
when the electrodes are close to the endpoints of the diagonal
edge. Investigating the LDOS for E = 0 in Fig. 4, the reason
becomes clear. Close to the edges of the system, the LDOS
increases in magnitude and exhibits Friedel-like oscillations
due to the abruptly vanishing charge density at the edge. The
oscillatory and increased LDOS close to the edges corre-
spondingly affects the RKKY interaction when the electrodes
are close to the edge.

. 10*4
(a), ™
0 N
{ . M
~ -0
-10
-15
0 10 20 30
d
N
™M M

FIG. 3. Normal metal: Indirect exchange interaction between
magnetic leads connected to a diagonal (a) and a horizontal (b) edge
of a normal metal, presented as a function of the distance between
the leads. Here, the chemical potential in the normal metal is set
to uy = 0.9t and the chemical potential in the ferromagnets is set
to wp = 1.2¢t. Further, h; = 2t, L,y =40, L,y =40, L,y =2, L,y =
10, and V = U = 0. In both subfigures, the leftmost magnet was
fixed two lattice points away from the endpoint of the edge.

B. s-Wave pairing

We then move on to the case of magnetic leads connected
by an isotropic s-wave superconductor (V = 0). The results
for the indirect exchange interaction are presented in Fig. 5. In
this case, there are two competing effects: The conventional
RKKY interaction and the blocking of the states that can
mediate the interaction due to the gap around the Fermi level
in the band structure. For a weak attractive interaction U in
the superconductor, the RKKY interaction dominates, giving
rise to an oscillating behavior. For larger U, the gap becomes
larger and can block more of the states that can mediate the
interaction between the magnets. The interaction then displays
a damping behavior instead of oscillations, and an antiparallel
configuration of the magnets is preferred [34]. For the diago-
nal edge, the electrodes have been kept further away from the
endpoints of the edge. For a weak attractive interaction U, the
enhanced RKKY oscillations occurring when the electrodes
are close to the end-points can, however, still be observed, as
explained previously. On the other hand, when the strength of

0.6

LDOS (E = 0)

0 20 40
tdiag
FIG. 4. Normal metal: Local density of states (LDOS) for £ = 0
at the diagonal edge in the absence of magnetic contacts. The sys-

tem size is L,y =40 and L,y =40, V = U =0, and the chemical
potential in the normal metal is 0.9¢.
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FIG. 5. s-Wave : Indirect exchange interaction between magnetic
leads connected to a diagonal (a) and a horizontal (b) edge of a
s-wave superconductor. Here us = 0.9¢, up = 1.2t, h; = 2t, L,s =
40, Lys =40, Ly =2, Lyp = 10, and V = 0. For the diagonal edge,
the leftmost magnet is fixed 13 lattice points away from the endpoint
of the edge, while for the horizontal edge, the leftmost magnet is
fixed 2 lattice points away from the endpoint.

the attractive interaction is increased, increasing the supercon-
ducting gap, we see that J is damped to zero for sufficiently
large magnet separation also for the diagonal edge. Thus, in
the s-wave case, the qualitative behavior of J is the same
regardless of which edge we consider.

C. d-Wave pairing

Finally, we consider the main result of this paper, which is
how the magnetic leads interact when separated by a d-wave
superconductor (U = 0). The results for the indirect interac-
tion between the magnetic leads is presented in Fig. 6. For the
horizontal edge, the interaction displays an oscillating behav-
ior and varies in sign as a function of the distance between
the magnetic contacts. The results for the diagonal edge, on
the other hand, show a qualitatively different behavior. The
system now always prefers alignment of the ferromagnets and
the interaction varies little with distance. Further, increasing
h; now leads to a larger difference in free energy between the
parallel and antiparallel magnet configurations.

The result that a parallel magnet configuration is strongly
favored for the diagonal edge is surprising as one would
expect that the parallel configuration induces a larger magne-
tization in the superconductor, which suppresses the gap and
lowers the condensation energy. A particularly large induced
magnetization in the superconductor should be expected in the
presence of midgap states, which can give rise to a giant mag-
netic moment when subjected to a spin splitting [4,35,36]. In
accordance with this, we find a sizable induced magnetization
on the diagonal edge. As previously discussed in the litera-
ture, the magnetization induced in a superconductor due to

(2 P
> ™M
~ g d-wave
M
-0.01 -
h; = 1.5t
——h; =1t
h; = 0.5t
-0.015
0 5 10 15
d
0.01|® AP by = 15t
: +h — 1t d-wave
- i ,/ , 7? hi = 0.5t
= 0~ y . r\/*
\/ \/
-0.01 | ™ M
0 5 10 15
d
FIG. 6. d-Wave : Indirect exchange interaction between mag-

netic leads connected to a diagonal (a) and a horizontal (b) edge
of a d-wave superconductor. Here pug = 0.7¢, up = 1t, V/t = —1,
Ly =2,Ly =10, and U = 0. For the diagonal edge, the leftmost
magnet is fixed only 2 lattice points away from the endpoint of the
edge in order to maximize the number of data points. The d-wave
diagonal edge results are not sensitive to how close the magnets
are to the endpoints of the edge. Further L.y = 34, L,s = 30. For
the horizontal edge, the leftmost magnet is fixed 10 lattice points
away from the endpoint, and L,s = 40, L,s = 20.

proximity to a ferromagnet can be either aligned or anti-
aligned with the magnetization of the ferromagnet [37-39].
A physical picture for the origin of an anti-aligned induced
magnetization is that there are contributions from Cooper
pairs where one of the two electrons is located in the fer-
romagnet, aligned with the local magnetization, leaving a
Cooper pair partner with opposite spin in the superconductor.
In the present system the induced magnetization tends to be
anti-aligned with the magnetization of the magnetic contacts,
as displayed in Figs. 7(a) and 7(b).

The effect of introducing the magnets is, however, not
solely to reduce the gap due to an induced effective spin
splitting in the superconductor. The induced spin splitting
also splits the midgap states away from their resonance point
at zero energy, suppressing the midgap states. As the gap
close to the edge to begin with is strongly suppressed by
the midgap states, the effect of reducing the midgap states,
causing the superconducting order parameter to recover at
the edge, is stronger than the effect of the spin splitting on
the condensation energy. As the parallel configuration most
effectively produces a spin splitting in the superconductor, this
configuration features the largest condensation energy, giving
rise to the behavior that is observed in Fig. 6(a).

Investigating the constant term in the Hamiltonian Hy =
>, Hy,;, the difference between Hy; for the parallel and an-
tiparallel configurations is presented in Fig. 7(c). The figure
shows that Hy, which is a positive quantity, is largest for the
parallel configuration, corresponding to a larger gap. In turn,
this produces a larger condensation energy that lowers the
free energy of the system. From the figure, it is clear that the
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FIG. 7. d-Wave: Magnetization on each lattice site for the paral-
lel (a) and antiparallel (b) configuration of magnets. The difference in
H, ; between the parallel and antiparallel configurations is presented
in (c). The local density of states (LDOS) for the 11th lattice site
(from the left) of the diagonal edge is presented in (d), showing that
the midgap states are more suppressed for the parallel magnet con-
figuration. Here we have taken the same parameters as in Fig. 6(a),
apart from a larger exchange field of #; = 2¢ in order to more clearly
show the differences between the two configurations.

main contribution to the difference in condensation energy be-
tween the magnetic configurations comes from the transition
region where the antiparallel configuration has a reduced edge
magnetization. LDOS results from this region are presented in
Fig. 7(d). While the AP configuration in this region has a clear
midgap peak around zero energy, the midgap states for the P
configuration have been split and suppressed by the induced
spin splitting.

We close by discussing briefly experimental considerations
and possible choices of materials for observation of the d-
wave results presented in this paper. While the system sizes
in the presented calculations are limited by computational
considerations, the presented results are expected to be robust
also for larger systems. As RKKY interaction typically de-
cays below experimentally accessible values over short length
scales of the order of nanometers, the separation between
the magnetic contacts typically needs to be kept small. This
might however only apply to the RKKY dominated indirect
interaction that we observe for the horizontal edge of the
d-wave superconductor. The preference of alignment of the
ferromagnets when attached to a diagonal edge of a d-wave
superconductor is expected to also be observable for larger
magnet separation as the indirect interaction in this case is
not dominated by itinerant carriers, but rather arises from
the parallel configuration more efficiently inducing a spin

splitting, suppressing the localized midgap states. The dis-
tance the magnets can interact over is then limited by the
length scale determining how far away from a magnet the
midgap states still experience a spin splitting. If the magnet
separation is much larger than this decay length of the induced
spin splitting along the edge, the spin splitting arising from
each magnet decays before interacting with the spin splitting
arising from the other magnet. There is then no difference
between the two magnet configurations when it comes to
suppression of midgap states, and the parallel configuration is
no longer favored. For an s-wave superconductor in proximity
to a ferromagnet, the proximity-induced magnetization decays
over a length scale of the superconducting coherence length
[40]. A natural length scale for the decay of the induced spin
splitting in the present case would then be the effective coher-
ence length corresponding to the strongly suppressed order
parameter at the edge. As the coherence length is inversely
proportional to the order parameter, the magnets will then be
able to interact over distances considerably larger than the
bulk coherence length.

Experimental investigation of our main finding would con-
sist of attaching magnetic leads to a {110} edge of a d-wave
superconductor. The indirect interaction between the magnets
can then be established by determining the energy barrier of
switching between the two magnet configurations through an
external magnetic field. Our prediction is that ferromagnetic
alignment of the magnets will be preferred for a wide range of
magnet separation distances. Possible material choices could
be YBCO [2,7,29] for the d-wave superconductor featuring
midgap states, and a nickel-alloy-like NigyCoy [41] for the
magnetic contacts.

IV. SUMMARY

We have investigated the indirect exchange interaction be-
tween two ferromagnetic leads connected to a superconductor
as a function of the separation between the magnets, showing
that the presence of zero-energy surface states in a d-wave
superconductor can qualitatively change the results. When the
magnets are connected to an edge without zero-energy surface
states we find a normal oscillating RKKY behavior. However,
when the magnets are connected to an edge featuring zero-
energy surface states, the strength of the magnetic exchange
interaction is shifted away from zero, always favoring align-
ment of the magnetization in the two magnets, as the aligned
configuration produces a larger superconducting condensation
energy.
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APPENDIX: PHASE DIAGRAM

In order to choose the parameters such that the supercon-
ductor used in the study is in a d-wave state, we obtain a
starting point by considering a square system with continuous
boundary conditions in both the x and y directions and no

054502-7



GHANBARI, ERLANDSEN, AND LINDER

PHYSICAL REVIEW B 104, 054502 (2021)

attached magnetic leads. The relevant Hamiltonian is the one
in Eq. (1) with U; = Vl; = 0. We introduce Fourier trans-

formations for the electron operators cj, = LN > e*ick

where i = (i, 7,) and N is the number of lattice sites. After
the mean-field approximation, Eq. (1) then becomes

SC
HC == 3" tc] cja = Y piltia
({i,j), o i,a

+ E Vniahivs o + Nighi—g o + NigNigs, o/

i,a#a’
+ RigNi—$.a']

=Y Gcf Cho + Z[(Fk)TC,t¢Cik¢ + Yicrrc—ky]
k,o k
+ HSC. (A1)

Here H3C = —2NV(|[F* |2 + |[F*~ 2 + |F3 > + |FP ),

1 .
in = ]v Xk: epk-x (Ck,ﬁc—k,L)y
{ (A2)
ik-$
Fyi = ]V Zk:eq: y(CkﬂCLkﬁL),
and we have defined,
Y = zv(e—ik'ﬁ(FfH-)T 4 eik~)?(F)?—)T
+e I E 4 HET,
Fk — zv(eik-)?(F)?+)T 4 e—ik~)?(F)?—)T
+e I FT 4+ T ET,
e = —2t[cos(k - x) + cos(k - $)] — p. (A3)

Further, t = f;j and V = Vj;.
Following the BAG method [32], we consider the following
basis in order to diagonalize the Hamiltonian

B}(:[c};T c,ti ok cryl. (Ad)

Then full Hamiltonian can be written as H = Hy +
L BiHyBy, where Hy = HJC + 3", ex and Hy is

e 0 0 —(YW)
0 Ek (Fk)T 0
Hy = (A5)
0 Fk —E&k 0
=Y« O 0 —&r |

Using the unitary matrix P the diagonalized form of the
Hamiltonian will be H5¢ = Hy + 1 ", B, P, PcHyP, PBy =

~ T ~ o~
HO + % Zk Bk HkBk = HO - % Zk,o Ek,(r + Zk,a Ek,a ykTa
Yko- The relationship between the normal electron operators

TABLE 1. Sets of initial values.

Fi+ Fi~ Fi+ Fi~
d-wave 1 1 -1 -1
s-wave extended 1 1 1 1
Dx +ipy 1 -1 i —i
Normal state 0 0 0 0

and the quasiparticle operators is then

Ukt Uk @5, i Yiey %
Vit Vil XDey o XDky Vfi _ CTu
Wkt kL Uiy V[ Vo Cxr |
Xkt Xk, | Vik,T Vik,¢ ijl CLQ
(A6)

where the columns are the eigenvectors of Hj. The pairing
amplitudes can then be expressed as

1 -
F** = ¥ Z[e*’k"‘vk,gx,fﬁ(l — f(Ek.o))
k.o

+ " Wi ko f(Ero)],
(A7)

1 o
P = SN o, (1= (B )
k,o

+ e:tik-ﬁw;(k’d Vk,af(Ek,a ).

Finally, the free energy of the system is
F =Hy— lZEk ! > In(l+e o). (A8)
2 k,o ’ '3 k,o

For different values of chemical potential and temperature,
we then solve the self-consistent equations for the pairing
amplitudes through iteration, using the different sets of initial
values listed in Table I. We then compare the resulting free
energies [Eq. (A8)] and determine the favored phase of the
system. The phase diagram is presented in Fig. 8. The choices
for the initial values are determined by the expressions for the

0.3

normal metal

0 1 2 3 4
p/t

FIG. 8. Phase diagram for the tight-binding Hamiltonian with
attractive nearest-neighbor interaction between opposite spins V =
—1¢. Here, T is the temperature, kp is the Boltzmann constant, j is
the chemical potential, and ¢ is the hopping amplitude.
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gap functions [42]
Ay = (V/A(F + F*= — F¥ —F),
Ay = (V/A)(F™ 4 F5~ 4 F¥ 4 FI0),

Ap, = (V/2)F* — F),
Ay, = (V/2)FT — FI). (A9)
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